JP2008290303A - Copper-clad plate - Google Patents

Copper-clad plate Download PDF

Info

Publication number
JP2008290303A
JP2008290303A JP2007136706A JP2007136706A JP2008290303A JP 2008290303 A JP2008290303 A JP 2008290303A JP 2007136706 A JP2007136706 A JP 2007136706A JP 2007136706 A JP2007136706 A JP 2007136706A JP 2008290303 A JP2008290303 A JP 2008290303A
Authority
JP
Japan
Prior art keywords
copper
polyimide film
film
protrusions
clad plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007136706A
Other languages
Japanese (ja)
Inventor
Koichi Sawazaki
孔一 沢崎
Masahiro Kokuni
昌宏 小國
Shu Maeda
周 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2007136706A priority Critical patent/JP2008290303A/en
Publication of JP2008290303A publication Critical patent/JP2008290303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-clad plate which has high dimensional stability, a proper modulus of elasticity, and has slidability by generating surface projections by adding fine inorganic particles, uses a polyimide film applicable to an automatic optical inspection system (AOI), and is suitable for a high performance flexible printed circuit board. <P>SOLUTION: In the copper-clad plate, the polyimide film which is produced by mainly using p-phenylenediamine and 4,4'-diaminodiphenyl ether, as diamine components, and pyromellitic acid dianhydride, as an acid dianhydride component, and has slidability by generating the surface projections by adding the fine inorganic particles is used, and a copper layer is formed directly on at least one side of the polyimide film without using an adhesive. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気電子機器分野で使用されるフレキシブルプリント配線板(FPC)、チップオンフィルム(COF)等の材料として好適な銅張り板に関するものであり、更に詳しくは、無機微細粒子を添加して表面突起を発生させることにより易滑性を有し、自動光学検査システム(AOI)に適応可能なポリイミドフィルムを使用してなる銅張り板に関するものである。   The present invention relates to a copper-clad board suitable as a material for flexible printed wiring boards (FPC), chip-on-films (COF) and the like used in the field of electrical and electronic equipment, and more specifically, inorganic fine particles are added. The present invention relates to a copper-clad plate made of a polyimide film that is easily slidable by generating surface protrusions and is adaptable to an automatic optical inspection system (AOI).

近年では、プリント配線板が広く電子・電機機器に使用されている。中でも、折り曲げ可能なフレキシブルプリント配線板は、パーソナルコンピューターや携帯電話等の折り曲げ部分、ハードディスク等の屈曲が必要な部分に広く使用されている。このようなフレキシブルプリント配線板の材料としては、通常各種のポリイミドフィルムを基材とした銅張り板が使用されている。   In recent years, printed wiring boards have been widely used in electronic and electrical equipment. Among them, a flexible printed wiring board that can be bent is widely used in bent portions of personal computers and mobile phones, and in portions that require bending such as hard disks. As a material for such a flexible printed wiring board, a copper-clad board based on various polyimide films is usually used.

銅張り板に使用されるポリイミドフィルムの代表的なものとしては、酸二無水物成分としてピロメリット酸二無水物を用い、ジアミン成分として4,4’−ジアミノジフェニルエーテルを用いたポリイミドフィルムが挙げられる。このようなポリイミドフィルムは機械的、熱的特性のバランスに優れた構造を有しており、汎用の製品として広く工業的に用いられている。しかしながら、ピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルとからなるポリイミドフィルムは、曲げやすいという長所を有する反面、柔らかすぎて半導体を搭載する際に基材が曲がってしまい、接合不良となるといった問題点を有していた。また、ピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルとからなるポリイミドフィルムは、熱膨張係数(CTE)や吸湿膨張係数(CHE)が大きく、吸水率も高いため、熱や吸水による寸法変化が大きく、微細な配線形成を行った場合に狙い通りの配線幅や配線間を形成できないという問題を有していた。   Typical examples of polyimide films used for copper-clad plates include polyimide films using pyromellitic dianhydride as the acid dianhydride component and 4,4′-diaminodiphenyl ether as the diamine component. . Such a polyimide film has a structure with an excellent balance between mechanical and thermal properties, and is widely used industrially as a general-purpose product. However, the polyimide film composed of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether has the advantage of being easy to bend, but it is too soft and the substrate is bent when mounting a semiconductor, resulting in poor bonding. It had the problem of becoming. In addition, a polyimide film composed of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether has a large coefficient of thermal expansion (CTE) and hygroscopic expansion coefficient (CHE), and a high water absorption rate. There is a problem that when the fine wiring is formed, the change is large and the desired wiring width and wiring cannot be formed.

このような問題を解決するための手段としては、ポリイミドフィルム以外の寸法変化が小さい基材、例えば液晶フィルム等を用いてフレキシブルプリント配線板を形成する方法(例えば、特許文献1参照)等が知られているが、液晶フィルムはポリイミドフィルムに比べて耐熱性が劣っており、半田付けの際に基材が変形するという問題を有していた。とりわけ近年は環境の問題から鉛を使用しない鉛フリー半田が広がっているが、鉛フリー半田のほとんどは融点が鉛含有半田よりも高いため、液晶フィルムの基材変形の問題は一層深刻となっていた。   As a means for solving such a problem, a method of forming a flexible printed wiring board using a base material having a small dimensional change other than a polyimide film, for example, a liquid crystal film (see, for example, Patent Document 1) is known. However, the liquid crystal film is inferior in heat resistance to the polyimide film, and has a problem that the base material is deformed during soldering. Especially in recent years, lead-free solders that do not use lead have spread due to environmental problems, but since most of the lead-free solders have a higher melting point than lead-containing solders, the problem of liquid crystal film base deformation has become more serious. It was.

また、ポリイミドがこれらの用途に用いられる際に重要な実用特性は、フィルムの滑り性(易滑性)である。様々なフィルム加工工程において、フィルム支持体(たとえばロール)とフィルムの易滑性、またフィルム同志の易滑性が確保されることにより、各工程における操作性、取り扱い性を向上させ、更にはフィルム上にシワ等の不良個所の発生が回避できるからである。   An important practical characteristic when polyimide is used in these applications is the slipperiness (slidability) of the film. In various film processing steps, the film support (for example, rolls) and the slipperiness of the film and the slipperiness of the films are ensured, thereby improving the operability and handleability in each step. This is because the occurrence of defective parts such as wrinkles can be avoided.

さらに、最近の電子部品のファインピッチ化において、特にFPCの検査においては、従来は目視による線幅、異物等の検査が主流であったが、自動光学検査システム(AOI)が導入されるようになってからは、無機粉体を混入する従来処方で製造された耐熱性フィルムでは、走行性に関して十分満足したものが得られていたが、AOIにおいては、無機粉体の形状が大き過ぎるために、最近のFPC等の狭ピッチ化のなかではこの無機粒子が異物と判断されてしまい、この点が自動検査システムでの大きな障害になっている。   Furthermore, in recent finer pitches of electronic parts, especially in the inspection of FPC, conventionally, visual inspection of line width, foreign matter, etc. has been the mainstream, but an automatic optical inspection system (AOI) will be introduced. After that, the heat-resistant film produced by the conventional formulation in which the inorganic powder is mixed has been sufficiently satisfied with respect to the running property. However, in AOI, the shape of the inorganic powder is too large. In the recent narrowing of the pitch such as FPC, the inorganic particles are judged to be a foreign substance, which is a big obstacle in the automatic inspection system.

従来のポリイミドフィルムにおける易滑化技術としては、不活性無機化合物(例えばアルカリ土類金属のオルトリン酸塩、第2リン酸カルシウム無水物、ピロリン酸カルシウム、シリカ、タルク)をポリアミック酸に添加する方法(例えば、特許文献2参照)、更には微細粒子によってフィルム表面に微細な突起を形成後、プラズマ処理を施す方法(例えば、特許文献3参照)が知られている。しかし、これらに示される無機粒子は粒子径が大きく、自動光学検査システムには適応しないという問題がある。   As an easy lubrication technique in a conventional polyimide film, a method of adding an inert inorganic compound (for example, an alkaline earth metal orthophosphate, dicalcium phosphate anhydrate, calcium pyrophosphate, silica, talc) to a polyamic acid (for example, Further, a method of performing plasma treatment after forming fine protrusions on the film surface with fine particles (see, for example, Patent Document 3) is known. However, these inorganic particles have a large particle size and are not suitable for automatic optical inspection systems.

また、ポリイミドフィルムの表層に平均粒子径が0.01〜100μmの無機質粒子が各粒子の一部をそれぞれ埋設させて保持されていて、一部露出した無機質粒子からなる多数の突起をフィルムの表面層に1×10〜5×10個/mm存在させる方法(例えば、特許文献4参照)が知られている。この方法は、積極的に表面に突起を露出させ、フィルム表面の摩擦係数を低減させることにより、易滑性効果を効果的に得るものであるが、無機質粒子がフィルム表面に一部露出しているため、フィルム表面へのすり傷が発生し、外観不良をきたすといった問題を抱えている。
特開2005−297405号公報 特開昭62−68852号公報 特開2000−191810号公報 特開平5−25295号公報
In addition, inorganic particles having an average particle diameter of 0.01 to 100 μm are held on the surface layer of the polyimide film by embedding a part of each particle, and a plurality of protrusions made of partially exposed inorganic particles are formed on the surface of the film. A method (for example, see Patent Document 4) in which 1 × 10 to 5 × 10 8 pieces / mm 2 exists in a layer is known. This method effectively obtains a slippery effect by actively exposing protrusions on the surface and reducing the coefficient of friction on the film surface, but the inorganic particles are partially exposed on the film surface. For this reason, there is a problem that the film surface is scratched and the appearance is deteriorated.
JP 2005-297405 A JP-A-62-68852 JP 2000-191810 A Japanese Patent Laid-Open No. 5-25295

本発明は、上述した従来技術における問題点の解決を課題として検討した結果達成されたものである。   The present invention has been achieved as a result of studying the solution of the problems in the prior art described above as an issue.

したがって、本発明の目的は、高寸法安定性と共に適度な弾性率を有すると共に、無機微細粒子を添加して表面突起を発生させることにより易滑性を有し、さらにはフレキシブルプリント基板(FPC)やチップオンフィルム(COF)の自動光学検査システム(AOI)に適応可能なポリイミドフィルムを使用してなる、高性能のフレキシブルプリント基板用として適した銅張り板を提供することにある。   Accordingly, an object of the present invention is to have an appropriate elastic modulus with high dimensional stability, and also to have slipperiness by generating surface protrusions by adding inorganic fine particles, and further, a flexible printed circuit board (FPC). Another object of the present invention is to provide a copper-clad plate suitable for a high-performance flexible printed circuit board using a polyimide film applicable to an automatic optical inspection system (AOI) of a chip-on-film (COF).

上記の目的を達成するために本発明によれば、ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテルを、酸二無水物成分としてピロメリット酸二無水物を用いて主として構成されたポリイミドフィルム中に、粒子径0.01〜1.5μm、平均粒子径0.05〜0.7μmであって、かつ、粒子径0.15〜0.60μmの粒子が全粒子中80体積%以上の割合を占める粒度分布を有する無機粒子が、フィルム樹脂重量当たり0.1〜0.9重量%の割合で分散・含有されているポリイミドフィルムを用い、このポリイミドフィルムの片面または両面に、接着剤を介することなく直接銅層が形成されていることを特徴とする銅張り板が提供される。     To achieve the above object, according to the present invention, a polyimide mainly composed of paraphenylenediamine and 4,4′-diaminodiphenyl ether as a diamine component and pyromellitic dianhydride as an acid dianhydride component. In the film, particles having a particle diameter of 0.01 to 1.5 μm, an average particle diameter of 0.05 to 0.7 μm, and particles having a particle diameter of 0.15 to 0.60 μm are 80% by volume or more of all particles. Using a polyimide film in which inorganic particles having a particle size distribution occupying a ratio are dispersed and contained at a ratio of 0.1 to 0.9% by weight per film resin weight, an adhesive is applied to one or both sides of this polyimide film. There is provided a copper-clad plate characterized in that a copper layer is directly formed without any intervention.

なお、本発明の銅張り板においては、
前記ポリイミドフィルムが、ジアミン成分として10〜50モル%のパラフェニレンジアミン及び50〜90モル%の4,4’−ジアミノジフェニルエーテルを、酸二無水物成分としてピロメリット酸二無水物を主として用いてなるポリイミドフィルムであること、
前記ポリイミドフィルムが、弾性率が3〜6GPa、50〜200℃での線膨張係数が5〜20ppm/℃、湿度膨張係数が30ppm/%RH以下、吸水率が3.5%以下、200℃1時間での加熱収縮率が0.10%以下の特性を有すること、
前記ポリイミドフィルムの表面に存在する大きさ20μm以上の突起数が1個/40cm角以下であること、
前記ポリイミドフィルムの表面に存在する高さ2μm以上の突起数が5個/40cm角以下であること、
銅の表面に存在する大きさ20μm以上の突起数が40個/10cm角以下であることが、いずれも好ましい条件として挙げられる。
In the copper-clad plate of the present invention,
The polyimide film is mainly composed of 10-50 mol% paraphenylenediamine and 50-90 mol% 4,4′-diaminodiphenyl ether as a diamine component, and pyromellitic dianhydride as an acid dianhydride component. Being a polyimide film,
The polyimide film has an elastic modulus of 3 to 6 GPa, a linear expansion coefficient at 50 to 200 ° C. of 5 to 20 ppm / ° C., a humidity expansion coefficient of 30 ppm /% RH or less, a water absorption of 3.5% or less, and 200 ° C. The heat shrinkage rate over time has a characteristic of 0.10% or less,
The number of protrusions having a size of 20 μm or more present on the surface of the polyimide film is 1/40 cm square or less,
The number of protrusions having a height of 2 μm or more present on the surface of the polyimide film is 5 pieces / 40 cm square or less,
A preferable condition is that the number of protrusions having a size of 20 μm or more present on the surface of copper is 40/10 cm square or less.

本発明によれば、以下に説明するとおり、高寸法安定性と共に適度な弾性率を有すると共に、無機微細粒子を添加して表面突起を発生させることにより易滑性を有し、さらにはフレキシブルプリント基板(FPC)やチップオンフィルム(COF)の自動光学検査システム(AOI)に適応可能なポリイミドフィルムを使用してなる、高性能のフレキシブルプリント基板用として適した銅張り板を得ることができる。   According to the present invention, as described below, it has an appropriate elastic modulus with high dimensional stability, and has slipperiness by generating surface protrusions by adding inorganic fine particles, and also a flexible print. A copper-clad plate suitable for a high-performance flexible printed circuit board using a polyimide film applicable to a substrate (FPC) or a chip-on-film (COF) automatic optical inspection system (AOI) can be obtained.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の銅張り板は、基材としてポリイミドフィルムを用い、このポリイミドフィルムの片面または両面に接着剤を介することなく、直接銅層が形成されているものである。   The copper-clad board of this invention uses a polyimide film as a base material, and a copper layer is directly formed on one or both sides of this polyimide film without an adhesive.

本発明において基材として用いるポリイミドフィルムは、ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテルを、酸二無水物成分としてピロメリット酸二無水物を主として用い形成してなるポリイミドフィルムである。   The polyimide film used as a substrate in the present invention is a polyimide film formed mainly using paraphenylenediamine and 4,4′-diaminodiphenyl ether as a diamine component and pyromellitic dianhydride as an acid dianhydride component. .

すなわち、パラフェニレンジアミン、4、4’−ジアミノジフェニルエーテル、及びピロメリット酸二無水物の3種類を必須成分とするものであって、これら3種類以外には、少量の別成分を加えて構成されたものも使用することができる。   That is, it contains three types of essential components, paraphenylenediamine, 4,4′-diaminodiphenyl ether, and pyromellitic dianhydride. Besides these three types, a small amount of other components are added. Can also be used.

すなわち、本発明のポリイミドフィルムを構成するポリイミドのジアミン成分においては、パラフェニレンジアミンが多すぎると硬くなり、少なすぎると柔らかくなるため、10〜50モル%が好ましく、更に好ましくは12〜45モル%、より好ましくは15〜40モル%である。一方、4,4’−ジアミノジフェニルエーテルが多すぎると柔らかくなり、少なすぎると硬くなるので、50〜90モル%が好ましく、更に好ましくは55〜88モル%、より好ましくは60〜85モル%である。   That is, in the diamine component of the polyimide constituting the polyimide film of the present invention, it becomes hard when there is too much paraphenylenediamine, and it becomes soft when there is too little, so 10-50 mol% is preferable, more preferably 12-45 mol%. More preferably, it is 15-40 mol%. On the other hand, when too much 4,4′-diaminodiphenyl ether is softened, and when too little is too hard, it is preferably 50 to 90 mol%, more preferably 55 to 88 mol%, more preferably 60 to 85 mol%. .

また、本発明のポリイミドフィルムを構成するポリイミドの酸二無水物成分には、ピロメリット酸二無水物のみを使用することによって、適度な弾性率を得られるとともに耐熱性が向上する。   Moreover, by using only pyromellitic dianhydride as the acid dianhydride component of the polyimide constituting the polyimide film of the present invention, an appropriate elastic modulus can be obtained and heat resistance is improved.

更には、硬さの指標である弾性率が3〜6GPaの範囲にあるボリアミドフィルムであることが好ましく、6GPaを超えると硬すぎ、3GPaより小さいと柔らかすぎる。   Furthermore, it is preferably a polyamide film having an elastic modulus that is an index of hardness in the range of 3 to 6 GPa. It is too hard when it exceeds 6 GPa and too soft when it is less than 3 GPa.

また、本発明のポリイミドフィルムは、線膨張係数が5〜20ppm/℃であることが好ましく、20ppm/℃を超えると熱による寸法変化が大き過ぎ、5ppm/℃より小さくなると、配線に使用される金属との線膨張係数との差が大きくなるため反りが生じてしまう。   In addition, the polyimide film of the present invention preferably has a linear expansion coefficient of 5 to 20 ppm / ° C. If it exceeds 20 ppm / ° C, the dimensional change due to heat is too large, and if it is less than 5 ppm / ° C, it is used for wiring. Since the difference with the linear expansion coefficient with a metal becomes large, curvature will arise.

また、本発明のポリイミドフィルムは、湿度膨張係数が25ppm/%RHを超えると湿度による寸法変化が大き過ぎるので、湿度膨張係数は25ppm/%RH以下であるものが好ましい。   Moreover, since the dimensional change by humidity is too large when the humidity expansion coefficient exceeds 25 ppm /% RH, the polyimide film of the present invention preferably has a humidity expansion coefficient of 25 ppm /% RH or less.

また、本発明のポリイミドフィルムにおいては、吸水率が3%を超えると、吸い込んだ水の影響でフィルムの寸法変化が大きくなるので、吸水率は3%以下であるものが好ましい。   Further, in the polyimide film of the present invention, when the water absorption exceeds 3%, the dimensional change of the film becomes large due to the influence of the sucked water, so that the water absorption is preferably 3% or less.

また、本発明のポリイミドフィルムにおいては、200℃1時間の加熱収縮率が0.10%を超えると、やはり熱による寸法変化が大きくなるので、加熱収縮率は0.10%以下であるものが好ましい。   In addition, in the polyimide film of the present invention, when the heat shrinkage rate at 200 ° C. for 1 hour exceeds 0.10%, the dimensional change due to heat is also increased, so that the heat shrinkage rate is 0.10% or less. preferable.

本発明におけるポリイミドフィルムには、パラフェニレンジアミン及び4,4’―ジアミノジフェニルエーテル以外に、少量のジアミンを添加してもよい。具体的なジアミンとしては以下のものが挙げられるが、これらに限定されない。   In addition to paraphenylenediamine and 4,4'-diaminodiphenyl ether, a small amount of diamine may be added to the polyimide film in the present invention. Specific examples of the diamine include, but are not limited to, the following.

(1)ジアミン
3,4'−ジアミノジフェニルエーテル、3,3'−ジアミノジフェニルエーテル、メタフェニレンジアミン、4,4'−ジアミノジフェニルプロパン、3,4'−ジアミノジフェニルプロパン、3,3'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルメタン、3,4'−ジアミノジフェニルメタン、3,3'−ジアミノジフェニルメタン、ベンチジン、4,4'−ジアミノジフェニルサルファイド、3,4'−ジアミノジフェニルサルファイド、3,3'−ジアミノジフェニルサルファイド、4,4'−ジアミノジフェニルスルホン、3,4'−ジアミノジフェニルスルホン、3,3'−ジアミノジフェニルスルホン、2,6−ジアミノピリジン、ビス−(4−アミノフェニル)ジエチルシラン、3,3'−ジクロロベンチジン、ビス−(4−アミノフェニル)エチルホスフィノキサイド、ビス−(4−アミノフェニル)フェニルホスフィノキサイド、ビス−(4−アミノフェニル)−N−フェニルアミン、ビス−(4−アミノフェニル)−N−メチルアミン、1,5−ジアミノナフタレン、3,3'−ジメチル−4,4'−ジアミノビフェニル、3,4'−ジメチル−3',4−ジアミノビフェニル3,3'−ジメトキシベンチジン、2,4−ビス(p−β−アミノ−t−ブチルフェニル)エーテル、ビス(p−β−アミノ−t−ブチルフェニル)エーテル、p−ビス(2−メチル−4−アミノペンチル)ベンゼン、p−ビス−(1,1−ジメチル−5−アミノペンチル)ベンゼン、m−キシリレンジアミン、p−キシリレンジアミン、1,3−ジアミノアダマンタン、3,3'−ジアミノ−1,1'−ジアミノアダマンタン、3,3'−ジアミノメチル1,1'−ジアダマンタン、ビス(p−アミノシクロヘキシル)メタン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、3−メチルヘプタメチレンジアミン、4,4'−ジメチルヘプタメチレンジアミン、2,11−ジアミノドデカン、1,2−ビス(3−アミノプロポキシ)エタン、2,2−ジメチルプロピレンジアミン、3−メトキシヘキサエチレンジアミン、2,5−ジメチルヘキサメチレンジアミン、2,5−ジメチルヘプタメチレンジアミン、5−メチルノナメチレンジアミン、1,4−ジアミノシクロヘキサン、1,12−ジアミノオクタデカン、2,5−ジアミノ−1,3,4−オキサジアゾール、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、N−(3−アミノフェニル)−4−アミノベンズアミド、4−アミノフェニル−3−アミノベンゾエート等。
(1) Diamine 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, metaphenylenediamine, 4,4′-diaminodiphenylpropane, 3,4′-diaminodiphenylpropane, 3,3′-diaminodiphenylpropane 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, benzidine, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'- Diaminodiphenyl sulfide, 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 2,6-diaminopyridine, bis- (4-aminophenyl) diethylsilane, 3, , 3'-Dichlorobenzidine Bis- (4-aminophenyl) ethylphosphinoxide, bis- (4-aminophenyl) phenylphosphinoxide, bis- (4-aminophenyl) -N-phenylamine, bis- (4-aminophenyl) ) -N-methylamine, 1,5-diaminonaphthalene, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,4'-dimethyl-3 ', 4-diaminobiphenyl 3,3'-dimethoxybench Gin, 2,4-bis (p-β-amino-t-butylphenyl) ether, bis (p-β-amino-t-butylphenyl) ether, p-bis (2-methyl-4-aminopentyl) benzene P-bis- (1,1-dimethyl-5-aminopentyl) benzene, m-xylylenediamine, p-xylylenediamine, 1,3-diaminoadamantane, 3, '-Diamino-1,1'-diaminoadamantane, 3,3'-diaminomethyl 1,1'-diadamantane, bis (p-aminocyclohexyl) methane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylene Diamine, decamethylenediamine, 3-methylheptamethylenediamine, 4,4'-dimethylheptamethylenediamine, 2,11-diaminododecane, 1,2-bis (3-aminopropoxy) ethane, 2,2-dimethylpropylenediamine 3-methoxyhexaethylenediamine, 2,5-dimethylhexamethylenediamine, 2,5-dimethylheptamethylenediamine, 5-methylnonamethylenediamine, 1,4-diaminocyclohexane, 1,12-diaminooctadecane, 2,5- Diamino-1,3 , 4-oxadiazole, 2,2-bis (4-aminophenyl) hexafluoropropane, N- (3-aminophenyl) -4-aminobenzamide, 4-aminophenyl-3-aminobenzoate and the like.

また、本発明において、ポリイミドフィルムの前駆体であるポリアミック酸溶液の形成に使用される有機溶媒の具体例としては、例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドなどのホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドンなどのピロリドン系溶媒、フェノール、o−,m−,またはp−クレゾール、キシレノール、ハロゲン化フェノール、カテコールなどのフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ−ブチロラクトンなどの非プロトン性極性溶媒を挙げることができ、これらを単独又は混合物として用いるのが望ましいが、さらにはキシレン、トルエンのような芳香族炭化水素の使用も可能である。   In the present invention, specific examples of the organic solvent used for forming the polyamic acid solution that is a precursor of the polyimide film include, for example, sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, N, N-dimethylformamide, Formamide solvents such as N, N-diethylformamide, acetamide solvents such as N, N-dimethylacetamide, N, N-diethylacetamide, pyrrolidones such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone Examples include solvents, phenolic solvents such as phenol, o-, m-, or p-cresol, xylenol, halogenated phenol, and catechol, and aprotic polar solvents such as hexamethylphosphoramide and γ-butyrolactone. These alone Although it is desirable to use as a mixture, further xylene, the use of aromatic hydrocarbons such as toluene are also possible.

ポリイミドの重合方法は公知の下記(1)〜(5)のいずれの方法を採用することができる。すなわち、
(1)先に芳香族ジアミン成分全量を溶媒中に入れ、その後芳香族テトラカルボン酸類成分を芳香族ジアミン成分全量と当量になるよう加えて重合する方法。
(2)先に芳香族テトラカルボン酸類成分全量を溶媒中に入れ、その後芳香族ジアミン成分を芳香族テトラカルボン酸類成分と等量になるよう加えて重合する方法。
(3)一方の芳香族ジアミン化合物を溶媒中に入れた後、反応成分に対して芳香族テトラカルボン酸類化合物が95〜105モル%となる比率で反応に必要な時間混合した後、もう一方の芳香族ジアミン化合物を添加し、続いて芳香族テトラカルボン酸類化合物を全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう添加して重合する方法。
(4)芳香族テトラカルボン酸類化合物を溶媒中に入れた後、反応成分に対して一方の芳香族ジアミン化合物が95〜105モル%となる比率で反応に必要な時間混合した後、芳香族テトラカルボン酸類化合物を添加し、続いてもう一方の芳香族ジアミン化合物を全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう添加して重合する方法。
(5)溶媒中で一方の芳香族ジアミン成分と芳香族テトラカルボン酸類をどちらかが過剰になるよう反応させてポリアミド酸溶液(A)を調整し、別の溶媒中でもう一方の芳香族ジアミン成分と芳香族テトラカルボン酸類をどちらかが過剰になるよう反応させポリアミド酸溶液(B)を調整する。こうして得られた各ポリアミド酸溶液(A)と(B)を混合し、重合を完結する方法。この時ポリアミド酸溶液(A)を調整するに際し芳香族ジアミン成分が過剰の場合、ポリアミド酸溶液(B)では芳香族テトラカルボン酸成分を過剰に、またポリアミド酸溶液(A)で芳香族テトラカルボン酸成分が過剰の場合、ポリアミド酸溶液(B)では芳香族ジアミン成分を過剰にし、ポリアミド酸溶液(A)と(B)を混ぜ合わせこれら反応に使用される全芳香族ジアミン成分と全芳香族テトラカルボン酸類成分とがほぼ等量になるよう調整する。
Any of the following known methods (1) to (5) can be adopted as a method for polymerizing polyimide. That is,
(1) A method in which the entire amount of the aromatic diamine component is first put in a solvent, and then the aromatic tetracarboxylic acid component is added so as to be equivalent to the total amount of the aromatic diamine component and polymerized.
(2) A method in which the whole amount of the aromatic tetracarboxylic acid component is first put in a solvent, and then the aromatic diamine component is added in an amount equal to the amount of the aromatic tetracarboxylic acid component for polymerization.
(3) After one aromatic diamine compound is put in a solvent, the aromatic tetracarboxylic acid compound is mixed with the reaction component at a ratio of 95 to 105 mol% for the time required for the reaction, A method in which an aromatic diamine compound is added, and then an aromatic tetracarboxylic acid compound is added and polymerized so that the total aromatic diamine component and the total aromatic tetracarboxylic acid component are approximately equal.
(4) After placing the aromatic tetracarboxylic acid compound in the solvent, the aromatic tetracarboxylic acid compound is mixed for a time required for the reaction at a ratio of 95 to 105 mol% of one aromatic diamine compound with respect to the reaction component, and then the aromatic tetracarboxylic acid compound is mixed. A method in which a carboxylic acid compound is added, and then the other aromatic diamine compound is added and polymerized so that the total aromatic diamine component and the total aromatic tetracarboxylic acid component are approximately equal.
(5) A polyamic acid solution (A) is prepared by reacting one aromatic diamine component with an aromatic tetracarboxylic acid in a solvent so that either one becomes excessive, and the other aromatic diamine in another solvent. The polyamic acid solution (B) is prepared by reacting the component and the aromatic tetracarboxylic acid so that either one becomes excessive. A method of mixing the polyamic acid solutions (A) and (B) thus obtained to complete the polymerization. At this time, when adjusting the polyamic acid solution (A), if the aromatic diamine component is excessive, the polyamic acid solution (B) contains excessive aromatic tetracarboxylic acid component, and the polyamic acid solution (A) contains aromatic tetracarboxylic acid. When the acid component is excessive, the polyamic acid solution (B) makes the aromatic diamine component excessive, and the polyamic acid solutions (A) and (B) are combined to form the wholly aromatic diamine component and wholly aromatic compound used in these reactions. Adjustment is made so that the amount of the tetracarboxylic acid component is approximately equal.

なお、重合方法はこれらに限定されることはなく、その他公知の方法を用いてもよい。   The polymerization method is not limited to these, and other known methods may be used.

こうして得られるポリアミック酸溶液は、固形分を5〜40重量%、好ましくは10〜30重量%を含有しており、またその粘度はブルックフィールド粘度計による測定値で10〜2000Pa・s、好ましくは、100〜1000Pa・sのものが、安定した送液のために好ましく使用される。また、有機溶媒溶液中のポリアミック酸は部分的にイミド化されていてもよい。   The polyamic acid solution thus obtained contains a solid content of 5 to 40% by weight, preferably 10 to 30% by weight, and its viscosity is 10 to 2000 Pa · s as measured by a Brookfield viscometer, preferably 100-1000 Pa · s is preferably used for stable liquid feeding. Moreover, the polyamic acid in the organic solvent solution may be partially imidized.

次に、本発明のポリイミドフィルムの製造方法について説明する。     Next, the manufacturing method of the polyimide film of this invention is demonstrated.

ポリイミドフィルムを製膜する方法としては、ポリアミック酸溶液をフィルム状にキャストし熱的に脱環化脱溶媒させてポリイミドフィルムを得る方法、およびポリアミック酸溶液に環化触媒及び脱水剤を混合し化学的に脱環化させてゲルフィルムを作成しこれを加熱脱溶媒することによりポリイミドフィルムを得る方法が挙げられるが、後者の方が得られるポリイミドフィルムの線膨張係数を低く抑えることができるので好ましい。   As a method for forming a polyimide film, a polyamic acid solution is cast into a film and thermally decyclized and desolvated to obtain a polyimide film, and a polyamic acid solution is mixed with a cyclization catalyst and a dehydrating agent. The method of obtaining a polyimide film by preparing a gel film by decyclization and heating it to remove the solvent is mentioned, but the latter is preferable because the linear expansion coefficient of the obtained polyimide film can be kept low. .

本発明においては、フィルムの走行性(易滑性)を良好なものにするため、ポリイミドフィルムに無機粒子を添加することが必須である。   In the present invention, it is essential to add inorganic particles to the polyimide film in order to improve the running property (slidability) of the film.

このような無機粒子においては、粉体粒子径が0.01〜1.5μmの範囲内にあること、かつ平均粒子径が0.05〜0.7μmの範囲、より好ましくは0.1〜0.6μmの範囲、さらにより好ましくは0.3〜0.5μmの範囲にあることが必要であり、この場合にはポリイミドフィルムを自動光学検査システムでの検査に対し問題なく適応させることができるばかりか、フィルムの機械物性等の低下を発生させずに使用可能である。これらの範囲より平均粒子径が下回ると、フィルムへの充分な易滑性が得られず、逆に上回ると、自動検査システムで無機粒子が異物と判断され障害を来すことになるため好ましくない。   In such inorganic particles, the powder particle diameter is in the range of 0.01 to 1.5 μm, and the average particle diameter is in the range of 0.05 to 0.7 μm, more preferably 0.1 to 0. In the range of .6 μm, and even more preferably in the range of 0.3 to 0.5 μm, in which case the polyimide film can be adapted without problems to inspection with automatic optical inspection systems. Alternatively, the film can be used without causing deterioration of the mechanical properties of the film. If the average particle size is lower than these ranges, sufficient slipperiness to the film cannot be obtained, and if it exceeds the average, inorganic particles are judged as foreign substances by an automatic inspection system, which is not preferable. .

無機粒子の含有量は、フィルム樹脂重量当たり0.1〜0.9重量%が好ましく、0.3〜0.8重量%の割合で含まれていることがより好ましい。0.1重量%以下であると、フィルム表面の突起数も不足することによってフィルムへの充分な易滑性が得られず、搬送性が悪化し、ロールに巻いた時のフィルム巻姿も悪化するので好ましくない。また0.9重量%以上であると、フィルムの易滑性は良化するものの、粒子の異常凝集による粗大突起が増加し、これが結果的に自動検査システムで異物と判断され障害を来すので好ましくない。   The content of the inorganic particles is preferably from 0.1 to 0.9% by weight per film resin weight, and more preferably from 0.3 to 0.8% by weight. If it is 0.1% by weight or less, sufficient slipperiness to the film cannot be obtained due to insufficient number of protrusions on the film surface, the transportability is deteriorated, and the film winding shape when wound on a roll is also deteriorated. This is not preferable. On the other hand, if it is 0.9% by weight or more, the slipperiness of the film will be improved, but coarse protrusions due to abnormal aggregation of particles will increase, and this will be judged as foreign matter by the automatic inspection system, resulting in trouble. It is not preferable.

無機粒子による表面突起により、フィルム表面積も拡大し、充分に粗面化されアンカー効果が見られ接着性も損なうこともなくなる。   The surface protrusions of the inorganic particles also increase the film surface area, and the surface is sufficiently roughened so that the anchor effect is observed and the adhesiveness is not impaired.

無機粒子の粒度分布においては、狭い分布であること、つまり類似の大きさの粒子が全粒子に占める割合が高い方が良く、具体的には粒子径0.15〜0.60μmの粒子が全粒子中80体積%以上の割合を占めることが好ましい。この範囲を下回り0.15μm以下の粒子の占める割合が高くなると、フィルムの易滑性が低下するため好ましくない。また、無機粒子送液の際には、5μmカットフィルターや10μmカットフィルターにより粗粒を除去することが可能であるが、0.60μm以上の粒子の占める割合が高くなると、フィルターの目詰まりを頻発させてしまい工程安定性を損ねること、ならびに粒子の粗大凝集が生じやすくなることから好ましくない。   In the particle size distribution of the inorganic particles, it is preferable that the particle size distribution is narrow, that is, the proportion of particles having a similar size in all particles is high. Specifically, all particles having a particle size of 0.15 to 0.60 μm are all present. It is preferable to occupy a ratio of 80% by volume or more in the particles. If the proportion of particles below this range and 0.15 μm or less increases, the slipperiness of the film decreases, which is not preferable. In addition, when sending inorganic particles, coarse particles can be removed with a 5 μm cut filter or a 10 μm cut filter. However, when the proportion of particles of 0.60 μm or more increases, the filter frequently clogs. This is not preferable because the process stability is deteriorated and coarse aggregation of particles tends to occur.

無機粒子に起因したフィルム表面突起においては、大きさ20μm以上の突起数が1個/40cm角以下であることが好ましい。また、高さ2μm以上の突起数が5個/40cm角以下であること、より好ましくは3個/40cm角以下、さらにより好ましくは1個/40cm角以下であることが望ましい。これよりも多いと、配線間にフィラーが跨って導電不通を引き起こすこと、フォトレジストマスクの膜厚を突き破る等の不具合を引き起こしやすくなること、及び自動検査システムで無機粒子が異物と判断され障害を来すことから好ましくない。   In the film surface protrusion caused by the inorganic particles, the number of protrusions having a size of 20 μm or more is preferably 1 piece / 40 cm square or less. Further, it is desirable that the number of protrusions having a height of 2 μm or more is 5 pieces / 40 cm square or less, more preferably 3 pieces / 40 cm square or less, and even more preferably 1 piece / 40 cm square or less. If the number is larger than this, the filler may straddle between the wirings, resulting in failure of conduction, the failure to break through the film thickness of the photoresist mask, etc., and the automatic inspection system may determine that the inorganic particles are foreign matter and cause a failure. It is not preferable from coming.

このような無機粒子を、ポリイミドの製造に使用される有機溶媒と同じ極性溶媒に分散させたスラリーをポリイミド製造工程中のポリアミド酸溶液に添加して後、脱環化脱溶媒させてポリイミドフィルムを得ることが好ましいが、ポリアミド酸重合前の有機溶媒中に無機粒子スラリーを添加した後、ポリアミド酸重合、脱環化脱溶媒を経てポリイミドフィルムを得ることなど、脱環化脱溶媒前の工程であればいかなる工程において無機粒子スラリーを添加することが可能である。   A slurry in which such inorganic particles are dispersed in the same polar solvent as the organic solvent used in the production of polyimide is added to the polyamic acid solution in the polyimide production process, followed by decyclization and desolvation to obtain a polyimide film. Although it is preferable to obtain, after adding inorganic particle slurry in the organic solvent before polyamic acid polymerization, polyamic acid polymerization, decyclization and desolvation, etc., to obtain a polyimide film, etc. in the step before decyclization and desolvation It is possible to add the inorganic particle slurry in any process.

本発明で使用する無機粒子の具体例としては、SiO(シリカ)、TiO、CaHPO、Ca等を好適に挙げることができる。中でもゾル・ゲル法や湿式粉砕法で製造したシリカが、ワニス状ポリアミド酸溶液中で安定し、かつ物理的に安定し、ポリイミドの諸物性に影響を与えない点で好ましい。 Specific examples of the inorganic particles used in the present invention include SiO 2 (silica), TiO 2 , CaHPO 4 , Ca 2 P 2 O 7 and the like. Among them, silica produced by a sol-gel method or a wet pulverization method is preferable in that it is stable in a varnish-like polyamic acid solution and physically stable and does not affect various physical properties of polyimide.

さらに、微細シリカ粉は、N,Nージメチルホルムアミド、N、N-ジメチルアセトアミド、ジメチルスルホオキサイド、nーメチルピロリドン等の極性溶媒に均一に極性溶媒に分散させたシリカスラリーとして使用することで凝集を防止するため好ましい。このスラリーは、粒子径が非常に小さいため沈降速度が遅く安定している。また、たとえ沈降しても再攪拌する事で容易に再分散可能である。   Furthermore, the fine silica powder is agglomerated by using it as a silica slurry that is uniformly dispersed in a polar solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, and n-methylpyrrolidone. It is preferable to prevent this. Since this slurry has a very small particle size, the sedimentation rate is slow and stable. Even if it settles, it can be easily redispersed by re-stirring.

このような無機粒子を、ポリイミドの製造に使用される有機溶媒と同じ極性溶媒に分散させたスラリーを、ポリイミド製造工程中のポリアミド酸溶液に添加した後、脱環化脱溶媒させてポリイミドフィルムを得ることが好ましいが、ポリアミド酸重合前の有機溶媒中に無機粒子スラリーを添加した後、ポリアミド酸重合、脱環化脱溶媒を経てポリイミドフィルムを得ることなど、脱環化脱溶媒前の工程であればいかなる工程において無機粒子スラリーを添加することが可能である。   A slurry in which such inorganic particles are dispersed in the same polar solvent as the organic solvent used for the production of polyimide is added to the polyamic acid solution in the polyimide production process, followed by decyclization and desolvation to obtain a polyimide film. Although it is preferable to obtain, after adding inorganic particle slurry in the organic solvent before polyamic acid polymerization, polyamic acid polymerization, decyclization and desolvation, etc., to obtain a polyimide film, etc. in the step before decyclization and desolvation It is possible to add the inorganic particle slurry in any process.

本発明で使用するポリイミドフィルムの厚みについては特に限定されないが、好ましくは1〜225μm、より好ましくは5〜175μmである。厚すぎるとロール状にした際に巻きずれが発生しやすくなり、薄すぎるとしわなどが入りやすくなる。   Although it does not specifically limit about the thickness of the polyimide film used by this invention, Preferably it is 1-225 micrometers, More preferably, it is 5-175 micrometers. When it is too thick, it becomes easy to cause winding slip when it is made into a roll, and when it is too thin, wrinkles and the like are likely to enter.

上記のようなポリイミドフィルムの片面あるいは両面に、接着剤を介さず、例えばめっき法によって直接銅層を形成して、本発明の銅張り板を形成する。   The copper layer of the present invention is formed by directly forming a copper layer on one or both sides of the polyimide film as described above, for example, by plating without using an adhesive.

具体的には、例えば銅を形成させる面に対して真空条件下のもと、ニッケル/クロムをスパッタにより下地処理し、続いて銅をスパッタして薄い銅薄膜を形成させた後、硫酸銅浴等により電解鍍金で銅層を積層させることによって、本発明の銅張り板を得ることができる。この時の銅厚については3〜20μmが好ましく、5〜15μmがより好ましい。   Specifically, for example, under a vacuum condition on the surface on which copper is to be formed, nickel / chromium is subjected to a base treatment by sputtering, and then copper is sputtered to form a thin copper thin film, and then a copper sulfate bath The copper-clad plate of the present invention can be obtained by laminating a copper layer with electrolytic plating, for example. The copper thickness at this time is preferably 3 to 20 μm, and more preferably 5 to 15 μm.

本発明においては、銅層がフィルム表面に直接形成されるので、フィルム表面の突起が銅表面に突起発生を引き起こすことになる。そして、フィルム表面の突起が核となって、その周辺を覆う形で銅表面の突起が形成されるため、銅表面の突起の大きさは、その由来となるフィルム表面の突起よりも大きくなるのが一般的である。前述に挙げたようにフィルム表面の突起において20μm以上の突起数が1個/40cm角以下、高さ2μm以上の突起数が5個/40cm角以下であるフィルムの上に銅層を形成させることによって、銅表面の大きさ20μm以上の突起数を40個/10cm角以下に抑えることができる。   In the present invention, since the copper layer is directly formed on the film surface, the protrusions on the film surface cause protrusions on the copper surface. And since the projection on the film surface serves as a nucleus and the projection on the copper surface is formed so as to cover the periphery, the size of the projection on the copper surface is larger than the projection on the film surface from which it originates. Is common. As mentioned above, a copper layer is formed on a film having protrusions of 20 μm or more of 1/40 cm square and protrusions of 2 μm or more in height / 40 cm square as projections on the film surface. Thus, the number of protrusions having a copper surface size of 20 μm or more can be suppressed to 40/10 cm square or less.

かくして構成される本発明の銅張り板は、高寸法安定性と共に適度な弾性率を有すると共に、無機微細粒子を添加して表面突起を発生させることにより易滑性を有し、さらにはフレキシブルプリント基板(FPC)やチップオンフィルム(COF)の自動光学検査システム(AOI)に適応可能であることから、ポリイミドフィルムを使用してなる高性能のフレキシブルプリント基板用途に好ましく適用することができる。   The copper-clad plate of the present invention thus configured has high dimensional stability and an appropriate elastic modulus, and also has slipperiness by generating surface protrusions by adding inorganic fine particles, and moreover flexible printing Since it can be applied to a substrate (FPC) or chip-on-film (COF) automatic optical inspection system (AOI), it can be preferably applied to high-performance flexible printed circuit boards using a polyimide film.

以下、実施例にて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

なお、実施例で用いるポリイミドフィルムは合成例1〜6の方法により製膜したものを用いるが、これらに限定されない。また、比較例で用いるポリイミドフィルムは合成例7〜12により製膜したものを用いた。   In addition, although the polyimide film used by the Example uses what was formed into a film by the method of the synthesis examples 1-6, it is not limited to these. Moreover, the polyimide film used by the comparative example used what was formed into a film by the synthesis examples 7-12.

また、合成例、実施例で得られたポリイミドフィルム、銅張り板の各特性は次の方法で評価した。   Moreover, each characteristic of the polyimide film obtained by the synthesis example and the Example and the copper-clad board was evaluated by the following method.

(1)フィルム厚
Mitutoyo製ライトマチック(Series318 )厚み計を使用して次のようにして測定した。すなわち、フィルム全面から任意に15箇所を選び、この15箇所にについて厚みを測定し、その平均を算出し、厚みとした。
(1) Film thickness It measured as follows using the Mitutoyo lightmatic (Series318) thickness meter. That is, 15 points were selected arbitrarily from the entire surface of the film, the thicknesses were measured at these 15 points, and the average was calculated to obtain the thickness.

(2)線膨張係数
島津製作所製TMA−50熱機械分析装置を使用し、測定温度範囲:50〜200℃、昇温速度:10℃/分の条件で測定した。荷重を0.25Nとし、まず35℃から10℃/分で昇温して300℃まで温度を上げた。300℃にて5分間保持し、その後10℃/分で降温して35℃まで温度を下げ、35℃で30分間保持し、しかる後に10℃/分で昇温して300℃まで温度を上げた。2度目の35℃から300℃までの昇温の時のデータを読み、50〜200℃の部分の平均から線膨張係数を算出した。
(2) Linear expansion coefficient A TMA-50 thermomechanical analyzer manufactured by Shimadzu Corporation was used, and measurement was performed under conditions of a measurement temperature range of 50 to 200 ° C and a temperature increase rate of 10 ° C / min. The load was 0.25 N, and the temperature was first raised from 35 ° C. at 10 ° C./min to 300 ° C. Hold at 300 ° C. for 5 minutes, then lower the temperature at 10 ° C./minute to lower the temperature to 35 ° C., hold at 35 ° C. for 30 minutes, then raise the temperature at 10 ° C./minute to raise the temperature to 300 ° C. It was. The data at the time of the second temperature increase from 35 ° C. to 300 ° C. was read, and the linear expansion coefficient was calculated from the average of the portion of 50 to 200 ° C.

(3)弾性率
エー・アンド・デイ製RTM−250テンシロン万能試験機を使用し、引張速度:100mm/分の条件で測定した。ロードセル10Kgf、測定精度±0.5%フルスケールとし、応力−歪み曲線を測定し、応力−歪み曲線の立ち上がり部分の直線の傾き(2Nから15Nの2点間の最小2乗法により算出)、初期試料長さ、試料幅、試料厚さから以下のように算出した。
弾性率=(直線部分の傾き×初期試料長さ)/(試料幅×試料厚さ)
(3) Elasticity modulus RTM-250 Tensilon universal testing machine manufactured by A & D was used, and the tensile velocity was measured under the condition of 100 mm / min. Load cell 10Kgf, measurement accuracy ± 0.5% full scale, measure stress-strain curve, slope of straight line of rising part of stress-strain curve (calculated by least square method between 2N to 15N), initial Calculation was performed as follows from the sample length, the sample width, and the sample thickness.
Elastic modulus = (Slope of straight line portion × initial sample length) / (sample width × sample thickness)

(4)湿度膨張係数
25℃にてULVAC製TM7000炉内にフィルムを取り付け、炉内にドライ空気を送り込んで2時間乾燥させた後、HC−1型水蒸気発生装置からの給気によりTM7000炉内を90%RHに加湿させ、その間の寸法変化から湿度膨張係数を求めた。加湿時間は7時間とした。3RH%から90RH%までのデータを読み、3〜90RH%の部分の平均から湿度膨張係数を算出した。
(4) Humidity expansion coefficient At 25 ° C, a film was mounted in a TM7000 furnace manufactured by ULVAC, dried air was fed into the furnace and dried for 2 hours, and then the TM7000 furnace was supplied with air from an HC-1 type steam generator. Was humidified to 90% RH, and the coefficient of humidity expansion was determined from the dimensional change during that period. The humidification time was 7 hours. The data from 3RH% to 90RH% was read, and the humidity expansion coefficient was calculated from the average of the portion of 3 to 90RH%.

(5)吸水率
98%RH雰囲気下のデシケーター内に2日間静置し、乾燥時重量に対しての増加重量%で評価した。具体的には6cm径の円形にフィルムを切り取り、200℃1時間熱処理した後の重量(W0)を乾燥時の重量として測定し、その後98%RH雰囲気下のデシケーター内に2日間静置させて吸水させたフィルムの重量(W1)を測定し、下記計算式により吸水率を求めた。
吸水率 = (W1−W0)/WO×100
(5) Water absorption rate It left still in the desiccator of 98% RH atmosphere for 2 days, and evaluated by the weight increase with respect to the weight at the time of drying. Specifically, the film was cut into a 6 cm diameter circle, and the weight (W0) after heat treatment at 200 ° C. for 1 hour was measured as the dry weight, and then allowed to stand in a desiccator under a 98% RH atmosphere for 2 days. The weight (W1) of the water-absorbed film was measured, and the water absorption rate was determined by the following formula.
Water absorption rate = (W1-W0) / WO × 100

(6)加熱収縮率
20cm×20cmのフィルムを用意し、25℃、60%RHに調整された部屋に2日間放置した後のフィルム寸法(L1)を測定し、続いて200℃60分間加熱した後再び25℃、60%RHに調整された部屋に2日間放置した後フィルム寸法(L2)を測定し、下記式計算により評価した。
加熱収縮率 = −(L2−L1)/L1×100
(6) Heat shrinkage rate A film of 20 cm × 20 cm was prepared, and the film size (L1) after being left in a room adjusted to 25 ° C. and 60% RH for 2 days was measured, followed by heating at 200 ° C. for 60 minutes. Thereafter, the film size (L2) was measured after being left in a room adjusted to 25 ° C. and 60% RH for 2 days, and evaluated by the following formula calculation.
Heat shrinkage rate = − (L2−L1) / L1 × 100

(7)摩擦係数(静摩擦係数)
フィルム同士を重ね合わせ、JIS K−7125(1999)に基づき測定した。すなわち、スベリ係数測定装置Slip Tester(株式会社テクノニーズ製)を使用し、フィルム同士を重ね合わせて、その上に200gのおもりを載せ、フィルムの一方を固定、もう一方を100mm/分で引っ張り、摩擦係数を測定した。
(7) Friction coefficient (Static friction coefficient)
The films were overlapped and measured based on JIS K-7125 (1999). That is, using a slip coefficient measuring device Slip Tester (manufactured by Technonez Co., Ltd.), overlapping the films, placing a 200 g weight thereon, fixing one of the films, pulling the other at 100 mm / min, The coefficient of friction was measured.

(8)自動光学検査(AOI)
オルボテック社製のSK−75を使用してベースフィルムを検査した。異物と微粒子の区別の付く場合を「○」評価、一方異物と微粒子の大きさが類似していて、両者の区別が付かない場合を「×」評価とした。
(8) Automatic optical inspection (AOI)
The base film was inspected using SK-75 manufactured by Orbotech. The case where a foreign substance and a fine particle could be distinguished was evaluated as “◯”, while the case where the size of the foreign substance and the fine particle was similar and could not be distinguished from each other was evaluated as a “x” evaluation.

(9)無機粒子の評価
堀場製作所のレーザ回析/散乱式粒度分布測定装置LA−910を用い、極性溶媒に分散させた試料を測定、解析した結果から粒子径範囲、平均粒子径、粒子径0.15〜0.60μmの全粒子中に対する占有率を読み取った。
(9) Evaluation of inorganic particles Using a laser diffraction / scattering particle size distribution measuring apparatus LA-910 manufactured by Horiba, Ltd., a sample dispersed in a polar solvent was measured and analyzed, and the particle size range, average particle size, and particle size were determined. The occupancy ratio for all particles of 0.15 to 0.60 μm was read.

(10)異常突起数
フィルム表面上の異常突起は、40cm角面積当たりにおいて、大きさ20μm以上の突起数、高さ2μm以上の突起数をそれぞれカウントした。銅の表面の異常突起は、10cm角面積当たりにおいて、大きさ20μm以上の突起数をカウントした。大きさ測定、高さ測定はそれぞれ、レーザーテック(株)製走査型レーザー顕微鏡「1LM15W」にて、ニコン製100倍レンズ(CF Plan 100×/0.95 ∞/0 EPI)を用いて、「SURFACE1」モードにてフィルム表面を撮影・解析することにより確認した。
(10) Number of abnormal protrusions The number of abnormal protrusions on the surface of the film was counted as the number of protrusions having a size of 20 μm or more and the number of protrusions having a height of 2 μm or more per 40 cm square area. The number of protrusions having a size of 20 μm or more per 10 cm square area was counted as abnormal protrusions on the copper surface. The size measurement and the height measurement were performed by using a scanning laser microscope “1LM15W” manufactured by Lasertec Co., Ltd., using a Nikon 100 × lens (CF Plan 100 × / 0.95∞ / 0 EPI). It was confirmed by photographing and analyzing the film surface in the “mode”.

(合成例1)
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で10/7/3の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液濃度にして重合し、3000ポイズのポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤を、ポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。この混合物に、粒径が0.01μm以上1.5μm以下に収まっており、平均粒子径が0.42μm、粒子径が0.15〜0.60μmである粒子が全粒子中88.3体積%のシリカのN,N−ジメチルアセトアミドスラリーを、前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.35重量%添加し、充分攪拌、分散させた後、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.30mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ38μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 1)
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 10/7/3. Polymerization was carried out at a solution concentration of 18.5 wt% in DMAc (N, N-dimethylacetamide) to obtain 3000 poise polyamic acid. A conversion agent composed of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. In this mixture, particles having a particle size of 0.01 μm or more and 1.5 μm or less, an average particle size of 0.42 μm, and a particle size of 0.15 to 0.60 μm were 88.3% by volume in all particles. The N, N-dimethylacetamide slurry of silica was added to the varnish-like polyamic acid solution at 0.35% by weight per resin weight, sufficiently stirred and dispersed, and then rotated by a T-type slit die made of stainless steel at 100 ° C. The gel film was cast on a drum to obtain a self-supporting gel film having a residual volatile component of 55% by weight and a thickness of about 0.30 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 38 μm. The physical properties are shown in Table 1.

(合成例2)
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で10/7/3の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液濃度にして重合し、3000ポイズのポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤を、ポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。この混合物に、粒径が0.01μm以上1.5μm以下に収まっており、平均粒子径が0.37μm、粒子径が0.15〜0.60μmである粒子が全粒子中87.9体積%のシリカのN,N−ジメチルアセトアミドスラリーを、前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.40重量%添加し、充分攪拌、分散させた後、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.20mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ25μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 2)
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 10/7/3. Polymerization was carried out at a solution concentration of 18.5 wt% in DMAc (N, N-dimethylacetamide) to obtain 3000 poise polyamic acid. A conversion agent composed of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. In this mixture, particles having a particle diameter of 0.01 μm or more and 1.5 μm or less, an average particle diameter of 0.37 μm, and a particle diameter of 0.15 to 0.60 μm are 87.9% by volume in all particles. The N, N-dimethylacetamide slurry of silica was added to the varnish-like polyamic acid solution in an amount of 0.40% by weight per resin weight, sufficiently stirred and dispersed, and then rotated by a T-type slit die made of stainless steel at 100 ° C. Casting on a drum, a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.20 mm was obtained. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 25 μm. The physical properties are shown in Table 1.

(合成例3)
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で4/3/1の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液濃度にして重合し、3000ポイズのポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤を、ポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。この混合物に、粒径が0.01μm以上1.5μm以下に収まっており、平均粒子径が0.45μm、粒子径が0.15〜0.60μmである粒子が全粒子中87.4体積%のシリカのN,N−ジメチルアセトアミドスラリーを、前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.40重量%添加し、充分攪拌、分散させた後、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.30mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ38μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 3)
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 4/3/1. Polymerization was carried out at a solution concentration of 18.5 wt% in DMAc (N, N-dimethylacetamide) to obtain 3000 poise polyamic acid. A conversion agent composed of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. In this mixture, the particle size is 0.01 μm or more and 1.5 μm or less, and the average particle size is 0.45 μm and the particle size is 0.15 to 0.60 μm. The N, N-dimethylacetamide slurry of silica was added to the varnish-like polyamic acid solution in an amount of 0.40% by weight per resin weight, sufficiently stirred and dispersed, and then rotated by a T-type slit die made of stainless steel at 100 ° C. The gel film was cast on a drum to obtain a self-supporting gel film having a residual volatile component of 55% by weight and a thickness of about 0.30 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 38 μm. The physical properties are shown in Table 1.

(合成例4)
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で5/4/1の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液濃度にして重合し、3000ポイズのポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤を、ポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。この混合物に、粒径が0.01μm以上1.5μm以下に収まっており、平均粒子径が0.42μm、粒子径が0.15〜0.60μmである粒子が全粒子中88.6体積%のシリカのN,N−ジメチルアセトアミドスラリーを、前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.50重量%添加し、充分攪拌、分散させた後、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.20mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ25μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 4)
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) in a molar ratio of 5/4/1. Polymerization was carried out at a solution concentration of 18.5 wt% in DMAc (N, N-dimethylacetamide) to obtain 3000 poise polyamic acid. A conversion agent composed of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. In this mixture, particles having a particle size of 0.01 μm or more and 1.5 μm or less, an average particle size of 0.42 μm, and a particle size of 0.15 to 0.60 μm were 88.6% by volume in the total particles. The N, N-dimethylacetamide slurry of silica was added to the varnish-like polyamic acid solution at 0.50% by weight per resin weight, sufficiently stirred and dispersed, and then rotated by a T-type slit die made of stainless steel at 100 ° C. Casting on a drum, a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.20 mm was obtained. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 25 μm. The physical properties are shown in Table 1.

(合成例5)
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で2/1/1の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液濃度にして重合し、3000ポイズのポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤を、ポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。この混合物に、粒径が0.01μm以上1.5μm以下に収まっており、平均粒子径が0.50μm、粒子径が0.15〜0.60μmである粒子が全粒子中87.6体積%のシリカのN,N−ジメチルアセトアミドスラリーを、前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.45重量%添加し、充分攪拌、分散させた後、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.30mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ38μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 5)
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 2/1/1. Polymerization was carried out at a solution concentration of 18.5 wt% in DMAc (N, N-dimethylacetamide) to obtain 3000 poise polyamic acid. A conversion agent composed of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. In this mixture, the particle size is 0.01 μm or more and 1.5 μm or less, the average particle size is 0.50 μm, and the particle size is 0.15 to 0.60 μm. The N, N-dimethylacetamide slurry of silica was added to the varnish-like polyamic acid solution in an amount of 0.45% by weight per resin weight, sufficiently stirred and dispersed, and then rotated by a T-type slit die made of stainless steel at 100 ° C. The gel film was cast on a drum to obtain a self-supporting gel film having a residual volatile component of 55% by weight and a thickness of about 0.30 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 38 μm. The physical properties are shown in Table 1.

(合成例6)
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)/パラフェニレンジアミン(分子量108.14)をモル比で5/3/2の割合で用意し、DMAc(N,N−ジメチルアセトアミド)中18.5重量%溶液濃度にして重合し、3000ポイズのポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤を、ポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。この混合物に、粒径が0.01μm以上1.5μm以下に収まっており、平均粒子径が0.44μm、粒子径が0.15〜0.60μmである粒子が全粒子中88.1体積%のシリカのN,N−ジメチルアセトアミドスラリーを、前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.30重量%添加し、充分攪拌、分散させた後、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.20mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ25μmのポリイミドフィルムを得た。物性を表1に示す。
(Synthesis Example 6)
Prepare pyromellitic dianhydride (molecular weight 218.12) / 4,4'-diaminodiphenyl ether (molecular weight 200.24) / paraphenylenediamine (molecular weight 108.14) at a molar ratio of 5/3/2. Polymerization was carried out at a solution concentration of 18.5 wt% in DMAc (N, N-dimethylacetamide) to obtain 3000 poise polyamic acid. A conversion agent composed of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. In this mixture, particles having a particle diameter of 0.01 μm or more and 1.5 μm or less, an average particle diameter of 0.44 μm, and a particle diameter of 0.15 to 0.60 μm are 88.1% by volume in all particles. The N, N-dimethylacetamide slurry of silica was added to the varnish-like polyamic acid solution at 0.30% by weight per resin weight, sufficiently stirred and dispersed, and then rotated by a T-type slit die made of stainless steel at 100 ° C. Casting on a drum, a gel film having a self-supporting property of 55% by weight of residual volatile components and a thickness of about 0.20 mm was obtained. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 25 μm. The physical properties are shown in Table 1.

(合成例7)
ピロメリット酸二無水物(分子量218.12)/4,4’−ジアミノジフェニルエーテル(分子量200.24)をモル比で50/50の割合で混合し、DMAc(N,N−ジメチルアセトアミド)18.5重量%溶液にして重合し、3000poiseのポリアミド酸を得た。無水酢酸(分子量102.09)とイソキノリンからなる転化剤を、ポリアミド酸溶液に対し50重量%の割合で混合、攪拌した。この時、ポリアミド酸のアミド酸基に対し、無水酢酸及びイソキノリンがそれぞれ2.0及び0.4モル当量になるように調製した。この混合物に、粒径が0.01μm以上1.5μm以下に収まっており、平均粒子径が0.40μm、粒子径が0.15〜0.60μmである粒子が全粒子中88.3体積%のシリカのN,N−ジメチルアセトアミドスラリーを、前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.40重量%添加し、充分攪拌、分散させた後、T型スリットダイより回転する100℃のステンレス製ドラム上にキャストし、残揮発成分が55重量%、厚み約0.30mmの自己支持性を有するゲルフィルムを得た。このゲルフィルムをドラムから引き剥がし、その両端を把持し、加熱炉にて200℃×30秒、350℃×30秒、550℃×30秒処理し、厚さ38μmのポリイミドフィルムを得た。物性を表2に示す
(Synthesis Example 7)
Pyromellitic dianhydride (molecular weight 218.12) / 4,4′-diaminodiphenyl ether (molecular weight 200.24) is mixed at a molar ratio of 50/50, and DMAc (N, N-dimethylacetamide) 18. Polymerization was performed with a 5 wt% solution to obtain 3000 poise polyamic acid. A conversion agent composed of acetic anhydride (molecular weight 102.09) and isoquinoline was mixed and stirred at a ratio of 50% by weight to the polyamic acid solution. At this time, it prepared so that acetic anhydride and isoquinoline might be 2.0 and 0.4 molar equivalent with respect to the amic acid group of a polyamic acid, respectively. In this mixture, particles having a particle diameter of 0.01 μm or more and 1.5 μm or less, an average particle diameter of 0.40 μm, and a particle diameter of 0.15 to 0.60 μm are 88.3% by volume in all particles. The N, N-dimethylacetamide slurry of silica was added to the varnish-like polyamic acid solution in an amount of 0.40% by weight per resin weight, sufficiently stirred and dispersed, and then rotated by a T-type slit die made of stainless steel at 100 ° C. The gel film was cast on a drum to obtain a self-supporting gel film having a residual volatile component of 55% by weight and a thickness of about 0.30 mm. This gel film was peeled off from the drum, and both ends thereof were gripped and treated in a heating furnace at 200 ° C. for 30 seconds, 350 ° C. for 30 seconds, and 550 ° C. for 30 seconds to obtain a polyimide film having a thickness of 38 μm. Table 2 shows the physical properties.

(合成例8)
合成例1において、シリカを添加しないこと以外は、全て合成例1と同様の方法でポリイミドフィルムを得た。物性を表2に示す。
(Synthesis Example 8)
In Synthesis Example 1, a polyimide film was obtained in the same manner as in Synthesis Example 1 except that silica was not added. The physical properties are shown in Table 2.

(合成例9)
合成例1において使用したシリカを、粒径が0.1μm以上4.5μm以下に収まっており、平均粒子径が1.1μm、粒子径が0.15〜0.60μmである粒子が全粒子中26.5体積%のリン酸水素カルシウムに変更し、N,N−ジメチルアセトアミドスラリーを前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.2重量%添加すること以外は、全て合成例1と同様の方法でポリイミドフィルムを得た。物性を表2に示す。
(Synthesis Example 9)
The silica used in Synthesis Example 1 has a particle size of 0.1 μm or more and 4.5 μm or less, particles having an average particle size of 1.1 μm and a particle size of 0.15 to 0.60 μm in all particles. The same as Synthesis Example 1 except that 26.5% by volume calcium hydrogen phosphate was changed and 0.2% by weight of N, N-dimethylacetamide slurry was added to the varnish-like polyamic acid solution per resin weight. A polyimide film was obtained by this method. The physical properties are shown in Table 2.

(合成例10)
合成例1において使用したシリカを、粒径が0.01μm以上0.3μm以下に収まっており、平均粒子径が0.08μm、粒子径が0.15〜0.60μmである粒子が全粒子中30.4体積%のシリカに変更し、N,N−ジメチルアセトアミドスラリーを前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.40重量%添加すること以外は、全て合成例1と同様の方法でポリイミドフィルムを得た。物性を表2に示す。
(Synthesis Example 10)
The silica used in Synthesis Example 1 has a particle diameter of 0.01 μm or more and 0.3 μm or less, particles having an average particle diameter of 0.08 μm and a particle diameter of 0.15 to 0.60 μm in all particles. Polyimide was prepared in the same manner as in Synthesis Example 1 except that the silica was changed to 30.4% by volume and N, N-dimethylacetamide slurry was added to the varnish-like polyamic acid solution at 0.40% by weight per resin weight. A film was obtained. The physical properties are shown in Table 2.

(合成例11)
合成例1において使用したシリカを、粒径が0.01μm以上1.5μm以下に収まっており、平均粒子径が0.46μm、粒子径が0.15〜0.60μmである粒子が全粒子中73.2体積%のシリカに変更し、N,N−ジメチルアセトアミドスラリーを前記ワニス状ポリアミド酸溶液に樹脂重量当たり0.40重量%添加すること以外は、全て合成例1と同様の方法でポリイミドフィルムを得た。物性を表2に示す。
(Synthesis Example 11)
The silica used in Synthesis Example 1 has a particle diameter of 0.01 μm or more and 1.5 μm or less, particles having an average particle diameter of 0.46 μm and a particle diameter of 0.15 to 0.60 μm in all particles. Polyimide was prepared in the same manner as in Synthesis Example 1 except that 73.2% by volume of silica was changed and 0.40% by weight of N, N-dimethylacetamide slurry was added to the varnish-like polyamic acid solution per resin weight. A film was obtained. The physical properties are shown in Table 2.

(実施例1)
合成例1で製膜したポリイミドフィルムを用い、真空槽を到達圧力1×10−3Paにした後、アルゴンガス圧1×10−1PaにてDCマグネトロンスパッタによりニッケル/クロム=95/5(重量比)のニクロム合金を厚さ5nmになるように片面にスパッタリングし、更に銅を厚さ50nmになるようにスパッタリングした。次に、硫酸銅浴による電解鍍金で6μmの厚さの銅層を、2A/dmの電流密度の条件により積層し、片面フレキシブル銅張板を作製した。なお、硫酸銅浴の組成は、硫酸銅五水和物80g/リットル、硫酸200g/リットル、塩酸50mg/リットルに適宜量の添加剤を加えた溶液を用いた。
Example 1
The polyimide film formed in Synthesis Example 1 was used and the vacuum chamber was brought to an ultimate pressure of 1 × 10 −3 Pa, and then nickel / chromium = 95/5 by DC magnetron sputtering at an argon gas pressure of 1 × 10 −1 Pa. (Weight ratio) nichrome alloy was sputtered on one side so as to have a thickness of 5 nm, and copper was further sputtered so as to have a thickness of 50 nm. Next, a copper layer having a thickness of 6 μm was laminated by electrolytic plating using a copper sulfate bath under the condition of a current density of 2 A / dm 2 to prepare a single-sided flexible copper-clad plate. The composition of the copper sulfate bath was a solution in which an appropriate amount of additives was added to copper sulfate pentahydrate 80 g / liter, sulfuric acid 200 g / liter, and hydrochloric acid 50 mg / liter.

得られた銅張板を20cm角にカットし、銅表面上に2mm幅テープを3mm間隔で幅方向(TD)に40本貼り、これを塩化第二鉄水溶液に入れ、テープの貼られていない部分の銅をエッチング除去し、簡易的な配線板を作製した。その後TD方向の両端部の寸法を測定(L3)、次に150℃1時間加熱した後に再びTD方向の寸法を測定(L4)、寸法変化率を下記式により求めた。
寸法変化率(%)=(L4−L3)/L3×100
The obtained copper-clad plate was cut into a 20 cm square, and 40 pieces of 2 mm wide tape were stuck on the copper surface at intervals of 3 mm in the width direction (TD). This was put into a ferric chloride aqueous solution, and the tape was not stuck. A portion of the copper was removed by etching to produce a simple wiring board. Thereafter, the dimensions at both ends in the TD direction were measured (L3), then heated at 150 ° C. for 1 hour, then the dimension in the TD direction was measured again (L4), and the dimensional change rate was determined by the following equation.
Dimensional change rate (%) = (L4−L3) / L3 × 100

寸法結果を表3に示す。   The dimensional results are shown in Table 3.

得られた銅張り板のポリイミドフィルム部分の静摩擦係数、AOI、異常突起数及び銅側部分の異常突起数を測定した。結果を表3に示す。静摩擦係数が低いので搬送性が良く、また異常突起が少なく、誤検知によるAOI検査の中断も少なくすみ、寸法変化率も低いので、微細配線形成用としての銅張り板に好適である。   The static friction coefficient, AOI, the number of abnormal protrusions of the polyimide film portion of the obtained copper-clad plate, and the number of abnormal protrusions of the copper side portion were measured. The results are shown in Table 3. Since the static friction coefficient is low, transportability is good, there are few abnormal projections, AOI inspection interruption due to erroneous detection is reduced, and the dimensional change rate is low, which is suitable for a copper-clad plate for forming fine wiring.

(実施例2)
合成例2で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。静摩擦係数が低いので搬送性が良く、また異常突起が少なく、誤検知によるAOI検査の中断も少なくすみ、寸法変化率も低いので、微細配線形成用としての銅張り板に好適である。
(Example 2)
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 2 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. Since the static friction coefficient is low, transportability is good, there are few abnormal projections, AOI inspection interruption due to erroneous detection is reduced, and the dimensional change rate is low, which is suitable for a copper-clad plate for forming fine wiring.

(実施例3)
合成例3で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。静摩擦係数が低いので搬送性が良く、また異常突起が少なく、誤検知によるAOI検査の中断も少なくすみ、寸法変化率も低いので、微細配線形成用としての銅張り板に好適である。
(Example 3)
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 3 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. Since the static friction coefficient is low, transportability is good, there are few abnormal projections, AOI inspection interruption due to erroneous detection is reduced, and the dimensional change rate is low, which is suitable for a copper-clad plate for forming fine wiring.

(実施例4)
合成例4で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。静摩擦係数が低いので搬送性が良く、また異常突起が少なく、誤検知によるAOI検査の中断も少なくすみ、寸法変化率も低いので、微細配線形成用としての銅張り板に好適である。
Example 4
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 4 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. Since the static friction coefficient is low, transportability is good, there are few abnormal projections, AOI inspection interruption due to erroneous detection is reduced, and the dimensional change rate is low, which is suitable for a copper-clad plate for forming fine wiring.

(実施例5)
合成例5で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。静摩擦係数が低いので搬送性が良く、また異常突起が少なく、誤検知によるAOI検査の中断も少なくすみ、寸法変化率も低いので、微細配線形成用としての銅張り板に好適である。
(Example 5)
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 5 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. Since the static friction coefficient is low, transportability is good, there are few abnormal projections, AOI inspection interruption due to erroneous detection is reduced, and the dimensional change rate is low, which is suitable for a copper-clad plate for forming fine wiring.

(実施例6)
合成例6で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。静摩擦係数が低いので搬送性が良く、また異常突起が少なく、誤検知によるAOI検査の中断も少なくすみ、寸法変化率も低いので、微細配線形成用としての銅張り板に好適である。
(Example 6)
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 6 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. Since the static friction coefficient is low, transportability is good, there are few abnormal projections, AOI inspection interruption due to erroneous detection is reduced, and the dimensional change rate is low, which is suitable for a copper-clad plate for forming fine wiring.

(比較例1)
合成例7で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。得られた銅張り板のポリイミドフィルム部分は、熱収縮率が高いため寸法変化率も高く、微細配線形成用としての銅張り板としては適用できないものであった。
(Comparative Example 1)
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 7 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. Since the polyimide film portion of the obtained copper-clad plate has a high thermal shrinkage rate, the dimensional change rate is also high, and it cannot be applied as a copper-clad plate for forming fine wiring.

(比較例2)
合成例8で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。得られた銅張り板のポリイミドフィルム部分は、静摩擦係数が高く滑り性が悪いため銅張り板を搬送する上で不具合を生じさせるので、微細配線形成用としての銅張り板としては適用できないものであった。
(Comparative Example 2)
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 8 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. Since the polyimide film part of the obtained copper-clad plate has a high coefficient of static friction and poor slipperiness, it causes problems when transporting the copper-clad plate, so it cannot be applied as a copper-clad plate for forming fine wiring. there were.

(比較例3)
合成例9で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。得られた銅張り板のポリイミドフィルム部分は、AOI検査では異常突起が異物と誤検知されてしまい度々AOI検査を中断しなくてはならないほど異常突起が多く、また銅側の異常突起数も多く微細配線形成用としての銅張り板としては適用できないものであった。
(Comparative Example 3)
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 9 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. The polyimide film part of the obtained copper-clad plate has so many abnormal protrusions that the AOI inspection must be interrupted frequently because the abnormal protrusions are mistakenly detected as foreign objects in the AOI inspection, and the number of abnormal protrusions on the copper side is also large. It could not be applied as a copper-clad plate for forming fine wiring.

(比較例4)
合成例10で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。得られた銅張り板のポリイミドフィルム部分は静摩擦係数が高く滑り性が悪いため銅張り板を搬送する上で不具合を生じさせるので、微細配線形成用としての銅張り板用としては適用できないものであった。
(Comparative Example 4)
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 10 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. Since the polyimide film part of the obtained copper-clad plate has a high coefficient of static friction and poor sliding properties, it causes problems when transporting the copper-clad plate, so it can not be applied as a copper-clad plate for forming fine wiring. there were.

(比較例5)
合成例11で製膜したポリイミドフィルムを用いた他は、実施例1と同様にして銅張り板を形成し、実施例1と同様の評価を実施した。結果を表3に示す。この例では、0.9〜1.3μmの粒子径の占有率が全体の20.8体積%を占めていたため、これが原因で異常突起数が多くなった。銅張り板のポリイミドフィルム部分は、AOI検査では異常突起が異物と誤検知されてしまい度々AOI検査を中断しなくてはならないほど異常突起が多く、また銅側の異常突起数も多く微細配線形成用としての銅張り板としては適用できないものであった。
(Comparative Example 5)
A copper-clad plate was formed in the same manner as in Example 1 except that the polyimide film formed in Synthesis Example 11 was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 3. In this example, since the occupation ratio of the particle diameter of 0.9 to 1.3 μm occupied 20.8% by volume of the whole, the number of abnormal protrusions increased due to this. The polyimide film part of the copper-clad board has many abnormal protrusions that the AOI inspection must be interrupted frequently because the abnormal protrusions are erroneously detected as foreign objects in the AOI inspection, and the number of abnormal protrusions on the copper side is large and fine wiring is formed. It was not applicable as a copper-clad plate for use.

Figure 2008290303
Figure 2008290303

Figure 2008290303
Figure 2008290303

Figure 2008290303
Figure 2008290303

本発明の銅張り板は、高寸法安定性と共に適度な弾性率を有すると共に、無機微細粒子を添加して表面突起を発生させることにより易滑性を有し、さらにはフレキシブルプリント基板(FPC)やチップオンフィルム(COF)の自動光学検査システム(AOI)に適応可能であることから、ポリイミドフィルムを使用してなる高性能のフレキシブルプリント基板用途に好ましく適用することができる。   The copper-clad plate of the present invention has an appropriate elastic modulus with high dimensional stability, and has slipperiness by generating surface protrusions by adding inorganic fine particles, and also a flexible printed circuit board (FPC). And can be applied to a high-performance flexible printed circuit board using a polyimide film.

Claims (6)

ジアミン成分としてパラフェニレンジアミン及び4,4’−ジアミノジフェニルエーテルを、酸二無水物成分としてピロメリット酸二無水物を用いて主として構成されたポリイミドフィルム中に、粒子径0.01〜1.5μm、平均粒子径0.05〜0.7μmであって、かつ、粒子径0.15〜0.60μmの粒子が全粒子中80体積%以上の割合を占める粒度分布を有する無機粒子が、フィルム樹脂重量当たり0.1〜0.9重量%の割合で分散・含有されているポリイミドフィルムを用い、このポリイミドフィルムの片面または両面に、接着剤を介することなく直接銅層が形成されていることを特徴とする銅張り板。 In a polyimide film mainly composed of paraphenylenediamine and 4,4′-diaminodiphenyl ether as a diamine component and pyromellitic dianhydride as an acid dianhydride component, a particle diameter of 0.01 to 1.5 μm, Inorganic particles having an average particle size of 0.05 to 0.7 μm and a particle size distribution in which particles having a particle size of 0.15 to 0.60 μm account for 80% by volume or more of all particles are film resin weight. Using a polyimide film dispersed and contained at a ratio of 0.1 to 0.9% by weight, a copper layer is directly formed on one or both surfaces of this polyimide film without using an adhesive. A copper-clad board. 前記ポリイミドフィルムが、ジアミン成分として10〜50モル%のパラフェニレンジアミン及び50〜90モル%の4,4’−ジアミノジフェニルエーテルを、酸二無水物成分としてピロメリット酸二無水物を、主として用いてなるポリイミドフィルムであることを特徴とする請求項1に記載の銅張り板。 The polyimide film is mainly composed of 10-50 mol% paraphenylenediamine and 50-90 mol% 4,4′-diaminodiphenyl ether as a diamine component, and pyromellitic dianhydride as an acid dianhydride component. The copper-clad board according to claim 1, which is a polyimide film. 前記ポリイミドフィルムが、弾性率が3〜6GPa、50〜200℃での線膨張係数が5〜20ppm/℃、湿度膨張係数が30ppm/%RH以下、吸水率が3.5%以下、200℃1時間での加熱収縮率が0.10%以下の特性を有することを特徴とする請求項1または2に記載の銅張り板。 The polyimide film has an elastic modulus of 3 to 6 GPa, a linear expansion coefficient at 50 to 200 ° C. of 5 to 20 ppm / ° C., a humidity expansion coefficient of 30 ppm /% RH or less, a water absorption of 3.5% or less, and 200 ° C. The copper-clad plate according to claim 1 or 2, wherein the heat shrinkage ratio over time has a characteristic of 0.10% or less. 前記無機粒子に起因する突起が前記ポリイミドフィルムの表面に存在し、大きさ20μm以上の突起数が1個/40cm角以下であることを特徴とする請求項1〜3のいずれか1項に記載の銅張り板。 The protrusions resulting from the inorganic particles are present on the surface of the polyimide film, and the number of protrusions having a size of 20 μm or more is 1/40 cm square or less. Copper-clad board. 前記ポリイミドフィルムの表面に存在する高さ2μm以上の突起数が5個/40cm角以下であることを特徴とする請求項1〜4のいずれか1項に記載の銅張り板。 5. The copper-clad plate according to claim 1, wherein the number of protrusions having a height of 2 μm or more present on the surface of the polyimide film is 5/40 cm square or less. 前記ポリイミドフィルムの表面に形成された銅層の表面に存在する大きさ20μm以上の突起数が40個/10cm角以下であることを特徴とする請求項1〜5のいずれか1項に記載の銅張り板。 6. The number of protrusions having a size of 20 μm or more present on the surface of the copper layer formed on the surface of the polyimide film is 40/10 cm square or less, according to claim 1. Copper-clad board.
JP2007136706A 2007-05-23 2007-05-23 Copper-clad plate Pending JP2008290303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007136706A JP2008290303A (en) 2007-05-23 2007-05-23 Copper-clad plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136706A JP2008290303A (en) 2007-05-23 2007-05-23 Copper-clad plate

Publications (1)

Publication Number Publication Date
JP2008290303A true JP2008290303A (en) 2008-12-04

Family

ID=40165543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136706A Pending JP2008290303A (en) 2007-05-23 2007-05-23 Copper-clad plate

Country Status (1)

Country Link
JP (1) JP2008290303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136721A (en) * 2013-01-16 2014-07-28 Du Pont-Toray Co Ltd Polyimide film and method for producing the same
JP2021500464A (en) * 2017-10-23 2021-01-07 ピーアイ アドヴァンスド マテリアルズ カンパニー リミテッドPI Advanced Materials CO., Ltd. Polyimide film for roll type graphite sheet
CN115505279A (en) * 2022-08-30 2022-12-23 中山新高电子材料股份有限公司 LCP single-sided copper-clad plate and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136721A (en) * 2013-01-16 2014-07-28 Du Pont-Toray Co Ltd Polyimide film and method for producing the same
JP2021500464A (en) * 2017-10-23 2021-01-07 ピーアイ アドヴァンスド マテリアルズ カンパニー リミテッドPI Advanced Materials CO., Ltd. Polyimide film for roll type graphite sheet
CN115505279A (en) * 2022-08-30 2022-12-23 中山新高电子材料股份有限公司 LCP single-sided copper-clad plate and preparation method thereof
CN115505279B (en) * 2022-08-30 2024-02-27 中山新高电子材料股份有限公司 LCP (liquid crystal display) single-sided copper-clad plate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2005314669A (en) Polyimide film and copper-clad laminate using the same as substrate
JP4888719B2 (en) Copper plate
JP5131519B2 (en) Coverlay
JP4947297B2 (en) Copper plate
JP2009021350A (en) Cover lay
JP2008290303A (en) Copper-clad plate
JP2008106139A (en) Polyimide film and method for producing the same
JP2008106141A (en) Polyimide film and method for producing the same
JP2008166556A (en) Flexible printed wiring board
JP2007194603A (en) Flexible printed wiring board, and manufacturing method thereof
JP2008290304A (en) Copper-clad plate
JP4876890B2 (en) Copper plate
JP2008211046A (en) Chip-on film
JP2007201442A (en) Chip-on film
JP2008106140A (en) Polyimide film and method for producing the same
JP5126735B2 (en) Flexible printed wiring board
JP2008290301A (en) Copper-clad plate
JP2009018523A (en) Copper clad plate
JP2009018522A (en) Copper clad plate
JP2008208255A (en) Chip-on-film
JP5126734B2 (en) Copper plate
JP2008211044A (en) Chip-on film
JP2009019096A (en) Cover-lay
JP2008166555A (en) Flexible printed wiring board
JP2009019095A (en) Cover-lay