JP2008294245A - Method of manufacturing epitaxial wafer, and epitaxial wafer - Google Patents

Method of manufacturing epitaxial wafer, and epitaxial wafer Download PDF

Info

Publication number
JP2008294245A
JP2008294245A JP2007138548A JP2007138548A JP2008294245A JP 2008294245 A JP2008294245 A JP 2008294245A JP 2007138548 A JP2007138548 A JP 2007138548A JP 2007138548 A JP2007138548 A JP 2007138548A JP 2008294245 A JP2008294245 A JP 2008294245A
Authority
JP
Japan
Prior art keywords
epitaxial
wafer
heat treatment
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007138548A
Other languages
Japanese (ja)
Inventor
Takemine Magari
偉峰 曲
Hiroyuki Kobayashi
裕之 小林
Takashi Sayama
隆司 佐山
Shoichi Takamizawa
彰一 高見澤
Kiyoshi Mitani
清 三谷
Toshimi Tobe
敏視 戸部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2007138548A priority Critical patent/JP2008294245A/en
Priority to PCT/JP2008/001027 priority patent/WO2008146442A1/en
Priority to TW097114673A priority patent/TW200903646A/en
Publication of JP2008294245A publication Critical patent/JP2008294245A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively manufacturing an epitaxial wafer having strong gettering performance without forming an epitaxial defect in an epitaxial layer by securely performing restoration heat treatment before a process for implanting carbon ions, forming a carbon ion implantation layer and forming a silicon epitaxial layer on an implantation face. <P>SOLUTION: In the manufacturing method of the epitaxial wafer, the carbon ions are implanted, a carbon implantation layer is formed and heat treatment is performed in an atmosphere including ammonia or nitrogen by using a rapid heating/rapid cooling (RTA: rapid thermal annealing) device. The epitaxial layer is formed on a silicon wafer which is heat-treated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シリコン単結晶ウェーハ表面近傍に強力なゲッタリング能力を有するエピタキシャルウェーハの製造方法に関するものである。   The present invention relates to a method for manufacturing an epitaxial wafer having a strong gettering ability near the surface of a silicon single crystal wafer.

半導体素子を形成するためのシリコン単結晶ウェーハとして、CZ(Czochralski)法やMCZ(Magnetic field CZ)法で成長させたシリコン単結晶ウェーハや、これらのシリコン単結晶ウェーハの表面にエピタキシャル層を形成したエピタキシャルウェーハ、シリコン単結晶ウェーハに熱処理を施したアニールウェーハ等が従来から用いられている。   As a silicon single crystal wafer for forming a semiconductor element, a silicon single crystal wafer grown by a CZ (Czochralski) method or an MCZ (Magnetic field CZ) method, or an epitaxial layer was formed on the surface of these silicon single crystal wafers An epitaxial wafer, an annealed wafer obtained by subjecting a silicon single crystal wafer to heat treatment, and the like have been conventionally used.

一方、半導体素子の形成工程はクラス100以下の超クリーンルーム内で行われているが、ガス、水や半導体製造装置等から不純物によるシリコン単結晶ウェーハの汚染を完全に避けることはできない。これらの不純物が素子活性領域に存在していると、半導体素子の品質及び特性が著しく劣化する。そこで、これらの不純物をゲッタリングして素子活性領域から除去するために、イントリンシックゲッタリング(Intrinsic Getterrinng:IG)やエクストリンシックゲッタリング(Extrinsic Gettering:EG)が従来から行われている。さらに、これらの処理を施したウェーハ表面にエピタキシャル層を形成する場合もある。   On the other hand, the semiconductor element formation process is performed in an ultra-clean room of class 100 or less, but contamination of the silicon single crystal wafer due to impurities from gas, water, semiconductor manufacturing equipment, etc. cannot be completely avoided. If these impurities are present in the device active region, the quality and characteristics of the semiconductor device are significantly deteriorated. Therefore, intrinsic gettering (IG) and extrinsic gettering (EG) are conventionally performed in order to getter these impurities and remove them from the device active region. Further, an epitaxial layer may be formed on the surface of the wafer subjected to these treatments.

特に、エピタキシャルウェーハは、半導体素子を製造する観点から見ると、基板ウェーハとは異なる抵抗率を有する電気的活性層を形成することができるので、半導体素子を設計する際の自由度が大きく、また結晶欠陥の原因となる酸素や炭素の濃度が低い高純度の単結晶薄膜を任意の厚さに形成できる等の利点が多いため、高耐圧半導体素子やバイポーラ集積回路素子、固体撮像素子(CCD(Charge−Coupled Device)撮像素子)等で製品に実用化されている。   In particular, from the viewpoint of manufacturing a semiconductor element, an epitaxial wafer can form an electrically active layer having a resistivity different from that of a substrate wafer, so that the degree of freedom in designing a semiconductor element is great. Since there are many advantages such as the ability to form a single crystal thin film of high purity with a low concentration of oxygen or carbon that causes crystal defects to an arbitrary thickness, a high voltage semiconductor element, a bipolar integrated circuit element, a solid-state imaging element (CCD ( (Charge-Coupled Device) imaging device) and the like.

実用的なエピタキシャル層の形成方法として、CVD(Chemical Vapor Deposition method)が用いられており、以下の主な4種類のソースガスが使用されている。
水素還元法では、ソースガスとしてSiCl、SiHClが使用されている。
SiCl + 2H → Si + 4HCl
SiHCl + H → Si + 3HCl
熱分解法では、ソースガスとしてSiHCl、SiHが使用される。
SiHCl → Si + 2HCl
SiH → Si + 2H
As a practical method for forming an epitaxial layer, CVD (Chemical Vapor Deposition method) is used, and the following four main source gases are used.
In the hydrogen reduction method, SiCl 4 and SiHCl 3 are used as source gases.
SiCl 4 + 2H 2 → Si + 4HCl
SiHCl 3 + H 2 → Si + 3HCl
In the thermal decomposition method, SiH 2 Cl 2 and SiH 4 are used as source gases.
SiH 2 Cl 2 → Si + 2HCl
SiH 4 → Si + 2H 2

このうち、固体撮像装置としては、SiHClが、安価であること、成長速度が大きく、厚膜のエピタキシャル成長用に適している等から主に用いられている。
しかし、いずれのソースガスを用いてエピタキシャル層を形成したエピタキシャルウェーハも、エピタキシャル層の形成中に多くの不純物、特に金属不純物が混入する。このような金属不純物は、固体撮像素子に適用した場合に、暗電流による白傷欠陥が充分に低減できず、特性や歩留りを悪くする原因となっていた。
Among these, as the solid-state imaging device, SiHCl 3 is mainly used because it is inexpensive, has a high growth rate, and is suitable for epitaxial growth of thick films.
However, in an epitaxial wafer in which an epitaxial layer is formed using any source gas, many impurities, particularly metal impurities, are mixed during the formation of the epitaxial layer. When such metal impurities are applied to a solid-state imaging device, white scratch defects due to dark current cannot be sufficiently reduced, causing deterioration in characteristics and yield.

重金属不純物の発生源としては、エピタキシャル成長装置のベルジャー内のSUS系部材からのもの、ソースガスの配管からのものが考えられる。ソースガスに塩素系が含まれているとエピタキシャル成長時に分解してHClガスが作られる。このHClガスがベルジャー内のSUS系部材を腐食して、金属の塩化物としてソースガス中に取り込まれるものと考えられる。
また、エピタキシャル層形成前に、シリコン単結晶ウェーハ表面を軽くエッチオフするために、HClガスを故意に導入する場合もあり、これも腐食の一因となっている。
Possible sources of heavy metal impurities are those from SUS-based members in bell jars of epitaxial growth apparatuses and those from source gas piping. If the source gas contains chlorine, it is decomposed during epitaxial growth to produce HCl gas. It is considered that the HCl gas corrodes the SUS member in the bell jar and is taken into the source gas as a metal chloride.
In addition, HCl gas may be intentionally introduced to lightly etch off the surface of the silicon single crystal wafer before forming the epitaxial layer, which also contributes to corrosion.

そこで、エピタキシャルウェーハを用いて固体撮像素子を形成する場合に、上記金属不純物をゲッタリングして除去するためのゲッタリング技術として、シリコンウェーハの一面から炭素イオンを注入して、炭素イオン注入領域を形成し、この表面にシリコンエピタキシャル層を形成する炭素ゲッタリングエピタキシャルウェーハの製造方法がある(例えば特許文献1参照)。さらにゲッタリング能力を上げるため、シリコンウェーハの一表面に炭素イオン及び窒素イオンを注入してその表面にエピタキシャル層を形成する方法(例えば特許文献2参照)や、窒素を含有するシリコンウェーハの一表面に炭素イオンを注入し、この表面にシリコンエピタキシャル層を形成する方法(例えば特許文献3参照)が提案されている。   Therefore, when a solid-state imaging device is formed using an epitaxial wafer, as a gettering technique for removing the metal impurities by gettering, carbon ions are implanted from one surface of the silicon wafer, and a carbon ion implantation region is formed. There is a method of manufacturing a carbon gettering epitaxial wafer which is formed and a silicon epitaxial layer is formed on this surface (see, for example, Patent Document 1). In order to further improve the gettering capability, carbon ions and nitrogen ions are implanted into one surface of a silicon wafer to form an epitaxial layer on the surface (see, for example, Patent Document 2), or one surface of a silicon wafer containing nitrogen. A method has been proposed in which carbon ions are implanted into the surface and a silicon epitaxial layer is formed on the surface (see, for example, Patent Document 3).

しかしながら、デバイス工程が低温プロセスの場合では酸素析出しにくいため、炭素イオンを注入しても、ゲッタリング能力が弱いという問題があった。
また、注入する炭素イオンのドーズ量が高い程、エピタキシャル工程前の回復処理が困難となり、エピタキシャル層が成長できない場合があり、またシリコンエピタキシャル層が成長できた場合であっても、エピ欠陥が形成しやすいという問題があった。
However, when the device process is a low-temperature process, it is difficult for oxygen to precipitate, so that there is a problem that the gettering ability is weak even if carbon ions are implanted.
In addition, the higher the dose of implanted carbon ions, the more difficult the recovery process before the epitaxial process becomes, and the epitaxial layer cannot be grown. Even when the silicon epitaxial layer can be grown, epi defects are formed. There was a problem that it was easy to do.

特開平6−338507号公報JP-A-6-338507 特開平11−251322号公報JP-A-11-251322 特開2002−134511号公報JP 2002-134511 A

本発明は、エピタキシャルウェーハの製造方法において、炭素イオンを注入して、炭素イオン注入層を形成し、注入面にシリコンエピタキシャル層を形成する工程の前に回復熱処理を確実に行うことにより、エピタキシャル層にエピ欠陥を形成することなく、かつ強力なゲッタリング能力を備えたエピタキシャルウェーハを低コストで製造する方法を提供することを目的とする。   The present invention relates to an epitaxial wafer manufacturing method in which carbon ions are implanted to form a carbon ion implanted layer, and a recovery heat treatment is reliably performed before the step of forming a silicon epitaxial layer on the implanted surface, whereby an epitaxial layer is formed. It is an object of the present invention to provide a method for manufacturing an epitaxial wafer having a strong gettering capability at low cost without forming epitaxial defects.

上記課題を解決するため、本発明では、エピタキシャルウェーハの製造方法であって、炭素イオンを注入して炭素注入層を形成し、その後、急速加熱・急速冷却(RTA)装置を用いて、アンモニアまたは窒素を含む雰囲気で熱処理を行い、該熱処理を行ったシリコンウェーハの上にエピタキシャル層を形成することを特徴とするエピタキシャルウェーハの製造方法を提供する(請求項1)。   In order to solve the above-mentioned problems, the present invention provides a method for producing an epitaxial wafer, in which carbon ions are implanted to form a carbon implanted layer, and then a rapid heating / rapid cooling (RTA) apparatus is used for ammonia or There is provided an epitaxial wafer manufacturing method characterized in that heat treatment is performed in an atmosphere containing nitrogen, and an epitaxial layer is formed on the heat-treated silicon wafer (claim 1).

上記のように、炭素イオン注入後の結晶性の回復熱処理をRTA装置で行うことにより、ウェーハの結晶性の回復を短時間で行うことが可能となり、工程にかかる時間を短縮することができる。また、回復熱処理の雰囲気を、アンモニアまたは窒素を含む雰囲気とすることにより、熱処理工程の最中にウェーハ表面近傍に空孔を注入することができ、ゲッタリング能力を炭素イオン注入のみの場合に比べさらに高めることができる。さらに、ウェーハの結晶性はRTAによる処理で回復させてあるため、ウェーハ表面にエピタキシャル層を形成したとき、エピ欠陥がほとんど形成されないウェーハとすることができる。   As described above, the crystallinity recovery heat treatment after carbon ion implantation is performed by the RTA apparatus, so that the crystallinity of the wafer can be recovered in a short time, and the time required for the process can be shortened. In addition, by setting the atmosphere for recovery heat treatment to an atmosphere containing ammonia or nitrogen, it is possible to inject vacancies near the wafer surface during the heat treatment process, and the gettering capability is higher than that of carbon ion implantation alone. It can be further increased. Furthermore, since the crystallinity of the wafer has been recovered by treatment with RTA, when an epitaxial layer is formed on the wafer surface, a wafer can be obtained in which almost no epi defects are formed.

また、本発明の製造方法では、前記熱処理の雰囲気は、アンモニア濃度が0.5〜3%であるか、窒素濃度が100〜1000ppmの窒化ガス添加雰囲気とすることが好ましい(請求項2)。
アンモニアまたは窒素濃度を上記のような範囲とすることで、RTA装置による熱処理の際に空孔を効率的に注入しつつ、かつウェーハ中に異物元素となる窒素が必要以上に注入されることを避けることができる。
Moreover, in the manufacturing method of this invention, it is preferable that the atmosphere of the said heat processing shall be the nitrogen gas addition atmosphere whose ammonia concentration is 0.5 to 3% or whose nitrogen concentration is 100 to 1000 ppm (Claim 2).
By setting the ammonia or nitrogen concentration in the above range, it is possible to efficiently inject vacancies during heat treatment by the RTA apparatus and to inject more nitrogen as a foreign element into the wafer than necessary. Can be avoided.

また、本発明の製造方法では、前記炭素イオンを注入するドーズ量は、1×1013〜5×1015atoms/cmとするとすることが好ましい(請求項3)。
このように、1×1013〜5×1015atoms/cmのドーズ量であれば、RTA処理によって結晶性を回復させることが可能であり、またウェーハ表面近傍に酸素析出を促進させることができる。
Moreover, in the manufacturing method of this invention, it is preferable to set the dosage amount which implants the said carbon ion as 1 * 10 < 13 > -5 * 10 < 15 > atoms / cm < 2 > (Claim 3).
Thus, if the dose is 1 × 10 13 to 5 × 10 15 atoms / cm 2 , crystallinity can be recovered by RTA treatment, and oxygen precipitation can be promoted near the wafer surface. it can.

また、本発明の製造方法では、前記急速加熱・急速冷却(RTA)装置を用いた熱処理は、1100℃〜シリコン融点の温度で、10〜60秒の処理時間とするとすることが好ましい(請求項4)。
このような条件の熱処理を行うことによって、ウェーハの結晶性を確実に回復させることができると共に、短時間で結晶性を回復させることができる熱処理条件とすることができる。
In the production method of the present invention, the heat treatment using the rapid heating / rapid cooling (RTA) apparatus is preferably performed at a temperature of 1100 ° C. to a melting point of silicon and a processing time of 10 to 60 seconds. 4).
By performing the heat treatment under such conditions, the crystallinity of the wafer can be reliably recovered, and the heat treatment conditions can be recovered so that the crystallinity can be recovered in a short time.

また、本発明の製造方法によって製造されたエピタキシャルウェーハのエピタキシャル層に、固体撮像素子を形成する固体撮像装置の製造方法とすることが好ましい(請求項5)。
このように、本発明の製造方法によって製造されたエピタキシャルウェーハは、エピタキシャル層にエピ欠陥がほとんど形成されていないものであるため、固体撮像素子を形成すると良好な固体撮像装置を歩留まりよく製造することができる。
Moreover, it is preferable to use a solid-state imaging device manufacturing method in which a solid-state imaging device is formed in an epitaxial layer of an epitaxial wafer manufactured by the manufacturing method of the present invention.
As described above, since the epitaxial wafer manufactured by the manufacturing method of the present invention has almost no epitaxial defects formed in the epitaxial layer, when a solid-state imaging device is formed, a good solid-state imaging device is manufactured with high yield. Can do.

また、本発明の製造方法によって製造されたエピタキシャルウェーハは、エピタキシャル層にエピ欠陥が形成されていないものとすることが好ましい(請求項6)。
前述のように、本発明の製造方法によって製造されたエピタキシャルウェーハは、ゲッタリング能力が高いとともに、下地の結晶性を回復させてあるため、エピ欠陥が形成されないものとなる。
Moreover, it is preferable that the epitaxial wafer manufactured by the manufacturing method of the present invention has no epitaxial defect formed in the epitaxial layer.
As described above, the epitaxial wafer manufactured by the manufacturing method of the present invention has high gettering ability and has recovered the crystallinity of the base, and therefore no epitaxial defect is formed.

以上説明したように、本発明では、エピタキシャルウェーハを製造する際に、シリコンウェーハに炭素イオンを注入して炭素注入層を形成し、その後、急速加熱・急速冷却(RTA)装置を用いて、アンモニアまたは窒素を含む雰囲気で結晶性の回復熱処理を行い、熱処理を行ったシリコンウェーハの上にエピタキシャル層を形成する。このようにすることで、強力なゲッタリング能力を備え、かつエピタキシャル工程前の回復熱処理を確実に行うことができるため、エピタキシャル層にエピ欠陥が形成されることを防ぐことができるとともに、デバイス工程でのゲッタリング能力も高いエピタキシャルウェーハを、低コストで製造する方法を得ることができる。   As described above, according to the present invention, when an epitaxial wafer is manufactured, carbon ions are implanted into a silicon wafer to form a carbon implanted layer, and thereafter, using a rapid heating / rapid cooling (RTA) apparatus, ammonia is produced. Alternatively, a crystalline recovery heat treatment is performed in an atmosphere containing nitrogen, and an epitaxial layer is formed on the heat-treated silicon wafer. By doing so, since it has a strong gettering capability and can reliably perform a recovery heat treatment before the epitaxial process, it is possible to prevent the formation of epitaxial defects in the epitaxial layer, and to perform the device process. Thus, it is possible to obtain a method for manufacturing an epitaxial wafer having high gettering capability at low cost.

以下、本発明についてより具体的に説明する。
前述のように、強力なゲッタリング能力を備え、かつエピタキシャル工程前の回復熱処理を確実に行うことにより、エピタキシャル層にエピ欠陥が形成されることを防ぐことができるエピタキシャルウェーハを低コストで製造する方法の開発が待たれていた。
Hereinafter, the present invention will be described more specifically.
As described above, an epitaxial wafer having a strong gettering capability and capable of preventing the formation of epitaxial defects in the epitaxial layer by reliably performing the recovery heat treatment before the epitaxial process is manufactured at a low cost. The development of the method was awaited.

そこで、本発明者は、炭素イオン注入後の結晶性の回復熱処理で、ゲッタリング能力の向上とともに時間をかけないことによって、ゲッタリング能力を落とすことなく課題を解決できないか鋭意検討を重ねた。   Therefore, the present inventor has intensively studied whether the problem can be solved without reducing the gettering ability by not spending time with the improvement of the gettering ability in the crystallinity recovery heat treatment after carbon ion implantation.

その結果、本発明者は、RTA装置によって急速加熱・急速冷却することによって短時間で結晶性の回復処理を行いつつ、アンモニアまたは窒素を含む雰囲気で熱処理することによって空孔を注入してゲッタリング能力を落とすのではなく、さらに強力なゲッタリング能力を付与することを発想し、本発明を完成させた。   As a result, the present inventors performed gettering by injecting vacancies by heat treatment in an atmosphere containing ammonia or nitrogen while performing crystallinity recovery treatment in a short time by rapid heating / cooling with an RTA apparatus. The present invention has been completed with the idea of giving a stronger gettering ability rather than reducing the ability.

以下、本発明について図1を用いてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
まず、単結晶シリコンウェーハ11を準備する。このシリコンウェーハのいずれか一方の主表面に高電流イオン注入機を用いて、炭素イオン注入を行って、シリコンウェーハに炭素注入層12を形成する。炭素イオンのドーズ量としては1×1013〜5×1015atoms/cmとすることができる。
上記の範囲のドーズ量とすることで、炭素イオン注入後に行う熱処理が短時間であっても、ウェーハの結晶性の回復を図ることが可能である。また、酸素析出を促進するためにも、上記ドーズ量の範囲が好ましい。
Hereinafter, the present invention will be described in more detail with reference to FIG. 1, but the present invention is not limited thereto.
First, a single crystal silicon wafer 11 is prepared. Carbon ion implantation is performed on one main surface of this silicon wafer using a high current ion implanter to form a carbon implanted layer 12 on the silicon wafer. The dose of carbon ions can be set to 1 × 10 13 to 5 × 10 15 atoms / cm 2 .
By setting the dose within the above range, the crystallinity of the wafer can be recovered even if the heat treatment performed after the carbon ion implantation is short. In order to promote oxygen precipitation, the above dose range is preferable.

その後、炭素イオン注入によって乱れたシリコンウェーハの結晶性を回復させるために熱処理を行う。熱処理は、急速加熱・急速冷却(RTA)装置を用いて行う。この熱処理は、アンモニアまたは窒素を含む雰囲気で行う。
上記のようにアンモニアまたは窒素を含む雰囲気でRTA装置による熱処理を行うことによって、短い熱処理時間でも結晶性の回復を図ることが可能である。またアンモニアまたは窒素を含ませることによって、熱処理中にウェーハに空孔を注入することができ、これによって酸素をより効率的に析出させ、BMD(Bulk MicroDefect)層13を形成させる。この形成したBMD層13に重金属等の不純物をゲッタリングさせることが可能となる。上記のようにすることで短時間の工程であっても強力なゲッタリング能力を備えたエピタキシャルウェーハを得ることができる。
Thereafter, heat treatment is performed to recover the crystallinity of the silicon wafer disturbed by the carbon ion implantation. The heat treatment is performed using a rapid heating / rapid cooling (RTA) apparatus. This heat treatment is performed in an atmosphere containing ammonia or nitrogen.
By performing the heat treatment with the RTA apparatus in an atmosphere containing ammonia or nitrogen as described above, the crystallinity can be recovered even in a short heat treatment time. Further, by containing ammonia or nitrogen, it is possible to inject vacancies into the wafer during the heat treatment, whereby oxygen is precipitated more efficiently, and a BMD (Bulk Micro Defect) layer 13 is formed. Impurities such as heavy metals can be gettered to the formed BMD layer 13. By doing as described above, an epitaxial wafer having a strong gettering ability can be obtained even in a short time.

アンモニアを含む雰囲気で行う際のアンモニアの濃度は0.5〜3%とすることができる。窒素を含む雰囲気で行う場合は窒素濃度は100〜1000ppmの窒化ガスを添加した雰囲気とすることができる。
前述のような濃度範囲とすることで、空孔を注入する際に、ウェーハ中に入る窒素の総量を不必要に増加させることなく、空孔を十分量注入することが可能となる。ここでさらに、窒素添加雰囲気に100ppm以下の微量酸素雰囲気で熱処理を行うことによっても、上記と同様の効果を得ることができる。
The concentration of ammonia in the atmosphere containing ammonia can be 0.5 to 3%. When performing in the atmosphere containing nitrogen, nitrogen concentration can be made into the atmosphere which added 100-1000 ppm of nitriding gas.
By setting the concentration range as described above, a sufficient amount of vacancies can be implanted without unnecessarily increasing the total amount of nitrogen entering the wafer when vacancies are implanted. Further, the same effect as described above can be obtained by performing heat treatment in a nitrogen-added atmosphere in a trace oxygen atmosphere of 100 ppm or less.

熱処理条件として、処理温度は1100℃〜シリコン融点温度とすることができる。特に望ましくは1100〜1250℃である。処理時間としては10〜60秒とすることができる。前述の熱処理条件とすることで、ウェーハの結晶性を確実に回復させると共に、短時間の処理とすることができる。よって工程を短くすることが可能となり、コスト低減を図ることが可能となる。
熱処理の回数は一回でも十分だが、特に回数に制限はない。結晶性の回復を重視する場合は2〜3回繰り返すことができる。
As the heat treatment condition, the treatment temperature can be 1100 ° C. to the silicon melting point temperature. The temperature is particularly preferably 1100 to 1250 ° C. The processing time can be 10 to 60 seconds. By using the above-described heat treatment conditions, the crystallinity of the wafer can be reliably recovered and the treatment can be performed in a short time. Therefore, the process can be shortened, and the cost can be reduced.
Although the number of heat treatments is sufficient, there is no particular limitation on the number of heat treatments. When emphasizing recovery of crystallinity, the process can be repeated 2 to 3 times.

その後、炭素イオンを注入した面に、エピタキシャル層14を形成する。エピタキシャル層14の形成には一般的な条件を用いることができる。
たとえば、HをキャリアガスとしてSiHCl等のソースガスをチャンバー内に導入し、サセプタ上に配置した上記ゲッタリング能力が高くかつ炭素注入層を有し、RTA処理したウェーハ上に、1050〜1250℃程度でCVD法により、エピタキシャル成長することができる。
Thereafter, an epitaxial layer 14 is formed on the surface implanted with carbon ions. General conditions can be used to form the epitaxial layer 14.
For example, a source gas such as SiHCl 3 is introduced into a chamber using H 2 as a carrier gas, and the above gettering capability is high on the susceptor and has a carbon injection layer. Epitaxial growth can be performed by a CVD method at about ° C.

エピタキシャル層を形成した後、ウェーハ表面に固体撮像素子を形成することができる。このように、本発明の製造方法によって製造されたエピタキシャルウェーハは、ゲッタリング能力が高く、かつエピタキシャル層にエピ欠陥がほとんど形成されていないものであるため、固体撮像素子を形成すると良好な固体撮像装置を歩留まりよく製造することができる。   After forming the epitaxial layer, a solid-state imaging device can be formed on the wafer surface. As described above, the epitaxial wafer manufactured by the manufacturing method of the present invention has high gettering capability and almost no epitaxial defects are formed in the epitaxial layer. The apparatus can be manufactured with a high yield.

本発明の製造方法によって製造されたエピタキシャルウェーハは、エピタキシャル層の形成前にゲッタリング層の形成のためのイオン注入によって乱れた結晶性を回復させてあるため、エピタキシャル層を形成してもウェーハの結晶性の乱れに起因するエピ欠陥が形成されることを防止することができる。   In the epitaxial wafer manufactured by the manufacturing method of the present invention, the disordered crystallinity is recovered by ion implantation for forming the gettering layer before forming the epitaxial layer. It is possible to prevent the formation of epi defects due to the disorder of crystallinity.

尚、用いる単結晶シリコンウェーハとしては、酸素濃度が0.9〜1.5×1018atoms/cmのウェーハを用いることが望ましい。このようなウェーハを用いることによって、炭素イオンのドーズ量が低くても、ウェーハ表面近傍に十分に酸素析出を生じさせることができる。 Note that it is desirable to use a wafer having an oxygen concentration of 0.9 to 1.5 × 10 18 atoms / cm 3 as the single crystal silicon wafer to be used. By using such a wafer, even if the dose of carbon ions is low, oxygen precipitation can be sufficiently generated in the vicinity of the wafer surface.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
まず、直径200mmのP型単結晶シリコンウェーハを準備した。
次に、そのウェーハに、ドーズ量1×1014atom/cmの条件で、高電流イオン注入機を用いて炭素をイオン注入して、炭素注入層を形成した。
その後、アンモニア濃度が1.0%のアルゴン雰囲気下にて急速加熱・急速冷却(RTA)装置を用いて、1175℃・30秒および1170℃・30秒を2回繰り返した条件で結晶性の回復のための熱処理を行った。
その後、1130℃の処理条件で炭素注入層を形成したウェーハ表面にエピタキシャル層を形成し、エピタキシャルウェーハを作製した。形成したエピタキシャル層の厚さは約6μmである。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
Example 1
First, a P-type single crystal silicon wafer having a diameter of 200 mm was prepared.
Next, on the wafer, at a dose of 1 × 10 14 atom s / cm 2, and ion implantation of carbon with a high current ion implanter to form a carbon implanted layer.
After that, recovery of crystallinity was performed under conditions of 1175 ° C. · 30 seconds and 1170 ° C. · 30 seconds repeated twice using a rapid heating and rapid cooling (RTA) apparatus in an argon atmosphere with an ammonia concentration of 1.0%. The heat treatment for was performed.
Thereafter, an epitaxial layer was formed on the wafer surface on which the carbon injection layer was formed under the processing conditions of 1130 ° C., and an epitaxial wafer was produced. The thickness of the formed epitaxial layer is about 6 μm.

作製したエピタキシャルウェーハの特性評価を以下の通り行った。
エピタキシャルウェーハ表面のエピ欠陥をパーティクルカウンターを用いて観察した。その結果を図2に示す。
エピタキシャルウェーハ中の酸素・炭素・窒素濃度を二次イオン質量分析法にて評価した。その結果を図3に示す。
RTA装置による熱処理の際に注入した空孔濃度を評価するため、酸素析出熱処理を行い、BMD密度を評価した。酸素析出熱処理条件は800℃・4時間および1000℃・16時間とした。その後、酸素析出熱処理後のエピタキシャルウェーハの表面についてAngle Polish評価を行い、エピタキシャル層、炭素注入層、炭素注入層下部の断面を観察し、BMD密度分布を評価した。その結果を図4に示す。
そして酸素析出熱処理前後のウェーハの酸素析出量(ΔO)をFTIRにて評価した。その結果を図5に示す。
The characteristics of the produced epitaxial wafer were evaluated as follows.
Epi defects on the surface of the epitaxial wafer were observed using a particle counter. The result is shown in FIG.
The oxygen, carbon, and nitrogen concentrations in the epitaxial wafer were evaluated by secondary ion mass spectrometry. The result is shown in FIG.
In order to evaluate the vacancy concentration injected during the heat treatment by the RTA apparatus, an oxygen precipitation heat treatment was performed to evaluate the BMD density. Oxygen precipitation heat treatment conditions were 800 ° C. · 4 hours and 1000 ° C. · 16 hours. Then, Angle Polish evaluation was performed about the surface of the epitaxial wafer after oxygen precipitation heat processing, the cross section of an epitaxial layer, a carbon injection layer, and the carbon injection layer lower part was observed, and BMD density distribution was evaluated. The result is shown in FIG.
And the oxygen precipitation amount of oxygen precipitation heat treatment before and after the wafers (ΔO i) was evaluated by FTIR. The result is shown in FIG.

(比較例1)
実施例1において、結晶性回復のための熱処理を、抵抗加熱装置を用いてAr雰囲気下1100℃で5分と10分の条件で行った以外は、実施例1と同じ条件でエピタキシャルウェーハを作製した。その後、実施例1と同様の評価を行った。
(Comparative Example 1)
In Example 1, an epitaxial wafer was produced under the same conditions as in Example 1 except that the heat treatment for recovering crystallinity was performed at 1100 ° C. in an Ar atmosphere for 5 minutes and 10 minutes using a resistance heating apparatus. did. Thereafter, the same evaluation as in Example 1 was performed.

図2に本発明の実施例と比較例のエピタキシャルウェーハの表面の欠陥の一例を示す分布図を示す。
実施例1のエピタキシャルウェーハの表面は、比較例1の10分熱処理した表面とほぼ同様にエピ欠陥は検出されなかった。一方抵抗加熱炉で5分熱処理したものは、結晶性の回復は不十分であった。このことから、アンモニアを含んだ雰囲気下におけるRTA装置を用いた熱処理によっても、炭素注入後の結晶性の回復は可能であることが分かった。このことからエピタキシャル層にエピ欠陥のないエピタキシャルウェーハを短時間の熱処理で得られることが分かった。
FIG. 2 is a distribution diagram showing an example of defects on the surface of the epitaxial wafers of Examples and Comparative Examples of the present invention.
No epitaxial defects were detected on the surface of the epitaxial wafer of Example 1 in the same manner as the surface of Comparative Example 1 that had been heat-treated for 10 minutes. On the other hand, the crystallinity was not sufficiently recovered after heat treatment for 5 minutes in a resistance heating furnace. From this, it was found that the crystallinity after carbon implantation can be recovered by heat treatment using an RTA apparatus in an atmosphere containing ammonia. From this, it was found that an epitaxial wafer having no epitaxial defect in the epitaxial layer can be obtained by a short heat treatment.

図3に本発明の実施例1のウェーハ表面の酸素・炭素・窒素濃度のプロファイルを示す。
ウェーハ表面のエピタキシャル層には酸素がほとんど分布していない。またエピタキシャル層直下の部分には炭素と酸素が集中的に分布しており、炭素注入層がエピタキシャル層直下に形成されていることがわかる。このことからエピタキシャル層に近接してゲッタリング層が形成されていることがわかった。窒素は表面から約45μmまで増加しており、炭素イオン注入層の下に十分に空孔が注入されていることが分かった。また、RTA装置による熱処理を繰り返し行った場合、酸素濃度、炭素濃度分布はほとんど変化しないが、窒素濃度は増加することが分かった。
FIG. 3 shows the oxygen / carbon / nitrogen concentration profile on the wafer surface in Example 1 of the present invention.
Almost no oxygen is distributed in the epitaxial layer on the wafer surface. It can also be seen that carbon and oxygen are concentrated in the portion immediately below the epitaxial layer, and the carbon injection layer is formed immediately below the epitaxial layer. This indicates that a gettering layer is formed in the vicinity of the epitaxial layer. Nitrogen increased from the surface to about 45 μm, and it was found that vacancies were sufficiently implanted under the carbon ion implanted layer. Further, it was found that when the heat treatment by the RTA apparatus is repeatedly performed, the oxygen concentration and the carbon concentration distribution hardly change, but the nitrogen concentration increases.

図4に本発明の実施例1と比較例1(10分熱処理)におけるウェーハ表面からのBMDの深さ方向の分布図を示す。
実施例1のエピタキシャルウェーハでは、炭素注入層の下に高密度のBMDの分布が観察され、その密度は5×10個/cm以上であることが分かった。比較例1のウェーハ表面では、実施例1に比べBMDがほとんど観察されず、その密度は1×10個/cm以下であった。よって炭素注入層のほかにもBMD層というゲッタリング能力を持った層を有するエピタキシャルウェーハを本発明の製造方法によって得られることがわかった。
FIG. 4 shows a distribution diagram of the BMD in the depth direction from the wafer surface in Example 1 of the present invention and Comparative Example 1 (10 minute heat treatment).
In the epitaxial wafer of Example 1, a high-density BMD distribution was observed under the carbon implanted layer, and the density was found to be 5 × 10 5 pieces / cm 2 or more. On the wafer surface of Comparative Example 1, almost no BMD was observed compared to Example 1, and the density was 1 × 10 4 pieces / cm 2 or less. Therefore, it was found that an epitaxial wafer having a layer having a gettering ability called a BMD layer in addition to the carbon injection layer can be obtained by the manufacturing method of the present invention.

(実施例2、3、4、比較例2、3、4)
実施例2、3、4は、炭素イオンの注入量を順に5×1014、5×1013、1×1013atoms/cmとした以外は、実施例1と同じ条件でエピタキシャルウェーハを作製し、実施例1と同様の評価を行った。
同様に比較例2、3、4は、炭素イオンの注入量を順に5×1014、5×1013、1×1013atoms/cmとし、熱処理を10分とした以外は、比較例1と同じ条件でエピタキシャルウェーハを作製し、実施例1と同様の評価を行った。
(Examples 2, 3, and 4, Comparative Examples 2, 3, and 4)
In Examples 2, 3, and 4, epitaxial wafers were produced under the same conditions as in Example 1 except that carbon ions were implanted in order of 5 × 10 14 , 5 × 10 13 , and 1 × 10 13 atoms / cm 2. Then, the same evaluation as in Example 1 was performed.
Similarly, Comparative Examples 2, 3 and 4 are Comparative Example 1 except that the amount of carbon ions implanted was 5 × 10 14 , 5 × 10 13 , 1 × 10 13 atoms / cm 2 in this order , and the heat treatment was 10 minutes. An epitaxial wafer was produced under the same conditions as in Example 1, and the same evaluation as in Example 1 was performed.

その結果、実施例2、3、4では、炭素注入量が増加すると共に炭素注入層の形成が顕著となったが、炭素注入層の下のBMD層の形成の度合いはほとんど同じであることが分かった。また、いずれの実施例でも、エピ欠陥は発生しなかった。
一方比較例2、3、4では、炭素注入層の形成は対応する実施例とほぼ同じ程度であったが、炭素注入層の下部は酸素析出熱処理後にBMD層がほとんど形成されておらず、その結果対応する実施例のウェーハに比べ、ゲッタリング能力が劣るウェーハとなってしまったことが分かった。
As a result, in Examples 2, 3, and 4, the carbon injection amount increased and the formation of the carbon injection layer became remarkable, but the degree of formation of the BMD layer under the carbon injection layer was almost the same. I understood. Moreover, no epi defect occurred in any of the examples.
On the other hand, in Comparative Examples 2, 3, and 4, the formation of the carbon injection layer was almost the same as the corresponding example, but the BMD layer was hardly formed after the oxygen precipitation heat treatment in the lower part of the carbon injection layer. As a result, it was found that the gettering ability was inferior to that of the corresponding example wafer.

(実施例5)
上記実施例1においてRTA装置による熱処理の条件を1200℃・10秒とした以外は、実施例1と同じ条件でエピタキシャルウェーハを作製し、実施例1と同様の評価を行った。
この結果、熱処理条件を1200℃・10秒に変更しても実施例1とほとんど同じ特性を持ったエピタキシャルウェーハとなっていることが分かった。
(Example 5)
An epitaxial wafer was prepared under the same conditions as in Example 1 except that the heat treatment conditions by the RTA apparatus were set to 1200 ° C. and 10 seconds in Example 1 above, and the same evaluation as in Example 1 was performed.
As a result, it was found that even if the heat treatment condition was changed to 1200 ° C. and 10 seconds, the epitaxial wafer had almost the same characteristics as in Example 1.

図5に、各実施例・比較例における酸素析出熱処理前後のウェーハの残存酸素濃度変化(ΔO:酸素析出量)を比較した図を示す。
実施例1〜4においては、炭素注入量が増加すると共に熱処理前後の酸素濃度の変化量が大きくなることが分かった。このことから注入量が多くなるほど酸素を析出させることができることがわかった。しかしBMDの密度はほとんど変わらなかった。抵抗加熱による回復熱処理では、析出熱処理前後の酸素濃度はほとんど変化しておらず、BMD密度もほとんど変化していないことがわかった。このことからBMD層の形成は熱処理条件の寄与が大きいことが分かった。
以上のことからRTA装置による窒化性雰囲気下での急速加熱・急速冷却による熱処理では、抵抗加熱による熱処理を行ったウェーハに比べゲッタリング能力があるウェーハが作製できることが分かった。
FIG. 5 shows a comparison of changes in residual oxygen concentration (ΔO i : oxygen precipitation amount) of the wafer before and after the oxygen precipitation heat treatment in each of the examples and comparative examples.
In Examples 1 to 4, it was found that the amount of change in the oxygen concentration before and after the heat treatment increases as the carbon injection amount increases. From this, it was found that oxygen can be precipitated as the injection amount increases. However, the density of BMD remained almost unchanged. In the recovery heat treatment by resistance heating, it was found that the oxygen concentration before and after the precipitation heat treatment hardly changed and the BMD density hardly changed. From this, it was found that the formation of the BMD layer greatly contributes to the heat treatment conditions.
From the above, it has been found that a heat treatment by rapid heating / cooling in a nitriding atmosphere using an RTA apparatus can produce a wafer having gettering ability as compared with a wafer subjected to heat treatment by resistance heating.

下記表1に、各実施例、比較例におけるエピタキシャルウェーハの評価結果をまとめたものを示す。   Table 1 below summarizes the evaluation results of the epitaxial wafers in each example and comparative example.

Figure 2008294245
Figure 2008294245

以上に示したように、本発明の製造方法によれば、炭素注入後に、ウェーハの結晶性の回復のための熱処理を、アンモニア雰囲気等の窒化性の雰囲気下で急速加熱・急速冷却装置によって回復熱処理を行うことによって、短い処理時間であっても結晶性の回復を図ることが可能であり、かつ熱処理中にウェーハ表面に空孔を注入することによって、強力なゲッタリング能力を持った層がエピタキシャル層に近接している、エピタキシャルウェーハが得られる。   As described above, according to the manufacturing method of the present invention, after carbon implantation, the heat treatment for recovering the crystallinity of the wafer is recovered by a rapid heating / rapid cooling apparatus in a nitriding atmosphere such as an ammonia atmosphere. By performing the heat treatment, it is possible to recover the crystallinity even in a short processing time, and by injecting vacancies into the wafer surface during the heat treatment, a layer having a strong gettering ability can be obtained. An epitaxial wafer is obtained that is proximate to the epitaxial layer.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

本発明のエピタキシャルウェーハの製造方法の一例を示すフローシートである。It is a flow sheet which shows an example of the manufacturing method of the epitaxial wafer of the present invention. 本発明の実施例と比較例のエピタキシャルウェーハの表面の欠陥の一例を示す分布図である。It is a distribution map which shows an example of the defect of the surface of the epitaxial wafer of the Example and comparative example of this invention. 本発明の実施例1のウェーハ表面からの酸素、炭素、窒素濃度のプロファイルを示す図である。It is a figure which shows the profile of oxygen, carbon, and nitrogen concentration from the wafer surface of Example 1 of this invention. 本発明の実施例1と比較例1におけるウェーハ表面からのBMDの深さ方向の分布図である。It is a distribution map of the BMD depth direction from the wafer surface in Example 1 and Comparative Example 1 of the present invention. 各実施例・比較例における酸素析出熱処理前後のウェーハの残存酸素濃度変化(ΔO:酸素析出物)を比較した図である。The remaining oxygen concentration change in oxygen precipitation heat treatment before and after the wafer in the Examples and Comparative Examples (delta O.D. i: oxygen precipitates) is a graph comparing the.

符号の説明Explanation of symbols

11…単結晶シリコンウェーハ、 12…炭素注入層、 13…BMD形成層、 14…エピタキシャル層。   DESCRIPTION OF SYMBOLS 11 ... Single crystal silicon wafer, 12 ... Carbon injection layer, 13 ... BMD formation layer, 14 ... Epitaxial layer

Claims (6)

エピタキシャルウェーハの製造方法であって、炭素イオンを注入して炭素注入層を形成し、その後、急速加熱・急速冷却(RTA)装置を用いて、アンモニアまたは窒素を含む雰囲気で熱処理を行い、該熱処理を行ったシリコンウェーハの上にエピタキシャル層を形成することを特徴とするエピタキシャルウェーハの製造方法。   A method of manufacturing an epitaxial wafer, in which carbon ions are implanted to form a carbon implanted layer, and thereafter, heat treatment is performed in an atmosphere containing ammonia or nitrogen using a rapid heating / cooling (RTA) apparatus. An epitaxial wafer manufacturing method, comprising: forming an epitaxial layer on a silicon wafer subjected to the process. 前記熱処理の雰囲気は、アンモニア濃度が0.5〜3%であるか、窒素濃度が100〜1000ppmの窒化ガス添加雰囲気であることを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。   2. The method for producing an epitaxial wafer according to claim 1, wherein the atmosphere for the heat treatment is a nitrogen gas addition atmosphere having an ammonia concentration of 0.5 to 3% or a nitrogen concentration of 100 to 1000 ppm. 前記炭素イオンを注入するドーズ量は、1×1013〜5×1015atoms/cmとすることを特徴とする請求項1または請求項2に記載のエピタキシャルウェーハの製造方法。 3. The method of manufacturing an epitaxial wafer according to claim 1, wherein a dose amount for implanting the carbon ions is 1 × 10 13 to 5 × 10 15 atoms / cm 2 . 前記急速加熱・急速冷却(RTA)装置を用いた熱処理は、1100℃〜シリコン融点の温度で、10〜60秒の処理時間とすることを特徴とする請求項1ないし請求項3のいずれか1項に記載のエピタキシャルウェーハの製造方法。   4. The heat treatment using the rapid heating / rapid cooling (RTA) apparatus is performed at a temperature of 1100 ° C. to a melting point of silicon for a treatment time of 10 to 60 seconds. 5. The manufacturing method of the epitaxial wafer of claim | item. 請求項1ないし請求項4のいずれか1項に記載された製造方法で製造されたエピタキシャルウェーハのエピタキシャル層に、固体撮像素子を形成することを特徴とする固体撮像装置の製造方法。   5. A method for manufacturing a solid-state imaging device, comprising: forming a solid-state imaging device on an epitaxial layer of an epitaxial wafer manufactured by the manufacturing method according to claim 1. 請求項1ないし請求項4のいずれか1項に記載のエピタキシャルウェーハの製造方法により製造されたエピタキシャルウェーハであって、エピタキシャル層にエピ欠陥が形成されていないものであることを特徴とするエピタキシャルウェーハ。   An epitaxial wafer manufactured by the method for manufacturing an epitaxial wafer according to any one of claims 1 to 4, wherein an epitaxial defect is not formed in the epitaxial layer. .
JP2007138548A 2007-05-25 2007-05-25 Method of manufacturing epitaxial wafer, and epitaxial wafer Pending JP2008294245A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007138548A JP2008294245A (en) 2007-05-25 2007-05-25 Method of manufacturing epitaxial wafer, and epitaxial wafer
PCT/JP2008/001027 WO2008146442A1 (en) 2007-05-25 2008-04-18 Epitaxial wafer manufacturing method and epitaxial wafer
TW097114673A TW200903646A (en) 2007-05-25 2008-04-22 Epitaxial wafer manufacturing method and epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138548A JP2008294245A (en) 2007-05-25 2007-05-25 Method of manufacturing epitaxial wafer, and epitaxial wafer

Publications (1)

Publication Number Publication Date
JP2008294245A true JP2008294245A (en) 2008-12-04

Family

ID=40074720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138548A Pending JP2008294245A (en) 2007-05-25 2007-05-25 Method of manufacturing epitaxial wafer, and epitaxial wafer

Country Status (3)

Country Link
JP (1) JP2008294245A (en)
TW (1) TW200903646A (en)
WO (1) WO2008146442A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231430A (en) * 2008-03-21 2009-10-08 Covalent Materials Corp Silicon wafer
JP2012059849A (en) * 2010-09-08 2012-03-22 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer and manufacturing method thereof
WO2014076933A1 (en) * 2012-11-13 2014-05-22 株式会社Sumco Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
JP2014099465A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing epitaxial silicon wafer, epitaxial silicon wafer, and method for manufacturing solid state image sensor
JP2014099476A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2014220277A (en) * 2013-05-01 2014-11-20 信越半導体株式会社 Silicon single crystal wafer for semiconductor device and method of manufacturing semiconductor device using the same
KR20150065901A (en) 2012-11-13 2015-06-15 가부시키가이샤 사무코 Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
US9117676B2 (en) 2012-11-13 2015-08-25 Sumco Corporation Method of producing epitaxial silicon wafer, epitaxial silicon wafer, and method of producing solid-state image sensing device
JP2015156455A (en) * 2014-02-21 2015-08-27 株式会社Sumco Method for manufacturing epitaxial wafer
KR20150127740A (en) 2011-05-13 2015-11-17 가부시키가이샤 사무코 Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid-state image pickup element
US9224601B2 (en) 2012-11-13 2015-12-29 Sumco Corporation Method of producing epitaxial silicon wafer, epitaxial silicon wafer, and method of producing solid-state image sensing device
JP2017123477A (en) * 2017-02-28 2017-07-13 株式会社Sumco Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid-state imaging device
JP2017175145A (en) * 2017-05-01 2017-09-28 株式会社Sumco Semiconductor epitaxial wafer manufacturing method, semiconductor epitaxial wafer, and solid-state imaging element manufacturing method
JP2021090007A (en) * 2019-12-05 2021-06-10 グローバルウェーハズ・ジャパン株式会社 Silicon wafer and heat treatment method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173535B2 (en) 2009-12-21 2012-05-08 Omnivision Technologies, Inc. Wafer structure to reduce dark current
US9099578B2 (en) 2012-06-04 2015-08-04 Nusola, Inc. Structure for creating ohmic contact in semiconductor devices and methods for manufacture
TW201411869A (en) * 2012-06-04 2014-03-16 Nusola Inc Photovoltaic cell and methods for manufacture
JP6056772B2 (en) 2014-01-07 2017-01-11 株式会社Sumco Epitaxial wafer manufacturing method and epitaxial wafer
US10522367B2 (en) * 2017-03-06 2019-12-31 Qualcomm Incorporated Gettering layer formation and substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130731A (en) * 1990-09-21 1992-05-01 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH06338507A (en) * 1993-03-30 1994-12-06 Sony Corp Semiconductor substrate and solid-state image-pickup device and manufacture thereof
JP2003031582A (en) * 2000-11-28 2003-01-31 Sumitomo Mitsubishi Silicon Corp Manufacturing method for silicon wafer and silicon wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130731A (en) * 1990-09-21 1992-05-01 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH06338507A (en) * 1993-03-30 1994-12-06 Sony Corp Semiconductor substrate and solid-state image-pickup device and manufacture thereof
JP2003031582A (en) * 2000-11-28 2003-01-31 Sumitomo Mitsubishi Silicon Corp Manufacturing method for silicon wafer and silicon wafer

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231430A (en) * 2008-03-21 2009-10-08 Covalent Materials Corp Silicon wafer
JP2012059849A (en) * 2010-09-08 2012-03-22 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer and manufacturing method thereof
US9847370B2 (en) 2011-05-13 2017-12-19 Sumco Corporation Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device
US9496139B2 (en) 2011-05-13 2016-11-15 Sumco Corporation Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device
KR20150127740A (en) 2011-05-13 2015-11-17 가부시키가이샤 사무코 Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid-state image pickup element
JP2014099476A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
US9224601B2 (en) 2012-11-13 2015-12-29 Sumco Corporation Method of producing epitaxial silicon wafer, epitaxial silicon wafer, and method of producing solid-state image sensing device
KR20150065901A (en) 2012-11-13 2015-06-15 가부시키가이샤 사무코 Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
KR20150066598A (en) * 2012-11-13 2015-06-16 가부시키가이샤 사무코 Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
US9117676B2 (en) 2012-11-13 2015-08-25 Sumco Corporation Method of producing epitaxial silicon wafer, epitaxial silicon wafer, and method of producing solid-state image sensing device
KR101964937B1 (en) * 2012-11-13 2019-04-02 가부시키가이샤 사무코 Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
JP2014099465A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing epitaxial silicon wafer, epitaxial silicon wafer, and method for manufacturing solid state image sensor
KR101808685B1 (en) 2012-11-13 2017-12-13 가부시키가이샤 사무코 Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
US9396967B2 (en) 2012-11-13 2016-07-19 Sumco Corporation Method of producing epitaxial silicon wafer, epitaxial silicon wafer, and method of producing solid-state image sensing device
US9397172B2 (en) 2012-11-13 2016-07-19 Sumco Corporation Semiconductor epitaxial wafer
JP2014099454A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
KR20160148033A (en) 2012-11-13 2016-12-23 가부시키가이샤 사무코 Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
US9576800B2 (en) 2012-11-13 2017-02-21 Sumco Corporation Method of producing epitaxial silicon wafer, epitaxial silicon wafer, and method of producing solid-state image sensing device
KR101837454B1 (en) 2012-11-13 2018-03-12 가부시키가이샤 사무코 Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
WO2014076933A1 (en) * 2012-11-13 2014-05-22 株式会社Sumco Production method for semiconductor epitaxial wafer, semiconductor epitaxial wafer, and production method for solid-state imaging element
JP2014220277A (en) * 2013-05-01 2014-11-20 信越半導体株式会社 Silicon single crystal wafer for semiconductor device and method of manufacturing semiconductor device using the same
JP2015156455A (en) * 2014-02-21 2015-08-27 株式会社Sumco Method for manufacturing epitaxial wafer
JP2017123477A (en) * 2017-02-28 2017-07-13 株式会社Sumco Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid-state imaging device
JP2017175145A (en) * 2017-05-01 2017-09-28 株式会社Sumco Semiconductor epitaxial wafer manufacturing method, semiconductor epitaxial wafer, and solid-state imaging element manufacturing method
JP2021090007A (en) * 2019-12-05 2021-06-10 グローバルウェーハズ・ジャパン株式会社 Silicon wafer and heat treatment method therefor
JP7282019B2 (en) 2019-12-05 2023-05-26 グローバルウェーハズ・ジャパン株式会社 Silicon wafer and its heat treatment method

Also Published As

Publication number Publication date
WO2008146442A1 (en) 2008-12-04
TW200903646A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
JP2008294245A (en) Method of manufacturing epitaxial wafer, and epitaxial wafer
US20200203418A1 (en) Method of producing semiconductor epitaxial wafer, semiconductor epitaxial water, and method of producing solid-state image sensing device
US10707093B2 (en) Method of treating silicon wafers to have intrinsic gettering and gate oxide integrity yield
CN105814671B (en) Manufacturing method, the manufacturing method of semiconductor epitaxial wafer and solid-state imager of semiconductor epitaxial wafer
JP2009515370A (en) Silicon wafer substrate with intrinsic gettering doped with arsenic and phosphorus
JP6448805B2 (en) Epitaxially coated semiconductor wafer and method of manufacturing epitaxially coated semiconductor wafer
JP2008311418A (en) Epitaxial wafer, and its manufacturing method
JPH09199416A (en) Semiconductor substrate and manufacture thereof
JP2010034330A (en) Epitaxial wafer and method of manufacturing the same
JP5391651B2 (en) Manufacturing method of semiconductor substrate
JP5062217B2 (en) Manufacturing method of semiconductor wafer
WO2010131412A1 (en) Silicon wafer and method for producing the same
JP6280301B2 (en) Epitaxial silicon wafer manufacturing method, epitaxial silicon wafer, and solid-state imaging device manufacturing method
JP2015204316A (en) Silicon wafer and method for manufacturing the same
JP2007149799A (en) Annealed wafer and manufacturing method thereof
JP2010016169A (en) Epitaxial wafer and method for manufacturing epitaxial wafer
JP4978544B2 (en) Epitaxial wafer manufacturing method
JP5830215B2 (en) Epitaxial wafer and method for manufacturing the same
JP5211550B2 (en) Manufacturing method of silicon single crystal wafer
JP2014505353A (en) Method of annealing a semiconductor wafer having a flat dopant depth profile
JP6361779B2 (en) Epitaxial silicon wafer manufacturing method, epitaxial silicon wafer, and solid-state imaging device manufacturing method
JP2007073820A (en) Epitaxial wafer and its manufacturing method
JP2005064256A (en) Method of manufacturing epitaxial wafer
JP2021130577A (en) Method for manufacturing semiconductor silicon wafer
JP2015220242A (en) Semiconductor epitaxial wafer manufacturing method and solid state image pickup element manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130104