JP2008286874A - Display device and lighting device - Google Patents

Display device and lighting device Download PDF

Info

Publication number
JP2008286874A
JP2008286874A JP2007129533A JP2007129533A JP2008286874A JP 2008286874 A JP2008286874 A JP 2008286874A JP 2007129533 A JP2007129533 A JP 2007129533A JP 2007129533 A JP2007129533 A JP 2007129533A JP 2008286874 A JP2008286874 A JP 2008286874A
Authority
JP
Japan
Prior art keywords
light
guide plate
liquid crystal
reflected
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007129533A
Other languages
Japanese (ja)
Other versions
JP4114173B1 (en
Inventor
Yuichi Suzuki
鈴木優一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007129533A priority Critical patent/JP4114173B1/en
Priority to PCT/JP2008/058883 priority patent/WO2008140106A1/en
Priority to TW097117776A priority patent/TWI310111B/en
Application granted granted Critical
Publication of JP4114173B1 publication Critical patent/JP4114173B1/en
Publication of JP2008286874A publication Critical patent/JP2008286874A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • G02B6/0048Tapered light guide, e.g. wedge-shaped light guide with stepwise taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0263Diffusing elements; Afocal elements characterised by the diffusing properties with positional variation of the diffusing properties, e.g. gradient or patterned diffuser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting device for a liquid crystal dsiplay device having high light transmittance, low power consumption and uniform luminance distribution and achieving high optical design efficiency and a low price, and to provide an optical device. <P>SOLUTION: Parallel light collimated by an off-axis parabolic mirror 10 is reflected by a cylindrical convex total reflection surface 5 disposed in a rice terrace shape to expand a luminous flux in a width of a liquid crystal sub pixel and luminous flux density made incident on a liquid crystal is made uniform by increasing reflection surface step differences of the cylindrical convex surface in inverse proportion to the luminous flux density. With a basic unit in which a light quantity of 1/3 of emission light of a rice terrace-shaped light guide plate 1 is transmitted through a sub pixel existing in a perpendicular direction of an incident part and in which a light quantity of 2/3 of one is reflected by a reflection surface 7 inclined in a stripe direction, reflected by a liquid crystal facing side reflection surface 8 in a stripe distributing element 2 and made incident on two liquid crystal sub pixels, the emission light quantity is distributed to three sub pixels in the same stripe. Distribution to separated positions is made possible by a reflection system of a transmission/reflection separation part and color display is made possible without using color filters by adopting a plurality of color light sources. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は表示装置および光学装置に関するものである。   The present invention relates to a display device and an optical device.

液晶表示装置のサイドライト型バックライトは導光板の側面に光源を設置し、導光板の反射面側に多数配置された微小反射材で液晶側に反射させる方式である。光源が拡散光のため、光源に近いほど液晶側に放射する確率を少なくする必要があり、図47のように白色塗料ドットの直径、密度を光源の近くでは小さく、光源から遠ざかるほど大きくするのが基本構造である(特許文献1)。しかし、基本構造だけでは下記の問題があるため拡散シート、反射シート、プリズムシートなどを併用されている。
光源近くの小さなドットで反射した光は光束密度が高いために輝点になりやすく、拡散シートを併用する必要がある。
乱反射ドットで反射せずに導光板背後に通過する光は光源に近いほど多くなり、効率低下が著しいので再利用するための反射シートが必要になっている。
乱反射ドットで反射した光は導光板出射面で臨界角以内の光を液晶側に放射し、臨界角以上は反射面側に多重反射する。液晶に照射される臨界角以内の光は垂直方向でなく、光源側からの斜めの光になる。斜めの光は輝度を低下するので導光板と液晶板の間にプリズムシートを設けて鉛直方向に変換する方法が多く用いられている。(特許文献2)。
乱反射方式は多重反射を伴うために、試作評価を繰り返して輝度を均一化されており、開発が非効率という問題もある。これを避けるために平行光線に近づける提案が多く出されている。
入射平行光に対して約45°の金属蒸着反射面と水平面を交互に連続的に配置した導光板の背後に反射板を設けた導光板が提案されている。(図48、特許文献3)。光源が拡散光のため光源からの距離の2乗に反比例して光束密度が低下するため輝度むらが大きく、光源近くでは仰角成分が多いため水平面を透過する光を再利用する反射板が必要になっている。
上記提案は光源に近い部分で仰角光線が多いので、光源からの距離に応じて長辺面を1〜10度の範囲で傾斜させ、短辺面は30〜50°の範囲で入射面を基準に漸次増加することにより輝度むらを改善した導光板が提案されている(図49、特許文献4)。光源からの距離と傾斜との関数は示されていない。
光源から遠ざかるほど反射面積の大きな四角錐を底面に形成し、四角錐の反射面を焦点とするレンズを導光板出射面に設けて液晶側に平行光線を出射する方式が提案されている(図50、特許文献5)。四角錐が窪みのため平行光は入射出来ず、四角錐よりも底面の反射面の方が遥かに面積が広いため底面における反射光は遠方のレンズ面に当たり多重反射するので効率が低下し、多重反射のため光線追跡が困難である。
導光板に多数の輪帯状の微小放物面反射鏡を設け、断面が鋸歯状になるように組み合わせた放物面フレネル反射鏡が提案されている(図51(1)、特許文献6)。点光源からの放射角度の内、平行光化出来る光線は放物面鏡方向に限られるため反射鏡を併用している。併用した反射鏡からの光線が放物面鏡で反射すると平行光とずれた方向に反射する問題がある。特許文献6には図51(2)のように放物面鏡の焦線に設置した線状光源からの光を鋸歯状フレネル面で反射する方式も提案されているが、この方式は放物面鏡による平行光と光源からの直接光が混合したもので、放物面鏡の光束密度依存性が非常に大きいために輝度の均一化は困難である。
光源からの距離に応じて透過率を直線的低下させる45°に傾けた反射面を設けた多重ビームスプリッタ方式が提案されている(特許文献7、図52)。光源が拡散光のため光源近くのビームスプリッタを拡散光が透過し、遠方のビームスプリッタに到達するのは平行光成分のみになるのでビームスプリッタの透過率設定が直線的であっても不均一になる。10等分の例が示されているが、幅300mmの画面サイズでは厚さが30mmになり、重量と材料費に影響する。薄くするために更に分割数を多くするのは膜厚制御が難しく、スパッタリングが多工程で製造コストが高くなる。
携帯機器では同心円状の微小反射材を配置した導光板に白色発光ダイオードによる点光源が使用されているが、線光源の場合より更に輝点が顕著になるので拡散シートを併用されている。図54のように光源の指向性範囲外が暗くなるので光源数を多くして緩和している(特許文献8)。
直下照明型の最もオーソドックスな形状は箱型の平面反射鏡に冷陰極管を並べたものである。薄型にすると管映りが出やすいため、光源を離し、反射鏡形状と拡散シートの併用などで均一化が図られている(特許文献9)。余弦関数反射鏡を用いる方式は光束密度が均一な結果が示されているが(特許文献10)、光源からの距離と冷陰極管ピッチの関数のため薄型化と光源数の削減の双方を満足することは難しい。
反射鏡の形状は多くの方式が提案され、光線軌跡は示されているが、多くは定量的に扱われていないため均一性は不明確である。拡散シートを厚くするほど輝度を均一化出来るが吸収により効率が低下する。
A side-light type backlight of a liquid crystal display device is a system in which a light source is installed on the side surface of a light guide plate and is reflected on the liquid crystal side by a number of minute reflectors arranged on the reflective surface side of the light guide plate. Since the light source is diffused light, it is necessary to reduce the probability of emission to the liquid crystal side as it is closer to the light source. As shown in FIG. 47, the diameter and density of the white paint dots are small near the light source and larger as it is farther from the light source. Is the basic structure (Patent Document 1). However, since only the basic structure has the following problems, a diffusion sheet, a reflection sheet, a prism sheet, and the like are used in combination.
Light reflected by a small dot near the light source tends to become a bright spot due to its high luminous flux density, and it is necessary to use a diffusion sheet in combination.
The light that passes through the back of the light guide plate without being reflected by the irregular reflection dots increases as it gets closer to the light source, and the efficiency is significantly reduced. Therefore, a reflective sheet for reuse is required.
The light reflected by the irregular reflection dots radiates light within the critical angle to the liquid crystal side at the light guide plate emission surface, and multiple reflections are reflected to the reflection surface side beyond the critical angle. The light within the critical angle irradiated to the liquid crystal becomes oblique light from the light source side, not in the vertical direction. Since oblique light lowers brightness, a method of converting a vertical direction by providing a prism sheet between the light guide plate and the liquid crystal plate is often used. (Patent Document 2).
Since the diffuse reflection method involves multiple reflections, the trial evaluation is repeated to make the luminance uniform, and there is a problem that development is inefficient. In order to avoid this, many proposals have been made to approach parallel rays.
There has been proposed a light guide plate in which a reflective plate is provided behind a light guide plate in which metal deposition reflective surfaces and horizontal surfaces of about 45 ° with respect to incident parallel light are alternately arranged. (FIG. 48, patent document 3). Since the light source is diffuse light, the luminous flux density decreases in inverse proportion to the square of the distance from the light source, resulting in large luminance unevenness, and since there are many elevation angle components near the light source, a reflector that reuses the light transmitted through the horizontal plane is required. It has become.
In the above proposal, since there are many elevation rays near the light source, the long side surface is inclined in the range of 1 to 10 degrees according to the distance from the light source, and the short side surface is in the range of 30 to 50 ° with respect to the incident surface. There has been proposed a light guide plate in which luminance unevenness is improved by gradually increasing (FIG. 49, Patent Document 4). The function of the distance from the light source and the tilt is not shown.
A method has been proposed in which a quadrangular pyramid with a large reflection area is formed on the bottom surface as the distance from the light source increases, and a lens that focuses on the reflecting surface of the quadrangular pyramid is provided on the light guide plate emission surface to emit parallel light rays toward the liquid crystal side (Fig. 50, Patent Document 5). Since the quadrangular pyramid is recessed, parallel light cannot enter, and the reflecting surface on the bottom surface is much larger than the quadrangular pyramid, so the reflected light on the bottom surface hits the far lens surface and is reflected multiple times, reducing efficiency. Ray tracing is difficult due to reflection.
There has been proposed a parabolic Fresnel reflector in which a large number of ring-shaped minute parabolic reflectors are provided on a light guide plate and combined so that the cross section has a sawtooth shape (FIG. 51 (1), Patent Document 6). Of the radiation angle from the point light source, the rays that can be collimated are limited to the direction of the parabolic mirror, so a reflector is also used. There is a problem that when the light beam from the reflecting mirror used in combination is reflected by the parabolic mirror, it is reflected in a direction shifted from the parallel light. Patent Document 6 proposes a method of reflecting light from a linear light source installed at the focal line of a parabolic mirror as shown in FIG. 51 (2) by a sawtooth Fresnel surface. It is difficult to make the brightness uniform because the parallel light from the surface mirror and the direct light from the light source are mixed and the parabolic mirror has a very large light beam density dependency.
There has been proposed a multiple beam splitter system provided with a reflective surface inclined at 45 ° that linearly decreases the transmittance according to the distance from the light source (Patent Document 7, FIG. 52). Since the light source is diffused light, the diffused light is transmitted through the beam splitter near the light source, and only the parallel light component reaches the far beam splitter, so even if the beam splitter transmittance setting is linear, it is non-uniform Become. An example of 10 equal parts is shown, but with a screen size of 300 mm wide, the thickness is 30 mm, which affects the weight and material costs. If the number of divisions is further increased in order to reduce the thickness, it is difficult to control the film thickness, and sputtering is a multi-step process, resulting in an increase in manufacturing cost.
In portable devices, a point light source using a white light emitting diode is used for a light guide plate on which concentric minute reflectors are arranged. However, since a bright spot becomes more prominent than in the case of a line light source, a diffusion sheet is used in combination. As shown in FIG. 54, since the outside of the directivity range of the light source becomes dark, the number of light sources is increased to alleviate it (Patent Document 8).
The most orthodox shape of the direct illumination type is a cold cathode tube arranged on a box-shaped flat reflector. If the thickness is reduced, tube reflection is likely to occur. Therefore, the light source is separated, and uniformization is achieved by using a reflector and a diffusion sheet in combination (Patent Document 9). Although the method using a cosine function reflecting mirror shows a uniform light beam density (Patent Document 10), it satisfies both the reduction in thickness and the reduction in the number of light sources because of the function of the distance from the light source and the cold cathode tube pitch. Difficult to do.
Many methods have been proposed for the shape of the reflector and the ray trajectory is shown, but the uniformity is unclear because many are not treated quantitatively. The thicker the diffusion sheet, the more uniform the brightness, but the efficiency decreases due to absorption.

液晶のカラー表示は画素を3分割し、赤、緑、青の顔料が分散されたカラーフィルタによる加法混色法で表示されている。カラーフィルタは着色材料によって不要な波長成分を吸収する方式が採用されている。染料は可溶性のため分散が良く、透過域の透過率が高い長所があるが、カラーフィルタ基板の製造工程において透明電極、配向膜製造工程が高温になり、染料は耐熱性、耐光性で劣るため顔料法が主流となっている。
顔料による着色は顔料粒子に白色光が当たり、その反射光の分光特性によるものである。白色光が粒子に当たらずに貫通すると淡色化し、顔料含有率が高過ぎると透過域も透過率が低下して暗くなってしまう。透過率を高め、遮断特性を急峻にするには微粒化、顔料分散比率と膜厚制御が必要である。
カラーフィルタによって不要帯域の2/3は吸収され、透過域でも吸収があるので光透過率は30%以下である。3波長冷陰極管の発光スペクトルは3波長以外のスペクトルも多く含まれ、これらを十分に遮断しようとすると透過域の透過率も低下して光透過率は更に低下する。カラーフィルタの透過率は液晶装置の中で最も低く、次いで偏光板の約45%などにより、液晶表示装置全体としての透過率は8%以下である。
顔料粒子による着色光は平行光線を入射しても散乱光になる。散乱光が垂直配向、ベンド配向の液晶分子に入射すると、黒表示モードであっても斜め光線のため光漏れを生じてコントラストが低下する。高分子分散液晶の場合、散乱光では電圧印加による配向状態の変化を検知することが出来ない。
液晶基板におけるカラーフィルタ製造法として、印刷法は少ない工程で製造可能だが高解像度化が難しく、写真蝕刻法が多く採用されている。しかし、写真蝕刻法は洗浄、レジスト塗布、露光、現像、硬化の工程をブラックマトリクス、赤、緑、青の4層について行うため工程が長く、高価な装置が必要なため液晶パネルの価格に占める割合が最も高価になっている。
The color display of the liquid crystal is displayed by an additive color mixing method using a color filter in which pixels are divided into three and red, green, and blue pigments are dispersed. The color filter employs a method of absorbing unnecessary wavelength components by a coloring material. The dye is soluble and has good dispersion, and has the advantage of high transmittance in the transmission region. However, in the color filter substrate manufacturing process, the transparent electrode and alignment film manufacturing process becomes high temperature, and the dye is inferior in heat resistance and light resistance. The pigment method has become mainstream.
The coloring by the pigment is due to the spectral characteristics of the reflected light when white light hits the pigment particles. If white light penetrates without hitting the particles, the color becomes pale, and if the pigment content is too high, the transmittance in the transmission region also decreases and becomes dark. Atomization, pigment dispersion ratio and film thickness control are required to increase the transmittance and sharpen the blocking characteristics.
2/3 of the unnecessary band is absorbed by the color filter, and there is absorption even in the transmission region, so the light transmittance is 30% or less. The emission spectrum of the three-wavelength cold-cathode tube includes a lot of spectra other than the three wavelengths, and when trying to sufficiently block these, the transmittance in the transmission region is lowered and the light transmittance is further lowered. The transmittance of the color filter is the lowest among the liquid crystal devices, and the transmittance of the entire liquid crystal display device is 8% or less due to about 45% of the polarizing plate.
The colored light by the pigment particles becomes scattered light even if parallel light is incident. When scattered light is incident on vertically aligned or bend aligned liquid crystal molecules, even in the black display mode, light leakage occurs due to oblique light rays, resulting in a decrease in contrast. In the case of a polymer-dispersed liquid crystal, the change in the alignment state due to voltage application cannot be detected with scattered light.
As a color filter manufacturing method for a liquid crystal substrate, a printing method can be manufactured with a small number of steps, but it is difficult to achieve high resolution, and a photolithography method is often used. However, the photolithography method requires a long process because the cleaning, resist coating, exposure, development, and curing steps are performed for four layers of black matrix, red, green, and blue, and the cost of the liquid crystal panel occupies an expensive device. The proportion is the most expensive.

冷陰極放電管は発光効率が高いなどの長所のためバックライトに多く採用されているが、発光スペクトルは蛍光材料の波長変換特性により、3原色以外のスペクトルも多く含まれ、透過率が標準的なカラーフィルタではNTSC比約70%である。カラーフィルタの濃度を高めることによりNTSC比を高めると透過率が低下して消費電力が増大するが、テレビでは色再現性の要求が強いため消費電力が増大している。
冷陰極管方式は動作インピーダンスに応じて数百Vの高電圧で駆動するため、トランスで必要な2次電圧に昇圧するインバータが必要になる。インバータはスイッチング素子とトランスの電磁界放射ノイズがあるため、この対策を講じなければならない。インバータは高絶縁が要求されることでも小型化を阻まれている。
冷陰極管はインバータを必要として小型化などの問題のため携帯用途などでは白色発光ダイオードを使用されている。
白色発光ダイオードは青発光ダイオードによる青色光をその補色である黄色蛍光体に当てて青と黄色加法混色により白色光に変換する方式が白色照明用途などに多く使用されている。液晶表示の場合は2色混色法では赤などの再現性が悪いので青色光を黄色、赤あるいは緑、赤の蛍光材に当てる加法混色方式が採用されている。しかし、青色光を蛍光材料比で波長変換するために配合比バラツキがアンバランスを2倍に増大し、経時変化によってもアンバランスを生じるので発光素子と蛍光材料の経時変化を同等にする必要がある。
3色のチップを同一パッケージに入れた加法混色方式もあるが、小さなパッケージの焦点からのずれが大きく3つのチップの指向性によってアンバランスが生じる。
色再現性を重視する用途では赤、緑、青の発光ダイオードの光をダイクロイックプリズムによって混色する方法が採られているが(特許文献11)、3つの独立した光学系により寸法が大きく、高価である。
Cold cathode discharge tubes are widely used in backlights due to their advantages such as high luminous efficiency, but the emission spectrum includes many spectra other than the three primary colors due to the wavelength conversion characteristics of fluorescent materials, and the transmittance is standard. In a color filter, the NTSC ratio is about 70%. When the NTSC ratio is increased by increasing the density of the color filter, the transmittance is reduced and the power consumption is increased. However, since the television has a strong demand for color reproducibility, the power consumption is increased.
Since the cold-cathode tube system is driven with a high voltage of several hundred volts in accordance with the operating impedance, an inverter that boosts the secondary voltage required by the transformer is required. Inverters have electromagnetic radiation noise from switching elements and transformers, so this measure must be taken. Inverters are also hampered in size by requiring high insulation.
A cold cathode tube requires an inverter, and a white light emitting diode is used in portable applications because of problems such as miniaturization.
White light-emitting diodes are often used for white illumination and the like in which blue light from a blue light-emitting diode is applied to a yellow phosphor that is a complementary color and converted into white light by additive color mixture of blue and yellow. In the case of a liquid crystal display, since the reproducibility of red or the like is poor in the two-color mixing method, an additive color mixing method in which blue light is applied to yellow, red, green, or red fluorescent materials is employed. However, in order to convert the wavelength of blue light by the ratio of fluorescent material, the mixing ratio variation doubles the imbalance, and the imbalance is caused by the change over time. is there.
There is also an additive color mixing method in which chips of three colors are put in the same package, but the deviation from the focal point of a small package is large, and an imbalance occurs due to the directivity of the three chips.
In applications that place importance on color reproducibility, a method of mixing light of red, green, and blue light emitting diodes with a dichroic prism has been adopted (Patent Document 11), which is large and expensive due to three independent optical systems. is there.

カラーフィルタは価格に占める割合が高く、光利用効率が30%以下に低下するなどの問題があり、セグメント電極数を1/3に削減してTFT基板の製造が容易になる時分割方式が提案されている。
時分割方式は画面の表示周期16.6mSを赤、緑、青に3分割して5.6mS毎に切り替えて視覚的に残像混色する方式である。液晶が階調、色を正しく表現するのは液晶応答の上昇期間、下降期間を差し引いた平坦期間であり、平坦期間の占める割合が低くなると輝度とコントラストが低下する。
時分割方式で動画を再生すると赤、緑、青の3つの画像が観察者の網膜上でずれて合成される色割れ妨害が起こる。これを防止する方法として第4周期目に白、黒、または中間色を挿入する方法などが提案されているが(特許文献12,13)、4分割法では応答速度が2mS以下の必要がある。ネマティック液晶の応答速度は50mS〜100mSのため、ベンド配向、強誘電体液晶、反強誘電体液晶など高速な液晶材料に制限される。
強誘電液晶は高速応答な半面、シェブロン構造によるジグザグ欠陥から光漏れを起こしやすく、配向制御が難しくなる。衝撃で層構造が破壊されやすく、自己修復しないなどの難点がある(非特許文献1、2、3)。
Color filters have a high percentage of the price, and there is a problem that the light utilization efficiency is reduced to 30% or less. A time-sharing method is proposed to make the TFT substrate easier by reducing the number of segment electrodes to 1/3. Has been.
The time division method is a method in which the display period of 16.6 mS is divided into red, green, and blue, and is switched every 5.6 mS to visually mix afterimages. The liquid crystal correctly expresses the gradation and the color during the flat period obtained by subtracting the rising period and the falling period of the liquid crystal response. When the proportion of the flat period decreases, the luminance and contrast decrease.
When a moving image is reproduced in a time-sharing manner, color breakage interference occurs in which three images of red, green, and blue are shifted and synthesized on the viewer's retina. As a method for preventing this, a method of inserting white, black, or an intermediate color in the fourth period has been proposed (Patent Documents 12 and 13), and the response speed needs to be 2 mS or less in the 4-division method. Since the response speed of nematic liquid crystal is 50 to 100 mS, it is limited to high-speed liquid crystal materials such as bend alignment, ferroelectric liquid crystal, and anti-ferroelectric liquid crystal.
On the other hand, ferroelectric liquid crystals are susceptible to light leakage due to zigzag defects due to the chevron structure on the other hand, and alignment control becomes difficult. There is a problem that the layer structure is easily destroyed by impact and does not self-repair (Non-Patent Documents 1, 2, and 3).

点光源を放物面鏡の焦点に置くと平行光を得られるが、光源から反射鏡までの距離の2乗に反比例するため光束密度分布が光軸付近に集中して均一な照明が出来ない。放物面鏡は平行光だけでなく、光源から直接の拡散光が混合した光源のため、浅い放物面鏡にすると光束の不均一は緩和するが拡散性光線が多くなる。   Parallel light can be obtained by placing a point light source at the focal point of a parabolic mirror, but since the light source density is inversely proportional to the square of the distance from the reflector, the light flux density distribution is concentrated near the optical axis and uniform illumination is not possible. . Since the parabolic mirror is a light source in which not only parallel light but also diffuse light directly from the light source is mixed, the shallow parabolic mirror reduces the non-uniformity of the light flux but increases the amount of diffusive light.

リアプロジェクタはスクリーンに後方から直接投射すると後方の寸法が長くなるため反射鏡を介して折り返し、投射レンズを広角化することにより奥行を短縮化されている(図56、特許文献14)。横1000mm、縦560mmのスクリーンでは反射鏡1枚、画角60°の広角レンズで約500mmの奥行が必要になる。低収差広角レンズはレンズ枚数が増えて高価になるため、反射鏡を凸面鏡にすることにより奥行を短縮した提案などがある。このような対策をとっても奥行は約400mmあり、奥行が利用上の制約になっている。   When the rear projector projects directly onto the screen from the rear, the rear dimension becomes long, so the depth is shortened by folding back through the reflecting mirror and widening the projection lens (FIG. 56, Patent Document 14). A screen having a width of 1000 mm and a length of 560 mm requires one reflector and a wide-angle lens having a field angle of 60 ° and a depth of about 500 mm. Low-aberration wide-angle lenses are expensive because the number of lenses increases, and there is a proposal that shortens the depth by making the reflecting mirror a convex mirror. Even if such measures are taken, the depth is about 400 mm, and the depth is a restriction in use.

スキャナーは撮像と照明を同期して行うため、面光源では光量の無駄が多いので線光源が多く使用されている。線光源は冷陰極管など幅の狭い素子が必要になる制約から波長特性が犠牲になっている。液晶バックライトなどの表示用は3原色のスペクトルが狭くとも加法混色が可能だが、撮像用光源の場合、波長が欠けていると情報が欠落して、正確な色再現が出来なくなる。メタルハライドランプは包絡線が白色光に近いハロゲン化物もあるが線スペクトルを多く含んでいる。キセノンランプはスペクトルの連続性が良いが、線スペクトルを含むのでフィルタにより6504Kに白色光化されている。白熱電球はプランクの放射則に準じたスペクトル特性を持っているが寿命が短くなるために色温度を下げて使わざるを得ない。このため赤外線の占める比率が高く、可視光の効率は7%以下である。これらの光源は概して球形のため、線光源の3波長冷陰極管が多く使用されている。しかし、各色の蛍光材料が線スペクトルであり正確な色を撮像出来ない問題がある。   Since the scanner performs imaging and illumination in synchronization, the surface light source uses a lot of line light because of the wasteful amount of light. Wavelength characteristics are sacrificed because of the restriction that a line light source requires a narrow element such as a cold cathode tube. For display such as a liquid crystal backlight, additive color mixing is possible even if the spectrum of the three primary colors is narrow. However, in the case of an imaging light source, if the wavelength is missing, information is lost and accurate color reproduction cannot be performed. Metal halide lamps contain a lot of line spectrum, although some halides have envelopes close to white light. The xenon lamp has a good spectral continuity, but since it contains a line spectrum, it is converted to white light at 6504K by a filter. Incandescent bulbs have spectral characteristics in accordance with Planck's radiation law, but they must be used at lower color temperatures because of their shorter lifespan. For this reason, the ratio which infrared occupies is high, and the efficiency of visible light is 7% or less. Since these light sources are generally spherical, a three-wavelength cold cathode tube of a linear light source is often used. However, each color fluorescent material has a line spectrum, and there is a problem that an accurate color cannot be imaged.

特開平6−313883号公報JP-A-6-313883 特開平5−127159号公報JP-A-5-127159 特開平7−20462号公報Japanese Patent Laid-Open No. 7-20462 特開平10−104621号公報JP-A-10-104621 特開2005−71928号公報Japanese Patent Laying-Open No. 2005-71928 特開2004−185020号公報JP 2004-185020 A 特開2006−11445号公報JP 2006-11445 A 特開2005−353506号公報JP 2005-353506 A 特開2001−13880号公報Japanese Patent Laid-Open No. 2001-13880 特開2001−17412号公報JP 2001-17412 A 特開2005−183005号公報JP 2005-183005 A 特開2002−191055号公報JP 2002-191055 A 特開2001−281623号公報JP 2001-281623 A 特開平6−11767号公報JP-A-6-11767 特開平10−186330号公報Japanese Patent Laid-Open No. 10-186330 特開平7−311383号公報JP-A-7-311383 特開平6−202127号公報JP-A-6-202127 特開2000−28963号公報JP 2000-28963 A 特開平8−171055号公報Japanese Patent Laid-Open No. 8-171055 特開昭61−108167号公報JP 61-108167 A 特開2000−44614号公報JP 2000-44614 A 特開昭61−292601号公報JP 61-292601 A 吉野勝美、尾崎雅則 著 液晶とディスプレイ応用の基礎 p245Katsumi Yoshino, Masanori Ozaki Basics of Liquid Crystal and Display Applications p245 液晶若手研究会 編 液晶ディスプレイの最先端 p123,261The Youngest Liquid Crystal Research Group The most advanced liquid crystal display p123,261 福田敦夫、竹添秀男 著 強誘電液晶の構造と物性 p137Fukuda Ikuo, Takezoe Hideo Structure and properties of ferroelectric liquid crystal p137 内田龍男 著 次世代液晶ディスプレイ技術 p158,218Tatsuo Uchida Next-generation LCD technology p158, 218 笹部貞市郎 著 数学公式辞典 p795Sadaichiro Isobe's official mathematical dictionary p795 湯川秀樹、戸田盛和 編 現代物理学の基礎5 統計物理学 p84Edited by Hideki Yukawa and Morikazu Toda Basics of Modern Physics 5 Statistical Physics p84 小瀬輝次、他 編 光工学ハンドブック p107,462Teruji Kose, et al. Optical Engineering Handbook p107, 462 サンケン 発光ダイオード総合カタログ p65Sanken Light Emitting Diodes Catalog p65 シャープ チップLEDカタログ2006 p4,28Sharp Chip LED Catalog 2006 p4, 28 東芝半導体製品カタログ 高輝度LEDランプ p8Toshiba Semiconductor Product Catalog High-Brightness LED Lamp p8 電子通信学会 編 オプトエレクトロニクス材料 p99Edited by IEICE Optoelectronics Materials p99 田口常正 著 白色LED照明システムの高輝度・高効率・長寿命化技術 p62Taguchi Tsunemasa High-brightness, high-efficiency, long-life technology for white LED lighting systems p62 Jenkins,White Fundamentals of Optics (McGraw-Hill) p94Jenkins, White Fundamentals of Optics (McGraw-Hill) p94 Jerry March Advanced Organic Chemistry (McGraw-Hill)p63Jerry March Advanced Organic Chemistry (McGraw-Hill) p63 日本化学会 編 透明ポリマーの屈折率制御 p102,145,195Edited by The Chemical Society of Japan Controlling the refractive index of transparent polymers p102,145,195 日立化成テクニカルレポートNo.37 p17Hitachi Chemical Technical Report No. 37 p17

白色塗料ドットを光源からの距離に応じて密度を変える乱反射方式は光源に近い部分は白色塗料密度が低いため輝点になりやすく、拡散シートを併用する必要が生じ、光効率、価格、厚さに影響している。
光源に近い部分は白色塗料密度が低いために導光板背後に透過した光の損失を防止する反射シートを必要とする。
導光板内の乱反射は斜め光なので、コントラストを低下させるのでプリズムシートで確率中心を鉛直方向に変換する必要が生じる。
多重反射するために、試作評価を繰り返して輝度を均一化されており、開発が非効率である。
The diffuse reflection method that changes the density of white paint dots according to the distance from the light source tends to become bright spots because the density of the white paint is low in the area close to the light source, and it is necessary to use a diffusion sheet together. Has an effect.
Since the white paint density is low in the portion close to the light source, a reflection sheet for preventing loss of light transmitted behind the light guide plate is required.
Since the irregular reflection in the light guide plate is oblique light, the contrast is lowered, so that the probability center needs to be converted to the vertical direction by the prism sheet.
In order to make multiple reflections, the prototype evaluation is repeated to make the brightness uniform, and development is inefficient.

カラーフィルタは不要波長を吸収して3原色を得る方式のため光透過率は約30%以下であり液晶装置の中で透過率が最も低く、液晶装置全体の透過率は8%以下となっている。
カラーフィルタにおける着色は顔料粒子で反射することに因っており、散乱光になるために垂直配向、ベンド配向では黒表示モードで液晶分子に斜め光が当たることによる光漏れが発生し、コントラストを低下させる。
カラーフィルタはブラックマトリクス、赤、緑、青を写真蝕刻法などで順次焼き付けるため製造工程が多く、液晶表示装置の製造コストに占める割合が最も高価である。
Since the color filter absorbs unnecessary wavelengths and obtains three primary colors, the light transmittance is about 30% or less, which is the lowest among the liquid crystal devices, and the transmittance of the entire liquid crystal device is 8% or less. Yes.
Coloring in the color filter is due to reflection by the pigment particles. In the vertical alignment and bend alignment due to the scattered light, light leakage occurs due to oblique light hitting the liquid crystal molecules in the black display mode. Reduce.
The color filter has many manufacturing processes because the black matrix, red, green, and blue are sequentially baked by photolithography, and the ratio of the color filter to the manufacturing cost of the liquid crystal display device is the highest.

3波長白色光冷陰極管の発光スペクトルは波長が3原色に一致せず、3波長以外のスペ
クトルも多く含まれている。
冷陰極管方式はインバータを必要として寸法、価格、効率に影響している。
青発光ダイオードの光を赤、緑蛍光体に当てる混色法白色発光ダイオードは色バランスが蛍光材料の配合比に顕著に影響される。
赤、緑、青発光ダイオードを同一パッケージに入れて3色光を混合する簡易な混色方法は見る方向によって色バランスが崩れる。
ダイクロイックプリズムを用いて各素子のバランスをとる方法は光学系が複雑になり高価である。
The emission spectrum of the three-wavelength white light cold-cathode tube has a wavelength that does not match the three primary colors, and includes many spectra other than the three wavelengths.
The cold-cathode tube method requires an inverter, which affects the size, price, and efficiency.
The color balance of the white light emitting diode, which is a mixed color method in which the light of the blue light emitting diode is applied to the red and green phosphors, is significantly affected by the blending ratio of the fluorescent material.
A simple color mixing method in which red, green, and blue light emitting diodes are placed in the same package and three color lights are mixed results in the color balance being lost depending on the viewing direction.
A method of balancing each element using a dichroic prism is complicated and expensive.

赤、緑、青の発光ダイオードを交互に点灯する時分割方式はフィールド周期16.6
mSを3分割した5.6mSから表示時間約3mSを差し引いて約2.6mS以下になる。
3分割方式では高速な動画が赤、緑、青にずれて表示される色割れを起こす問題があり、4分割方式などが提案されているが、4分割方式では約2mS以下の高速応答の液晶が必要になる。
The time division method of alternately lighting red, green and blue light emitting diodes is a field period of 16.6.
The display time of about 3 mS is subtracted from 5.6 mS obtained by dividing mS into three to be about 2.6 mS or less.
The 3-split method has the problem of causing color breakup in which high-speed moving images are displayed shifted to red, green, and blue, and the 4-split method has been proposed. Is required.

リアプロジェクタはスクリーンに後方から直接投射すると後方の寸法が長くなるため反射鏡を介し、広角レンズを用いて奥行を短縮化されている。横1000mm、縦560mmのスクリーンでは画角60度の広角レンズで奥行約500mmになる。奥行が利用上の制約になっている。   When the rear projector projects directly onto the screen from the rear, the rear dimension becomes longer, and therefore the depth is shortened using a wide-angle lens via a reflecting mirror. A screen with a width of 1000 mm and a length of 560 mm has a depth of about 500 mm with a wide-angle lens having a field angle of 60 degrees. Depth is a usage constraint.

光源と液晶サブ画素を制御する色が対応するように透明物質層を介在させ、別色の光源光と混色を防止するために透明物質層の層間に遮光層を持つ多層構造の導光板であり、これを用いてカラーフィルタを削除した方式である。次項で述べる各ストライプに分配する導光板の併用で図1、図2に示すように、光源、積層数を集約することも可能である。
透明物質としてポリメチルメタクリル酸樹脂、脂環式アクリル樹脂、環状オレフィン樹脂、ポリカーボネート、空気などが適している。
遮光層は反射率が高いほど光の利用効率が高く、金属膜、金属箔、顔料分散膜、透明材料より低屈折率物質、多層反射膜などによって遮光と反射を実現できる。反射率が高く、可視光域で分光特性が平坦な金属、白色顔料が透過光の色に影響を与えないので適している。透明材料より屈折率の低い物質は臨界角より大きい条件で全反射するため、空気,フッ素系ポリマー、エチレン−酢酸ビニル共重合樹脂など低屈折率物質が利用可能である。空気層の場合は遮光溝を設けた成型の他、レーザー加工などにより溝を後加工することによって全反射層を構成出来る。
A light guide plate with a multi-layer structure that has a light-shielding layer between the transparent material layers in order to prevent color mixing with light sources of different colors, with a transparent material layer interposed so that the colors controlling the light source and the liquid crystal sub-pixel correspond. This is a method in which the color filter is deleted using this. As shown in FIGS. 1 and 2, the light source and the number of stacked layers can be aggregated by using a light guide plate distributed to each stripe described in the next section.
As the transparent material, polymethyl methacrylate resin, alicyclic acrylic resin, cyclic olefin resin, polycarbonate, air, and the like are suitable.
The higher the reflectance, the higher the light utilization efficiency of the light shielding layer, and light shielding and reflection can be realized by a metal film, a metal foil, a pigment dispersion film, a lower refractive index substance than a transparent material, a multilayer reflective film, and the like. Metals and white pigments having high reflectance and flat spectral characteristics in the visible light region are suitable because they do not affect the color of transmitted light. A substance having a refractive index lower than that of the transparent material is totally reflected under a condition larger than the critical angle. Therefore, a low refractive index substance such as air, a fluorine-based polymer, or an ethylene-vinyl acetate copolymer resin can be used. In the case of an air layer, the total reflection layer can be formed by post-processing the groove by laser processing or the like in addition to molding with a light-shielding groove.

透明物質層の層間に遮光層を持つ多層構造の導光板の出射光を、1入射部でストライプ内の3つのサブ画素にストライプに分配することを基本単位として、これをマトリックス構成とした導光板である。入射部において1/3の光量を鉛直方向にあるサブ画素に透過し、残る2/3の光量をストライプ方向に2つの傾斜反射面で2方向に反射する。この反射光がストライプ分配導光板内の液晶対向側に設けた反射面で反射して2つの液晶サブ画素に入射することにより同一ストライプ内の3つのサブ画素に分配する導光方式である。
透過/反射分別部の傾斜反射面は鏡面にして反射方向を揃えている。透光物質は傾斜反射面を成型するために成型性の良い物質が適している。平面基材に傾斜部を積層成型した複合構造によっても達成出来る。
A light guide plate having a matrix structure with the light emitted from a multi-layered light guide plate having a light-shielding layer between the transparent material layers distributed to the three sub-pixels in the stripe as a basic unit at one incident portion. It is. At the incident portion, 1/3 of the light quantity is transmitted to the sub-pixels in the vertical direction, and the remaining 2/3 light quantity is reflected in two directions in the stripe direction by two inclined reflecting surfaces. This reflected light is reflected by a reflecting surface provided on the opposite side of the liquid crystal in the stripe distribution light guide plate and is incident on two liquid crystal sub pixels, thereby distributing the light to three sub pixels in the same stripe.
The inclined reflection surface of the transmission / reflection separation unit is a mirror surface and the reflection direction is aligned. As the translucent material, a material having good moldability is suitable for molding the inclined reflecting surface. This can also be achieved by a composite structure in which inclined portions are laminated and formed on a flat substrate.

透過/反射分別部の傾斜した反射面の反射光を別の透過/反射分別部単位よりも離れた位置に反射して分配することにより同一色の入射部を集中することが出来る。これによりストライプ分配導光板内の液晶対向側に設けた反射面を積層導光板の別色層の上に設ける構造とすることが可能になり、積層導光板の積層数、光源の数を削減出来る。
反射/透過分別部は透過部の両側に傾斜反射面を持つ構造であり、反射光が別の傾斜反射面で遮られないための最大傾斜は35.3°である。このとき反射光は水平方向に対して19.5°の傾斜で反射し、ストライプ分配導光板厚に比例して遠方まで分配出来る。
傾斜反射面による反射光が隣接する傾斜反射面で遮られないための最大傾斜θs、および最大傾斜光角度θrは図3(1)のように示され、次のように求められる。

By reflecting and distributing the reflected light of the inclined reflecting surface of the transmission / reflection classification unit to a position away from another transmission / reflection classification unit, it is possible to concentrate the incident portions of the same color. This makes it possible to have a structure in which a reflective surface provided on the opposite side of the liquid crystal in the stripe distribution light guide plate is provided on a different color layer of the multilayer light guide plate, thereby reducing the number of laminated light guide plates and the number of light sources. .
The reflection / transmission separation part has a structure having inclined reflection surfaces on both sides of the transmission part, and the maximum inclination for preventing the reflected light from being blocked by another inclined reflection surface is 35.3 °. At this time, the reflected light is reflected at an inclination of 19.5 ° with respect to the horizontal direction, and can be distributed far away in proportion to the thickness of the stripe distribution light guide plate.
The maximum tilt θs and the maximum tilt light angle θr for preventing the reflected light from the tilted reflecting surface from being blocked by the adjacent tilted reflecting surface are shown as shown in FIG. 3 (1), and are obtained as follows.

透過/反射分別機能の透過部は開口面積の1/3を占め、反射光は2方向に分配されるので夫々開口面積の1/3を占めている。出射光を平行光のまま液晶サブ画素に照射すると開口率が1/3に低減して画面に占める黒枠の割合が増え、照射部は輝点になる。図4のように透過/反射分別機能の透過部に凹レンズを設けることにより、液晶サブ画素寸法に光束を拡大して輝点を回避することが出来る。
垂直配向では液晶分子が倒れる方向を固定するため点対称に傾斜するプレチルトが行われているが、拡散方式の導光板では垂直配向方式、ベンド配向方式において拡散光による複屈折でコントラストを低下している(特許文献14)。プレチルトは特許文献14,15など多くの構造が提案されているが、特許文献15の構造を代表例として液晶サブ画素寸法に光束を拡大する方法を図5に示す。配向構造を光束拡大方向に近づけることにより液晶分子の複屈折を防止してコントラストの改善に役立てることが出来る。
The transmission part of the transmission / reflection separation function occupies 1/3 of the opening area, and the reflected light is distributed in two directions, so each occupies 1/3 of the opening area. When the emitted light is irradiated onto the liquid crystal sub-pixel as parallel light, the aperture ratio is reduced to 1/3, the proportion of the black frame in the screen is increased, and the irradiated portion becomes a bright spot. By providing a concave lens in the transmission part of the transmission / reflection separation function as shown in FIG. 4, the luminous flux can be enlarged to the liquid crystal sub-pixel size to avoid the bright spot.
In vertical alignment, pretilt that tilts symmetrically to fix the direction in which the liquid crystal molecules are tilted is performed, but in the diffusion type light guide plate, the contrast is lowered by birefringence due to diffused light in the vertical alignment type and the bend alignment type. (Patent Document 14). Many structures such as Patent Documents 14 and 15 have been proposed for the pretilt. FIG. 5 shows a method of expanding the light flux to the liquid crystal sub-pixel dimensions using the structure of Patent Document 15 as a representative example. By bringing the alignment structure closer to the light beam expansion direction, birefringence of the liquid crystal molecules can be prevented and this can be used for improving the contrast.

光源が平行光の出射経路の中にあると光源が平行光を遮るだけでなく反射平行光に直接光が加わり不均一になる。図2(2)のように平行光の経路からオフセットした位置に焦点を持つ軸外放物凹面鏡あるいは軸外放物面近似凹球面鏡の焦点に光源を設けることにより、光源によって平行光を妨げられることなく導光板を伝播することが出来る。
発光ダイオードを導光板の厚さ方向、幅方向ともに放物面の焦点に液晶ストライプの配列順に交互に配置することにより平行光を供給することが出来る。
If the light source is in the parallel light emission path, the light source not only blocks the parallel light but also directly adds light to the reflected parallel light, resulting in non-uniformity. By providing the light source at the focal point of the off-axis parabolic concave mirror or the off-axis parabolic approximate concave spherical mirror having a focal point at a position offset from the path of the parallel light as shown in FIG. 2 (2), the parallel light is blocked by the light source. Can propagate through the light guide plate without any problem.
Parallel light can be supplied by alternately arranging the light emitting diodes at the focal point of the paraboloid in the thickness direction and the width direction of the light guide plate in the arrangement order of the liquid crystal stripes.

光源導光板を側面から見た構造は、図2(2)のように液晶側に対向する反射面側に凸反射面を配置した棚田状構造のものである。この凸反射面は光源からの平行光線をほぼ鉛直方向にある液晶の画素に向けて反射し、凸反射面が画素寸法より小さいために画素寸法に拡大するための凸面である。この凸反射面は図3(2)のように臨界角以上に傾斜すると全反射することが出来る。鏡面反射層にして反射することでも良い。
凸反射面の光源側において水平面となす傾斜角θd、入射角θ1との間には


の関係が成り立ち、全反射条件θ1>θcより
の必要がある。光源は完全な点光源ではないために平行性公差があるのでθdは交差の余裕をとる必要がある。
導光板厚+液晶透明基板厚:t、サブ画素幅W、導光板傾斜部幅dとすると、凸反射面の曲率半径rは

で表される。棚田状構造の導光板のため位置による厚さtの変化に応じて曲率半径rを変えることにより均一に画素幅に照射することが出来る。
光束拡大率は導光板の最も薄い部分で最大になるが、液晶透明基板厚が定数になり3°以下である。光束拡大光ではあるが散乱光ではないために、平行光が必要条件である高分子分散液晶にも適用することが出来る(非特許文献4)。
The structure of the light source light guide plate viewed from the side is a terraced structure in which a convex reflection surface is disposed on the reflection surface side facing the liquid crystal side as shown in FIG. This convex reflection surface is a convex surface for reflecting parallel light rays from a light source toward a liquid crystal pixel in a substantially vertical direction and expanding the pixel size because the convex reflection surface is smaller than the pixel size. This convex reflecting surface can be totally reflected when it is tilted beyond a critical angle as shown in FIG. It may be reflected as a specular reflection layer.
Between the angle of inclination θd and the incident angle θ1 with the horizontal plane on the light source side of the convex reflection surface


From the total reflection condition θ1> θc
There is a need for. Since the light source is not a perfect point light source, there is a parallelism tolerance, so θd needs to have a margin for intersection.
Light guide plate thickness + liquid crystal transparent substrate thickness: t, sub-pixel width W, light guide plate inclined portion width d, the radius of curvature r of the convex reflection surface is

It is represented by Since the light guide plate has a terraced structure, it is possible to irradiate the pixel width uniformly by changing the curvature radius r according to the change of the thickness t depending on the position.
The light beam expansion ratio becomes maximum at the thinnest portion of the light guide plate, but the liquid crystal transparent substrate thickness becomes a constant and is 3 ° or less. Since it is a light beam expanding light but not a scattered light, it can also be applied to a polymer dispersed liquid crystal in which parallel light is a necessary condition (Non-Patent Document 4).

放物面鏡は光束密度が光源と反射面上の点との距離の2乗に反比例するため、反射光の光束分布は光軸から遠ざかるほど低下する。
放物線を
放物線上の点(x,y)と焦点(p,0)間の距離をhとすると、
光束密度は光源と反射面上の点との距離の2乗に反比例するため、光束密度Iをyの関数で表すと、
pを1としてyを0から4の範囲で図示すると、図7のように光軸から離れるほど光束密度が減少する。
総光束は、yを0から4の範囲で積分すると、
積分の曲線を図8に示す。
導光板では放物面鏡の光軸に近い範囲を利用し、導光板反射面積を逆関数にして補正すると厚さ増加を抑制して光束密度を均一に出来る。x座標の焦点p、y座標の1.41pまでの放物面鏡における段差の位置関数曲線を図9、導光板断面の包絡線を図10に示す。
In the parabolic mirror, the luminous flux density is inversely proportional to the square of the distance between the light source and the point on the reflecting surface, so that the luminous flux distribution of the reflected light decreases as the distance from the optical axis increases.
Parabola
If the distance between the point (x, y) on the parabola and the focal point (p, 0) is h,
Since the luminous flux density is inversely proportional to the square of the distance between the light source and the point on the reflecting surface, the luminous flux density I is expressed as a function of y.
When p is 1 and y is illustrated in the range from 0 to 4, the light flux density decreases as the distance from the optical axis increases as shown in FIG.
The total luminous flux is obtained by integrating y in the range from 0 to 4.
The integration curve is shown in FIG.
If the light guide plate uses a range close to the optical axis of the parabolic mirror and corrects the reflection area of the light guide plate as an inverse function, the increase in thickness can be suppressed and the light flux density can be made uniform. FIG. 9 shows the position function curve of the step in the parabolic mirror up to the focal point p of the x coordinate and 1.41 p of the y coordinate, and FIG. 10 shows the envelope of the cross section of the light guide plate.

放物面鏡は平行光を生成できるが、光束密度特性は光軸から遠ざかるほど光束が低下する。放物面鏡の開口端における光束密度を均一にするには光軸付近に集中する光束を周辺側に拡散し、開口端で平行光に戻す必要がある。
放物面鏡開口端における光束を積分して総光束を求め、開口端で均等になる値を反射鏡上に求めてその座標と結んだ線が均一化するための拡散光線軌跡である。
この総光束を開口端で光軸垂直方向に均一になるよう等分する。総光束を等分した光束が反射鏡上のy座標は光束密度分布から求められ、x座標も求められる。この点と開口端の点を結べば拡散角度を求めることが出来る。
図11に放物面鏡9の平行光出射を示すが、同様に、反射鏡の傾斜を増分する角度は平行光からの増分する拡散角の半分である。反射鏡の傾斜を求めるには放物面鏡の接線の傾斜mと法線の傾斜−1/mを求める必要がある。
の放物線上の点(x0、y0)の傾斜はxで微分して、
接線の方程式よりmは
である。法線は接線に直交するので
である。
放物線を維持したまま反射鏡の傾斜を増大するのは微細な鏡面に微細な段差をもって繋げることになる。放物面鏡の鏡面を分割し、均一にするための平行光からの拡散角度の半分を放物線の接線傾斜より増大することにより反射鏡開口端において均一な光束密度で拡散することが出来る。
微細鏡面に微細な段差をもって繋げるのは、成型・蒸着による製造は可能だが研磨が困難で、細分化による誤差を含んでいる。このため、傾斜を増大して連続曲線にする方法を図11の光束密度均一化反射鏡22に示す。連続化すると座標が後方に移動するので光束密度分布、積分曲線を再度計算しなければならないが、これを繰り返し計算することにより誤差を極めて小さく収めることが出来る。
反射鏡上のy座標の点において光束が拡大する分布状態を図13に、光束密度分布を破線で、光束密度の積分曲線を実線で図14に示す。
以上の方法で求めた曲線は
である。aは反射鏡の軸方向長さ、正焦点距離屈折面の傾斜などの影響によって幅を持っている。x<2の浅い反射鏡の場合、第2項の寄与が小さく、第2項による補正は不要だが、xが長くなるに従ってb,cを調整することにより均一性が良くなる。xの長い、つまり口径yの大きな反射鏡は図7のように光軸から離れるほど光束密度が減少するのでaのように顕著ではない。
光束密度均一化反射鏡のa=5.8,b=2.5,c=2,p=1における曲線を放物線と比較した図を図15に示す。
この拡散光を正焦点距離屈折面に入射すると平行光に戻すことが出来、これによって光束密度の均一な平行光を得ることが出来る。平行光に戻すための屈折面の角度を図12に示す。
正焦点距離屈折面で光軸に平行にするための界面の傾斜θ3は
である。各拡散角度についてθ3を求め、連続曲線にすると屈折面曲線、レンズ曲線を求めることが出来る。導光板などの透光物質に入射するとき、正焦点距離屈折面を1枚で平行光に変換する状態を図16(2)に示す。この解析結果を図16(2)の曲線で示している。平行光だけでなく屈折面の曲線によって光束密度の均一な拡散光、収束光への変換も可能である。
光束密度均一化反射鏡による拡散光を空気中に照射する場合は屈折面が複数になり、平凸レンズで構成した例を図16(1)に示す。
平凸レンズの平面で変換された屈折光出射角θ2
屈折面で光軸に平行にするための界面の傾斜θ3は、
屈折率1.55の平凸レンズよりレンズ厚を薄くするフレネルレンズの例を図16(3)に示す。
正焦点距離屈折面を持つ導光板に入射すると棚田状導光板の段差は一定になり、包絡線は直線になるため図9、図10の補償方法より薄型化が可能である。
放物面鏡によらない平行光生成方法として、傾放物面鏡の提案が特許文献18に示され、光軸を内側に傾けた形状となっている。目的は、「キセノンランプを用いる場合は、液晶パネルの光軸に近い部分が光源の影になるので液晶パネルの中心部のみ暗い映像となる」ためとされ、傾放物面鏡の反射光は収束光のため凹円錐レンズで平行光に戻されている。
特許文献19には放物面鏡を使用して2枚のフレネルレンズによるアフォーカル系で光束密度を丸い山形分布にした提案がある。アフォーカル系の関係式、および山形分布の理由は開示されていないが、上記同様に光軸に近い部分が光源の影になることを補償することが考えられる。
Although the parabolic mirror can generate parallel light, the light flux density characteristic decreases as the distance from the optical axis increases. In order to make the light beam density uniform at the opening end of the parabolic mirror, it is necessary to diffuse the light beam concentrated near the optical axis to the peripheral side and return it to parallel light at the opening end.
This is a diffused ray trajectory for integrating a light beam at the opening end of the parabolic mirror to obtain a total light flux, obtaining a value equal on the opening end on the reflecting mirror, and making a line connected to the coordinates uniform.
The total luminous flux is equally divided at the opening end so as to be uniform in the direction perpendicular to the optical axis. The y coordinate on the reflecting mirror of the light beam obtained by equally dividing the total light beam is obtained from the light beam density distribution, and the x coordinate is also obtained. The diffusion angle can be obtained by connecting this point and the point of the opening end.
FIG. 11 shows the parallel light emission of the parabolic mirror 9. Similarly, the angle at which the tilt of the reflecting mirror is incremented is half of the incremental diffusion angle from the parallel light. In order to obtain the inclination of the reflecting mirror, it is necessary to obtain the tangential inclination m and the normal inclination-1 / m of the parabolic mirror.
The slope of the point (x0, y0) on the parabola is differentiated by x,
From the tangent equation, m is
It is. Because the normal is perpendicular to the tangent
It is.
Increasing the inclination of the reflecting mirror while maintaining the parabola connects the fine mirror surface with a fine step. By dividing the mirror surface of the parabolic mirror and making the half of the diffusion angle from the parallel light to be uniform more than the tangential slope of the parabola, it is possible to diffuse with a uniform light flux density at the opening end of the reflector.
It is possible to manufacture by molding and vapor deposition, but it is difficult to polish and connect with a fine mirror surface with a fine step, which includes errors due to subdivision. For this reason, a method of increasing the inclination to form a continuous curve is shown in the light flux density uniform reflecting mirror 22 of FIG. If it is continuous, the coordinate moves backward, so the light flux density distribution and integral curve must be calculated again. By repeatedly calculating this, the error can be kept extremely small.
FIG. 13 shows a distribution state in which a light beam expands at a point of y-coordinate on the reflecting mirror, FIG. 14 shows a light beam density distribution by a broken line, and an integral curve of the light beam density by a solid line.
The curve obtained by the above method is
It is. a has a width due to the influence of the axial length of the reflecting mirror, the inclination of the refracting surface of the normal focal length, and the like. In the case of a shallow mirror where x <2, the contribution of the second term is small and correction by the second term is unnecessary, but uniformity is improved by adjusting b and c as x becomes longer. A reflector having a long x, that is, a large aperture y is not as noticeable as a because the light flux density decreases with increasing distance from the optical axis as shown in FIG.
FIG. 15 shows a comparison of the curve at a = 5.8, b = 2.5, c = 2, and p = 1 with the parabola of the light flux density uniformizing mirror.
When this diffused light is incident on the positive focal length refracting surface, it can be returned to parallel light, thereby obtaining parallel light with uniform light flux density. The angle of the refracting surface for returning to parallel light is shown in FIG.
The inclination θ3 of the interface to be parallel to the optical axis at the positive focal length refracting surface is
It is. When θ3 is obtained for each diffusion angle and a continuous curve is obtained, a refractive surface curve and a lens curve can be obtained. FIG. 16 (2) shows a state in which a single positive focal length refracting surface is converted into parallel light when entering a translucent material such as a light guide plate. The analysis result is shown by the curve in FIG. Not only parallel light but also a refracting surface curve can be converted into diffused light having a uniform light flux density and convergent light.
FIG. 16A shows an example in which a plurality of refracting surfaces are formed in the air when diffusing light from a light beam density uniforming reflecting mirror is irradiated into the air, and a plano-convex lens is used.
Refracted light exit angle θ2 converted at the plane of the plano-convex lens
The inclination θ3 of the interface for making the refractive surface parallel to the optical axis is
An example of a Fresnel lens in which the lens thickness is made thinner than that of a plano-convex lens having a refractive index of 1.55 is shown in FIG.
When incident on a light guide plate having a positive focal length refracting surface, the step of the terraced light guide plate becomes constant and the envelope becomes a straight line, so that it can be made thinner than the compensation methods of FIGS.
As a method for generating parallel light that does not use a parabolic mirror, a proposal of a tilted parabolic mirror is shown in Patent Document 18, and the optical axis is inclined inward. The purpose is "When using a xenon lamp, the portion close to the optical axis of the liquid crystal panel becomes the shadow of the light source, so only the central part of the liquid crystal panel is dark." It is returned to parallel light by a concave conical lens for convergent light.
In Patent Document 19, there is a proposal that uses a parabolic mirror and an afocal system using two Fresnel lenses to make the luminous flux density a round mountain distribution. Although the relational expression of the afocal system and the reason for the mountain distribution are not disclosed, it is conceivable to compensate that the portion near the optical axis becomes a shadow of the light source as described above.

凹面鏡を備えた照明装置は光源からの直接光が凹面鏡反射光に重畳するので光軸付近に光束が集中しやすい。反射鏡を請求項8のように均一化する方式においても直接光は距離の2乗に反比例するので照射面までの距離が近いほど不均一になる。このため図17のように、光源の前方に開口付き遮光体を設けて直接光を制限することにより光源前方が凹面鏡反射光と光源からの直接光が重畳することによる光束集中を緩和し、遮光体に設けた開口孔の寸法、密度を凹面鏡反射光の光束密度に合わせて設定することにより光束を均一化する照明方式である。   In an illuminating device provided with a concave mirror, the direct light from the light source is superimposed on the concave mirror reflected light, so that the light flux tends to concentrate near the optical axis. Even in the system in which the reflecting mirror is made uniform as in the eighth aspect, the direct light is inversely proportional to the square of the distance, and therefore becomes non-uniform as the distance to the irradiation surface becomes shorter. For this reason, as shown in FIG. 17, a light shield with an opening is provided in front of the light source to restrict the direct light, thereby reducing the light beam concentration caused by the concave mirror reflected light and the direct light from the light source being superimposed on the front of the light source. In this illumination system, the size and density of the apertures provided in the body are set in accordance with the luminous flux density of the concave mirror reflected light to make the luminous flux uniform.

凹面鏡を備えた光源の前方の開口付き遮光体を凸面鏡に代えて、凸面鏡で凹面鏡に反射して効率を高め、光源前方が凹面鏡反射光と光源からの直接光が重畳することによる光束集中を緩和し、凹面鏡が光源からの直接光と凸面鏡反射光を反射する光束密度に合わせて凸面鏡に設けた開口孔の開口比率を設定することにより光束を均一化する照明方式である。   Instead of using a convex mirror as the light shield with an aperture in front of the light source equipped with a concave mirror, the convex mirror reflects the light back to the concave mirror to increase efficiency, and light flux concentration is reduced by superimposing the concave mirror reflected light and the direct light from the light source in front of the light source. In this illumination system, the concave mirror sets the aperture ratio of the aperture holes provided in the convex mirror in accordance with the luminous flux density that reflects the direct light from the light source and the reflected light from the convex mirror.

凹面鏡を備えた光源の前方に開口付き凸面鏡を設けて凹面鏡に反射することにより光源前方が凹面鏡反射光と光源からの直接光が重畳することによる光束集中を緩和し、凹面鏡が光源からの直接光と凸面鏡反射光を反射する光束密度に合わせて凸面鏡に設けた開口部面積で透過光量を設定し、開口部を図18のように凹レンズで構成した光束の均一化方法である。   A convex mirror with an aperture is provided in front of a light source equipped with a concave mirror and reflected to the concave mirror, so that the front of the light source relaxes the light flux concentration caused by superposition of the reflected light from the concave mirror and the direct light from the light source, and the concave mirror direct light from the light source The amount of transmitted light is set by the area of the opening provided in the convex mirror in accordance with the density of the light beam that reflects the reflected light from the convex mirror, and the light beam is uniformed by forming the opening with a concave lens as shown in FIG.

焦点距離深さの放物面鏡を備えた光源の前方に開口付き凹面鏡を設け、光源を透過して後方放物面鏡に反射することにより光源からの直接光と放物面鏡による反射光の入射角を一致させて反射することにより方向を揃えて光束を均一化し、放物面鏡によって反射する光束密度に合わせて前方凹面鏡に設けた開口部の開口比率を設定することにより光束均一化する照明方式。図19、および開口部を凹レンズとした例を図20に示す。   A concave mirror with an aperture is provided in front of a light source equipped with a parabolic mirror having a focal length depth, and direct light from the light source and reflected light by the parabolic mirror are transmitted through the light source and reflected to the rear parabolic mirror. By matching the incident angles of light and reflecting, the direction is aligned and the light beam is made uniform, and the light beam is made uniform by setting the aperture ratio of the opening provided in the front concave mirror according to the light beam density reflected by the parabolic mirror Lighting method to do. FIG. 19 and an example in which the opening is a concave lens are shown in FIG.

直下照明型液晶表示装置は薄型化すると、光束が光源からの距離の2乗に反比例するために管映りが発生し易い。薄型化と均一性を両立するには、図21のように、直下から入射した光を傾斜した反射面によって平面方向に方向変換し、平面方向に伝播する光を傾斜反射面によって液晶パネルに反射することにより均一な照明を得ることが出来る。   When the direct-lighting type liquid crystal display device is thinned, the light flux is inversely proportional to the square of the distance from the light source, so that tube reflection is likely to occur. In order to achieve both a reduction in thickness and uniformity, as shown in FIG. 21, the light incident from directly below is redirected to the plane direction by the inclined reflecting surface, and the light propagating in the plane direction is reflected to the liquid crystal panel by the inclined reflecting surface. By doing so, uniform illumination can be obtained.

直下照明型液晶表示装置において、直下から導光板に入射した光を傾斜した反射面によって平面方向に方向変換して反射する場合、反射面上部は照明されないので光源を端部に設けた1方向の伝播になる。光源を端部以外に設け、対向する2方向に反射するには、反射面で囲まれた三角柱部分の液晶画素に照明する必要がある。図22のように、三角柱部分の傾斜面を反射/透過分離面にすることによって導光板の平面方向に反射する成分と傾斜面の直上部に透過する成分に分離することが可能になる。反射/透過分離は臨界角による分離、あるいはビームスプリッタによって行うことが出来る。
臨界角分離は傾斜面に導光板よりも屈折率の小さい層を設けることにより実現できる。導光板の屈折率n2、低屈折率層の屈折率n1とすると、臨界角θcは
拡散角の制御は請求項8〜12における出射光の平行性の設定などによって実現できる。ビームスプリッタによる場合は反射/透過比を照明する面積比などに応じて設定される。
In the direct illumination type liquid crystal display device, when the light incident on the light guide plate from directly below is reflected by changing the direction in the plane direction by the inclined reflective surface, the upper part of the reflective surface is not illuminated, so the light source is provided in one direction at the end. Propagation. In order to provide a light source other than the end and reflect the light in two opposing directions, it is necessary to illuminate the liquid crystal pixels in the triangular prism portion surrounded by the reflecting surface. As shown in FIG. 22, by making the inclined surface of the triangular prism portion a reflection / transmission separation surface, it is possible to separate the component reflected in the plane direction of the light guide plate and the component transmitted directly above the inclined surface. The reflection / transmission separation can be performed by separation using a critical angle or a beam splitter.
The critical angle separation can be realized by providing a layer having a refractive index smaller than that of the light guide plate on the inclined surface. If the refractive index n2 of the light guide plate and the refractive index n1 of the low refractive index layer are given, the critical angle θc is
The control of the diffusion angle can be realized by setting the parallelism of the emitted light in claims 8-12. In the case of using a beam splitter, the reflection / transmission ratio is set according to the area ratio of illumination.

直下から導光板に入射した光を傾斜した反射面によって導光板の平面方向に方向変換する直下照明型液晶表示装置において、反射面で囲まれた三角柱部分の液晶画素に照明する必要がある。図23のように、対向する2つの傾斜面のV字状交点付近に開口部を設け、開口部から入射した光を、開口部延長線上に棚田状傾斜反射面を設けてV字型傾斜反射面の上側に反射する。傾斜反射面上側の反射面から液晶側に出射する構造によって、2つの傾斜面に囲まれた三角柱部分とそれ以外の導光板面の輝度を開口面積の設定で均一化することが出来る。開口部直上部には棚田状傾斜面が設けられるので影の部分が発生する。このため影の部分に入射する経路を傾斜反射面の一部に設けている。図25は白色発光ダイオードによる点光源を放物面鏡の焦点に設置した構造である。図26は3原色発光ダイオードによる点光源を軸外放物面鏡の焦点に設置した構造である。   In a direct illumination type liquid crystal display device that changes the direction of light incident on the light guide plate from directly below in the plane direction of the light guide plate by the inclined reflection surface, it is necessary to illuminate the liquid crystal pixels in the triangular prism portion surrounded by the reflection surface. As shown in FIG. 23, an opening is provided in the vicinity of the V-shaped intersection of two opposing inclined surfaces, and light incident from the opening is provided with a terraced inclined reflection surface on the opening extension line to provide a V-shaped inclined reflection. Reflects above the surface. With the structure in which the light is emitted from the reflection surface on the upper side of the inclined reflection surface to the liquid crystal side, the luminance of the triangular prism portion surrounded by the two inclined surfaces and the other light guide plate surface can be made uniform by setting the aperture area. Since a terraced inclined surface is provided immediately above the opening, a shadow portion occurs. For this reason, a path incident on the shadow portion is provided in a part of the inclined reflection surface. FIG. 25 shows a structure in which a point light source using a white light emitting diode is installed at the focal point of a parabolic mirror. FIG. 26 shows a structure in which a point light source of three primary color light emitting diodes is installed at the focal point of an off-axis parabolic mirror.

直下から導光板に入射した光を傾斜した反射面によって導光板の平面方向に方向変換する直下照明型液晶表示装置において、図24のように、対向する2つの傾斜面のV字状交点付近に凹レンズによる開口部を設けることにより直上部三角柱部分の照射光を得ている。開口部から入射した光を凹レンズによって直上部三角柱部分に拡散することにより、2つの傾斜面に囲まれた三角柱部分とそれ以外の導光板面の輝度を開口部面積の設定で均等化することが出来る。   In the direct illumination type liquid crystal display device that changes the direction of light incident on the light guide plate from directly below into the plane direction of the light guide plate by the inclined reflection surface, as shown in FIG. 24, near the V-shaped intersection of the two inclined surfaces facing each other. Irradiation light from the upper triangular prism portion is obtained by providing an opening with a concave lens. By diffusing the light incident from the opening to the right upper triangular prism portion by the concave lens, the luminance of the triangular prism portion surrounded by two inclined surfaces and the other light guide plate surface can be equalized by setting the opening area. I can do it.

直下から導光板に入射した光を傾斜した反射面によって導光板の平面方向に方向変換する直下照明型液晶表示装置において、V字型に対向する2つの傾斜面の交点付近に凹レンズによる開口部を設け、開口部から入射した光を凹レンズによって直上部三角柱部分に拡散する構造であり、三角柱部分に拡散する光を、図24のように、フレネルレンズ面による出射面とすることによって平行光出射する直下照明方式である。   In a direct illumination type liquid crystal display device that changes the direction of light incident on the light guide plate from directly below in the plane direction of the light guide plate by an inclined reflecting surface, an opening formed by a concave lens is formed near the intersection of two inclined surfaces facing the V-shape. Provided, and the light incident from the opening is diffused to the triangular prism portion directly above by the concave lens, and the light diffusing into the triangular prism portion is emitted as parallel light by using an exit surface by the Fresnel lens surface as shown in FIG. It is a direct lighting system.

凹面鏡と凸面鏡を焦点位置および光軸方向を一致させて、入出射光を遮らない位置にオフセットして設けることによって、焦点距離の絶対値比で光束幅を変換するビームエクスパンダ/コンプレッサを構成することが出来る。凹レンズと凸レンズを組み合わせたガリレオ型は屈折率の制約から寸法が大きいが、4面の屈折面によって収差補正の自由度が広いため多く採用されている。反射鏡によるビームエクスパンダ/コンプレッサは同一曲率で焦点距離がレンズの半分のため小型化出来るが、放物面鏡の研磨が難しく、収差補正の自由度が小さいためである。
光路媒体を成形性、寸法安定性の優れた透明材料で構成し、凹球面鏡、凸球面鏡の鏡面を蒸着などにより形成することが出来る。曲率円球面鏡で構成すると図27のようになる。曲率円鏡は放物面鏡の光軸で接触する円である(非特許文献5)。放物面鏡と比べ図28に示す収差が発生するが、この収差を補正するために、光路媒体による入出射界面を図29のように収差補正曲線にすることにより1種類の光路媒体で収差補正することが出来る。
Constructing a beam expander / compressor that converts the beam width by the absolute value ratio of the focal length by providing a concave mirror and a convex mirror with the same focal position and optical axis direction, and offset to a position that does not block incoming / outgoing light I can do it. The Galileo type combining a concave lens and a convex lens has a large size due to the restriction of the refractive index, but is widely adopted because of the wide degree of freedom of aberration correction by the four refracting surfaces. This is because a beam expander / compressor using a reflecting mirror can be miniaturized because it has the same curvature and a focal length that is half that of a lens.
The optical path medium is made of a transparent material having excellent moldability and dimensional stability, and the concave spherical mirror and the mirror surface of the convex spherical mirror can be formed by vapor deposition or the like. If it comprises a curvature spherical mirror, it will become like FIG. A curvature circular mirror is a circle that makes contact with the optical axis of a parabolic mirror (Non-Patent Document 5). The aberration shown in FIG. 28 occurs as compared with the parabolic mirror. In order to correct this aberration, the aberration in one type of optical path medium is obtained by making the input / output interface by the optical path medium into an aberration correction curve as shown in FIG. It can be corrected.

線光源からの光束を軸方向に圧縮して出射するビームコンプレッサアレイを構成する場合、図27の構成の凹面鏡を斜め方向に連続すると図31の構成になり、入射光を図の右側からでなく紙面垂直上部方向から斜めに入射すると凸面鏡に反射して紙面奥方向に出射することが出来る。紙面垂直方向に軸外の放物面鏡あるいは曲率円円筒鏡を組み合わせ、奥行方向の長さを等しくすると焦点距離の絶対値比のビームコンプレッサを構成することが出来る。図32にビームエクスパンダ/コンプレッサアレイを示す。この構造は平行光軸への入射角を臨界角以上に設定することにより全反射することが出来、反射鏡を蒸着する必要がないため低コストに構成することが可能である。   When configuring a beam compressor array that compresses and emits a light beam from a linear light source in the axial direction, the concave mirror having the configuration shown in FIG. When the light is incident obliquely from the direction perpendicular to the top of the paper, it can be reflected by the convex mirror and emitted in the back of the paper. A beam compressor having an absolute value ratio of focal length can be configured by combining off-axis parabolic mirrors or curved circular cylindrical mirrors in the direction perpendicular to the plane of the paper and equalizing the length in the depth direction. FIG. 32 shows a beam expander / compressor array. This structure can be totally reflected by setting the incident angle to the parallel optical axis to be equal to or greater than the critical angle, and can be configured at a low cost because it is not necessary to deposit a reflecting mirror.

色別の線光源を直下照明方式に適用するとき、色別に積層する導光板との結合部を別の色と遮光して開口すると開口率、出射効率が1/色数になる。線光源の光束を1/色数に絞るビームコンプレッサを通して開口部に入射すると平行光成分は遮光されることなく出射出来るため出射効率の低下を回避出来る。
線光源の軸方向の光束を1/色数に絞るビームコンプレッサを各色に設けて光束幅を絞って当該色導光層に入射する構造を透視図(図33)に示す。ビームコンプレッサをフレネルメニスカスレンズに置き換えた構成を図34に示す。
各色の積層構成の導光板入射した光は傾斜した反射面によって平面方向に方向変換して液晶面に反射する。
When the line light source by color is applied to the direct illumination system, the aperture ratio and the emission efficiency become 1 / number of colors when the coupling portion with the light guide plate laminated by color is shielded from another color and opened. When the light beam of the line light source is incident on the opening through a beam compressor that restricts the number of colors to 1 / color, the parallel light component can be emitted without being shielded, so that a decrease in emission efficiency can be avoided.
A perspective view (FIG. 33) shows a structure in which a beam compressor that narrows the luminous flux in the axial direction of the line light source to 1 / color number is provided for each color and the luminous flux width is narrowed to enter the color light guide layer. A configuration in which the beam compressor is replaced with a Fresnel meniscus lens is shown in FIG.
The light incident on the light guide plate of the laminated structure of each color is redirected in the plane direction by the inclined reflecting surface and reflected on the liquid crystal surface.

色別の線光源をサイドライト方式に適用するとき、色別に積層する導光板との結合部を別の色と遮光して開口すると開口率、出射効率が1/色数になる。線光源の光束を1/色数に絞るビームコンプレッサを通して開口部に入射すると平行光成分は遮光されることなく出射出来る。
線光源が厚さ方向に並ぶため、ビームコンプレッサ出射光は導光板の厚さ方向に光源の並びに従った分布になる。これをビームエクスパンダによって導光板の厚さ全体に拡大することにより光量分布を各色とも均一にすることが出来る。
When the line light source by color is applied to the side light system, the aperture ratio and the emission efficiency become 1 / color number when the coupling portion with the light guide plate laminated by color is shielded from another color and opened. When the light beam from the line light source is incident on the opening through a beam compressor that reduces the number of colors to 1 / color, the parallel light component can be emitted without being blocked.
Since the linear light sources are arranged in the thickness direction, the light emitted from the beam compressor has a distribution according to the arrangement of the light sources in the thickness direction of the light guide plate. By expanding this to the entire thickness of the light guide plate using a beam expander, the light quantity distribution can be made uniform for each color.

液晶表示装置の表示面をxy平面としたとき、導光板側面からy軸方向に入射する平行光を、yz平面に対して棚田状に傾斜を持たせた第1の微小傾斜反射面でx軸方向に変換する。微小段差を持つ傾斜反射面は液晶パネル側の曲率半径が長く、反対側の短い円錐形にすると第2の微小傾斜反射面の位置によらずに一定のy方向長さに光束を拡大することが出来る。
導光板内をx方向に変換された光束を、第2の微小傾斜反射面に照射すると凸円筒全反射面で略鉛直方向にある液晶パネルに光束を拡大して反射する。この凸円筒反射面は入射側の曲率半径を長く、遠方側を短くすることにより液晶パネルに入射する光束密度を均一にすることが出来る。
この構造の導光板は発光素子1個で均一な光束密度を実現出来るため携帯機器などの小型液晶表示装置に適している。凸面鏡で光束を拡大するため拡散シートは不要であり、効率良く正面輝度を高められる。導光板の傾斜反射面を臨界角以上に設定することにより蒸着工程が不要になり、発光素子1個と導光板のみなので構造がシンプルで究極的な低価格を実現出来る。
When the display surface of the liquid crystal display device is the xy plane, the parallel light incident in the y-axis direction from the side surface of the light guide plate is converted into the x-axis by the first minute inclined reflection surface inclined in a terraced shape with respect to the yz plane. Convert to direction. An inclined reflecting surface with a minute step has a long radius of curvature on the liquid crystal panel side, and if it has a short conical shape on the opposite side, the luminous flux is expanded to a constant y-direction length regardless of the position of the second minute inclined reflecting surface. I can do it.
When the light beam converted in the x direction in the light guide plate is irradiated onto the second minute inclined reflection surface, the light beam is enlarged and reflected by the convex cylindrical total reflection surface to the liquid crystal panel in the substantially vertical direction. This convex cylindrical reflecting surface can make the light flux incident on the liquid crystal panel uniform by increasing the radius of curvature on the incident side and shortening the far side.
A light guide plate having this structure is suitable for a small liquid crystal display device such as a portable device because it can realize a uniform light flux density with one light emitting element. Since the luminous flux is expanded by the convex mirror, a diffusion sheet is unnecessary, and the front luminance can be increased efficiently. By setting the inclined reflection surface of the light guide plate to be greater than the critical angle, the vapor deposition process is unnecessary, and since only one light emitting element and the light guide plate are provided, the structure is simple and the ultimate low price can be realized.

スクリーンをxy平面としたとき、xz平面上の投影表示素子に対してy軸方向に透過する光を、軸方向がz軸の微小円筒凸面鏡あるいは微小円錐凸面鏡を投影光に平行な平面を交互に積層した棚田状構造の反射鏡を、yz平面に対してx方向に傾斜して設けることにより、微小円筒凸面鏡あるいは微小円錐凸面鏡で反射中心をx軸方向に変換して光束を拡大し、xy平面に対してz方向に傾斜して設けた棚田状構造の反射鏡の円筒凸面によってxy平面の鉛直方向にあるスクリーンに投影することを特徴とする背面投影装置である。
棚田状段数が少ない場合、xy反射鏡に照射される像面は台形状に歪曲され、棚田の下段ほどその傾向が顕著になる。スクリーンにおける表示画像が台形になると隙間あるいは重複が発生して表示性能を損なうので視覚的影響のない台形歪に棚田状段数を分割する必要がある。過度に分割数を上げると反射鏡の加工精度の制約があるため、表示性能と製造の双方を満足する範囲に選定する。
棚田状反射鏡を用いてリアプロジェクタを構成すると、横1000mm、縦560mmの画面寸法で、奥行は拡大率を10倍として被写表示素子の短辺寸法は56mmになる。他にスクリーンまでの空間約30mm、筐体の厚さを加えて奥行約100mmでリアプロジェクタを構成することが出来る。
When the screen is an xy plane, light that is transmitted in the y-axis direction with respect to the projection display element on the xz plane, and a plane that is parallel to the projection light is alternately passed through a micro-cylindrical convex mirror or micro-conical convex mirror whose axial direction is the z-axis. By providing the stacked terraced reflectors in the x-direction with respect to the yz plane, the reflection center is converted to the x-axis direction by the micro cylindrical convex mirror or the micro conical convex mirror to expand the light flux, and the xy plane Is projected onto a screen in the vertical direction of the xy plane by a cylindrical convex surface of a reflecting mirror having a terraced structure provided inclined in the z direction.
When the number of terraced terraces is small, the image plane irradiated to the xy reflector is distorted in a trapezoidal shape, and the tendency becomes more prominent in the lower terraces. If the display image on the screen becomes trapezoidal, gaps or overlaps occur and display performance is impaired. Therefore, it is necessary to divide the terraced terraces into trapezoidal distortions that have no visual influence. If the number of divisions is excessively increased, there is a limitation on the processing accuracy of the reflecting mirror.
When a rear projector is configured using a terraced reflector, the screen size is 1000 mm wide and 560 mm long, the depth is 10 times the magnification, and the short side dimension of the display element is 56 mm. In addition, the rear projector can be configured with a space of about 30 mm to the screen and a depth of about 100 mm by adding the thickness of the housing.

撮像装置の光源は面光源では光量の無駄が多いので線光源が多く使用されている。線光源は冷陰極管など幅の狭い素子が必要になる制約から波長特性が犠牲になっている。表示用は3原色のスペクトルが狭くとも加法混色が可能だが、撮像用光源の場合、波長が欠けていると情報が欠落して、正確な色再現は不可能である。3波長冷陰極管は各色の蛍光材料が線スペクトルであり、メタルハライドランプは高効率で、包絡線が白色光に近いハロゲン化物もあるが線スペクトルを多く含むので撮像用の光源には不適当である。キセノンランプはスペクトルの連続性が良いが、線スペクトルを含むのでフィルタにより6504Kに白色光化されている。白熱電球はプランクの放射則に準じたスペクトル特性を持っている。
プランクの放射則を単位体積あたりのエネルギーで表すと(非特許文献6)
h:プランク定数 6.626×10−34 Js
c:光速 2.9979×108 m/s
k:ボルツマン定数 1.3807×10−23 J/K
プランクの放射則はヴィーンの変位則とレイリー・ジーンズ則を融合発展したものである。プランクの分布曲線をλで微分して極大をとり、
と置いて
を図式解法で求めると図37のようにβ=4.965
になり、ピーク波長は
となって、ヴィーンの変位則に一致する。
単位立体角(sr)、単位波長幅(m)あたりの放射束を分光放射輝度Leで表すと(非特許文献7)、
基準白色光として6504Kが、写真では5500Kの昼色光が基準になっているので図38に放射則曲線を示す。物質の熱放射は格子振動などが寄与するので完全黒体によるプランクの放射則曲線、ヴィーンの変位則とはかなり異なっている。完全黒体の2800Kにおけるヴィーンの変位則によるピーク波長は1035nmになるが、実際のタングステンフィラメントは温度2800Kで約400nmにピークがあり(非特許文献7)、黒体との比は約0.4である。フィラメント温度が高くなるほど寿命が短くなるため、通常の白熱電球は色温度を約2800Kに設定されている。
プランクの放射則分布式を可視光波長幅で定積分して全積分で割ると可視光の効率が求められ、2800Kでは可視光が7%、赤外光が93%である。この他に封入ガスの対流伝熱などがあるあるので更に効率が低くなる。
As the light source of the image pickup device, a surface light source has a lot of wasted light, so that a linear light source is often used. Wavelength characteristics are sacrificed due to the restriction that a line light source requires a narrow element such as a cold cathode tube. For display, additive color mixing is possible even if the spectrum of the three primary colors is narrow, but in the case of an imaging light source, if the wavelength is missing, information is lost and accurate color reproduction is impossible. In the three-wavelength cold cathode fluorescent lamps, each color fluorescent material has a line spectrum, and metal halide lamps are highly efficient. Some envelopes have halides close to white light, but they contain many line spectra, so they are not suitable for imaging light sources. is there. The xenon lamp has good spectral continuity, but since it contains a line spectrum, it is converted to white light at 6504K by a filter. Incandescent light bulbs have spectral characteristics in accordance with Planck's radiation law.
Expressing Planck's radiation law in terms of energy per unit volume (Non-patent Document 6)
h: Planck's constant 6.626 × 10−34 Js
c: speed of light 2.999 × 10 8 m / s
k: Boltzmann constant 1.3807 × 10−23 J / K
Planck's radiation law is a fusion of Vinne's displacement law and Rayleigh-Jeans law. The plank distribution curve is differentiated by λ to obtain the maximum,
And put
Is obtained by a graphical solution, β = 4.965 as shown in FIG.
And the peak wavelength is
And agrees with Vinne's displacement law.
When the radiant flux per unit solid angle (sr) and unit wavelength width (m) is expressed by spectral radiance Le (Non-Patent Document 7),
Since the reference white light is 6504K and the photograph is 5500K daylight, the radiation law curve is shown in FIG. Since the material's thermal radiation contributes to lattice vibrations, it is quite different from Planck's radiation law curve, which is completely blackbody, and Vin's displacement law. The peak wavelength according to Vinne's displacement law at 2800 K for a complete black body is 1035 nm, but the actual tungsten filament has a peak at about 400 nm at a temperature of 2800 K (Non-patent Document 7), and the ratio to the black body is about 0.4. It is. Since the lifetime becomes shorter as the filament temperature increases, the color temperature of a normal incandescent bulb is set to about 2800K.
When the Planck's radiation law distribution equation is definitely integrated by the visible light wavelength width and divided by the total integral, the efficiency of visible light is obtained. At 2800 K, the visible light is 7% and the infrared light is 93%. In addition, since the convection heat transfer of the sealed gas is present, the efficiency is further lowered.

青色発光ダイオードの青色光を黄色蛍光体に照射して補色によって白色光化された白色発光ダイオードが多く使用されているが、青が尖鋭なスペクトルを持ち、赤色域などが不足している。蛍光体による波長変換のため蛍光体の配合比によって青の吸収が大きく変わり、指向性による色度斑を生じるなどの問題がある(非特許文献12)。赤、緑、青の3色の発光ダイオードを同一パッケージに収納したものはスペクトルが不連続なので表示用である。
発光ダイオードの光度がピークの約半値になる半値幅は20nm〜60nmのため(非特許文献8〜10)、6色〜9色を用いると可視光域をカバー出来る。7色の発光ダイオードで5500Kの白色光を形成した分光特性を図39に示す。3元化合物、4元化合物発光ダイオードは化合物の組成比によって格子定数、エネルギーギャップが変化するため(非特許文献11)、組成ばらつき、量子井戸層厚ばらつきなどにより、発光波長特性はガウス分布曲線である。ガウス分布曲線の傾斜部は非直線なので各色の半値波長で繋げたとき、約5%のうねりを持った曲線になる。線スペクトルの光源に比べるとうねりは非常に小さいが、うねりの凸部を吸収すれば滑らかな曲線を得ることが出来る。うねりはガウス分布曲線の裾の波長成分が隣接するピーク波長に重畳するために起こるので曲線の裾の部分を吸収する方法が考えられる。有機色素は光子によってπ電子振動に共鳴吸収されて吸収波長の補色に呈色する現象と考えられ、発光域の外側に吸収ピークを持たせて発光スペクトルの裾を吸収すればうねりの凸部を抑制出来る。
薄膜による干渉フィルタは遮断特性が急峻なので発光ダイオードの裾の波長に遮断波長を合わせると滑らかな曲線を得ることが可能である。
色素の吸収波長を発光ダイオードのピーク波長に一致させると、吸収曲線もガウス分布のため平坦化することが出来る。例えば526〜530nmに吸収を持つ色素はテトラフェニルフタロシアニンマンガン錯体など100種類ほど知られているが、これを発光波長528nmの発光ダイオードの透光物質層にうねりを抑制する程度に色素添加して滑らかな曲線を実現することが出来る。波長毎に多数の色素が知られており、発光波長に合わせて適宜選択することで、各発光ダイオードのピークを緩和することが出来る。
多色発光ダイオードによる白色光の放射曲線は赤外光、紫外光を含まないので高効率で、紫外線損傷を起こさない利点もあり、美術品、文化財の展示などに適している。この平行光をビームコンプレッサに入射して線光源変換導光棒の光束幅で入射することが出来る。
Many white light emitting diodes are used which are made to emit white light by complementary color by irradiating yellow phosphor with blue light from blue light emitting diodes, but blue has a sharp spectrum and lacks the red region. Due to the wavelength conversion by the phosphor, there is a problem that blue absorption varies greatly depending on the blending ratio of the phosphor, and chromaticity spots are caused by directivity (Non-patent Document 12). A red, green and blue light emitting diode housed in the same package is for display because the spectrum is discontinuous.
Since the full width at half maximum at which the luminous intensity of the light emitting diode is about half the peak is 20 nm to 60 nm (Non-Patent Documents 8 to 10), the visible light region can be covered by using 6 to 9 colors. FIG. 39 shows spectral characteristics obtained when white light of 5500 K is formed by seven color light emitting diodes. Since the ternary compound and quaternary compound light-emitting diodes change the lattice constant and energy gap depending on the composition ratio of the compound (Non-patent Document 11), the emission wavelength characteristics are expressed by a Gaussian distribution curve due to composition variation, quantum well layer thickness variation, and the like. is there. Since the slope of the Gaussian distribution curve is non-linear, it becomes a curve with a swell of about 5% when connected at the half-value wavelength of each color. Although the undulation is very small compared to the light source of the line spectrum, a smooth curve can be obtained by absorbing the convex portion of the undulation. Since undulation occurs because the wavelength component at the bottom of the Gaussian distribution curve is superimposed on the adjacent peak wavelength, a method of absorbing the bottom of the curve can be considered. Organic dyes are considered to be a phenomenon in which photons are resonantly absorbed by π-electron vibrations and have a complementary color of the absorption wavelength. If the bottom of the emission spectrum is absorbed by having an absorption peak outside the emission region, the undulations of the undulations are formed. Can be suppressed.
Since the interference filter using a thin film has a sharp cutoff characteristic, a smooth curve can be obtained by matching the cutoff wavelength to the wavelength at the bottom of the light emitting diode.
When the absorption wavelength of the dye is matched with the peak wavelength of the light emitting diode, the absorption curve can be flattened because of the Gaussian distribution. For example, about 100 kinds of dyes having absorption at 526 to 530 nm are known, such as tetraphenylphthalocyanine manganese complex, and the dye is added to the light-transmitting material layer of the light-emitting diode having a light emission wavelength of 528 nm to suppress the swell. A simple curve can be realized. A large number of dyes are known for each wavelength, and the peak of each light emitting diode can be relaxed by selecting appropriately according to the emission wavelength.
The emission curve of white light by a multicolor light emitting diode is highly efficient because it does not include infrared light and ultraviolet light, and has the advantage of not causing ultraviolet damage, and is suitable for exhibitions of arts and cultural properties. This parallel light can enter the beam compressor and enter with the light flux width of the linear light source conversion light guide rod.

発光素子チップを密集して並べ、加法混色して長焦点の反射鏡の焦点に設けると白色光として反射することが出来る。ダイクロイックプリズムによる混色方法は屈折方向、反射方向の光線の方向を一致させて合成することが出来るので屈折率、反射率に応じて光源の光量を調節することで精密に制御できるが(特許文献11)、寸法が大きくなり高価である。光散乱方式は同一方向に合成されるわけではないが、散乱方向に色依存性がなければ方向の不一致を認識できなくなって均一な混色になる。
3色発光素子を同一パッケージにチップを正三角形に配置する方法が行なわれている(非特許文献9)。透明樹脂パッケージのみでは色むらが大きくなるため拡散材を透光樹脂に混入されているが、光源に近い部分で乱反射を起こすために光源近辺の色が強く出ている。これを緩和するために光散乱層を厚くし、拡散材を多量に混入すると、吸収が増えて効率が低下する。青色発光ダイオードと黄色蛍光体による白色発光ダイオードは発光素子の指向性と蛍光体の指向性が異なるために見る方向によって色合いが異なっている。
本発明による混色方法について説明する。
7色の発光ダイオードチップを図41(1)のように配置したとき、A−A’における断面では図41(2)のように3色の発光ダイオードで動作を表すことが出来る。3色の発光ダイオードの指向性は等しいものとし、簡単のために各発光ダイオードの光度は等しく、求める光度波長特性は平坦として説明する。
基板に直線的に並べた3色の発光ダイオードチップの鉛直方向から角度θ1の方向に進む3本の平行光線が凸レンズ面を出射すると、直線上の3色は焦点面上のf1に焦点を結ぶ(非特許文献13)。各色の光源から焦点までの光路長はスネル則により等しいため光源の光度に比例した合成光になる。直線上の3点のみならず、平面上の各光源からの平行光線θxはfxに焦点を結ぶため、全ての平行光線は球面上に焦点を結ぶ。非特許文献13に光軸に傾斜した平行光の焦点面の図が示されている。レンズの屈折率をn1、空気の屈折率をn2、レンズ内の光路長をd1x、空気中の光路長をd2xとすると、
による焦点面の曲線を図40に示す。焦点面に図42のような拡散材層を設けると各色が合成されて拡散するので白色光として放射される。拡散材は焦点面付近の薄い層なので吸収を抑制して効果的に拡散できる。微小拡散材は白色顔料のような反射材よりも透明な屈折材料の方が光源方向に戻りが少なく透過率が高くなる。気泡の場合に最も屈折率比が大きく、気泡の側面に照射された光の全反射によって吸収を抑制して散乱効果が大きくとることが出来る。拡散材層は直進光線成分を制限する目的のため凹凸表面による粗面拡散でも可能である。
When the light emitting element chips are arranged closely and are additively mixed and provided at the focal point of a long focal reflector, it can be reflected as white light. The color mixing method using the dichroic prism can be synthesized by matching the direction of the light beam in the refraction direction and the reflection direction, so that it can be precisely controlled by adjusting the light amount of the light source according to the refractive index and the reflectance (Patent Document 11). ), Which increases the size and is expensive. The light scattering method is not synthesized in the same direction, but if there is no color dependence in the scattering direction, it becomes impossible to recognize the direction mismatch and uniform color mixing.
A method of arranging three-color light emitting elements in the same package and arranging the chips in an equilateral triangle has been carried out (Non-patent Document 9). In the case of only the transparent resin package, the color unevenness increases, so that the diffusing material is mixed in the translucent resin. However, the color near the light source is strong because it causes irregular reflection near the light source. In order to alleviate this, if the light scattering layer is made thick and a large amount of a diffusing material is mixed, absorption increases and efficiency decreases. The blue light emitting diode and the white light emitting diode made of yellow phosphor have different colors depending on the viewing direction because the directivity of the light emitting element and the directivity of the phosphor are different.
The color mixing method according to the present invention will be described.
When seven color light emitting diode chips are arranged as shown in FIG. 41 (1), the cross section taken along the line AA 'can be expressed by the operation of the three color light emitting diodes as shown in FIG. 41 (2). It is assumed that the directivity of the light emitting diodes of the three colors is equal, and for the sake of simplicity, the light intensity of each light emitting diode is equal, and the desired light intensity wavelength characteristic is flat.
When three parallel light beams traveling in the direction of the angle θ1 from the vertical direction of the three-color light emitting diode chips arranged linearly on the substrate are emitted from the convex lens surface, the three colors on the straight line are focused on f1 on the focal plane. (Non-patent document 13). Since the optical path length from the light source of each color to the focal point is equal according to Snell's law, the combined light is proportional to the light intensity of the light source. Since not only three points on the straight line but also the parallel rays θx from the respective light sources on the plane focus on fx, all the parallel rays focus on the spherical surface. Non-Patent Document 13 shows a view of the focal plane of parallel light inclined with respect to the optical axis. If the refractive index of the lens is n1, the refractive index of air is n2, the optical path length in the lens is d1x, and the optical path length in air is d2x,
FIG. 40 shows a focal plane curve. When a diffusing material layer as shown in FIG. 42 is provided on the focal plane, the colors are combined and diffused, and are emitted as white light. Since the diffusing material is a thin layer near the focal plane, it can effectively diffuse while suppressing absorption. A transparent refracting material is less likely to return to the light source direction and has a higher transmittance than a reflecting material such as a white pigment. In the case of bubbles, the refractive index ratio is the largest, and absorption can be suppressed by the total reflection of light irradiated on the side surfaces of the bubbles, thereby obtaining a large scattering effect. The diffuser layer can be rough diffused by an uneven surface for the purpose of limiting the linear light component.

反射鏡によっても拡散材層に焦点面を形成することが可能である。
反射鏡の場合は、各光源からの直接光が光拡散層に入射する経路と反射鏡を経由する経路の2つがある。直接光は各光源から光拡散部までの距離の2乗に反比例するため、光源の並びに従って着色しやすくなる。光拡散層までの半径を大きくすると均一化は出来るがレンズによる方法に比べて大きくなる。反射鏡を茶碗形、あるいは円錐形にすると43(1)のように周辺部の光束を補う作用があるが、周辺部の着色を強める作用も持っている。
これに対して、図43(2)のように開口部付近をワイングラスのように先をすぼめると反射方向を発光ダイオードの光軸を越えた位置に収束することが出来る。反射鏡を経由する光は鏡像によって距離が逆転するので光源の並びと逆の着色である。2つの経路の光を混色すると優勢同士で打ち消し合い、光拡散層全体が色むらのない状態を実現できる。図では直接光に比べて反射光は距離が長く、強度が小さくなっているが、反射面は円周にわたって広いため直接光と同じ光量にすることが出来る。
It is possible to form a focal plane in the diffusing material layer also by a reflecting mirror.
In the case of a reflecting mirror, there are two paths: a path through which direct light from each light source enters the light diffusion layer and a path through the reflecting mirror. Since direct light is inversely proportional to the square of the distance from each light source to the light diffusing section, it becomes easy to color according to the arrangement of the light sources. If the radius to the light diffusion layer is increased, it can be made uniform, but it becomes larger than the method using a lens. When the reflecting mirror is made into a bowl shape or a cone shape, there is an effect of supplementing the light flux in the peripheral portion as shown in 43 (1), but it also has an effect of enhancing the coloring in the peripheral portion.
On the other hand, as shown in FIG. 43 (2), if the tip of the opening is shrunk like a wine glass, the reflection direction can be converged to a position beyond the optical axis of the light emitting diode. The light passing through the reflecting mirror is colored opposite to the arrangement of the light sources because the distance is reversed by the mirror image. When the light of the two paths is mixed, the dominances cancel each other out, and the entire light diffusion layer can be realized with no color unevenness. In the figure, the reflected light has a longer distance and a lower intensity than the direct light, but since the reflecting surface is wide over the circumference, it can have the same amount of light as the direct light.

レンズを用いて焦点面に混色する方法は屈折率により焦点を短縮化出来るが、周辺光は臨界角以上では基板側に全反射して迷光になる。
反射鏡による方法は直接光の混色のため各光源からの距離が近似する必要があり、光軸方向に長くなる。これらを組み合わせるには、レンズにおける臨界角以上の範囲を反射鏡に照射する形状として小型化と高効率を実現することが出来る。
The method of mixing colors on the focal plane using a lens can shorten the focal point by the refractive index, but the ambient light is totally reflected to the substrate side and becomes stray light at a critical angle or more.
In the method using a reflecting mirror, the distance from each light source needs to be approximated because of direct color mixing, and the length becomes longer in the optical axis direction. In order to combine these, it is possible to realize a reduction in size and high efficiency as a shape in which the range beyond the critical angle of the lens is irradiated to the reflecting mirror.

棒状導光物質の軸方向の一端から入射した平行光を側面に光束密度の均一な平行光を出射する線光源に変換する素子である。出射面の対向側に棚田状に設けた放物面筒、あるいは円筒による界面で全反射し、焦点位置を共通にする正屈折率面で平行光に変換するビームエクスパンダを変換要素とするものである。この要素を導光棒の幅に応じた曲率半径で長軸方向に階層的に設けることにより、光束密度の均一な平行光を線光源として出射することを特徴とする線光源変換導光棒である。   It is an element that converts parallel light incident from one end in the axial direction of the rod-shaped light guide material into a linear light source that emits parallel light with uniform light flux density on the side surface. A parabolic cylinder provided in a terraced shape on the opposite side of the exit surface, or a beam expander that converts to parallel light on a positive refractive index surface that shares the focal position with total reflection at the interface of the cylinder, and has a conversion element It is. A linear light source conversion light guide rod characterized by emitting parallel light with a uniform light flux density as a linear light source by providing this element hierarchically in the major axis direction with a radius of curvature corresponding to the width of the light guide rod. is there.

液晶板の対向基板は透明電極、カラーフィルタを搭載するために耐熱、耐薬品性などからガラス板を多く採用されている。横電界方式では対向基板に透明電極が存在せず(特許文献16など)、カラーフィルタを持たない対向基板は製造工程で高温に曝されることがないので高分子材料による液晶挟持基板を採用しやすくなる。液晶挟持基板にストライプ分配機能を盛り込むことにより工程が短縮される。
液晶を挟持する基板とストライプ分配導光板を兼用した場合、偏光板により偏光された後にストライプ分配導光板に入射するので低複屈折率の必要がある。ポリメチルメタクリレートは複屈折率が小さいが、親水基を持つので吸湿により寸法安定性が悪化する。メチルメタクリレート共重合体はメタクリル酸の−O−、=O 酸素原子が水素結合することによる親水性と考えられる(非特許文献14)。吸水性対策としてシクロヘキシルメタクリレートなどの疎水性モノマーとの共重合により吸水率の改善が知られている(非特許文献15)。エーテル結合、カーボネート結合は主鎖に−O−を持ち、メチルメタクリレート共重合体は側鎖に持つためポリカーボネートに比べて水素結合の影響が大きくなっている。このため脂環式アクリル樹脂は複屈折率が小さいが、メチルメタクリレートモノマーのモル分率に比例した吸水率になっている(非特許文献15)。低複屈折率化する手法として分極方向が反対のモノマーを共重合して複屈折の殆どない脂環式アクリル樹脂などが開発されている(非特許文献15、非特許文献16、特許文献20、特許文献21)。
ポリオレフィンは疎水性のためエチレンと環状オレフィンを共重合した環状ポリオレフィンは0.01%以下の低吸水率を実現している。複屈折率はポリメチルメタクリレートと同等な低い特性が報告されている(特許文献22、非特許文献15)。
透光性高分子は透明性を維持して複屈折率、吸水率などをバランス良く持つことが重要になっている。
光束を拡大する機構は、液晶注入時の圧力を受けるので光源導光板側に凹レンズを設ける方が安定である。透過反射分別部で反射した光を液晶側に反射する反射鏡を凸面鏡にすることにより実現できる。
As the counter substrate of the liquid crystal plate, a glass plate is often used because of its heat resistance and chemical resistance for mounting a transparent electrode and a color filter. In the horizontal electric field method, there is no transparent electrode on the counter substrate (Patent Document 16, etc.), and the counter substrate without a color filter is not exposed to high temperatures in the manufacturing process. It becomes easy. By incorporating a stripe distribution function into the liquid crystal sandwich substrate, the process is shortened.
When the substrate for sandwiching the liquid crystal and the stripe distribution light guide plate are used together, they need to have a low birefringence because they are incident on the stripe distribution light guide plate after being polarized by the polarizing plate. Polymethylmethacrylate has a small birefringence, but has a hydrophilic group, so that the dimensional stability deteriorates due to moisture absorption. The methyl methacrylate copolymer is considered to be hydrophilic due to hydrogen bonding of —O— and ═O 2 oxygen atoms of methacrylic acid (Non-patent Document 14). As a water absorption measure, improvement of water absorption is known by copolymerization with a hydrophobic monomer such as cyclohexyl methacrylate (Non-patent Document 15). Since the ether bond and carbonate bond have —O— in the main chain, and the methyl methacrylate copolymer has in the side chain, the influence of hydrogen bonds is greater than that of polycarbonate. For this reason, the alicyclic acrylic resin has a small birefringence, but has a water absorption ratio proportional to the molar fraction of the methyl methacrylate monomer (Non-patent Document 15). As a technique for reducing the birefringence, alicyclic acrylic resins having little birefringence have been developed by copolymerizing monomers having opposite polarization directions (Non-Patent Document 15, Non-Patent Document 16, Patent Document 20, Patent Document 21).
Since polyolefin is hydrophobic, cyclic polyolefin obtained by copolymerizing ethylene and cyclic olefin achieves a low water absorption of 0.01% or less. It has been reported that the birefringence is as low as that of polymethyl methacrylate (Patent Document 22, Non-Patent Document 15).
It is important for the light-transmitting polymer to maintain transparency and to have a good balance of birefringence and water absorption.
Since the mechanism for expanding the luminous flux receives pressure during liquid crystal injection, it is more stable to provide a concave lens on the light source light guide plate side. This can be realized by using a convex mirror as the reflecting mirror that reflects the light reflected by the transmitting / reflecting classification unit to the liquid crystal side.

・カラーフィルタによる損失がないので液晶装置としての透過効率を3倍に向上出来る。
・導光板開口部にレンズを設けてサブ画素寸法に光束を拡大することによりブラックマトリクスで生じていた開口率の低下を回避出来る。
・平行光による輝度の均一な導光板を構成できる。
・製造工程が多く高コストなカラーフィルタを削減してコスト削減出来る。
・放物面鏡の光束密度むらを導光板の段差で定量的に補償することが出来る。
・バックライトシステムの試作評価試験を短期間に効率よく設計出来る。
・光束密度が均一な平行光線による導光板を構成することが出来、段差が一定な導光板構成で均一な輝度を実現できる。
・発光ダイオードの発色特性を再現可能になる。
・プリズムシートが不要であるためコスト削減出来る。
・導光板背後の反射シートが不要になるためコスト削減出来る
・直下式バックライトで発生しやすい管むらを拡散シートによる吸収を伴わずに効率良く輝度の均一化が出来る。
・薄型で輝度むらのない直下式のバックライトを構成することが出来る。
・光束密度が均一な平行光線、拡散、収束光線を得ることが出来、均一輝度のプロジェクタを構成することが出来る。
・拡散光を含まない構成が可能なので、前照灯、スポットライト、サーチライトなど不要範囲を照射せずに効率良く照射することが出来る。
・携帯電話液晶装置に輝度むらのない平行光線を発光素子1個で供給することが出来る。
・発光素子1個と導光板のみの最もシンプルな構成なので究極的な低価格を達成できる。
・薄型のリアプロジェクタを構成することが出来る。
・小型、低収差のビームエクスパンダ/コンプレッサを容易に製造することが出来る。
・色むらのない白色光源を安価に構成することが出来る。
・連続スペクトルの白色光源を得ることが出来る。
・色温度設定が容易な白色光源のため目的に応じた演色効果を得ることが出来る。
・高効率な白色光源を得ることが出来る。
・紫外線を含まない白色光源のため美術品、文化財などの照明に適している。
・赤外線を含まない白色光源のため赤外線による温度上昇を回避できる。
・連続スペクトルの白色光線と線光源に変換する導光棒によって高効率なスキャナー線光源を得ることが出来る。
・高分子分散液晶は平行光線が必要条件だが本方式による平行光線で採用可能になり、偏光板による効率約45%の低下を回避することが出来る。
・平行光線バックライトによって高分子分散液晶による広視野角特性を実現出来る。
・垂直配向液晶のプレチルト方向に合わせた光線方向によって高コントラストを実現出来る。
-Since there is no loss due to the color filter, the transmission efficiency as a liquid crystal device can be improved three times.
A reduction in the aperture ratio that has occurred in the black matrix can be avoided by providing a lens at the opening of the light guide plate and enlarging the luminous flux to the sub-pixel size.
-A light guide plate with uniform brightness by parallel light can be configured.
-Costs can be reduced by eliminating expensive color filters with many manufacturing processes.
-The unevenness of the beam density of the parabolic mirror can be compensated quantitatively by the step of the light guide plate.
・ Easy to design prototype evaluation test of backlight system in a short time.
A light guide plate with parallel light beams having a uniform luminous flux density can be formed, and uniform brightness can be realized with a light guide plate configuration having a constant step.
-The color development characteristics of the light emitting diode can be reproduced.
-Cost can be reduced because no prism sheet is required.
-Costs can be reduced because a reflection sheet behind the light guide plate is not required.-Brightness can be made uniform efficiently without absorption by the diffusion sheet of tube unevenness that is likely to occur in direct type backlights.
・ Thin, it is possible to construct a direct type backlight without uneven brightness.
A parallel light beam, a diffused light beam, and a convergent light beam with a uniform light flux density can be obtained, and a projector having a uniform luminance can be configured.
・ Because a configuration that does not include diffused light is possible, it is possible to irradiate efficiently without irradiating unnecessary areas such as headlamps, spotlights, and searchlights.
・ It is possible to supply a parallel light beam with uniform brightness to a mobile phone LCD with a single light emitting element.
-Since it is the simplest configuration with only one light emitting element and a light guide plate, the ultimate low price can be achieved.
-A thin rear projector can be configured.
・ Small and low aberration beam expander / compressor can be easily manufactured.
-A white light source with no color unevenness can be constructed at low cost.
・ A continuous spectrum white light source can be obtained.
-A white light source that can be easily set in color temperature, so that a color rendering effect can be obtained according to the purpose.
・ Highly efficient white light source can be obtained.
・ Suitable for lighting art and cultural assets because of white light source that does not contain ultraviolet rays.
・ Because it is a white light source that does not contain infrared rays, temperature rise due to infrared rays can be avoided.
-A highly efficient scanner line light source can be obtained by a light guide rod that converts white light of a continuous spectrum and a line light source.
・ Parallel light is necessary for polymer-dispersed liquid crystal, but it can be used with parallel light according to this method, and a decrease of about 45% in efficiency due to the polarizing plate can be avoided.
・ A wide viewing angle characteristic of polymer dispersed liquid crystal can be realized by a parallel light backlight.
・ High contrast can be realized by the direction of light beam in line with the pretilt direction of vertically aligned liquid crystal.

本発明の実施の形態を対角510mm(20.1型)、XGA( 1024×768)、サイドライトの例で図2などと共に説明する。
画面寸法は横408mm、縦306mm、画素ピッチ399μm、サブ画素ピッチ133μmである。
光源から平行光を供給し、棚田状断面の導光板の傾斜部に凸反射面を設けたものである。
ストライプ方向に分配する導光板は反射鏡と透過部を設けた厚さ0.58mmの高分子シートである。
An embodiment of the present invention will be described with reference to FIG.
The screen dimensions are 408 mm wide, 306 mm long, pixel pitch 399 μm, and sub-pixel pitch 133 μm.
Parallel light is supplied from a light source, and a convex reflection surface is provided on an inclined portion of a light guide plate having a terraced cross section.
The light guide plate distributed in the stripe direction is a polymer sheet having a thickness of 0.58 mm provided with a reflecting mirror and a transmission part.

光源より平行光を供給し、ストライプ方向に直交する積層導光板は遮光層として空気層による全反射方式とした各色1.6mm幅、192本で構成するように射出圧縮成型したものである。高輝度化と均一化を図るため両サイドに光源を配置する2灯構成としている。透明材料としてメタクリル酸樹脂、脂環式アクリル樹脂、環状オレフィン樹脂、ポリカーボネート、ポリスチレン、スチレン−アクリロニトリル共重合樹脂、紫外線硬化アクリル樹脂などが可能である。
遮光層は溝を設けて透明材料より屈折率の低い空気による全反射を利用したものである。
液晶側に対向する反射面側は円筒凸反射面512個を均等ピッチで配置した棚田状構造のものである。導光板の棚田状段差が画素寸法より小さいために画素寸法に拡大するための凸反射面は、光源からの平行光線をほぼ鉛直方向にある液晶の画素に向けて反射するもので、この凸反射面は全反射臨界角以上に傾斜することにより反射層を形成する必要がなく製造費用削減が可能である。放物面鏡の光束密度は光軸からの距離依存性があるため光軸から遠い導光板底面側の段差を大きくして輝度を均一化している。
The laminated light guide plate that supplies parallel light from the light source and is orthogonal to the stripe direction is injection-compression-molded so as to be composed of 192 each color having a width of 1.6 mm and a total reflection system using an air layer as a light shielding layer. In order to achieve high brightness and uniformity, a two-light configuration is adopted in which light sources are arranged on both sides. As the transparent material, methacrylic acid resin, alicyclic acrylic resin, cyclic olefin resin, polycarbonate, polystyrene, styrene-acrylonitrile copolymer resin, ultraviolet curable acrylic resin, and the like are possible.
The light shielding layer is provided with a groove and utilizes total reflection by air having a refractive index lower than that of the transparent material.
The reflective surface side facing the liquid crystal side has a terraced structure in which 512 cylindrical convex reflective surfaces are arranged at an equal pitch. Since the terraced step of the light guide plate is smaller than the pixel size, the convex reflection surface for enlarging the pixel size reflects parallel light rays from the light source toward the liquid crystal pixels in the substantially vertical direction. By inclining the surface beyond the total reflection critical angle, it is not necessary to form a reflective layer, and manufacturing costs can be reduced. Since the light beam density of the parabolic mirror has a distance dependency from the optical axis, the step on the bottom surface side of the light guide plate far from the optical axis is increased to make the luminance uniform.

ストライプ分配導光板は両面に傾斜した反射鏡の面精度が要求されるため、流動性が良く精密成型に適した環状オレフィン樹脂、ポリカーボネート、紫外線硬化アクリル樹脂などの他、高透明度、低複屈折率の高流動性ポリメチルメタクリレートなども可能である。
シートは厚さ0.58mmで、液晶側、積層導光板側に反射鏡用の傾斜面を熱圧縮成型し、反射鏡部分を蒸着したものである。
透過部開口率を1/3に低下させているので平行光のままでは光効率が1/3に低下してしまう。このため、図4のように開口部に凹レンズを設けてサブ画素寸法に光束を拡大して損失を防止している。光束拡大方式により液晶層のブラックマトリクスの開口率約60%による効率低下も回避することが出来る。カラーフィルタの透過効率約30%以下を回避でき、光束拡大によって開口率の影響を回避する手段の双方の効果で約5倍に光透過効率を改善することが出来る。
Since the stripe distribution light guide plate requires the surface accuracy of the reflecting mirror tilted on both sides, it has high fluidity and low birefringence in addition to cyclic olefin resin, polycarbonate, UV curable acrylic resin, etc. that have good fluidity and are suitable for precision molding High fluidity polymethylmethacrylate and the like are also possible.
The sheet has a thickness of 0.58 mm, and is formed by heat-pressing an inclined surface for the reflecting mirror on the liquid crystal side and the laminated light guide plate side, and depositing the reflecting mirror portion.
Since the aperture ratio of the transmission part is reduced to 1/3, the light efficiency is reduced to 1/3 with the parallel light. For this reason, as shown in FIG. 4, a concave lens is provided at the opening to expand the luminous flux to the sub-pixel size to prevent loss. Efficiency reduction due to the aperture ratio of about 60% of the black matrix of the liquid crystal layer can be avoided by the light beam expansion method. The transmission efficiency of the color filter can be avoided by about 30% or less, and the light transmission efficiency can be improved about 5 times by the effect of both means for avoiding the influence of the aperture ratio by expanding the luminous flux.

光源として発光ダイオードを各色とも64個を積層導光板光源部の厚さ方向、幅方向ともに放物面鏡の焦点に赤、緑、青の順に交互に配置する。発光ダイオードは図2(2)のように放物面鏡の反射光を遮らない位置にオフセットしている。この実施例では光度250mcdの発光ダイオード各色64個を両サイドに配置することにより、光透過率40%のとき輝度307cd/m2 が得られる。   64 light emitting diodes for each color as light sources are alternately arranged in the order of red, green, and blue at the focal point of the parabolic mirror in the thickness direction and width direction of the laminated light guide plate light source section. The light emitting diode is offset to a position that does not block the reflected light of the parabolic mirror as shown in FIG. In this embodiment, by arranging 64 light emitting diodes each having a luminous intensity of 250 mcd on both sides, a luminance of 307 cd / m 2 can be obtained when the light transmittance is 40%.

3波長冷陰極管を直下照明型に適用した多灯方式の例について図21などを用いて説明する。
冷陰極管を光束分布均一化凹面鏡の焦線に設け、冷陰極管の前方には開口付遮光体を設けて、直接光を制限して管むらの発生を防止し、開口付遮光体は反射材で構成して凹面鏡方向に反射することにより光利用効率を高めている。開口孔を透過した拡散光、および凹面鏡で光束密度を均一化するための非平行光は凸屈折面に入射して平行光に戻している。
45°の反射面で導光板面方向に反射された平行光は棚田状に構成した臨界角以上の傾斜面によって液晶方向に反射される。光源部が光束密度を補正しているので傾斜面の寸法は導光板の位置によらず一定である。
図21の構成を両端に設ければ2灯式になる。図22〜図24の方式は直上部を照明出来るため中間部に用いて多灯化が可能なため大画面に適している。図21と併用することも出来る。
An example of a multi-lamp system in which a three-wavelength cold cathode tube is applied to a direct illumination type will be described with reference to FIG.
A cold-cathode tube is provided at the focal line of the concave mirror that equalizes the luminous flux distribution, and a light-shielding body with an aperture is provided in front of the cold-cathode tube to limit direct light to prevent tube irregularities. The efficiency of light utilization is enhanced by using a material and reflecting in the direction of the concave mirror. Diffused light transmitted through the aperture and non-parallel light for making the light beam density uniform by the concave mirror enter the convex refractive surface and return to parallel light.
The parallel light reflected in the direction of the light guide plate by the 45 ° reflecting surface is reflected in the liquid crystal direction by an inclined surface having a terraced shape and having a critical angle or more. Since the light source unit corrects the light flux density, the dimension of the inclined surface is constant regardless of the position of the light guide plate.
If the structure of FIG. 21 is provided at both ends, a two-lamp type is obtained. 22 to 24 are suitable for a large screen because the upper part can be illuminated and can be used in an intermediate part to increase the number of lamps. It can also be used in combination with FIG.

積層導光板、ストライプ分配導光板、3色の冷陰極管を直下照明型に適用した例について図26を用いて説明する。
3色の光源部はそれぞれ、冷陰極管を光束分布均一化凹面鏡の焦線に設け、冷陰極管の前方には開口付遮光体を設けて、直接光を制限して管むらの発生を防止している。開口付遮光体を反射材として凹面鏡方向に反射することにより光利用効率を高め、開口孔による拡散光、および凹面鏡で光束密度を均一化するための拡散光は導光板の正焦点距離屈折面に入射して平行光に戻している。
3色の平行光はビームコンプレッサで1/3に集光し、各色をずらして冷陰極管の色に対応する積層導光板の透光層に入射する。透光層は各色64本のため、64個のビームコンプレッサアレイを設けている。ビームコンプレッサは凹面鏡と凸面鏡による方式が小型化可能である。フレネルメニスカスレンズによるビームコンプレッサは台形状のため成型が容易である。
積層導光板はビームコンプレッサ直上部に三角柱状の傾斜反射面を構成して平面方向に反射し、棚田状に配置された円筒凸面でストライプ分配導光板の入射部に向けて全反射する。三角柱状に囲まれた部分の照明は、図23の構成と同様であり、先端に設けた開口部から入射し、棚田状傾斜面で全反射して三角柱状の傾斜反射面の上側に反射する。傾斜反射面上側も反射鏡のため、直上部に反射してストライプ分配導光板に入射する。開口部直上部には棚田状傾斜面が設けられるので影の部分が発生する。このため影の部分に入射する経路を設けている。
ストライプ分配導光板以降は実施例1と同様である。
An example in which a laminated light guide plate, a stripe distribution light guide plate, and a three-color cold cathode tube are applied to a direct illumination type will be described with reference to FIG.
Each of the three color light source units is equipped with a cold-cathode tube at the focal line of a concave mirror that equalizes the luminous flux distribution, and a light-shielding body with an aperture is provided in front of the cold-cathode tube to limit direct light and prevent tube unevenness. is doing. Reflecting the light shield with aperture in the direction of the concave mirror as a reflector, the diffused light from the aperture hole and the diffused light to equalize the light flux density with the concave mirror are reflected on the refractive index surface of the light guide plate. Incident light is returned to parallel light.
The parallel light of the three colors is condensed to 1/3 by a beam compressor, and each color is shifted and incident on the light-transmitting layer of the laminated light guide plate corresponding to the color of the cold cathode tube. Since there are 64 translucent layers for each color, 64 beam compressor arrays are provided. The beam compressor can be downsized using a concave mirror and a convex mirror. A beam compressor using a Fresnel meniscus lens is trapezoidal and is easy to mold.
The laminated light guide plate forms a triangular prism-like inclined reflecting surface directly above the beam compressor and reflects it in the plane direction, and is totally reflected toward the incident portion of the stripe distribution light guide plate by a cylindrical convex surface arranged in a terraced shape. The illumination of the portion surrounded by the triangular prism shape is the same as the configuration of FIG. 23, is incident from the opening provided at the tip, is totally reflected by the terraced inclined surface, and is reflected above the triangular prism-shaped inclined reflecting surface. . Since the upper side of the inclined reflecting surface is also a reflecting mirror, it is reflected directly above and enters the stripe distribution light guide plate. Since a terraced inclined surface is provided immediately above the opening, a shadow portion occurs. For this reason, a path to enter the shadow portion is provided.
The rest of the stripe distribution light guide plate is the same as in the first embodiment.

携帯電話などの小型液晶表示装置に図35の導光板を使用した白色発光ダイオード1灯による実施例を説明する。
光源部を導光板と一体成型し、放物面鏡の軸外焦点に白色発光ダイオードを設け、平行光を供給するものである。平行光は導光板側面から紙面奥行方向に伝播し、第1の棚田状凸反射面により光束を拡げて第2の棚田状反射面方向に反射する。第2の棚田状反射面までの距離が上段と下段で異なるために、第1の凸反射面は下段側ほど曲率半径を小さくして拡大角度を拡げている。凸反射面は入射光に対して臨界角以上に設定して全反射を利用している。
第2の凸反射面は円筒状反射面で、下段と上段で液晶パネルまでの距離が異なるため、上段ほど曲率半径を小さくしている。この方式は凸反射面で光束を拡大するため拡散シートは不要である。出射光が指向性の狭い光束拡大光のためプリズムシートは不要である。全反射を利用するため反射シートも不要である。
発光ダイオード1個と導光板のみなので最もシンプルで、究極的低価格で製造可能である。
An embodiment using a single white light emitting diode using the light guide plate of FIG. 35 in a small liquid crystal display device such as a cellular phone will be described.
The light source part is integrally formed with the light guide plate, and a white light emitting diode is provided at the off-axis focal point of the parabolic mirror to supply parallel light. The parallel light propagates from the side surface of the light guide plate in the depth direction of the paper surface, spreads the light flux by the first terraced convex reflection surface, and reflects in the direction of the second terraced reflection surface. Since the distance to the second terraced reflection surface is different between the upper and lower stages, the first convex reflection surface has a smaller radius of curvature toward the lower stage and a larger expansion angle. The convex reflection surface is set to a critical angle or more with respect to incident light and uses total reflection.
The second convex reflecting surface is a cylindrical reflecting surface, and since the distance to the liquid crystal panel is different between the lower stage and the upper stage, the curvature radius is made smaller toward the upper stage. Since this method expands the light flux on the convex reflecting surface, a diffusion sheet is unnecessary. A prism sheet is unnecessary because the emitted light has a narrow beam directivity. Since total reflection is used, a reflection sheet is also unnecessary.
Since it has only one light emitting diode and a light guide plate, it is the simplest and can be manufactured at the ultimate low price.

棚田状反射鏡を用いてリアプロジェクタを構成した例を図36を用いて説明する。
横1000mm、縦560mmのスクリーン寸法で、奥行は拡大率を10倍として被写表示素子の短辺寸法56mmとスクリーンまでの空間30mmの和86mmになる。
棚田状段数を50として、yz面反射鏡のx方向段差は1.12mmである。反射鏡の形状は基準面側最奥の曲率半径が11.2mm、スクリーン面側最奥の曲率半径が38.6mm、基準面・表示素子側の曲率半径が14.3mm、スクリーン面・表示素子側の曲率半径が41.8mmの円錐凸面鏡に設定している。これはxy面反射鏡の各位置で反射してスクリーンで方形に照射するためである。
xy面反射鏡のz方向段差は2mmの円筒凸面鏡である。円筒凸面鏡からスクリーンまでの距離が段階的に変化しているので、下段の曲率半径23.2mmから上段の曲率半径5.4mmまで段階的に曲率半径を設定している。
An example in which a rear projector is configured using a terraced reflector will be described with reference to FIG.
The screen dimensions are 1000 mm in width and 560 mm in length, and the depth is 86 mm, which is the sum of the short side dimension of 56 mm and the space to the screen of 30 mm, with a magnification factor of 10.
Assuming that the number of terraced steps is 50, the step in the x direction of the yz surface reflector is 1.12 mm. The shape of the reflecting mirror is such that the radius of curvature at the back of the reference surface side is 11.2 mm, the radius of curvature at the back of the screen surface side is 38.6 mm, the radius of curvature of the reference surface / display element side is 14.3 mm, and the screen surface / display element A conical convex mirror having a side curvature radius of 41.8 mm is set. This is because the light is reflected at each position of the xy plane reflecting mirror and is squarely irradiated by the screen.
The step in the z direction of the xy reflecting mirror is a 2 mm cylindrical convex mirror. Since the distance from the cylindrical convex mirror to the screen changes stepwise, the radius of curvature is set stepwise from the lower curvature radius of 23.2 mm to the upper curvature radius of 5.4 mm.

導光板出射部に負焦点距離光学系を設け、液晶サブ画素寸法に光束を拡大することを垂直配向液晶に適用し、コントラストの改善方法を図5に示す。垂直配向では液晶分子が倒れる方向を固定するため点対称に傾斜するプレチルトが行われ、特許文献15によると垂直配向では鉛直方向光線に対して液晶分子を3°以内にしなければコントラストが低下するとされている。実際は鉛直方向光線ではないのでプレチルトを改善してもコントラストを損なっていることになる。この光束拡大方式を液晶分子の配向方向に近づける構造をとることが出来、コントラストの改善に役立てることが出来る。   FIG. 5 shows a contrast improvement method in which a negative focal length optical system is provided at the light guide plate exit portion and the light flux is enlarged to the liquid crystal sub-pixel size and applied to the vertically aligned liquid crystal. In the vertical alignment, a pretilt that is tilted in a point-symmetric manner is performed to fix the direction in which the liquid crystal molecules are tilted. According to Patent Document 15, the contrast is lowered unless the liquid crystal molecules are within 3 ° with respect to the light beam in the vertical direction. ing. In fact, since it is not a vertical ray, even if the pretilt is improved, the contrast is impaired. A structure in which this light beam expansion method is brought close to the alignment direction of liquid crystal molecules can be used to improve contrast.

液晶を挟持する基板とストライプ分配導光板を兼用して製造工程を簡略化した実施例を図6に示す。液晶挟持基板はTFTあるいはカラーフィルタを搭載し、透明電極、配向膜を形成するために製造工程が高温になり、耐熱性が要求される。透光性高分子は耐熱性、寸法安定性、ガス透過性が無機ガラスに比べて劣るため、液晶を挟持する基板は無機ガラスが多く採用されている。
横電界方式の場合は対向基板に透明電極が不要のため高温で処理する必要がなく、高分子材料のガラス転移温度の制約がなくなるので成形性の良い高分子材料の採用が可能になる。高分子フィルムはガス透過性があるが、ストライプ分配導光板は鏡面蒸着膜を施してガス透過性が低くなっている。ストライプ分配導光板は棚田状導光板側からの入射部を除き、鏡面蒸着膜で被覆され、更に蒸着金属の酸化防止の塗装が施される。液晶側の面は透過・反射分別部が2/3は反射鏡部である。スパッタリング膜は緻密なためガス透過性が低く、酸化、吸湿を防止する目的でガスバリヤ包装に採用されている。透過部は透光性樹脂が露出するが、反射鏡傾斜部を充填した後、ガスバリヤ性が高い物質で被覆した上で平坦化処理を行うことでガスバリヤ性と平坦化を行うことが出来る。
FIG. 6 shows an embodiment in which the manufacturing process is simplified by using both the substrate for sandwiching the liquid crystal and the stripe distribution light guide plate. The liquid crystal sandwich substrate is equipped with a TFT or a color filter, and the manufacturing process becomes high temperature and heat resistance is required to form a transparent electrode and an alignment film. Since the light-transmitting polymer is inferior in heat resistance, dimensional stability, and gas permeability as compared with the inorganic glass, an inorganic glass is often used as a substrate for sandwiching the liquid crystal.
In the case of the horizontal electric field method, a transparent electrode is not required for the counter substrate, so that it is not necessary to perform the treatment at a high temperature, and there is no restriction on the glass transition temperature of the polymer material. Although the polymer film has gas permeability, the stripe distribution light guide plate is provided with a mirror-deposited film and has low gas permeability. The stripe distribution light guide plate is covered with a mirror-deposited film except for the incident portion from the terraced light guide plate side, and further, an oxidation preventing coating of the deposited metal is applied. The surface on the liquid crystal side is a transmission / reflection separation part, and 2/3 is a reflection mirror part. Sputtered films are dense and have low gas permeability, and are used in gas barrier packaging for the purpose of preventing oxidation and moisture absorption. Although the translucent resin is exposed in the transmissive portion, the gas barrier property and the planarization can be performed by performing the planarization process after covering the reflecting mirror inclined portion and then covering with a substance having a high gas barrier property.

波長の異なる7種類の発光ダイオードを使用して連続スペクトルの白色発光素子を構成し、これを線光源変換素子の光源にしたスキャナー用線光源の例を図44、図45によって説明する。
7種類の発光ダイオードはピーク波長440,487,527,565,602,633,657nmとして半値幅で連続したものである。7種類の発光素子を基板中央付近に並べ、焦点面より浅い位置のレンズ内に封入したものである。レンズ周辺部は基板から急傾斜面にして透過して反射鏡に入射している。
各発光素子から出射する平行光は正屈折率面で屈折し、各色の実効光路長の等しい球面状の焦点面に収束する。焦点面を直進しては混色にならないので、焦点面に拡散層を設けてランダムに屈折、反射するので混色して白色光になる。拡散層は粗面、白色顔料分散体、屈折率の異なる透明微粒子分散体の何れでも可能である。乳白色発光ダイオードパッケージと異なり、焦点面付近の薄層で混色可能である。
各発光ダイオードの光度は白色光の色温度に合わせて電流値を設定出来るようにすれば任意の色温度で使用することが出来る。
白色発光素子を図45の軸外放物面鏡の焦点に設ければ平行光を出射することが出来る。放物面鏡の光束密度は光軸から離れるほど低下するので凸反射面の段差を図9と同様な設定として光束密度を均一化出来る。凸反射面は平行光に対して臨界角以上に設定して全反射を利用出来る。
凸反射面による光束拡大光を出射面の正屈折率面で平行光に変換するビームエクスパンダとして機能している。各ビームエクスパンダは出射面までの距離が異なるので曲率半径を段階的に変えることにより均一な光束密度の平行光を実現することが出来る。
An example of a scanner line light source in which a white light emitting element having a continuous spectrum is configured using seven types of light emitting diodes having different wavelengths and this is used as the light source of the line light source conversion element will be described with reference to FIGS.
The seven types of light-emitting diodes are continuous with half-widths at peak wavelengths of 440, 487, 527, 565, 602, 633, and 657 nm. Seven types of light emitting elements are arranged near the center of the substrate and enclosed in a lens shallower than the focal plane. The peripheral portion of the lens passes through the steeply inclined surface from the substrate and enters the reflecting mirror.
The parallel light emitted from each light emitting element is refracted by the positive refractive index surface and converges on a spherical focal plane having the same effective optical path length for each color. If the light travels straight on the focal plane, color mixing does not occur. Therefore, a diffused layer is provided on the focal plane to refract and reflect at random. The diffusion layer can be any of rough surfaces, white pigment dispersions, and transparent fine particle dispersions having different refractive indexes. Unlike milky white light emitting diode packages, color mixing is possible in a thin layer near the focal plane.
The light intensity of each light emitting diode can be used at any color temperature if the current value can be set in accordance with the color temperature of white light.
If a white light emitting element is provided at the focal point of the off-axis parabolic mirror in FIG. 45, parallel light can be emitted. Since the light flux density of the parabolic mirror decreases with increasing distance from the optical axis, the light flux density can be made uniform by setting the step on the convex reflecting surface in the same manner as in FIG. The convex reflection surface can be set to a critical angle or more with respect to parallel light to use total reflection.
It functions as a beam expander that converts the light beam expanded by the convex reflecting surface into parallel light on the positive refractive index surface of the exit surface. Since each beam expander has a different distance to the exit surface, parallel light with a uniform light flux density can be realized by changing the radius of curvature stepwise.

各素子がストライプ幅の有機発光ダイオードアレイを用いた場合の例を示す。有機発光ダイオードは陰極、電子注入輸送層、発光層、正孔注入輸送層、透明陽極という構成で蒸着法または印刷法がとられている。有機発光ダイオードアレイは3色の発光層ドーパントが異なるだけで、電子注入輸送層、発光層、正孔注入輸送層、透明電極などを共通のプロセスで製膜されるためストライプ幅より狭く多数の素子を並べたアレイを製造出来る。無機化合物半導体と異なり、ワイヤボンディングでなく透明電極のためダイパッドによる遮光を防止出来る。
光源のピッチに等しい透明物質層の層間に遮光層を持つ多層構造の導光板を液晶板の各サブ画素のストライプと3色の光源の間に介在させ、サブ画素を制御する色と光源の色を対応させて導光板端面に設けることでカラーフィルタを介在せずに色表示が可能になる。
断面構造は反射鏡768個均等に配置した棚田状構造のもので、光源からの光線をほぼ鉛直方向にある液晶の画素に向けて反射するものである。
各素子の光度は30mcdで、透過効率33%において表面輝度300cd/m2 になる。
An example in which each element uses an organic light emitting diode array having a stripe width is shown. An organic light emitting diode is formed by a vapor deposition method or a printing method with a structure of a cathode, an electron injection transport layer, a light emitting layer, a hole injection transport layer, and a transparent anode. An organic light emitting diode array is formed by a common process for forming an electron injecting and transporting layer, a light emitting layer, a hole injecting and transporting layer, a transparent electrode, etc., except that the three color emitting layer dopants are different. Can be manufactured. Unlike inorganic compound semiconductors, light shielding by the die pad can be prevented because of transparent electrodes rather than wire bonding.
A light guide plate having a multi-layer structure having a light shielding layer between transparent material layers equal to the pitch of the light source is interposed between the stripes of each subpixel of the liquid crystal plate and the three color light sources, and the color for controlling the subpixel and the color of the light source By providing them on the end face of the light guide plate, color display is possible without interposing a color filter.
The cross-sectional structure is a terraced structure in which 768 reflectors are evenly arranged, and reflects light rays from the light source toward liquid crystal pixels in a substantially vertical direction.
The luminous intensity of each element is 30 mcd, and the surface luminance is 300 cd / m @ 2 at a transmission efficiency of 33%.

3色の冷陰極管を薄型化のためにサイドライト方式で適用する場合の例を示す。
3本の冷陰極管の並ぶ方向と導光板の色の配列する方向が直交しているため軸変換する必要がある。赤の冷陰極管と導光板の赤色層との界面に開口部を設け、緑、青の導光板層では遮蔽する構造を緑、青の冷陰極管にも適用する構造で軸変換を行うことが出来る。この遮光・開口格子は3色の市松模様状になる。冷陰極管の軸方向の光束を1/3に収束するメニスカスレンズを設けることにより平行光成分は遮光層で遮られることなく各色の導光板に出射することが出来る。各色をずらすことによって出射効率を損なうことなく軸変換出来る。メニスカスレンズの凸レンズは凸部の厚さが厚いのでフレネルレンズにしている。
軸方向成分を1/3に収束すると同時に、軸に直交する方向も収束する複合ビームコンプレッサレンズを構成している。
ビームエクスパンダは冷陰極管の位置に応じて光束を拡大する方向が3種類ある。中央の緑は上下対称に光束を拡大するが、上段の赤は下向きに、下段の青は上向きに光束を拡大するので対称に反転したものである。ビームエクスパンダと前段のビームコンプレッサの界面は入射・出射部以外は遮光することにより平行性を高めることが出来る。
集束レンズで3本の平行光を冷陰極管の軸に直交方向に拡大するのがビームエクスパンダレンズである。入射部は3本のシリンドリカル凹レンズである。3つの凹レンズによって導光板の厚さ方向に均等に光束を拡大し、フレネルレンズとした凸レンズで平行光に変換している。フレネルレンズにしているのは曲面によって空間が生じると遮光が困難なためである。フレネル凸レンズを出射した光は断面形状が棚田状の導光板に入射し、シリンドリカル凸面鏡で光束を拡げて液晶サブ画素に入射する。
An example in the case of applying a three-color cold-cathode tube by a side light method for thinning will be described.
Since the direction in which the three cold cathode tubes are arranged and the direction in which the colors of the light guide plate are arranged are orthogonal, it is necessary to change the axis. Axis conversion is performed with a structure in which an opening is provided at the interface between the red cold-cathode tube and the red layer of the light guide plate, and the structure shielded by the green and blue light-guide plate layers is also applied to the green and blue cold-cathode tubes. I can do it. This shading / aperture grid has a checkered pattern of three colors. By providing a meniscus lens that converges the axial luminous flux of the cold cathode tube to 1/3, the parallel light component can be emitted to the light guide plate of each color without being blocked by the light shielding layer. By shifting each color, the axis can be converted without impairing the emission efficiency. The convex lens of the meniscus lens is a Fresnel lens because the convex portion is thick.
A composite beam compressor lens that converges the axial direction component to 1/3 and also converges the direction orthogonal to the axis is configured.
The beam expander has three types of directions for expanding the luminous flux according to the position of the cold cathode tube. The green at the center expands the light beam symmetrically, but the upper red expands the light beam downwards, and the lower blue expands the light beam upwards, so it is inverted symmetrically. The interface between the beam expander and the beam compressor in the previous stage can improve the parallelism by shielding light except for the entrance / exit part.
A beam expander lens expands three parallel lights in a direction perpendicular to the axis of the cold cathode tube by a focusing lens. The incident part is three cylindrical concave lenses. A light beam is uniformly expanded in the thickness direction of the light guide plate by three concave lenses, and converted into parallel light by a convex lens as a Fresnel lens. The reason why the Fresnel lens is used is that it is difficult to block light when a space is created by a curved surface. The light emitted from the Fresnel convex lens is incident on a light guide plate having a terraced cross section, and is incident on a liquid crystal sub-pixel by expanding a light beam by a cylindrical convex mirror.

説明の都合上、細部は拡大して記載するため、必ずしも相似関係にはなっていない。
軸対称の特性図は正の範囲のみで表示している。
本発明の実施例1における積層導光板とストライプ分配導光板の構成を示す斜視図である。 本発明の実施例1における積層導光板とストライプ分配導光板内の光跡を三角法で表示した図である。 (1)ストライプ分配導光板の透過/反射分別部の反射光を示す図である。 (2)棚田状導光板の傾斜反射面による全反射を示す図である。 ストライプ分配導光板の透過/反射分別部の透過光の光束拡大を示す図である。 垂直配向液晶における透過/反射分別部の透過光の光束拡大と液晶分子配向を示す図である。 ストライプに分配する機能を液晶透明基板に共用した状態を示す図である。 放物面鏡の光束密度分布をyが正の範囲で示す図である。 放物面鏡の光束密度を積分した分布をyが正の範囲で示す図である。 放物面鏡による平行光光束密度を均一化する導光板の段差分布を示す図である。 光束密度を均一化する導光板の厚さ分布を示す図である。 放物面鏡の光束密度を均一化するための傾斜反射光および反射面の傾きを示す図である。 放物面鏡の光束密度を均一化するための傾斜反射光を屈折面で平行光に変換する角度状態を示す図である。 光束密度を均一化するための傾斜反射光の傾斜分布を示す図である。 光束密度均一化反射鏡による光束密度分布、光束密度の積分を示す図である。 光束密度均一化反射鏡、放物面鏡の曲線をyが正の範囲で示す図である。 (1)光束密度均一化反射鏡と平凸レンズによる光束密度の均一な平行光を示す図である。(2)光束密度均一化反射鏡と正屈折率面による光束密度の均一な平行光を示す図である。(3)光束密度均一化反射鏡とフレネルレンズによる光束密度の均一な平行光を示す図である。 光束密度均一化凹面鏡による反射光、および光源からの直接光を凹面鏡に反射する凸面鏡とその開口部透過光を導光板に入射する状態を示す図である。 直接光を透過する開口部をレンズによって拡散する状態を示す図である。 光源前方の直接光を凹面鏡で反射して光束密度均一化凹面鏡として反射し、前方凹面鏡開口部による透過光を照射する状態を示す図である。 前方凹面鏡開口部による透過光をレンズによって拡散照射する状態を示す図である。 光束密度の均一な平行光を直下型バックライト方式の傾斜した反射面で導光板に平行方向に変換する状態を示す図である。 直下型バックライト方式の双方向に傾斜した反射面で臨界角以上の光線を方向変換し、直上部液晶には臨界角以内の透過光を照射する状態を示す図である。 直下型バックライト方式の双方向に傾斜した反射面で方向変換し、直上部液晶には開口部透過光を背中合わせにした傾斜反射面で照射する状態を示す図である。 直下型バックライト方式の双方向に傾斜した反射面で方向変換し、直上部液晶には開口部を凹レンズにして直上部全体に照射する状態を示す図である。 点光源と凹面鏡による直下型バックライトを双方向に傾斜した反射面で方向変換し、直上部液晶には開口部透過光を背中合わせにした傾斜反射面で照射する状態を示す図である。 (1)3色の点光源と凹面鏡による直下型バックライトを色別の積層導光板で双方向に傾斜した反射面で方向変換し、直上部液晶には開口部透過光を背中合わせにした傾斜反射面で照射し、ストライプ分配導光板でカラー表示する状態を示す斜視図である。(2)上記の側面図である。 放物面鏡、曲率円鏡、球面鏡で構成するビームエクスパンダ・コンプレッサの曲線の差異を示す図である。 曲率円鏡、球面鏡で構成するビームエクスパンダ・コンプレッサによる収差を示す図である。 曲率円鏡、あるいは球面鏡による一体成型ビームエクスパンダ・コンプレッサの収差を入出射面の曲線で補正する構成を示す図である。 (1)反射鏡によるビームコンプレッサアレイの構造と光線を示す図である。(2)ビームコンプレッサアレイの外観である。 直下型バックライトに3色の冷陰極管を用い、ビームコンプレッサアレイによって色別の積層導光板に入射し、双方向に傾斜した反射面で方向変換し、直上部液晶には開口部透過光を2つの傾斜反射面で照射し、ストライプに分配する導光板でカラー表示する状態を示す図である。 ビームコンプレッサアレイをメニスカスレンズで構成したときの状態を示す図である。 サイドライト型に3色の冷陰極管を採用するとき、反射鏡によるビームコンプレッサ、ビームエクスパンダで軸方向を変換する状態を示す図である。 サイドライト型に3色の冷陰極管を採用するとき、メニスカスレンズによるビームコンプレッサ、ビームエクスパンダで軸方向を変換する状態を示す図である。 (1)点光源と光束密度均一化凹面鏡による平行光を棚田状に構成した第1の方向変換反射面で奥行方向の光線を第2の棚田状反射面方向に変換し、第2の棚田状反射面で液晶パネルに照射する1灯方式バックライトの構成を示す図である。(2)第1の反射面、第2の反射面を凸面鏡とすることにより光束を拡大して液晶に照射する状態を示す部分図である。 (1)平行光を投射原稿に照射し、棚田状に構成した第1の方向変換反射面で奥行方向の光線を第2の棚田状反射面方向に変換し、第2の棚田状反射面でスクリーンに照射するリアプロジェクタの構成を示す図である。(2)第1の反射面、第2の反射面を凸面鏡とすることにより光束を拡大してスクリーンに照射する状態を示す部分図である。 β=hc/(λmkT)を図式解法で求めたものである。 プランクの放射則による各色温度における分光特性を示す図である。 各波長の発光ダイオードを半値幅で連続することにより連続スペクトルの白色光を構成する方法を示す図である。各素子の特性を細線で、合成特性を淡線で、フィルタにより滑らかにした特性を太実線で、5500Kの分光特性を破線で示す。 y軸平面上に配置した発光ダイオードの光が正焦点距離屈折面で屈折したときの焦点面の曲線を示す図である。 基板上の各発光ダイオードチップから放射された平行光が正焦点距離屈折面で屈折し、焦点面で混色される状態を示す図である。 焦点面付近に配置された拡散材で屈折、反射により混色される状態を示す図である。 (1)反射鏡を用いて多色発光ダイオード光を拡散層で混色する状態を示す図である。(2)ワイングラス状反射面にして混色効果を改善することを光線で示す図である 平行光の混色とレンズ周辺光を反射鏡に照射して混色する状態を示す図である。 (1)点光源と光束密度均一化凹面鏡による平行光を棒状の線光源変換素子の棚田状反射面および円筒レンズ状出射面の構造を示す図である。(2)凸反射面、凸レンズ出射面により連続した平行光になることを示す図である。 線光源変換素子の幅よりも光源寸法が大きいときのビームコンプレッサにより光束を収束し、線光源に変換する構造を示す図である。 従来の導光板の構成を示す図である。 別の従来の導光板の構成を示す図である。 光源近傍の傾斜を負にし、遠方の段差を拡大した従来の導光板の構成を示す図である。 出射面側レンズの焦点に四角錐反射鏡を設けた従来の導光板の構成を示す図である。 (1)微小放物面鏡と点光源による従来の導光板の構成を示す図である。(2)放物面鏡による平行光を鋸歯状反射面で反射する従来の導光板を示す図である。 ビームスプリッタにより均等な反射光を得る従来の導光板を示す図である。 直下型バックライトの従来の反射鏡の構造を示す図である。 従来の携帯機器用サイドライトの構造と光線むらを示す図である。 3色発光ダイオードを円錐鏡で混色する従来の構成を示す図である。 従来のリアプロジェクタの構造を示す図である。 3色発光ダイオードの光を拡散材で混色する従来の分散状態を示す図である。
For the convenience of explanation, the details are shown in an enlarged manner, and are not necessarily similar.
The axisymmetric characteristic diagram is shown only in the positive range.
It is a perspective view which shows the structure of the laminated light-guide plate and stripe distribution light-guide plate in Example 1 of this invention. It is the figure which displayed the light trace in the laminated light-guide plate and stripe distribution light-guide plate in Example 1 of this invention by the trigonometric method. (1) It is a figure which shows the reflected light of the permeation | transmission / reflection classification part of a stripe distribution light-guide plate. (2) It is a figure which shows the total reflection by the inclined reflective surface of a terraced light guide plate. It is a figure which shows the light beam expansion of the transmitted light of the permeation | transmission / reflection separation part of a stripe distribution light-guide plate. It is a figure which shows the light beam expansion and liquid crystal molecule orientation of the transmitted light of the permeation | transmission / reflection fraction part in vertical alignment liquid crystal. It is a figure which shows the state which shared the function distributed to a stripe to a liquid crystal transparent substrate. It is a figure which shows the luminous flux density distribution of a parabolic mirror in the range where y is positive. It is a figure which shows the distribution which integrated the light beam density of the parabolic mirror in the range where y is positive. It is a figure which shows the level | step difference distribution of the light-guide plate which equalizes the parallel light beam density by a parabolic mirror. It is a figure which shows the thickness distribution of the light-guide plate which makes a light beam density uniform. It is a figure which shows the inclination of the inclination reflected light and the reflecting surface for equalizing the light beam density of a parabolic mirror. It is a figure which shows the angle state which converts into the parallel light the inclination reflection light for making the light beam density of a parabolic mirror uniform. It is a figure which shows inclination distribution of the inclination reflected light for making light beam density uniform. It is a figure which shows the integration of light beam density distribution and light beam density by a light beam density uniform reflection mirror. It is a figure which shows the curve of a light beam density uniformed reflective mirror and a parabolic mirror in the range where y is positive. (1) Light beam density uniformization It is a figure which shows the parallel light with uniform light beam density by a reflective mirror and a plano-convex lens. (2) It is a figure which shows the collimated light with uniform light flux density by a light beam density uniform reflector and a positive refractive index surface. (3) Light flux density uniformization It is a figure which shows the parallel light with uniform light flux density by a reflective mirror and a Fresnel lens. It is a figure which shows the state which injects into the light guide plate the convex mirror which reflects the reflected light by the concave mirror with uniform beam density, and the direct light from a light source to a concave mirror, and its opening part transmitted light. It is a figure which shows the state which diffuses the opening part which permeate | transmits direct light with a lens. It is a figure which shows the state which reflects the direct light ahead of a light source with a concave mirror, reflects as a light beam density equalization concave mirror, and irradiates the transmitted light by a front concave mirror opening part. It is a figure which shows the state which diffusely irradiates the transmitted light by a front concave mirror opening part with a lens. It is a figure which shows the state which converts parallel light with uniform light beam density into a light guide plate in the parallel direction with the inclined reflective surface of a direct type backlight system. It is a figure which shows the state which changes the direction of the light ray more than a critical angle with the reflective surface inclined in the bidirectional | two-way of a direct type backlight system, and irradiates the transmitted light within a critical angle to a liquid crystal directly above. It is a figure which shows the state which changes the direction with the reflective surface inclined in the bidirectional | two-way of a direct type backlight system, and irradiates the directly upper liquid crystal with the inclined reflective surface which made the opening part transmitted light back to back. It is a figure which shows the state which changes direction with the reflective surface inclined in the bidirectional | two-way of a direct type backlight system, and irradiates the whole upper part directly with the opening part as a concave lens in liquid crystal directly above. It is a figure which shows the state which changes the direction of the direct type | mold backlight by a point light source and a concave mirror with the reflective surface inclined in two directions, and irradiates an upper part liquid crystal with the inclined reflective surface which made the opening part transmitted light back to back. (1) Directly reflected backlight with three color point light sources and concave mirrors, with a multi-layered light guide plate that changes the direction of the reflected light in both directions, and tilted reflection with the transmitted light from the opening back to back directly above the liquid crystal It is a perspective view which shows the state irradiated with a surface and carrying out color display with a stripe distribution light-guide plate. (2) It is said side view. It is a figure which shows the difference of the curve of the beam expander compressor comprised from a parabolic mirror, a curvature circular mirror, and a spherical mirror. It is a figure which shows the aberration by the beam expander compressor comprised with a curvature circular mirror and a spherical mirror. It is a figure which shows the structure which correct | amends the aberration of the integral beam expander compressor by a curvature circular mirror or a spherical mirror with the curve of an entrance / exit surface. (1) It is a figure which shows the structure and light beam of a beam compressor array by a reflecting mirror. (2) The appearance of the beam compressor array. Three-color cold-cathode tubes are used for the direct type backlight, are incident on the multi-layered light guide plate by the beam compressor array, are redirected in a bi-directionally inclined reflecting surface, and the light transmitted through the aperture is directly transmitted to the upper liquid crystal. It is a figure which shows the state which color-displays with the light-guide plate irradiated with two inclined reflective surfaces and distributed to a stripe. It is a figure which shows a state when a beam compressor array is comprised with the meniscus lens. It is a figure which shows the state which changes an axial direction with the beam compressor and beam expander by a reflecting mirror, when employ | adopting a three-color cold cathode tube for a sidelight type. It is a figure which shows the state which changes an axial direction with the beam compressor by a meniscus lens, and a beam expander when employ | adopting a three-color cold cathode tube for a sidelight type. (1) A light beam in a depth direction is converted into a second terraced-like reflecting surface direction by a first direction-changing reflecting surface configured in a terraced shape from parallel light from a point light source and a light flux density uniform concave mirror, and a second terraced shape It is a figure which shows the structure of the 1 light system backlight irradiated to a liquid crystal panel with a reflective surface. (2) It is a partial view showing a state in which the first reflecting surface and the second reflecting surface are convex mirrors to enlarge the light beam and irradiate the liquid crystal. (1) A parallel original is irradiated onto a projection original, and a light beam in the depth direction is converted into a second terraced reflection surface direction by a first direction conversion reflection surface configured in a terraced shape, and the second terraced reflection surface is used. It is a figure which shows the structure of the rear projector which irradiates a screen. (2) It is a partial view showing a state in which a first reflecting surface and a second reflecting surface are convex mirrors to enlarge a light beam and irradiate the screen. β = hc / (λmkT) is obtained by a graphical solution. It is a figure which shows the spectral characteristic in each color temperature by Planck's radiation law. It is a figure which shows the method of comprising the white light of a continuous spectrum by continuing the light emitting diode of each wavelength by a half value width. The characteristic of each element is indicated by a thin line, the combined characteristic is indicated by a light line, the characteristic smoothed by the filter is indicated by a thick solid line, and the spectral characteristic of 5500K is indicated by a broken line. It is a figure which shows the curve of a focal plane when the light of the light emitting diode arrange | positioned on a y-axis plane is refracted | refracted by the regular focal distance refractive surface. It is a figure which shows the state in which the parallel light radiated | emitted from each light emitting diode chip | tip on a board | substrate is refracted | refracted by a regular focal distance refractive surface, and is mixed in a focal plane. It is a figure which shows the state mixed by refraction and reflection by the diffusing material arranged near the focal plane. (1) It is a figure which shows the state which mixes multicolor light emitting diode light in a diffused layer using a reflective mirror. (2) It is a figure which shows with light rays that it is a wine glass-like reflective surface and improves a color mixing effect. It is a figure which shows the state which irradiates a reflective mirror with the color mixture of parallel light, and lens peripheral light, and color-mixes. (1) It is a figure which shows the structure of the terraced-like reflection surface and cylindrical lens-shaped emission surface of a bar-shaped line light source conversion element for parallel light by a point light source and a light beam density uniform concave mirror. (2) It is a figure which shows becoming continuous parallel light by a convex reflective surface and a convex lens output surface. It is a figure which shows the structure which converges a light beam with a beam compressor when a light source dimension is larger than the width | variety of a linear light source conversion element, and converts it into a linear light source. It is a figure which shows the structure of the conventional light-guide plate. It is a figure which shows the structure of another conventional light-guide plate. It is a figure which shows the structure of the conventional light-guide plate which made negative the inclination of the light source vicinity, and expanded the far level | step difference. It is a figure which shows the structure of the conventional light-guide plate which provided the quadrangular pyramid reflecting mirror in the focus of the output surface side lens. (1) It is a figure which shows the structure of the conventional light-guide plate by a microparabolic mirror and a point light source. (2) It is a figure which shows the conventional light-guide plate which reflects the parallel light by a parabolic mirror with a sawtooth-shaped reflective surface. It is a figure which shows the conventional light-guide plate which obtains uniform reflected light with a beam splitter. It is a figure which shows the structure of the conventional reflective mirror of a direct type | mold backlight. It is a figure which shows the structure and light beam nonuniformity of the conventional side light for portable devices. It is a figure which shows the conventional structure which color-mixes a 3 color light emitting diode with a conical mirror. It is a figure which shows the structure of the conventional rear projector. It is a figure which shows the conventional dispersion state which color-mixes the light of a three-color light emitting diode with a diffusing material.

符号の説明Explanation of symbols

形状が異なっても同一の機能には同一の番号を付与している。
1:(R),1(G),1(B):積層導光板
2:ストライプ分配導光板
3:遮光層
4:開口部
5:傾斜反射面
6:透過部
7:透過・反射分別部の反射鏡
8:対向面反射鏡
9:放物面鏡
10:点光源
11:凹レンズ
12:偏光板
13:透明基板
14:液晶層
15:光線
16:配向膜
17:TFT
18:配向制御傾斜部
19:透明電極
20:液晶分子
21:配向制御断層
22:光束均一化凹面鏡
23:正屈折率面
24:凸面鏡
25:スリット
26:線光源
27:導光板
28:凹面鏡
29:反射面
30:三角柱
31:反射鏡
32:臨界角以内の光線
33:全反射光
35:屈折面
36:負屈折率面
37:低屈折率層
38:光源
39:透光物質
40:焦点
41:入射面
42:出射面
43:液晶パネル
44:ビームコンプレッサアレイ
45:平行光源要素
46:平行面
47:奥行方向変換反射面
48:指向性範囲
49:死角
50:発光ダイオード
51:スクリーン
52:投射原稿
53:フレネルレンズ
54:ビームコンプレッサ
55:ビームエクスパンダ
56:投射装置
57:レンズ
58:拡散材層
59:基板
60:拡散材
61:プリズム
62:乱反射ドット層
63:平行光
64:散乱光
65:ビームスプリッタ









Even if the shapes are different, the same function is given the same number.
1: (R), 1 (G), 1 (B): laminated light guide plate 2: stripe distribution light guide plate 3: light shielding layer 4: opening 5: inclined reflection surface 6: transmission portion 7: transmission / reflection separation portion Reflecting mirror 8: Opposing surface reflecting mirror 9: Parabolic mirror 10: Point light source 11: Concave lens 12: Polarizing plate 13: Transparent substrate 14: Liquid crystal layer 15: Light beam 16: Alignment film 17: TFT
18: Orientation control inclined portion 19: Transparent electrode 20: Liquid crystal molecule 21: Orientation control tomography 22: Light flux uniforming concave mirror 23: Positive refractive index surface 24: Convex mirror 25: Slit 26: Line light source 27: Light guide plate 28: Concave mirror 29: Reflective surface 30: Triangular prism 31: Reflector 32: Ray within critical angle 33: Total reflected light 35: Refractive surface 36: Negative refractive index surface 37: Low refractive index layer 38: Light source 39: Translucent material 40: Focus 41: Incident surface 42: Output surface 43: Liquid crystal panel 44: Beam compressor array 45: Parallel light source element 46: Parallel surface 47: Depth direction conversion reflecting surface 48: Directional range 49: Blind angle 50: Light emitting diode 51: Screen 52: Projection original 53: Fresnel lens 54: Beam compressor 55: Beam expander 56: Projection device 57: Lens 58: Diffusing material layer 59: Substrate 60: Diffusing material 61: Prism 62: Reflective dot layer 63: parallel light 64: scattered light 65: beam splitter









Claims (30)

複数色の光源から透明物質層を通して液晶サブ画素に当該色の光を供給し、透明物質層の層間に設けた遮光層により別の色を遮断する多層構造の導光板。
A light guide plate having a multilayer structure that supplies light of the color from a light source of a plurality of colors to a liquid crystal sub-pixel through a transparent material layer, and blocks different colors by a light shielding layer provided between the transparent material layers.
同一ストライプ内の3つのサブ画素で1入射部を持つ構成のストライプに分配する導光板を液晶表示パネル背後に設け、1/3の光量を入射部鉛直方向にあるサブ画素に透過し、残る2/3の光量をストライプ方向に傾斜した反射面で反射し、この反射光がストライプ分配導光板内の液晶対向側に設けた反射面で反射して2つの液晶サブ画素に入射することにより同一ストライプ内の3つのサブ画素に分配する導光方式。
A light guide plate is provided behind the liquid crystal display panel to distribute the stripes having a structure having one incident portion with three sub-pixels in the same stripe, and 1/3 of the light amount is transmitted to the sub-pixels in the vertical direction of the incident portion and remains 2 / 3 is reflected by the reflecting surface inclined in the stripe direction, and this reflected light is reflected by the reflecting surface provided on the opposite side of the liquid crystal in the stripe distribution light guide plate and is incident on the two liquid crystal sub-pixels. A light guide system that distributes to the three sub-pixels.
請求項2の透過/反射分別部の傾斜した反射面の反射光を隣接する透過/反射分別部単位よりも離れた位置に反射して分配することにより同一色の入射部を集中し、ストライプ分配導光板内の液晶対向側に設けた反射面を別色層の積層導光板の上に設ける構造として、請求項1の積層導光板の積層数、光源の数を削減することを特徴とするストライプに分配する導光板。
The incident light of the same color is concentrated by reflecting and distributing the reflected light of the inclined reflecting surface of the transmission / reflection classification unit according to claim 2 to a position away from the adjacent transmission / reflection classification unit, and stripe distribution 2. A stripe characterized by reducing the number of laminated light guide plates and the number of light sources according to claim 1 as a structure in which a reflective surface provided on the liquid crystal facing side in the light guide plate is provided on a laminated light guide plate of another color layer. Light guide plate to distribute to.
ストライプに分配する導光板から液晶サブ画素に射出する部分に負焦点距離光学系を設け、液晶サブ画素寸法に光束を拡大することにより、実質開口率を増大する光束拡大方式。
A light beam enlargement method in which a negative focal length optical system is provided at a portion where light is emitted from a light guide plate that distributes stripes to a liquid crystal subpixel, and the light flux is enlarged to the size of the liquid crystal subpixel, thereby increasing a substantial aperture ratio.
平行光の出射経路から外れた位置に焦点を持つ軸外放物面鏡あるいは球面鏡の焦点に光源を設け、反射鏡の反射光を光源に妨げられることなく平行光を導光板を伝播することを特徴とする導光板光源部の構造。
A light source is provided at the focal point of an off-axis paraboloidal mirror or spherical mirror that has a focal point at a position off the parallel light emission path, and the parallel light propagates through the light guide plate without being blocked by the light source. The structure of the light-guide plate light source part characterized.
導光板内を伝播する平行光を傾斜した円筒凸反射面あるいは円筒凸面鏡に臨界角以上の入射角で入射し、略鉛直方向にある液晶に光束を拡げて反射することを特徴とする導光板。
A light guide plate characterized in that parallel light propagating in a light guide plate is incident on an inclined cylindrical convex reflection surface or cylindrical convex mirror at an incident angle greater than a critical angle, and a light beam is spread and reflected on liquid crystal in a substantially vertical direction.
円筒凸面の反射面段差を光束密度に反比例して増大することにより、放物面鏡の反射光が光軸から遠ざかるほど光束密度が低減する影響を排除して液晶に入射し、光束密度を均一にする導光板。
Increasing the reflecting surface step of the cylindrical convex surface in inverse proportion to the light flux density eliminates the effect of the light flux density decreasing as the reflected light from the parabolic mirror gets further away from the optical axis, and enters the liquid crystal to make the light flux density uniform. Light guide plate to make.
放物面鏡の鏡面を放物線の接線傾斜より増大することにより放物面鏡開口端において均一な光束密度で拡散し、開口端において正焦点距離屈折面で光束密度の均一な光線を得ることを特徴とする光束密度均一化方式。
By increasing the mirror surface of the parabolic mirror more than the tangential slope of the parabola, the light beam is diffused with a uniform light flux density at the opening end of the parabolic mirror, and a light beam with a uniform light beam density is obtained at the refracting surface at the normal focal length at the opening edge. A feature of uniform light flux density.
放物面鏡の開口部において一定の光束密度となるように、
2=a・p・x−bxC
4.5<a<7.5, 0≦b , 0≦c
で表される曲線の反射鏡により反射光方向を平行光方向より拡散し、この拡散反射光を正焦点距離屈折面により光束密度の均一な光線を得ることを特徴とする光束密度均一化方式。
To have a constant light flux density at the opening of the parabolic mirror,
y 2 = a · p · x−bx C
4.5 <a <7.5, 0 ≦ b, 0 ≦ c
A light beam density uniforming system characterized in that the reflected light direction is diffused from the parallel light direction by a curved mirror represented by the following formula, and the diffuse reflected light is obtained by the regular focal length refracting surface to obtain a light beam having a uniform light beam density.
凹面鏡を備えた光源の前方に開口付き遮光体を設けて直接光を制限することにより光源前方が凹面鏡反射光と光源からの直接光が重畳することによる光束集中を緩和し、凹面鏡による反射光束密度に合わせて遮光体に設けた開口孔の開口比率を設定することにより光束を均一化する照明方式。
By providing a light shield with an aperture in front of the light source equipped with a concave mirror to limit direct light, the front of the light source relaxes the light flux concentration caused by the overlap of the concave mirror reflected light and the direct light from the light source, and the reflected light flux density by the concave mirror A lighting system that makes the luminous flux uniform by setting the aperture ratio of the apertures provided in the light shield.
凹面鏡を備えた光源の前方に開口付き凸面鏡を設けて前記凹面鏡に反射することにより、光源前方が凹面鏡反射光と光源からの直接光が重畳することによる光束集中を緩和し、光源からの直接光と凸面鏡反射光を合成して反射する凹面鏡の光束密度に合わせ、凸面鏡に設けた開口孔の開口比率を設定することにより光束を均一化する照明方式。
By providing a convex mirror with an opening in front of a light source equipped with a concave mirror and reflecting it to the concave mirror, the light source concentration on the front of the light source is reduced by superimposing the concave mirror reflected light and the direct light from the light source, and direct light from the light source An illumination system that equalizes the luminous flux by setting the aperture ratio of the apertures provided in the convex mirror according to the luminous flux density of the concave mirror that combines and reflects the reflected light from the convex mirror.
凹面鏡を備えた光源の前方に開口付き凸面鏡を設けて前記凹面鏡に反射することにより、光源前方が凹面鏡反射光と光源からの直接光が重畳することによる光束集中を緩和し、凹面鏡が光源からの直接光と凸面鏡反射光を合成して反射する光束密度に合わせ、凸面鏡に設けた開口部面積で透過光量を設定し、前記開口部を凹レンズで構成した光束の均一化方式。
By providing a convex mirror with an opening in front of a light source equipped with a concave mirror and reflecting it to the concave mirror, the front of the light source relaxes the light flux concentration caused by the superposition of the reflected light from the concave mirror and the direct light from the light source, and the concave mirror is removed from the light source. A uniform light flux system in which the amount of transmitted light is set by the aperture area provided in the convex mirror, and the aperture is configured with a concave lens, in accordance with the density of the reflected light by combining direct light and convex mirror reflected light.
焦点距離深さの放物面鏡あるいは請求項8,9の光束密度均一化凹面鏡を備えた光源の前方に開口付き凹面鏡を設け、光源を透過して後方放凹鏡に反射することにより光源からの直接光と放物面鏡による反射光の入射角を一致させて反射することにより方向を揃えて光束を均一化し、後方凹面鏡によって反射する光束密度に合わせて前方凹面鏡に設けた開口部の開口比率を設定することにより光束均一化する照明方式。
A concave mirror with an opening is provided in front of a light source provided with a parabolic mirror having a focal length depth or a concave mirror with uniform light flux density according to claims 8 and 9, and the light source is transmitted through and reflected by the rear concave mirror. The aperture of the opening provided in the front concave mirror is made uniform by matching the incident angles of the direct light and the reflected light from the parabolic mirror so that the light beams are uniformed and the light flux is uniformed by the rear concave mirror. An illumination method that makes the luminous flux uniform by setting the ratio.
直下照明型液晶表示装置において、導光板直下から入射した光を傾斜した反射面によって平面方向に変換して反射し、平面方向に伝播する光を棚田状に分散配置した傾斜反射面によって液晶面に照射することを特徴とする導光方式。
In a direct illumination type liquid crystal display device, light incident from directly under the light guide plate is reflected and converted into a planar direction by an inclined reflecting surface, and light propagating in the planar direction is reflected on the liquid crystal surface by an inclined reflecting surface arranged in a terraced manner. A light guide system characterized by irradiating.
直下照明型液晶表示装置において、導光板直下から入射した光を傾斜した反射/透過分離面によって導光板の平面方向に反射する成分と傾斜面の直上部に透過する成分に分離することにより傾斜反射面上部を照射することを特徴とする導光方式。
In a direct-lighting liquid crystal display device, the light incident from directly below the light guide plate is separated into a component that reflects in the plane direction of the light guide plate and a component that transmits light directly above the inclined surface by the inclined reflection / transmission separation surface. A light guide method characterized by irradiating the upper surface.
直下から導光板に入射した光を傾斜した反射面によって導光板の平面方向に変換する直下照明型液晶表示装置において、V字型に対向する傾斜面の交点付近に設けた開口部から入射した光を、開口部延長線上に反射面を設けてV字型傾斜反射面の上側に反射し、傾斜反射面上側の反射面から液晶側に出射する構造であって、V字型傾斜面に囲まれた三角柱部分とそれ以外の導光板面の輝度を開口部面積の設定で均等化する直下照明方式。
In a direct illumination type liquid crystal display device that converts light incident on the light guide plate from directly below into the plane direction of the light guide plate by an inclined reflecting surface, light incident from an opening provided near the intersection of the inclined surfaces facing the V-shape The reflective surface is provided on the extended line of the opening, is reflected on the upper side of the V-shaped inclined reflecting surface, and is emitted from the reflecting surface on the upper side of the inclined reflecting surface to the liquid crystal side, and is surrounded by the V-shaped inclined surface. Direct illumination system that equalizes the brightness of the triangular prism and other light guide plate surfaces by setting the aperture area.
直下から導光板に入射した光を傾斜した反射面によって導光板の平面方向に変換する直下照明型液晶表示装置において、V字型に対向する傾斜面の交点付近に凹レンズによる開口部を設け、開口部から入射した光を凹レンズによって直上部三角柱部分に拡散する構造により、V字型に対向する傾斜面に囲まれた三角柱部分とそれ以外の導光板面の輝度を開口部面積の設定で均等化する直下照明方式。
In a direct illumination type liquid crystal display device that converts light incident on the light guide plate from directly below into the plane direction of the light guide plate by an inclined reflecting surface, an opening is formed by a concave lens near the intersection of the inclined surfaces facing the V-shape. A structure in which light incident from the light is diffused to the triangular prism portion directly above by a concave lens, and the brightness of the triangular prism portion surrounded by the inclined surface facing the V-shape and the other light guide plate surface is equalized by setting the aperture area Direct lighting system.
直下から導光板に入射した光を傾斜した反射面によって導光板の平面方向に変換する直下照明型液晶表示装置において、V字型に対向する傾斜面の交点付近に凹レンズによる開口部を設け、開口部から入射した光を凹レンズによって直上部三角柱部分に拡散し、三角柱部分に拡散する光をフレネルレンズ出射面によって平行光出射する直下照明方式。
In a direct illumination type liquid crystal display device that converts light incident on the light guide plate from directly below into the plane direction of the light guide plate by an inclined reflecting surface, an opening is formed by a concave lens near the intersection of the inclined surfaces facing the V-shape. A direct illumination system in which light incident from the light is diffused by the concave lens to the upper triangular prism portion, and the light diffused to the triangular prism portion is emitted by the Fresnel lens exit surface as parallel light.
軸外凹球面鏡と焦点位置および光軸方向が等しい位置に凸面鏡を設け、焦点距離の絶対値比で光束幅を変換するビームエクスパンダ/コンプレッサであり、
透明材料で構成した光路媒体上に反射鏡面を形成し、球面鏡にすることによって生じた収差を入出射面の曲線で収差補正することを特徴とするビームエクスパンダ/コンプレッサ。
A beam expander / compressor that provides a convex mirror at the same focal position and optical axis direction as the off-axis concave spherical mirror, and converts the beam width by the absolute value ratio of the focal length.
A beam expander / compressor characterized in that a reflecting mirror surface is formed on an optical path medium made of a transparent material, and aberrations caused by making a spherical mirror are corrected by an input / output surface curve.
焦点距離、およびその正負極性の異なる同軸の筒状反射面鏡によるビームエクスパンダ/コンプレッサの凹面鏡同士を筒状側面で接触した構造であり、
一方の反射鏡の軸方向に対して斜めに入射して対向反射面筒に反射し、その反射光を出射することによる連続的なビームエクスパンダ/コンプレッサアレイ。
It is a structure in which the concave mirrors of the beam expander / compressor by the coaxial cylindrical reflecting mirrors with different focal lengths and positive and negative polarities are in contact with each other on the cylindrical side surface.
A continuous beam expander / compressor array that is incident obliquely with respect to the axial direction of one of the reflecting mirrors, is reflected by the opposing reflecting surface cylinder, and emits the reflected light.
色別の線光源を用いてカラーフィルタを削減する直下照明方式であって、線光源の軸方向の光束幅比を1/色数に絞るビームコンプレッサを設け、各色の出射位置をずらして色別の層構成の導光板に入射し、平面方向に光路変換する傾斜反射面によって平面方向に伝播する光を棚田状に分散配置した微小傾斜面によって液晶面に反射することにより均一な照明を得る導光方式。
This is a direct illumination system that uses color-specific line light sources to reduce color filters, and is provided with a beam compressor that reduces the beam width ratio in the axial direction of the line light source to 1 / number of colors, shifting the emission position of each color for each color The light that is incident on the light guide plate with the layer structure and is propagated in the plane direction by the inclined reflection surface that changes the optical path in the plane direction is reflected on the liquid crystal surface by the minute inclined surfaces that are dispersed and arranged in a terraced manner to obtain uniform illumination. Light system.
色別線光源と積層導光板との結合部に軸方向の光束幅比を1/色数に絞る色別のビームコンプレッサの出射位置をずらして出射し、線光源の軸に垂直な導光板厚さ方向に光束幅を拡大するビームエクスパンダを通して導光板の厚さ全体に拡大することにより、光量分布を各色とも均一にすることを特徴とするサイドライト導光方式。
Thickness of the light guide plate perpendicular to the axis of the line light source, with the output position of the beam compressor for each color that squeezes the axial light flux width ratio to 1 / number of colors at the joint between the color light source and the laminated light guide A sidelight light guide system characterized in that the light quantity distribution is made uniform for each color by expanding the entire thickness of the light guide plate through a beam expander that expands the light flux width in the vertical direction.
液晶表示装置の表示面をxy平面としたとき、導光板側面からy軸方向に入射する光線を、yz平面上に棚田状に段差を持たせた第1の棚田状凸反射面でx軸方向に変換し、x方向に変換されて光束拡大する光線を、xy平面上に棚田状に段差を持たせた第2の凸反射面に照射して略鉛直方向にある液晶パネルに光束を拡大して反射することを特徴とする導光板。
When the display surface of the liquid crystal display device is the xy plane, the light incident in the y-axis direction from the side surface of the light guide plate is reflected in the x-axis direction on the first terraced convex reflection surface having a terraced step shape on the yz plane. Irradiating the second convex reflection surface having a stepped shape on the xy plane with a light beam that is converted into x and converted into the x direction to expand the light beam on the liquid crystal panel in a substantially vertical direction. A light guide plate characterized by being reflected.
リアプロジェクタ装置のスクリーン面をxy平面、表示透過光方向をz軸とし、
投影表示素子をxz平面に設けてy軸方向に平行光を照射すると、
yz平面上に棚田状に段差を持たせた第1の棚田状凸反射鏡でx軸方向に画像を拡大しつつ方向変換し、
xy平面上に棚田状に段差を持たせた第2の棚田状凸反射面に照射し、この反射光を略鉛直方向にあるスクリーンに画像を拡大して反射することにより表示素子画像をスクリーンに拡大表示することを特徴とするリアプロジェクタ。
The screen surface of the rear projector device is the xy plane, the display transmitted light direction is the z axis,
When a projection display element is provided on the xz plane and irradiated with parallel light in the y-axis direction,
The direction is changed while enlarging the image in the x-axis direction with the first terraced convex reflector having a terraced step on the yz plane,
A second terraced convex reflecting surface having a terraced step on the xy plane is irradiated, and the reflected light is magnified and reflected on a screen in a substantially vertical direction, whereby the display element image is reflected on the screen. A rear projector characterized by an enlarged display.
光源波長の異なる複数の発光ダイオードを基板上に並べ、光度が概略半値になる波長で交差して連続スペクトル白色光分光特性曲線になる光線を拡散層で拡散混色することによる白色光源。
A white light source by arranging a plurality of light emitting diodes having different light source wavelengths on a substrate, and diffusing and mixing light beams that form a continuous spectrum white light spectral characteristic curve by crossing at a wavelength at which the luminous intensity is approximately half value.
連続スペクトルを構成する複数の発光ダイオードを透明樹脂レンズの焦点より浅い位置に配置し、各光源から同一方向に出射される平行光線が焦点を結ぶことを、全ての平行光線方向に適用して出来る焦点面に拡散材層を設け、各色が合成されて拡散することを利用して白色光として放射する混色手段。
A plurality of light emitting diodes constituting a continuous spectrum can be arranged at a position shallower than the focal point of the transparent resin lens, and parallel rays emitted from each light source in the same direction can be applied to all parallel ray directions. Color mixing means for providing a diffusing material layer on the focal plane and radiating it as white light using the combination of each color and diffusion.
連続スペクトルを構成する複数の発光ダイオードを基板の中央付近に配置して凹面鏡を設け、凹面鏡の開口部付近をワイングラスのように先をすぼめて反射方向を発光ダイオードの光軸越えた位置に収束し、反射経路と直接光を光散乱層で着色を打ち消し合って混色することを特徴とする複数色発光ダイオードによる白色光源。
A plurality of light-emitting diodes constituting a continuous spectrum are arranged near the center of the substrate and a concave mirror is provided. A white light source using a multi-color light emitting diode, wherein the reflection path and the direct light are mixed with each other by canceling the coloring in the light scattering layer.
連続スペクトルを構成する複数の発光ダイオードを透明樹脂レンズの焦点より浅い位置に配置し、各光源から同一方向に出射される平行光線が焦点を結ぶことを、全ての平行光線方向に適用して出来る焦点面に拡散材層を設け、レンズ側面方向に出射される光を基板周囲に設けた凹面鏡に照射し、その反射光を光散乱層で混色することを特徴とする複数色発光ダイオードによる白色光源。
A plurality of light emitting diodes constituting a continuous spectrum can be arranged at a position shallower than the focal point of the transparent resin lens, and parallel rays emitted from each light source in the same direction can be applied to all parallel ray directions. A white light source using a multi-color light emitting diode, characterized in that a diffusing material layer is provided on the focal plane, light emitted in the direction of the lens side surface is irradiated onto a concave mirror provided around the substrate, and the reflected light is mixed by a light scattering layer .
導光物質内を長軸方向に伝播する平行光を棚田状に積層する凸反射面で反射し、焦点位置が略共通な正焦点距離屈折面で平行光に変換する要素を、導光棒の長軸方向に階層的に設けることにより線光源として出射することを特徴とする線状導光体。
The element that reflects the parallel light propagating in the long axis direction in the light guide material on the convex reflection surface laminated in a terraced shape and converts it into parallel light on the refracting surface of the normal focal length having a substantially common focal position is A linear light guide that emits as a linear light source by being provided hierarchically in the long axis direction.
液晶を挟持する基板に、同一ストライプ内の3つのサブ画素で1入射部を持つ構成のストライプに分配する構造と機能を持たせ、1/3の光量を入射部鉛直方向にあるサブ画素に透過し、残る2/3の光量をストライプ方向に傾斜した反射面で反射し、この反射光がストライプ分配基板に設けた反射面で反射して2つの液晶サブ画素に入射することにより同一ストライプ内の3つのサブ画素に分配することを特徴とする液晶パネルのストライプ分配方式。


The substrate that holds the liquid crystal has a structure and function that distributes the stripes in a configuration having one incident portion by three subpixels in the same stripe, and transmits 1/3 light quantity to the subpixels in the vertical direction of the incident portion. Then, the remaining 2/3 of the light is reflected by the reflecting surface inclined in the stripe direction, and this reflected light is reflected by the reflecting surface provided on the stripe distribution substrate and is incident on the two liquid crystal sub-pixels. A stripe distribution method for a liquid crystal panel, which is distributed to three sub-pixels.


JP2007129533A 2007-05-15 2007-05-15 Display device and lighting device Expired - Fee Related JP4114173B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007129533A JP4114173B1 (en) 2007-05-15 2007-05-15 Display device and lighting device
PCT/JP2008/058883 WO2008140106A1 (en) 2007-05-15 2008-05-14 Displaydevice and optical device
TW097117776A TWI310111B (en) 2007-05-15 2008-05-15 Lighting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129533A JP4114173B1 (en) 2007-05-15 2007-05-15 Display device and lighting device

Publications (2)

Publication Number Publication Date
JP4114173B1 JP4114173B1 (en) 2008-07-09
JP2008286874A true JP2008286874A (en) 2008-11-27

Family

ID=39661346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129533A Expired - Fee Related JP4114173B1 (en) 2007-05-15 2007-05-15 Display device and lighting device

Country Status (3)

Country Link
JP (1) JP4114173B1 (en)
TW (1) TWI310111B (en)
WO (1) WO2008140106A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013502697A (en) * 2009-08-21 2013-01-24 マイクロソフト コーポレーション Efficient light collimation with optical wedges
US9201185B2 (en) 2011-02-04 2015-12-01 Microsoft Technology Licensing, Llc Directional backlighting for display panels
US9256089B2 (en) 2012-06-15 2016-02-09 Microsoft Technology Licensing, Llc Object-detecting backlight unit
US9304949B2 (en) 2012-03-02 2016-04-05 Microsoft Technology Licensing, Llc Sensing user input at display area edge
US9354748B2 (en) 2012-02-13 2016-05-31 Microsoft Technology Licensing, Llc Optical stylus interaction
US9552777B2 (en) 2013-05-10 2017-01-24 Microsoft Technology Licensing, Llc Phase control backlight
TWI575299B (en) * 2015-05-08 2017-03-21 中強光電股份有限公司 Illumination system and projection apparatus
US9678542B2 (en) 2012-03-02 2017-06-13 Microsoft Technology Licensing, Llc Multiple position input device cover

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI375774B (en) 2009-02-12 2012-11-01 Yuuichi Suzuki Lighting apparatus and display apparatus
JP4399678B1 (en) * 2009-02-12 2010-01-20 鈴木 優一 Illumination device and display device
US8749898B2 (en) 2009-08-20 2014-06-10 Light Prescriptions Innovators, Llc Stepped flow-line concentrators and collimators
TWI392931B (en) * 2009-11-09 2013-04-11 Au Optronics Corp Light emitting device
JP5557144B2 (en) * 2010-03-03 2014-07-23 正孝 白▲崎▼ Optical instruments
US8708507B2 (en) * 2010-03-03 2014-04-29 Masataka Shirasaki Optical apparatus for magnifying a view of an object at a distance
TWI425276B (en) * 2010-09-28 2014-02-01 Dynascan Technology Corp A three-dimensional display system with a liquid crystal display and a three-dimensional display system with the display
CN103827572B (en) * 2011-09-15 2017-02-15 三菱电机株式会社 Light intensity distribution conversion element, planar light source device, and liquid crystal display device
CN107407472B (en) * 2015-08-05 2020-06-09 株式会社派特莱 Lens member and light emitting device
JP6717011B2 (en) 2016-04-07 2020-07-01 オムロン株式会社 Light source device, light guide element, and surface lighting device
EP3575845B1 (en) * 2018-05-30 2021-07-14 Depixus Multichannel close-up imaging device
CN111380028A (en) * 2018-12-29 2020-07-07 法雷奥市光(中国)车灯有限公司 Optical structure, lighting method and corresponding vehicle lamp and vehicle
CN114217475B (en) * 2021-12-28 2023-12-22 天马微电子股份有限公司 Backlight module, preparation method thereof and display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2770350B2 (en) * 1988-10-20 1998-07-02 富士通株式会社 Liquid crystal display
JPH09160032A (en) * 1995-12-12 1997-06-20 Omron Corp Illuminator, liquid crystal display device using the illuminator, portable terminal equipment, on board equipment and optical recognition device
JP2007087647A (en) * 2005-09-20 2007-04-05 Sharp Corp Light guide plate, backlight, and liquid crystal display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013502697A (en) * 2009-08-21 2013-01-24 マイクロソフト コーポレーション Efficient light collimation with optical wedges
US9201185B2 (en) 2011-02-04 2015-12-01 Microsoft Technology Licensing, Llc Directional backlighting for display panels
US9354748B2 (en) 2012-02-13 2016-05-31 Microsoft Technology Licensing, Llc Optical stylus interaction
US9904327B2 (en) 2012-03-02 2018-02-27 Microsoft Technology Licensing, Llc Flexible hinge and removable attachment
US9304949B2 (en) 2012-03-02 2016-04-05 Microsoft Technology Licensing, Llc Sensing user input at display area edge
US9619071B2 (en) 2012-03-02 2017-04-11 Microsoft Technology Licensing, Llc Computing device and an apparatus having sensors configured for measuring spatial information indicative of a position of the computing devices
US9678542B2 (en) 2012-03-02 2017-06-13 Microsoft Technology Licensing, Llc Multiple position input device cover
US10013030B2 (en) 2012-03-02 2018-07-03 Microsoft Technology Licensing, Llc Multiple position input device cover
US10963087B2 (en) 2012-03-02 2021-03-30 Microsoft Technology Licensing, Llc Pressure sensitive keys
US9256089B2 (en) 2012-06-15 2016-02-09 Microsoft Technology Licensing, Llc Object-detecting backlight unit
US9552777B2 (en) 2013-05-10 2017-01-24 Microsoft Technology Licensing, Llc Phase control backlight
TWI575299B (en) * 2015-05-08 2017-03-21 中強光電股份有限公司 Illumination system and projection apparatus
US9927685B2 (en) 2015-05-08 2018-03-27 Cortronic Corporation Illumination system having light-splitting unit and projection apparatus

Also Published As

Publication number Publication date
JP4114173B1 (en) 2008-07-09
TWI310111B (en) 2009-05-21
TW200907499A (en) 2009-02-16
WO2008140106A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP4114173B1 (en) Display device and lighting device
KR101519171B1 (en) Semi-specular components in hollow cavity light recycling backlights
JP3980890B2 (en) Light guide plate and light source device and display device including the same
US7695150B2 (en) Lighting unit, display device, and phosphor film
US7210839B2 (en) Backlight system and liquid crystal display employing the same
US8066418B2 (en) Lighting device and display device
CN103827572B (en) Light intensity distribution conversion element, planar light source device, and liquid crystal display device
JP4399678B1 (en) Illumination device and display device
US20090190070A1 (en) Planar illumination device and liquid crystal display device adopting the same
JP2006229228A (en) Multi-chip light emitting diode unit, backlight unit and liquid crystal display device employing the same
JP2009523308A5 (en)
JP2008203684A (en) Liquid crystal display device
US8684584B2 (en) Ultra-thin backlight
US20100315814A1 (en) Light irradiation device
TW201222098A (en) Surface light source and LCD
JP4356095B1 (en) Liquid crystal display device and lighting device
TWI375774B (en) Lighting apparatus and display apparatus
US20190108786A1 (en) Backlight unit
JP4681075B1 (en) Illumination device and display device
JP2008066162A (en) Surface light source and liquid crystal display device
KR101101792B1 (en) Liquid crystal display device and lighting display device
TWI323818B (en) Liquid crystal display lighting apparatus
JP2018186024A (en) Optical color mixing luminaire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees