JP2008290176A - Tip replaceable ball end mill - Google Patents

Tip replaceable ball end mill Download PDF

Info

Publication number
JP2008290176A
JP2008290176A JP2007137349A JP2007137349A JP2008290176A JP 2008290176 A JP2008290176 A JP 2008290176A JP 2007137349 A JP2007137349 A JP 2007137349A JP 2007137349 A JP2007137349 A JP 2007137349A JP 2008290176 A JP2008290176 A JP 2008290176A
Authority
JP
Japan
Prior art keywords
insert
cutting edge
cutting
nick
end mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007137349A
Other languages
Japanese (ja)
Other versions
JP4771547B2 (en
Inventor
Yoshiyuki Kobayashi
小林由幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2007137349A priority Critical patent/JP4771547B2/en
Publication of JP2008290176A publication Critical patent/JP2008290176A/en
Application granted granted Critical
Publication of JP4771547B2 publication Critical patent/JP4771547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tip replaceable ball end mill which can reduce cutting resistance of a cutting edge in the vicinity of a tool rotation center, can stably part chips, and is good in machining accuracy. <P>SOLUTION: According to the structure of the tip replaceable ball end mill, a cutting edge ridge portion of each of a main insert and a sub-insert has a plurality of nicks formed therein, and provided that a radius of a rotating locus is represented by R (mm), and a distance between a lower point Q of the nick closest to the rotating axis of the main insert and a lowermost point P of a tool main body by La1 (mm), respectively, the relationship of 0<La1≤0.1R is satisfied. Further provided that the total sum of lengths in the rotating axis direction of the main insert cutting edge ridge is represented by X1 (mm), the total sum of lengths in the rotating axis direction of the sub-insert cutting edge ridge by X2 (mm), and the value of the expression (X1+X2)/((R-X1)+(R-X2)) by S, respectively, the relationship of 1≤S≤1.1 is satisfied. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、工具本体の端部に形成したインサート取付座に、主インサートと副インサートからなる切刃を有するインサートを、着脱自在に装着した刃先交換式ボールエンドミルに関する。   The present invention relates to a blade end replaceable ball end mill in which an insert having a cutting edge composed of a main insert and a sub insert is detachably mounted on an insert mounting seat formed at an end of a tool body.

特許文献1から3に、切れ刃にニック形状や波形状を設けることで切削抵抗の低減と切り屑を分断させる技術が開示されている。   Patent Documents 1 to 3 disclose a technique for reducing cutting resistance and dividing chips by providing a nick shape or a wave shape on a cutting edge.

特開2000−117513号公報JP 2000-117513 A 特開2002−283119号公報JP 2002-283119 A 特許2005−131788号公報Japanese Patent No. 2005-131788

本願発明は、工具回転中心近傍の切れ刃の切削抵抗を低減させ、切屑を安定して分断でき、且つ加工精度の良い刃先交換式ボールエンドミルを提供することである。   The present invention is to provide a blade end replaceable ball end mill capable of reducing cutting resistance of a cutting edge in the vicinity of a tool rotation center, stably cutting chips, and having high processing accuracy.

本願発明は、工具本体の端部に主インサートと副インサートを着脱自在に装着した刃先交換式ボールエンドミルにおいて、該主インサートと該副インサートの切れ刃稜線部には複数のニックが設けられ、該切れ刃稜線部が描く略半円球状の回転軌跡は、該切れ刃稜線部がニック部分を互いに補完し合うように配置され、該回転軌跡の半径をR(mm)としたとき、該主インサートの回転軸に最も近いニックの下部点Qと該工具本体の最下点Pとの距離La1(mm)が、0<La1≦0.1R、であり、回転中心を通る断面の該主インサート切れ刃稜線の回転軸方向長さにおける総和をX1(mm)、回転中心を通る断面の該副インサート切れ刃稜線の回転軸方向長さにおける総和をX2(mm)、(X1+X2)/((R−X1)+(R−X2))の値をS値とした時、1≦S≦1.1、であることを特徴とする刃先交換式ボールエンドミルである。上記の構成を採用することによって、工具回転中心近傍の切れ刃の切削抵抗を低減させ、切屑を安定して分断でき、且つ加工精度の良い刃先交換式ボールエンドミルを提供することができる。   The present invention relates to a blade end replaceable ball end mill in which a main insert and a sub insert are detachably attached to an end of a tool body, and a plurality of nicks are provided on the cutting edge ridge line portion of the main insert and the sub insert, The substantially semispherical rotation locus drawn by the cutting edge ridge line portion is arranged so that the cutting edge ridge line portions complement each other in the nick portion, and when the radius of the rotation locus is R (mm), the main insert The distance La1 (mm) between the lower point Q of the nick closest to the rotation axis of the tool and the lowest point P of the tool body is 0 <La1 ≦ 0.1R, and the main insert is cut in a cross section passing through the center of rotation. The total sum in the rotation axis direction length of the edge line is X1 (mm), and the total in the rotation axis direction length of the sub-insert cutting edge edge line of the cross section passing through the rotation center is X2 (mm), (X1 + X2) / ((R− X1) + (R− When the value of 2)) is S value is indexable ball end mill, characterized in that 1 ≦ S ≦ 1.1, a. By adopting the above configuration, it is possible to provide a blade end replaceable ball end mill that can reduce the cutting resistance of the cutting edge in the vicinity of the center of the tool rotation, stably sever the chips, and has high processing accuracy.

本願発明の刃先交換式ボールエンドミルは、主インサートと副インサートのニックの数は、夫々少なくとも4ヶ所であることが好ましい。また、主インサートと副インサートのすくい面にブレーカ溝を設けることが好ましい。   In the blade end replaceable ball end mill of the present invention, it is preferable that the number of nicks of the main insert and the sub insert is at least four, respectively. Moreover, it is preferable to provide a breaker groove on the rake face of the main insert and the sub-insert.

本願発明によって工具回転中心近傍の切れ刃の切削抵抗を低減させ、切屑を安定して分断でき、且つ加工精度の良い刃先交換式ボールエンドミルを提供することができた。   According to the present invention, the cutting resistance of the cutting edge near the center of rotation of the tool can be reduced, and a chip end replaceable ball end mill that can stably cut chips and has high processing accuracy can be provided.

切れ刃稜線部にニックが設けられ刃先交換式ボールエンドミルを用いて、フライス加工による重切削を行う様な場合、加工能率を向上させるため切削送りを上げると大きな切削抵抗が発生する。これにより工具本体にビビリ振動が発生し、加工精度の低下やインサートが破損してしまう。一方、切削送りを下げて加工すると加工能率が低下してしまう。ここで言う重切削とは、切削条件の1刃当りの送り量fzが0.3mm/刃以上であるような場合である。重切削において大きな切削抵抗が発生する要因について考察すると、以下のように考えられる。大きな切削抵抗の発生は、工具回転中心近傍における切れ刃の被削材への食い付きの困難性が、その原因の1つとして考えられら。即ち、主インサートの切れ刃によって切り屑が排出された直後に、ほぼ同一箇所を副インサートの切れ刃が通過する際に、工具回転中心近傍の切削形態は、削りしろが極めて少なくなる。この様に副インサートの切れ刃の削りしろが少ない場合、この切れ刃は被削材へ食い付くことが出来ずに、被削材を擦る様にして通過することになる。そうすると、擦りながら通過する切れ刃は、大きな切削抵抗を発生させてしまうことになるのである。しかも、工具回転中心近傍は回転周速が小さいため、工具本体にビビリ振動が発生し易い状態となる。このビビリ振動は、加工精度に悪影響を及ぼすこととなる。
そこで、本願発明では、副インサートの切れ刃の削りしろを十分確保して、正常な切削と切り屑排出ができるように、主インサートの回転軸に最も近いニックの配置を規定する。ニックの配置と切り屑の形状を比較すると、工具回転中心から離れた位置にニックを設ける場合、例えば3箇所となる場合には、大きく長い切り屑が生成されてしまう。これは、切れ刃長さが大きいことに起因しており、切り屑排出性にとって好ましくない現象である。これに対して、工具回転中心近傍にニックを設けることにより、切れ刃長さは短縮され、切り屑はより小さくなる。また、形状も略均等な長さとなって分断され、排出効果がより改善されることになる。例えば、ニックの数を3箇所から4箇所へと増やすことにより、ニックによる切り屑の分断効果、排出効果も良好となる。
更に、ニックは切れ刃として作用しないことから、意図的にニック部の切り残しを形成し、次に来る副インサートの切れ刃が通過する際の削りしろを確保するのである。主インサートの回転軸に最も近いニックの下部点Qと該工具本体の最下点Pとの距離La1(mm)は、該回転軌跡の半径をR(mm)としたとき、0<La1≦0.1R、となるようにすることが必要である。ここで、主インサートの回転軌跡上に工具本体の最下点Pがある。La1が0.1Rを超えて大きい場合、回転軸近傍の主インサート切れ刃が作用して切り屑が排出されてしまい、その後に来る副インサートの切れ刃による削りしろの確保が不十分となってしまう。これにより、副インサートの切れ刃は、被削材への食い付きが悪くなり、表面を擦りながら通過することになり場合もある。その結果、ビビリ振動が発生し易い状態となる。一方、La1値の最小値は、点Pと、副インサートの回転軌跡上の最下点との軸線方向距離とすることが好ましい。
切れ刃の逃げ面に、切れ刃から着座面に向けて延びるニックが形成され、このニックはインサート厚みの1/5〜3/4分の長さ有することが好ましい。このとき、切れ刃に沿ったインサート厚みは略一定であっても、変化する場合であってもよい。ここで、主インサートの回転軸に最も近いニックの下部点Qは、切れ刃稜線部が描く略半円球状の回転軌跡と、主インサートのニック回転軌跡の交点をQ点とする。即ち、主インサートのニック回転軌跡が、切れ刃稜線部が描く略半円球状の回転軌跡の内側へ向かい始める点をQ点とする。これは、一般的にニック部と切れ刃部とを結ぶ領域が曲線となっていることを配慮したものである。
また、本願発明の刃先交換式ボールエンドミルはS値が、1≦S≦1.1、となることを規定している。この理由は、ボールエンドミルの略1/4円弧状の切れ刃すべてを使用するような切り込み深さの切削条件であっても、削り残しが無く、切れ刃長さを極力短くして切削抵抗の低減が可能となるからである。同時に、適正な切り屑処理を行い、切り屑の巻き込みによるインサートの破損を回避することが可能となった。1≦S≦1.1、で表す範囲内になるようにする事で、切削時の切れ刃と被加工物との接触長さが必要最小限となり、切削抵抗の低減に必要な切れ刃長さを得る事が出来る。このとき、S値が1未満となると、加工後の被削材に削り残しが発生する不都合が生じる。一方、S値は1.1を超えて大きくなるようにすると、切れ刃と被削材との接触する長さが必要以上に長くなる為、切削抵抗が増加してビビリ振動が発生し易くなる。そこで、上記の様な数値範囲に規定した。本願発明は高能率で加工出来る様に、1刃当りの送り量fzが0.3mm/刃以上の条件で加工出来るようなS値の範囲を設定する事を目的とした。
When a nick is provided at the cutting edge ridge line and heavy cutting by milling is performed using a blade end replaceable ball end mill, a large cutting resistance is generated when the cutting feed is increased in order to improve the processing efficiency. As a result, chatter vibration is generated in the tool body, resulting in a decrease in machining accuracy and damage to the insert. On the other hand, if the cutting feed is lowered, the machining efficiency is lowered. The heavy cutting mentioned here is a case where the feed amount fz per cutting edge is 0.3 mm / tooth or more. Considering the factors that cause large cutting resistance in heavy cutting, it is considered as follows. One of the causes of the generation of a large cutting resistance is the difficulty of biting the work material of the cutting edge in the vicinity of the tool rotation center. That is, immediately after the chips are discharged by the cutting edge of the main insert, when the cutting edge of the sub-insert passes through substantially the same location, the cutting form near the tool rotation center has very little cutting margin. When the cutting margin of the cutting edge of the secondary insert is small in this way, the cutting edge cannot penetrate the work material and passes through the work material in a rubbing manner. If it does so, the cutting blade which passes while rubbing will generate a big cutting resistance. In addition, since the rotational peripheral speed is small near the tool rotation center, chatter vibration is likely to occur in the tool body. This chatter vibration adversely affects machining accuracy.
Therefore, in the present invention, the arrangement of the nick closest to the rotation axis of the main insert is defined so that a sufficient margin for the cutting edge of the sub-insert can be secured, and normal cutting and chip discharge can be performed. Comparing the arrangement of the nick and the shape of the chips, when providing a nick at a position away from the center of rotation of the tool, for example, when there are three places, large and long chips are generated. This is due to the large cutting edge length, which is an undesirable phenomenon for chip discharge. On the other hand, by providing a nick in the vicinity of the tool rotation center, the cutting edge length is shortened and the chips become smaller. Further, the shape is divided into substantially equal lengths, and the discharge effect is further improved. For example, by increasing the number of nicks from three to four, the chip separation effect and discharge effect by the nick can be improved.
Furthermore, since the nick does not act as a cutting edge, the nick part is intentionally left uncut, and a cutting margin is ensured when the next cutting edge of the secondary insert passes. The distance La1 (mm) between the lower point Q of the nick closest to the rotation axis of the main insert and the lowest point P of the tool body is 0 <La1 ≦ 0, where R is the radius of the rotation locus. .1R is necessary. Here, the lowest point P of the tool body is on the rotation locus of the main insert. When La1 is larger than 0.1R, the main insert cutting edge in the vicinity of the rotating shaft acts and the chips are discharged, and it is insufficient to secure the cutting margin by the subsequent cutting edge of the secondary insert. End up. As a result, the cutting edge of the sub-insert becomes poor in biting on the work material and may pass while rubbing the surface. As a result, chatter vibration is likely to occur. On the other hand, the minimum value of the La1 value is preferably the axial distance between the point P and the lowest point on the rotation locus of the secondary insert.
A nick extending from the cutting edge toward the seating surface is formed on the flank face of the cutting edge, and this nick preferably has a length of 1/5 to 3/4 of the insert thickness. At this time, the insert thickness along the cutting edge may be substantially constant or may vary. Here, the lower point Q of the nick closest to the rotation axis of the main insert is defined as a point Q at the intersection of the substantially semi-circular rotation locus drawn by the cutting edge ridge line portion and the nick rotation locus of the main insert. That is, let Q point be the point at which the nick rotation locus of the main insert starts to the inside of the substantially semispherical rotation locus drawn by the cutting edge ridge line portion. This is because the region connecting the nick portion and the cutting edge portion is generally curved.
Further, the S-value of the blade edge replaceable ball end mill of the present invention is defined as 1 ≦ S ≦ 1.1. The reason for this is that even if the cutting conditions have a depth of cut that uses all the cutting edges of approximately a quarter arc of a ball end mill, there is no uncut residue and the cutting edge length is shortened as much as possible to reduce the cutting resistance. This is because reduction is possible. At the same time, it was possible to perform proper chip disposal and avoid breakage of the insert due to chip entrainment. By making it within the range represented by 1 ≦ S ≦ 1.1, the contact length between the cutting edge and the workpiece during cutting becomes the minimum necessary, and the cutting edge length necessary for reducing cutting resistance You can get it. At this time, when the S value is less than 1, there arises a disadvantage that uncut material is generated in the processed material after processing. On the other hand, if the S value exceeds 1.1, the contact length between the cutting edge and the work material becomes longer than necessary, so that the cutting resistance increases and chatter vibration is likely to occur. . Therefore, it is defined in the numerical range as described above. The object of the present invention is to set a range of S value that can be processed under the condition that the feed amount fz per blade is 0.3 mm / blade or more so that it can be processed with high efficiency.

本願発明の刃先交換式ボールエンドミルは、該主インサートと該副インサートのニックの数を、切れ刃稜線部に4ヶ所設置すると、主インサートの回転軸近傍に1つのニックを配置しても、他の3箇所のニックによって切り屑の分断にも良好な効果が得られる。また、切れ刃のすくい面にブレーカ溝を設ける事により、更に切削抵抗が低減出来る。   In the blade end replaceable ball end mill of the present invention, if the number of nicks of the main insert and the sub-insert is set at four locations on the edge of the cutting edge, one nick may be arranged near the rotation axis of the main insert. A good effect can be obtained also in the cutting of chips by the three nicks. Further, the cutting resistance can be further reduced by providing a breaker groove on the rake face of the cutting edge.

(実施例1)
図1は本願発明の実施形態を示し、主インサート1と副インサート2を、夫々工具本体3にクランプねじ4とクランプ駒5により装着した状態を主インサート側からみた正面図である。本願発明の刃先交換式ボールエンドミルは、刃径φ50mm、刃数2枚刃のSCM440相当、硬さHRC44の材料からなる工具ボディ本体として作製した。図2は本願発明の主インサート1の斜視図であり、切れ刃となる稜線6、7、8、9、10がニック11、12、13、14により分断されており、主インサート1のすくい面となる上面15にはブレーカ溝が設けられ、逃げ面となる側面16はポジ形状をなすように下面17から上面15に向けて外側に傾斜して設けられている。図3は工具本体3に装着された主インサート1の工具回転軌跡を、工具回転中心を通る断面で見た時の図であり、主インサート1の回転軸方向の切れ刃長さをLa1〜La5とし、その総和をX1とする。図4は本願発明の副インサート2の斜視図であり、切れ刃となる稜線18、19、20、21、22がニック23、24、25、26により分断されており、副インサート2のすくい面となる上面27にはブレーカ溝が設けられ、逃げ面となる側面28はポジ形状をなすように下面29から上面27に向けて外側に傾斜して設けられている。図5は工具本体3に装着された副インサート2の工具回転軌跡を、工具回転中心を通る断面で見た時の図であり、副インサート2の回転軸方向の切れ刃長さをLb1〜Lb4とし、その総和をX2とする。図6は工具本体3に主インサート1と副インサート2を取り付けた時の工具回転軌跡を、工具回転中心を通る断面で見た時の図であり、点線で描いた軌跡が夫々のニック部の軌跡を示す。
被削材をボールエンドミルにて加工する時、切削に関与する部分は、図2に示す主インサート1の切れ刃となる稜線6、7、8、9、10と、図4に示す副インサート2の切れ刃となる稜線18、19、20、21、22であり、主インサート1のニック11、12、13、14と、副インサート2のニック23、24、25、26は切削に関与しない。両インサートのニック部分は、互いに切れ刃となる稜線部分が工具回転軌跡上で補完し合いながら切削するため、加工された被削材は半円球状の1部をなすような加工形状となる。この時、本願発明のボールエンドミルの切れ刃配置は、切れ刃稜線の長さが必要最小限になるようにニックを配置している。また、実際に切削で使用する切れ刃は工具半径の範囲内である事から、工具半径の範囲内で最適な切れ刃長さの範囲を定めた。例えば、切削に関与する部分の切れ刃となる稜線の切れ刃長さを極力短くすれば、切れ刃と被削材の接触する長さが小さくなり切削抵抗を低減させる事が可能である。しかし、切れ刃稜線を短くしていくと、切れ刃稜線がニック部分を互いに補完しなくなる個所が出てくるため、加工された被削材に削り残しが発生してしまうといった不具合が生じる。
S値が異なる本発明例1〜5、比較例6〜9のインサートを取り付けたものを使用し、下記の試験条件1において、1刃当りの送り量fzを0.3mm/刃から0.6mm/刃まで0.1mm/刃毎に増加させて肩削り加工した時の、夫々の切削時のビビリ振動と加工面性状の評価を行った。表1に本発明例、比較例のインサートの条件を示す。使用した全てのインサートには、ニックを4箇所配置し、ブレーカー溝を有するものとした。
Example 1
FIG. 1 shows an embodiment of the present invention, and is a front view of a state in which a main insert 1 and a sub insert 2 are mounted on a tool body 3 by a clamp screw 4 and a clamp piece 5 from the main insert side. The blade end replaceable ball end mill of the present invention was manufactured as a tool body body made of a material having a blade diameter of 50 mm, a two-blade SCM440 equivalent, and a hardness of HRC44. FIG. 2 is a perspective view of the main insert 1 of the present invention, in which ridgelines 6, 7, 8, 9, and 10 serving as cutting edges are divided by nicks 11, 12, 13, and 14, and the rake face of the main insert 1 is shown. A breaker groove is provided on the upper surface 15, and a side surface 16 serving as a flank is inclined outward from the lower surface 17 toward the upper surface 15 so as to form a positive shape. FIG. 3 is a view when the tool rotation trajectory of the main insert 1 mounted on the tool body 3 is viewed in a cross section passing through the tool rotation center, and the cutting edge length of the main insert 1 in the rotation axis direction is expressed by La1 to La5. And the sum is X1. FIG. 4 is a perspective view of the secondary insert 2 according to the present invention. The ridgelines 18, 19, 20, 21, and 22 serving as cutting edges are divided by nicks 23, 24, 25, and 26, and the rake face of the secondary insert 2 is shown. Breaker grooves are provided on the upper surface 27, and the side surfaces 28 serving as flank surfaces are inclined outward from the lower surface 29 toward the upper surface 27 so as to form a positive shape. FIG. 5 is a view of the tool rotation trajectory of the sub-insert 2 mounted on the tool body 3 in a section passing through the center of the tool rotation, and the cutting edge length of the sub-insert 2 in the rotation axis direction is represented by Lb1 to Lb4. And the sum is X2. FIG. 6 is a view of the tool rotation trajectory when the main insert 1 and the sub insert 2 are attached to the tool body 3 as viewed in a cross section passing through the tool rotation center, and the trajectory drawn by a dotted line is the nick portion. Show the trajectory.
When the work material is machined by a ball end mill, the parts involved in the cutting are ridge lines 6, 7, 8, 9, and 10 which are cutting edges of the main insert 1 shown in FIG. 2, and the secondary insert 2 shown in FIG. The ridge lines 18, 19, 20, 21, and 22 that become the cutting edges of the main insert 1 and the nicks 11, 12, 13, and 14 of the main insert 1 and the nicks 23, 24, 25, and 26 of the sub-insert 2 are not involved in cutting. Since the nick portions of both inserts are cut while the ridge portions that become cutting edges complement each other on the tool rotation trajectory, the machined workpiece has a machining shape that forms part of a semi-spherical shape. At this time, in the arrangement of the cutting edges of the ball end mill according to the present invention, the nicks are arranged so that the length of the cutting edge ridge line is minimized. In addition, since the cutting edge actually used for cutting is within the range of the tool radius, the optimum cutting edge length range was determined within the range of the tool radius. For example, if the cutting edge length of the ridge line serving as the cutting edge of the part involved in cutting is shortened as much as possible, the contact length between the cutting edge and the work material can be reduced, and the cutting resistance can be reduced. However, when the cutting edge ridge line is shortened, there are portions where the cutting edge ridge lines do not complement each other with respect to the nick portion, so that there is a problem that uncut parts are generated in the processed work material.
Samples of the present invention examples 1 to 5 and comparative examples 6 to 9 having different S values were used. Under test condition 1 below, the feed amount fz per blade was 0.3 mm / 0.6 mm from the blade. / Evaluation of chatter vibration and machined surface properties at the time of cutting each shoulder when 0.1 mm / blade is increased for each blade. Table 1 shows the conditions of the inserts of the present invention and comparative examples. All inserts used had four nicks and had breaker grooves.

Figure 2008290176
Figure 2008290176

各インサートのLa1値、S値は、ニックの位置は変えずにニックの幅を調整し、夫々の値になるように製作した。本発明例1は切れ刃となる稜線の回転軸方向長さLa1〜La5とLb1〜Lb4の夫々に対応するニック部分の回転軸方向長さが同じになるように製作し、本発明例2〜5、比較例6〜9は切れ刃となる稜線の回転軸方向長さLa1〜La5とLb1〜Lb4が、夫々に対応するニック部分の回転軸方向長さよりも長くなるようにニックの幅を調整して製作した。
切削試験に使用したマシニングセンターは、最高回転数が毎分8000回転、主軸出力が定格11kw、BT50のアーバを使用した。被削材は120mm×120mm×250mmのブロック材を油圧バイスで固定した。また、工具のR切れ刃範囲内にあるすべてのニックが切削に関与するように、切り込み深さを25mmとし、1/4円弧全体で切削するように切り込み深さを設定した。
(試験条件1)
被削材:S50C
切削速度Vc:141m/min
回転数:毎分900回転
軸方向切り込み量ap:25mm
径方向切り込み量ae:3mm
加工方法:乾式切削加工
図7に切削試験の結果を示す。記号の意味は、加工中にビビリ振動の発生がなく、加工面品位が良好な物については○、多少ビビリ振動発生するが加工面には目に見て判るほどの荒れた面ではない物は△、ビビリ振動発生し加工面にスジ状の跡が残る物については次加工に影響が出ると見なし×、ビビリ振動が大きく発生し加工が困難な物は××、の判定をした。
図7より、La1値が0.1R以下の場合、加工中にビビリ振動の発生が比較的少なく、切削抵抗の低減効果を確認できた。またS値が1.1を超える比較例6〜9は、1刃当りの送り量fzが0.3mm/刃を超えるあたりからビビリ振動が発生し、加工が困難となった。開発目標に設定したfz値が0.3mm/刃で加工出来るものは、La1値の範囲が、0<La1≦0.1R、S値の範囲が、1≦S≦1.1である事を確認した。S値が1.1を超えるものについては、fz値が0.3mm/刃の時、加工面は問題ないがビビリ振動が発生してしまい安定した加工出来ない状況であった。また、S値の範囲を、1.00≦S≦1.06とすることにより、fz値は0.5mm/刃まで、良好に加工出来ることが判った。
The La1 value and S value of each insert were manufactured so as to have respective values by adjusting the width of the nick without changing the position of the nick. Example 1 of the present invention is manufactured such that the lengths in the rotation axis direction of the nick portions corresponding to the rotation axis direction lengths La1 to La5 and Lb1 to Lb4 of the ridge lines to be the cutting edges are the same. 5. Comparative Examples 6 to 9 adjust the width of the nick so that the rotation axis direction lengths La1 to La5 and Lb1 to Lb4 of the ridgeline that becomes the cutting edge are longer than the rotation axis direction lengths of the corresponding nick portions, respectively. And made it.
The machining center used for the cutting test used an arbor with a maximum rotation speed of 8000 rpm, a spindle output of 11 kW rating and BT50. The work material was a 120 mm × 120 mm × 250 mm block material fixed with a hydraulic vice. Further, the cutting depth was set to 25 mm so that all nicks within the R cutting edge range of the tool were involved in the cutting, and the cutting depth was set so as to cut the entire ¼ arc.
(Test condition 1)
Work material: S50C
Cutting speed Vc: 141 m / min
Number of rotations: 900 rotations per minute Axial cutting depth ap: 25 mm
Radial cutting depth ae: 3 mm
Processing Method: Dry Cutting FIG. 7 shows the results of the cutting test. The meaning of the symbol is ○ for those with no chatter vibration during machining and good surface finish, and some chatter vibrations that are not rough enough to be seen on the machined surface. △, The thing which chatter vibration generate | occur | produces and a streak-like trace remains on the processing surface is considered that it influences the next processing x, and the thing which a chatter vibration generate | occur | produced greatly and was difficult to process was evaluated as xx.
From FIG. 7, when the La1 value is 0.1 R or less, chatter vibration is generated relatively little during machining, and the cutting resistance reduction effect can be confirmed. Further, in Comparative Examples 6 to 9 in which the S value exceeded 1.1, chatter vibration occurred when the feed amount fz per blade exceeded 0.3 mm / tooth, and machining became difficult. Those that can be machined with the fz value of 0.3 mm / blade set as the development target, the La1 value range is 0 <La1 ≦ 0.1R, and the S value range is 1 ≦ S ≦ 1.1. confirmed. When the S value exceeded 1.1, when the fz value was 0.3 mm / tooth, there was no problem with the machined surface, but chatter vibrations occurred and stable machining was impossible. Further, it was found that the fz value can be satisfactorily processed to 0.5 mm / tooth by setting the range of the S value to 1.00 ≦ S ≦ 1.06.

(実施例2)
本願発明に係る工具として、実施例1と同じ工具を用い、本発明例10〜12、比較例13、14のインサートを取り付けた物と、従来例15の市販されている波形状切れ刃インサートのボールエンドミルにて、下記の試験条件2により夫々の切削抵抗測定を行った。ニック配置の効果を確認するため、肩削り加工において、工具切れ刃の範囲内にあるすべてのニックが切削に関与するように切り込み深さを25mmとし、1/4円弧全体で切削するように切り込み深さを設定した。評価の結果を表2に示す
(試験条件2)
被削材:SKD11生材
切削速度Vc:141m/min
1刃当りの送り量fz:0.17mm/刃
軸方向切り込み量ap:25mm
径方向切り込み量ae:1mm
加工方法:乾式切削加工
(Example 2)
As the tool according to the present invention, the same tool as that of Example 1 was used, and the inserts of Examples 10 to 12 of the present invention and Comparative Examples 13 and 14 were attached, and the commercially available corrugated cutting edge insert of Conventional Example 15 Each cutting resistance was measured by a ball end mill under the following test condition 2. In order to confirm the effect of nick placement, in shoulder cutting, the depth of cut is set to 25 mm so that all nicks within the cutting edge range are involved in cutting, and cutting is performed so that the entire ¼ arc is cut. Set the depth. The evaluation results are shown in Table 2 (Test condition 2).
Work material: SKD11 raw material Cutting speed Vc: 141 m / min
Feed amount per tooth fz: 0.17 mm / tooth axial cutting depth ap: 25 mm
Radial cut depth ae: 1 mm
Processing method: Dry cutting

Figure 2008290176
Figure 2008290176

表2より、本発明例10は、切削抵抗が最も小さく良好な結果が得られた。また、切り屑の分断も良好であった。切削に関与する切れ刃長さが最適な範囲内であり、ブレーカ溝の効果により切削抵抗が最も低い値であった。更に切削抵抗の低減効果によって、工具本体にビビリ振動が無く、加工精度も良好であった。本発明例11は、すくい面にブレーカ溝が無いため本発明例10よりも約4%切削抵抗が大きい結果となった。ブレーカ溝を付ける事により切削抵抗は、約4%程度低減が可能であった。本発明例12は、切れ刃長さの設定が最適な範囲である事から、本発明例10と略同等の切削抵抗値となった。ニックの数が4箇所から3箇所へと少ないものの、ニックによる切り屑の分断効果でも良好であった。しかし、本発明例10の切り屑と比較すると大きな切り屑が生成されるため、本発明例10よりも切り屑の排出性はやや劣る結果となった。
比較例13は、本発明例12と同様ニックの効果で切り屑の分断は比較的良好であったが、S値の設定範囲外の為、切削抵抗低減の効果は得られなかった。比較例14は、ニック、ブレーカ溝が無く、またS値も49と大きい値であった為、切削抵抗が最も大きくなった。S値が49の場合、切れ刃である1/4円弧全体が切削に関与するため、被切削物と切れ刃の接触する長さが最も長い事が原因である。また、ニックが無いことから、切り屑も分断されないため排出性が悪く、切り屑の噛み込みによるインサートの破損が起きやすかった。従来例15は、切り屑の分断が良好で、切削抵抗も比較例13、14と比べ低減出来た。しかし、本発明例10〜12によって加工された被加工物の面は、凹凸のない滑らかな1/4円弧が転写されているのに対し、従来例15で加工された被加工物の面は、波形状が転写されており凹凸形状を有する粗い加工面となった。波形状の切れ刃は切れ刃回転軌跡も波形状となるため、被削材に波形状が転写されてしまい加工精度が悪い。この場合、次工程の加工取り代が不均一になるので次工程工具の寿命が安定しない。
次に、fz値を2倍の0.34mm/刃に上げて同様の加工をした所、本発明例10〜12は、ビビリ振動の発生も無く、良好な加工が可能だった。しかし、比較例13、14は、ビビリ振動が発生した。従来例15は、ビビリ振動の発生はなく加工可能であったが、被削材の面に波形状をした凹凸形状が転写され、粗い加工面となった。以上の事から、本発明例は、凹凸のない滑らかな加工面が得られて良好であり、加工能率が大幅に改善される事がわかった。
From Table 2, Example 10 of the present invention had the smallest cutting resistance, and good results were obtained. Moreover, the fragmentation of the chips was also good. The cutting edge length involved in the cutting was within the optimum range, and the cutting resistance was the lowest value due to the effect of the breaker groove. Furthermore, due to the effect of reducing the cutting resistance, the tool body has no chatter vibration and the machining accuracy is good. Inventive Example 11 had a cutting resistance approximately 4% greater than Inventive Example 10 because there was no breaker groove on the rake face. The cutting resistance can be reduced by about 4% by adding the breaker groove. In Invention Example 12, since the setting of the cutting edge length is in the optimum range, the cutting resistance value was substantially equivalent to that of Invention Example 10. Although the number of nicks was small from four to three, the cutting effect of nicks was also good. However, as compared with the chips of Example 10 of the present invention, large chips are generated, and thus the chip dischargeability is slightly inferior to that of Example 10 of the present invention.
In Comparative Example 13, as with Example 12 of the present invention, the chip separation was relatively good due to the nick effect, but because the S value was outside the setting range, the effect of reducing cutting resistance was not obtained. In Comparative Example 14, there was no nick and breaker groove and the S value was as large as 49, so the cutting resistance was the largest. When the S value is 49, the entire 1/4 arc as a cutting edge is involved in cutting, and this is because the length of contact between the workpiece and the cutting edge is the longest. Further, since there was no nick, the chips were not divided, so the dischargeability was poor, and the insert was easily damaged by the bite of the chips. In the conventional example 15, the cutting of the chips was good, and the cutting resistance was reduced as compared with the comparative examples 13 and 14. However, the surface of the workpiece processed according to Examples 10 to 12 of the present invention is transferred with a smooth 1/4 arc without unevenness, whereas the surface of the workpiece processed in Conventional Example 15 is The wave shape was transferred, resulting in a rough processed surface having an uneven shape. Since the cutting edge rotation trajectory of the corrugated cutting edge also has a corrugated shape, the corrugated shape is transferred to the work material, resulting in poor machining accuracy. In this case, since the machining allowance of the next process becomes non-uniform, the life of the next process tool is not stable.
Next, when the same processing was performed by increasing the fz value to 0.34 mm / tooth twice, Examples 10 to 12 of the present invention were free from chatter vibration and could be satisfactorily processed. However, in Comparative Examples 13 and 14, chatter vibration occurred. In the conventional example 15, the chatter vibration was not generated and the machining was possible. However, the corrugated uneven shape was transferred to the surface of the work material, resulting in a rough machining surface. From the above, it was found that the example of the present invention was good because a smooth processed surface without unevenness was obtained, and the processing efficiency was greatly improved.

図1は、本願発明の刃先交換式ボールエンドミルの正面図を示す。FIG. 1 shows a front view of a blade end replaceable ball end mill of the present invention. 図2は、主インサートの斜視図を示す。FIG. 2 shows a perspective view of the main insert. 図3は、主インサートの工具回転軌跡を示す。FIG. 3 shows the tool rotation trajectory of the main insert. 図4は、副インサートの斜視図を示す。FIG. 4 shows a perspective view of the secondary insert. 図5は、副インサートの工具回転軌跡を示す。FIG. 5 shows the tool rotation trajectory of the secondary insert. 図6は、工具全体の回転軌跡を示す。FIG. 6 shows the rotation trajectory of the entire tool. 図7は、実施例の切削試験結果を示す。FIG. 7 shows the cutting test results of the examples.

符号の説明Explanation of symbols

1:主インサート
2:副インサート
3:工具本体
4:クランプねじ
5:クランプ駒
6:主インサートの切れ刃稜線
7:主インサートの切れ刃稜線
8:主インサートの切れ刃稜線
9:主インサートの切れ刃稜線
10:主インサートの切れ刃稜線
11:主インサートのニック
12:主インサートのニック
13:主インサートのニック
14:主インサートのニック
15:主インサートの上面(すくい面)
16:主インサートの側面(逃げ面)
17:主インサートの下面(底面)
18:副インサートの切れ刃稜線
19:副インサートの切れ刃稜線
20:副インサートの切れ刃稜線
21:副インサートの切れ刃稜線
22:副インサートの切れ刃稜線
23:副インサートのニック
24:副インサートのニック
25:副インサートのニック
26:副インサートのニック
27:副インサートの上面(すくい面)
28:副インサートの側面(逃げ面)
29:副インサートの下面(底面)
1: Main insert 2: Sub insert 3: Tool body 4: Clamp screw 5: Clamp piece 6: Cutting edge ridgeline of the main insert 7: Cutting edge ridgeline of the main insert 8: Cutting edge ridgeline of the main insert 9: Cutting of the main insert Edge line 10: Cutting edge edge line 11 of the main insert 11: Nick of the main insert 12: Nick of the main insert 13: Nick of the main insert 14: Nick of the main insert 15: Upper surface (rake face) of the main insert
16: Side surface of the main insert (flank)
17: Lower surface (bottom surface) of main insert
18: Cutting edge ridgeline of secondary insert 19: Cutting edge ridgeline of secondary insert 20: Cutting edge ridgeline of secondary insert 21: Cutting edge ridgeline of secondary insert 22: Cutting edge ridgeline of secondary insert 23: Nick of secondary insert 24: Secondary insert Nick 25: Secondary insert Nick 26: Secondary insert Nick 27: Top surface of the secondary insert (rake face)
28: Side surface of secondary insert (flank)
29: Bottom surface of bottom insert (bottom surface)

Claims (3)

工具本体の端部に主インサートと副インサートを着脱自在に装着した刃先交換式ボールエンドミルにおいて、該主インサートと該副インサートの切れ刃稜線部には複数のニックが設けられ、該切れ刃稜線部が描く略半円球状の回転軌跡は、該切れ刃稜線部がニック部分を互いに補完し合うように配置され、該回転軌跡の半径をR(mm)としたとき、該主インサートの回転軸に最も近いニックの下部点Qと該工具本体の最下点Pとの距離La1(mm)が、0<La1≦0.1R、であり、回転中心を通る断面の該主インサート切れ刃稜線の回転軸方向長さにおける総和をX1(mm)、回転中心を通る断面の該副インサート切れ刃稜線の回転軸方向長さにおける総和をX2(mm)、(X1+X2)/((R−X1)+(R−X2))の値をS値とした時、1≦S≦1.1、であることを特徴とする刃先交換式ボールエンドミル。 In a blade end replaceable ball end mill in which a main insert and a sub insert are detachably attached to an end of a tool body, a plurality of nicks are provided on the cutting edge ridge line portion of the main insert and the sub insert, and the cutting edge ridge line portion Is arranged so that the cutting edge ridges complement each other in the nick portion, and when the radius of the rotation locus is R (mm), the rotation axis of the main insert is The distance La1 (mm) between the lowermost point Q of the nearest nick and the lowest point P of the tool body is 0 <La1 ≦ 0.1R, and the rotation of the main insert cutting edge ridge line in the cross section passing through the rotation center The sum in the axial direction length is X1 (mm), and the sum in the rotational axis direction length of the sub-insert cutting edge ridge line of the cross section passing through the rotation center is X2 (mm), (X1 + X2) / ((R−X1) + ( The value of R-X2)) When the S value, 1 ≦ S ≦ 1.1 indexable ball end mill, which is a. 請求項1記載のボールエンドミルにおいて、該主インサートと該副インサートのニックの数は、夫々少なくとも4ヶ所であることを特徴とする刃先交換式ボールエンドミル。 The ball end mill according to claim 1, wherein the number of nicks of the main insert and the sub insert is at least four each. 請求項1または請求項2に記載のボールエンドミルにおいて、該主インサートと該副インサートのすくい面にブレーカ溝を設けたことを特徴とする刃先交換式ボールエンドミル。 The ball end mill according to claim 1 or 2, wherein a breaker groove is provided on a rake face of the main insert and the sub insert.
JP2007137349A 2007-05-24 2007-05-24 Replaceable blade end mill Active JP4771547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137349A JP4771547B2 (en) 2007-05-24 2007-05-24 Replaceable blade end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137349A JP4771547B2 (en) 2007-05-24 2007-05-24 Replaceable blade end mill

Publications (2)

Publication Number Publication Date
JP2008290176A true JP2008290176A (en) 2008-12-04
JP4771547B2 JP4771547B2 (en) 2011-09-14

Family

ID=40165436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137349A Active JP4771547B2 (en) 2007-05-24 2007-05-24 Replaceable blade end mill

Country Status (1)

Country Link
JP (1) JP4771547B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141695A1 (en) * 2014-03-18 2015-09-24 株式会社タンガロイ Cutting insert and cutting edge-replaceable rotary cutting tool
CN108380952A (en) * 2018-04-26 2018-08-10 成都飞机工业(集团)有限责任公司 A kind of ball end mill of narrow space corner and base angle processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526622U (en) * 1978-08-03 1980-02-21
JP2002283119A (en) * 2001-03-28 2002-10-03 Kyocera Corp Throwaway tip for ball end mill
JP2007083381A (en) * 2005-08-22 2007-04-05 Kyocera Corp Throw away insert and rotary cutting tool having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526622U (en) * 1978-08-03 1980-02-21
JP2002283119A (en) * 2001-03-28 2002-10-03 Kyocera Corp Throwaway tip for ball end mill
JP2007083381A (en) * 2005-08-22 2007-04-05 Kyocera Corp Throw away insert and rotary cutting tool having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141695A1 (en) * 2014-03-18 2015-09-24 株式会社タンガロイ Cutting insert and cutting edge-replaceable rotary cutting tool
CN108380952A (en) * 2018-04-26 2018-08-10 成都飞机工业(集团)有限责任公司 A kind of ball end mill of narrow space corner and base angle processing

Also Published As

Publication number Publication date
JP4771547B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
EP2181787B1 (en) End mill
US20150158095A1 (en) Shank drill
JP2007030074A (en) Radius end mill and cutting method
WO2015068824A1 (en) Radius end mill, and cutting method
JP2011126008A (en) Device for milling
JP2006212744A (en) End mill
JP2009056533A (en) Long neck radius endmill
JP2011073129A (en) Boring drill
JP2005040941A (en) Milling cutter with tangentially mounted insert
CN211360799U (en) High-efficiency drum-shaped profiling end milling cutter
JP4919298B2 (en) Cutting tool exchangeable rotary tool for high-feed machining
JP2022524345A (en) Cutting tools, methods for manufacturing cutting tools, and methods for machining workpieces
JP5287426B2 (en) Cutting tools
JPH09309020A (en) Three-dimensional machining cemented solid end mill
JP2005125465A (en) End mill
JP2009119572A (en) Insert and edge replaceable cutting tool
JP4771547B2 (en) Replaceable blade end mill
JPH09192930A (en) Thread cutter
JP2003266231A (en) End mill and machining method and machine tool using end mill
JP4815386B2 (en) 3-flute ball end mill and 4-flute ball end mill
JP2008100316A (en) Cutting tool, and finishing blade insert
JP2015077647A (en) Forward path and return path longitudinal feed insert, and cutting-edge replacement type rotary cutting tool mounting the insert
JP2008044040A (en) Rotary cutting tool
JP4992460B2 (en) End mill
JP5085189B2 (en) Drilling tool and drilling method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350