JP2008283037A - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP2008283037A
JP2008283037A JP2007126676A JP2007126676A JP2008283037A JP 2008283037 A JP2008283037 A JP 2008283037A JP 2007126676 A JP2007126676 A JP 2007126676A JP 2007126676 A JP2007126676 A JP 2007126676A JP 2008283037 A JP2008283037 A JP 2008283037A
Authority
JP
Japan
Prior art keywords
light
light emitting
dielectric constant
emitting diode
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007126676A
Other languages
English (en)
Inventor
Katsuya Akimoto
克弥 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007126676A priority Critical patent/JP2008283037A/ja
Priority to US11/905,066 priority patent/US7795631B2/en
Priority to CN2008100952396A priority patent/CN101304065B/zh
Publication of JP2008283037A publication Critical patent/JP2008283037A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4823Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a pin of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

【課題】放射角による発光強度や波長のばらつきを抑制しつつ、光取出効率を向上させた発光素子を提供する。
【解決手段】基板(1)上に発光層(4)を含む化合物半導体層を有する発光素子(10)において、前記化合物半導体層の光取出面となる主表面を含む部分に、誘電率の異なる二種類以上の物質が前記主表面(6a)内に二次元格子状に周期的に交互に並んだフォトニック結晶構造における、前記誘電率の二次元格子状の周期性をランダムに変動させて非回転対称性の誘電率分布とした誘電率変化構造(11)を備えた発光素子(10)である。
【選択図】図1

Description

本発明は化合物半導体の発光層を有する発光素子に関し、更に詳しくは、放射角による発光強度や波長のばらつきを抑えつつ、光取出効率の向上を図った発光素子に関する。本発明の発光素子は、例えば、照明機器、液晶用バックライト、各種インジケータ、表示パネル等のデバイスに使用できる。
近年、発光ダイオード(Light Emitting Diode;LED)の応用分野の拡大に伴い、光出力の増大に対する要求が高まっている。
このような要求に対し、発光ダイオードの主表面に2次元周期構造の凹凸を形成し、その回折効果を利用して凹凸形成面からの光取出効率を向上させる方法が提案されている(特許文献1参照)。この方法では、主表面に2次元周期構造、いわゆるフォトニック結晶を形成している。フォトニック結晶は、光の入射波長や方向、偏光に大きく依存した透過率を持つことが知られている(例えば、非特許文献1参照)。
このようなフォトニック結晶の性質を利用した例として、フォトニック結晶に非対称性を持たせることで偏光方向を制御する、2次元フォトニック結晶面発光レーザが知られている(特許文献2参照)。
特開2006−49855号公報 特許3561244号公報 井上久遠、「フォトニック結晶による光の場の制御」、表面科学、2001、第22巻、第11号
上記特許文献1の方法は、光取出効率の向上という観点からは優れている。しかしながら、発光ダイオードに適用した場合には、次のような問題がある。
フォトニック結晶は、レーザ応用には極めて有効であるが、発光ダイオードの場合には事情が異なる。まず、第一に、発光ダイオードはレーザに比べて発光波長に広がりがある。第二に、発光ダイオードはレーザに比べて光の放射角が極めて広い。従って、上記の非特許文献1にも述べらるように、フォトニック結晶の透過率が入射波長や方向に依存することから、次のような現象が発生することは明らかである。
第一に、発光ダイオードの放射角によって光強度が異なること、第二に、発光ダイオードの放射角によって発光スペクトルが異なることである。より具体的には、発光ダイオードを覗き込む角度によって、光の明るさや色が大きく異なって見える。
このような現象は、特に発光ダイオードを照明や液晶のバックライトヘと応用した場合に、色ムラや照度ムラの原因となり得る。
本発明は、上記課題を解決し、放射角による発光強度や波長のばらつきを抑制しつつ、光取出効率を向上させた発光素子を提供することにある。
上記課題を解決するために、本発明は次のように構成されている。
本発明の第1の態様は、基板上に発光層を含む化合物半導体層を有する発光素子におい
て、前記化合物半導体層の光取出面となる主表面を含む部分に、誘電率の異なる二種類以上の物質が前記主表面内に二次元格子状に周期的に交互に並んだフォトニック結晶構造における、前記誘電率の二次元格子状の周期性をランダムに変動させて非回転対称性の誘電率分布とした誘電率変化構造を備えた発光素子である。
本発明の第2の態様は、第1の態様の発光素子において、前記誘電率変化構造が、前記主表面に前記非回転対称性の配置で形成された凹凸形状を有する発光素子である。
本発明の第3の態様は、第1の態様又は第2の態様の発光素子において、前記発光層が、AlGaIn1−x−yP層(ただし、0≦x≦1、0≦y≦1、0≦x+y≦1)を少なくとも1層以上含む発光素子である。
本発明の第4の態様は、第1〜第3の態様のいずれかの発光素子おいて、前記基板が、GaAsからなる発光素子である。
本発明によれば、発光素子の光取出面となる主表面を含む部分に、フォトニック結晶構造における誘電率の二次元格子状の周期性をランダムに変動させた、非回転対称性の誘電率分布の誘電率変化構造を設けることにより、光取出効率を向上でき、且つ、放射角による発光強度や波長のばらつきを抑制した発光素子が得られる。
以下、本発明の実施形態に係る発光ダイオードを図面を用いて説明する。
図1は、この実施形態の発光ダイオード(ベアチップ)を示すもので、図1(a)は縦断面図、図1(b)は上面図である。
図1に示す発光ダイオード10の作製にあっては、まず、n型GaAs基板1上に、n型GaAsバッファ層2、n型AlGaInPクラッド層3、アンドープAlGaInP活性層4、p型AlGaInPクラッド層5、p型GaAs保護層6を、有機金属化学的気相成長(MOVPE)法で順次成長し、発光ダイオード用エピタキシャルウェハを作製した。
次に、このエピタキシャルウェハのp型GaAs保護層6に対し、フォトリソグラフィ装置と反応性イオンエッチング装置を用いて、光取出面となるp型GaAs保護層6表面からp型GaAs保護層6を貫通してp型AlGaInPクラッド層5に達する円柱状の孔7を多数形成した。各孔7の配置においては、図2に点線で示すフォトニック結晶のような2次元正方格子状(最も近接した孔15,15間の距離(格子定数)a)の周期的な孔15の配置を想定したときの配置位置に対して、ランダムな変動(位置ずれ)を与えた位置に孔7を形成している。ただし、後工程でp型GaAs保護層6上に上部電極8が形成される部位・領域には、孔7は形成していない。
即ち、光取出面となるp型GaAs保護層6の主表面6aの部分に、誘電率(屈折率)の異なる二種類以上の物質(GaAs保護層6のGaAsと、GaAs保護層6に形成された孔7の部分の空気)が、主表面6a内に二次元格子状に周期的に交互に並んだフォトニック結晶構造に対して、当該誘電率の二次元格子状の周期性をランダムに変動させて非回転対称性(主表面6aに垂直な直線の回りに回転させたときに、孔7の配置が回転対称性を持たない)の誘電率分布とした誘電率変化構造11が形成される。なお、例えば、図1の発光ダイオード(ベアチップ)を実装時に樹脂封止して孔7に樹脂が充填される場合などには、孔7に充填された樹脂等の物質(孔7に樹脂等が充填されないときの空気も含む)とGaAsとから誘電率変化構造11が形成される。
次に、p型GaAs保護層6上の孔7を形成していない領域に上部電極8を、GaAs基板1裏面に下部電極9をそれぞれ形成した。その後、ウェハを各上部電極8が中心部に位置するように所定寸法角のチップヘと切り出して、図1に示すダブルへテロ構造のAlGaInP系発光ダイオード(ベアチップ)を作製した。
p型GaAs保護層6に孔7を形成せずに主表面が平坦である従来の発光ダイオードと比較して、上記主表面6a部の誘電率変化構造11による回折効果によって、全反射が抑制され、活性層(発光層)4からの光はLED10の外へと出やすくなり、光取出効率が向上する。その一方で、誘電率変化構造11は回転対称性を有していないため、フォトニック結晶のように透過率が入射光の波長や入射方向に大きく依存することはない。すなわち、全ての方向に平均的に光を取り出すことができ、LED10の主表面6aから放射される光の放射角による強度や波長のばらつきは生じにくい。
本発明の発光素子の誘電率変化構造は、どのような構造・形状であってもよいが、製作の容易さおよび効果を考慮すると、上記実施形態のように、主表面に凹凸構造・形状を設けることが望ましい。この凹凸構造・形状は、主表面上でより大きな面積を占める部位が凹部、凸部のどちらであってもよい。
さらに、本発明の発光素子の発光層(活性層)は、AlGaIn1−x−yP(0≦x≦1、0≦y≦1、0≦x+y≦1)で表される層を少なくとも1層以上を有し、さらに発光層を支持する基板はGaAs(ヒ化ガリウム)からなることが望ましい。
これは、高出力型の赤色発光ダイオードとしてよく用いられるAlGaInP系発光ダイオードの構造である。一般にAlGaInP系発光ダイオードは、格子整合性を考慮してGaAs基板上に形成されるが、GaAsは赤色光に対して不透明である。そのため、AlGaInP系発光ダイオードは、例えばサファイア基板上の窒化ガリウム系発光ダイオードでよく利用されるフリップチップ実装のような手法を用いることができない。それゆえ、GaAs基板を用いたAlGaInP系発光ダイオードに対して、本発明の誘電率変化構造を適用することは光取出効率の向上に極めて有効である。
なお、上記実施形態では、主表面内に直交する2方向に沿ってそれぞれ周期的に交互に誘電率の異なる二種類の物質が2次元正方格子状に配置されたフォトニック結晶の誘電率構造を基礎としたが、これに限らず、例えば、60度に交差する2方向に沿ってそれぞれ周期的に配置された2次元三角格子状のフォトニック結晶の誘電率構造を基礎として、この2次元三角格子状の配置にランダムな変動を持たせた配置に孔7を形成するようにしてもよい。
また、基礎となるフォトニック結晶の配置の周期(格子定数a)は、通常、発光波長(発光波長帯のピークの波長)の半波長程度であるが、発光波長の数分の一〜数倍程度の周期としてもよい。
また、2次元格子状の周期性をランダムに変動させる程度・割合は、例えば、2次元格子状に孔(半径r)を形成してなるフォトニック結晶(格子定数a)の配置に対してランダムな位置ずれを与える場合には、隣り合う孔が接触しない程度、すなわち、位置ずれdは、d=(a/2)−r未満であればよい。更には、孔を形成する手段(エッチング等)によるバラツキなどを考慮すると、位置ずれの程度は、上記dの半分程度以下がより望ましい。
また、上記実施形態では、2次元格子状の配置に対してランダムな位置ずれを与えた配置位置に孔7を形成したが、例えば、2次元格子状に孔を配置するが、ランダムに選択された位置の孔に対して孔径や孔の形成を変更して周期性に変動を与えた誘電率変化構造としてもよい。
上記実施形態では、孔7の形成に反応性イオンエッチングを用いたが、例えば硫酸や塩酸、あるいはそれらの混合溶液を用いたウエットエッチング等の手法を用いて形成してもよい。
また、上記実施形態の誘電率変化構造11にあっては、孔7は円筒状であるが、必ずしも円筒状である必要はなく、例えば円錐、角柱、角錐、あるいはその他の形状であってもよい。
さらに、上記実施形態では、誘電率変化構造11は、主表面に凹部(孔7)を形成したが、主表面上に円筒、円錐、角柱、角錐、あるいはその他の形状の凸部が多数形成されたものであってもよい。
また、上記実施形態では、回転対称性を有さない誘電率変化構造11の形成にフォトリソグラフィ技術を用いたが、必ずしもフォトリソグラフィ技術を用いる必要はない。例えば、ウェハにパターン等を形成せずにウエットエッチングを適用する方法がある。また、自己組織化を利用したマスクパターンを適用してもよい。
さらに、上記実施形態では、発光層にAlGaInPを用いた赤色の発光素子について説明したが、例えば発光層にAlGaAsやGaPを用いてもよい。また、InGaAsやInGaAsPを用いた赤外発光素子、InGaNやAlGaNを用いた青色および紫外発光素子にも適用することができる。
また、本発明に関する発光素子は、必ずしも支持基板をGaAs基板とする発光素子だけではなく、例えば、F.A.Kish,et al.,“Very high efficiency semiconductor wafer-bonded transparent substrate light emitting diodes", Appl. Phys. Lett., vol.64, no.21, pp.2839-2841, May 1994.にあるように、発光層を支持する基板を発光波長に対し
て透明な材料に置き換え、高効率化を図った発光素子や、特表2005−513787にあるように、反射サブマウントを有する高効率の発光素子にも適用することが可能である。
次に、本発明の実施例の発光ダイオードを説明する。
図3に本実施例の発光ダイオードを示す。図3(a)はステムに実装した状態の発光ダイオードの縦断面図、図3(b)はステムに実装される発光ダイオード(ベアチップ)の上面図である。
まず、上記実施形態と同様に、発光ダイオード用エピタキシャルウェハを作製した。厚さ300μmのSiドープのn型GaAs基板(円形ウェハ)1を有機金属気相成長装置に設置して加熱し、水素キャリアガスと共にIII族有機金属原料ガス、V族原料ガス及び
必要なドーパント原料ガスをn型GaAs基板1に供給して、n型GaAs基板1上に、Seドープのn型GaAsバッファ層2、Seドープのn型(Al0.7Ga0.30.
In0.5Pクラッド層3、アンドープ(Al0.15Ga0.850.5In0.5
活性層4、Znドープのp型(Al0.7Ga0.30.5In0.5Pクラッド層5、Znドープのp型GaAs保護層6を、MOVPE法で順次成長し、発光波長630nmの発光ダイオード用エピタキシャルウェハを得た。
得られた円形のエピタキシャルウェハを、1/4円ずつに4つに分割し、そのうちの3つをそれぞれエピタキシャルウェハA、エピタキシャルウェハB、エピタキシャルウェハCとした。残るひとつはウェハを4等分に分割した都合上生じたものであり、本実施例で
は使用していない。
エピタキシャルウェハAには、フォトリソグラフィ装置と反応性イオンエッチング装置を用い、p型GaAs保護層6を貫通してp型(Al0.7Ga0.30.5In0.5Pクラッド層5に達する、直径20nm、深さl00nmの円柱状の孔7を多数形成した(図3(a)、(b))。孔7の配置は、図2と同様に、2次元正方格子状(最近接の孔の間の距離、即ち格子定数は220nm)の2次元フォトニック結晶の誘電率構造をベースにし、2次元正方格子状の配置位置からランダムに位置をずらして孔7を形成した。なお、後にp型GaAs保護層6上に上部電極8が形成される部位には、孔7は形成していない。
次に、エピタキシャルウェハAに対し、p型GaAs保護層6上に孔7が形成されていない部位に上部電極8を、GaAs基板1の裏面全面に下部電極9をそれぞれ形成した。上部電極8は直径100μmの円形である。その後、エピタキシャルウェハAを各上部電極8が中心部に位置するように300μm角のチップヘと切り出した。更に、得られたチップの下部電極9を金属ステム20上に設置し、上部電極8と金属ステム20に絶縁して設けられたピン22との間を金属ワイヤ21によりボンディングした(図3(a))。以上の工程を経て、エピタキシャルウェハAからダブルヘテロ構造のAlGaInP系発光ダイオードを得た。こうして得られた本実施例の発光ダイオードを発光ダイオードAという。
上述したエピタキシャルウェハAへの孔7の配置は次の手順により決定した。
本実施例では、220μmピッチの2次元正方格子をベースに、乱数で孔7の配置位置をずらすという方法を用いた。これは計算が容易であるという理由によるものであり、全く別のアルゴリズムを用いて孔7の位置を決めてもよい。
発光ダイオードAの主表面を、任意のひとつのチップの角を原点(0,0)とした2次元直交座標(x,y)で表す。xおよびyの単位はnmとする。チップは300μm角のため、xおよびyの取り得る値はそれぞれ0以上300,000以下となる。
00=220,y00=220を最初の孔7の位置とし、まず、y=220上に並ぶ正方格子の格子点(440,220)、(660,220)、(880,220)、…を変動させた孔7の位置(x01,y01)、(x02,y02)、(x03,y03)、…を決定する。位置決定にあっては、混合合同法を用いて、2桁の擬似乱数αmnを発生させた。
本実施例では混合合同法による擬似乱数を用い、回転対称性を有しないように孔7の配置を決定した。しかし、擬似乱数の発生アルゴリズムとしては、例えばメルセンヌ・ツイスタのようなより優れた方法があるが、本発明の本質は乱数の品質にあるわけではないため、より容易である混合合同法を採用した。
本実施例で用いた混合合同法について述べる。
次の式に従い、αmnからα'mnを求める。
α'mn=αmn×p+q
求められたα'mnの下2桁が擬似乱数αmn+1となる。同様にして、αmn+1
らα'mn+1を求め、α'mn+1の下2桁が次の擬似乱数αmn+2となる。
本実施例では、初期値として以下の値を用いた。
α00=5963、p=765、q=573
このとき得られる擬似乱数の一例を以下に示す。
α01=68、α02=93、α03=18、…
上記方法によって得られた擬似乱数α01を用いて、2つ目の孔7の位置(x01,y01)を次のように決定した。
01=x00+α01+170
01=y00+α01−50
次に、α01から擬似乱数α02を発生させ、3つ目の孔の位置(x02,y02)を次のように決定する。
02=x01+α02+170
02=y01+α02−50
これを繰り返して、孔7の位置を順次決定する。まとめて書くと、次のようになる。
0n=x0n−1+α0n+170
0n=y0n−1+α0n−50
n=1,2,3…
0nが300,000以上となると、チップ外となってしまうため、適当なnをもっ
て以上の操作はいったん終了する。このときのnをn0maxとする。
その次の孔7の位置は、x10=220,y10=440を最初の位置とし、y=440上に並ぶ正方格子の格子点(440,440)、(660,440)、(880,440)、…を変動させた孔7の位置(x11,y11)、(x12,y12)、(x13,y13)、…を同様に決定してゆく。このとき、はじめの擬似乱数α11は、直前のn0maxのときの擬似乱数を用いて決定する。
これらをまとめると以下のようになる。
mn=xmn−1+αmn+170、 xm0=220
mn=ym0+αmn−50、 ym0=220×(m+1)
n=1,2,3…
m=0,1,2,3…
αmnはαmn−1を用いて混合合同法で決定する(ただしαm1は直前の擬似乱数を用いて決定する)。ただし、これらのうち、上部電極8を形成する部分に含まれる孔は除外される。以上の操作により、厳密に周期性を持たない孔の集合がLEDチップ表面に形成される。このとき、当然ながら、これらの孔の集合は主表面の中心と垂直に交わる直線に対して回転対称性を有してない。
上記実施例と比較するための比較例として、上記1/4円の1つであるエピタキシャルウェハBには、図4に示すように、孔を形成せずに、p型GaAs保護層6上に直径100μmの上部電極8を、GaAs基板1裏面に下部電極9をそれぞれ形成した。このエピタキシャルウェハBを、エピタキシャルウェハAと同様に、300μm角のチップヘと切り出して金属ステム20上に設置し、上部電極8には金属ワイヤ21をボンディングした(図4(a))。こうして、ダブルヘテロ構造のAlGaInP系発光ダイオードを得た。これは、従来の発光ダイオードであり、これを発光ダイオードBという。
また、上記実施例と比較するための他の比較例として、上記1/4円の1つであるエピタキシャルウェハCには、図5に示すように、フォトリソグラフィ装置と反応性イオンエッチング装置を用い、p型GaAs保護層6を貫通してp型(Al0.7Ga0.30.
In0.5Pクラッド層5に達する、直径20nm、深さl00nmの孔15を、2次
元正方格子状に多数形成した。最も近接した孔15,15間の距離(格子定数)は220nmとした。このエピタキシャルウェハCにおいても、エピタキシャルウェハAと同様に、上部電極8と下部電極9を形成した後、300μm角のチップヘと切り出して金属ステム20上へ設置し、金属ワイヤ21でボンディングした(図5(a))。上記2次元正方格子状に配置された孔7は2次元フォトニック結晶であり、この発光ダイオードを発光ダイオードCという。
このようにして得られた発光ダイオードA、B、Cに、それぞれ20mAの電流を通電して発光出力を調べた結果、発光ダイオードAの発光出力は2.5mW、発光ダイオード
Bの発光出力は1.2mW、発光ダイオードCの発光出力は2.7mWであった。発光ダイオードAおよびCの発光出力が発光ダイオードBの発光出力よりも大きく増加したのは、主表面に孔7、孔15をそれぞれ多数形成した誘電率分散構造によって光取出効率が向上したことを示すものである。
次に、発光ダイオードA,B,Cについて、それぞれの配光特性を測定した。図6に示すように、発光ダイオードA,B,Cの主表面の中心において主表面と垂直に交わる直線(中心軸)から30°の角度をなす位置に光センサ25を設置し、発光ダイオードA,B,Cを中心軸の回りに回転させて光強度を測定し、配光特性を求めた。ここでは、主表面上の任意の一辺に平行な方向を0°とし、発光ダイオードA,B,Cを上部電極8を形成した側から見て右回り(時計回り)に回転して各角度で光強度を測定した。測定結果を図7に示す。図7(A)は本実施例の発光ダイオードAの配光特性、図7(B)は比較例(平坦な主表面)の発光ダイオードBの配光特性、図7(C)は比較例(2次元フォトニック結晶構造)の発光ダイオードCの配光特性をそれぞれ示す。
図7に示すように、発光ダイオードAおよび発光ダイオードBでは、全方向でほぼ均等な配光特性が得られていることがわかる。一方、発光ダイオードCは0度,90度,180度,270度の方向で特に光強度が大きい傾向が見られる。これは、発光ダイオードCの表面に形成した2次元正方格子状のフォトニック結晶が持つ4回対称性を強く反映したものである。
以上の結果から、本実施例の発光ダイオードAでは、放射角による光強度のばらつきを抑制しつつ、光取出効率を向上できることが示された。
本発明の実施形態に係る発光ダイオード(ベアチップ)を示すもので、(a)は縦断面図、(b)は上面図である。 図1の孔の配置を説明する説明図である。 実施例の発光ダイオードを示すもので、(a)はステムに実装した状態の発光ダイオードの縦断面図、(b)はステムに実装される発光ダイオード(ベアチップ)の上面図である。 比較例の発光ダイオードを示すもので、(a)はステムに実装した状態の発光ダイオードの縦断面図、(b)はステムに実装される発光ダイオード(ベアチップ)の上面図である。 比較例の発光ダイオードを示すもので、(a)はステムに実装した状態の発光ダイオードの縦断面図、(b)はステムに実装される発光ダイオード(ベアチップ)の上面図である。 実施例及び比較例の発光ダイオードの配光特性の測定方法を示す模式図である。 実施例及び比較例の発光ダイオードの配光特性を示す図である。
符号の説明
l n型GaAs基板
2 n型GaAsバッフア層
3 n型AlGaInPクラッド層
4 アンドープAlGaInP活性層
5 p型AlGaInPクラッド層
6 p型GaAs保護層
7 孔
8 上部電極
9 下部電極
10 発光ダイオード
11 誘電率変化構造
15 2次元正方格子状の配置の孔
20 ステム
21 金属ワイヤ
25 光センサ
A,B,C 発光ダイオード

Claims (4)

  1. 基板上に発光層を含む化合物半導体層を有する発光素子において、
    前記化合物半導体層の光取出面となる主表面を含む部分に、誘電率の異なる二種類以上の物質が前記主表面内に二次元格子状に周期的に交互に並んだフォトニック結晶構造における、前記誘電率の二次元格子状の周期性をランダムに変動させて非回転対称性の誘電率分布とした誘電率変化構造を備えたことを特徴とする発光素子。
  2. 前記誘電率変化構造が、前記主表面に前記非回転対称性の配置で形成された凹凸形状を有することを特徴とする請求項1に記載の発光素子。
  3. 前記発光層が、AlGaIn1−x−yP層(ただし、0≦x≦1、0≦y≦1、0≦x+y≦1)を少なくとも1層以上含むことを特徴とする請求項1または2に記載の発光素子。
  4. 前記基板が、GaAsからなることを特徴とする請求項1〜3のいずれかに記載の発光素子。
JP2007126676A 2007-05-11 2007-05-11 発光素子 Pending JP2008283037A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007126676A JP2008283037A (ja) 2007-05-11 2007-05-11 発光素子
US11/905,066 US7795631B2 (en) 2007-05-11 2007-09-27 Light-emitting device
CN2008100952396A CN101304065B (zh) 2007-05-11 2008-05-05 发光元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126676A JP2008283037A (ja) 2007-05-11 2007-05-11 発光素子

Publications (1)

Publication Number Publication Date
JP2008283037A true JP2008283037A (ja) 2008-11-20

Family

ID=39968717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126676A Pending JP2008283037A (ja) 2007-05-11 2007-05-11 発光素子

Country Status (3)

Country Link
US (1) US7795631B2 (ja)
JP (1) JP2008283037A (ja)
CN (1) CN101304065B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049018A1 (ja) * 2009-10-23 2011-04-28 日本電気株式会社 発光素子、およびそれを備えた投写型表示装置
WO2011052395A1 (en) * 2009-10-30 2011-05-05 Fujifilm Corporation Epitaxial wafer, method of producing epitaxial wafer, light-emitting element wafer, method of producing light-emitting element wafer, and light-emitting element
WO2011065766A2 (en) * 2009-11-27 2011-06-03 Seoul Opto Device Co., Ltd. Vertical gallium nitride-based light emttting diode and method of manufacturing the same
JP2013157567A (ja) * 2012-01-31 2013-08-15 Kyoto Univ 太陽電池
JP2013156585A (ja) * 2012-01-31 2013-08-15 Kyoto Univ 2次元フォトニック結晶

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009017495B4 (de) * 2009-02-11 2020-07-09 Osram Opto Semiconductors Gmbh Beleuchtungseinrichtung
KR101081166B1 (ko) * 2009-09-23 2011-11-07 엘지이노텍 주식회사 발광소자, 발광소자의 제조방법 및 발광소자 패키지
KR101103892B1 (ko) * 2009-12-08 2012-01-12 엘지이노텍 주식회사 발광소자 및 발광소자 패키지
JP5581696B2 (ja) * 2010-01-05 2014-09-03 セイコーエプソン株式会社 生体情報検出器及び生体情報測定装置
JP2011161039A (ja) * 2010-02-10 2011-08-25 Seiko Epson Corp 生体情報検出器及び生体情報測定装置
JP5604897B2 (ja) * 2010-02-18 2014-10-15 セイコーエプソン株式会社 光デバイスの製造方法、光デバイス及び生体情報検出器
KR102066620B1 (ko) * 2013-07-18 2020-01-16 엘지이노텍 주식회사 발광 소자
JP6281869B2 (ja) * 2014-02-27 2018-02-21 国立大学法人大阪大学 方向性結合器および合分波器デバイス
DE102018107615A1 (de) * 2017-09-06 2019-03-07 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366598B1 (en) * 1999-02-10 2002-04-02 Trw Inc. High power single mode semiconductor lasers and optical amplifiers using 2D Bragg gratings
JP3561244B2 (ja) 2001-07-05 2004-09-02 独立行政法人 科学技術振興機構 二次元フォトニック結晶面発光レーザ
JP2006049855A (ja) 2004-06-28 2006-02-16 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049018A1 (ja) * 2009-10-23 2011-04-28 日本電気株式会社 発光素子、およびそれを備えた投写型表示装置
US9028070B2 (en) 2009-10-23 2015-05-12 Nec Corporation Light emitting element having structural bodies arrayed at a first pitch along a first direction and arrayed at a second pitch different from said first pitch along a second direction and projection display device provided with same
JP5803672B2 (ja) * 2009-10-23 2015-11-04 日本電気株式会社 発光素子、およびそれを備えた投写型表示装置
WO2011052395A1 (en) * 2009-10-30 2011-05-05 Fujifilm Corporation Epitaxial wafer, method of producing epitaxial wafer, light-emitting element wafer, method of producing light-emitting element wafer, and light-emitting element
JP2011096935A (ja) * 2009-10-30 2011-05-12 Fujifilm Corp エピタキシャルウエハ、エピタキシャルウエハの製造方法、発光素子ウエハ、発光素子ウエハの製造方法、及び発光素子
WO2011065766A2 (en) * 2009-11-27 2011-06-03 Seoul Opto Device Co., Ltd. Vertical gallium nitride-based light emttting diode and method of manufacturing the same
WO2011065766A3 (en) * 2009-11-27 2011-08-25 Seoul Opto Device Co., Ltd. Vertical gallium nitride-based light emttting diode and method of manufacturing the same
US8860070B2 (en) 2009-11-27 2014-10-14 Seoul Viosys Co., Ltd. Vertical gallium nitride-based light emitting diode and method of manufacturing the same
JP2013157567A (ja) * 2012-01-31 2013-08-15 Kyoto Univ 太陽電池
JP2013156585A (ja) * 2012-01-31 2013-08-15 Kyoto Univ 2次元フォトニック結晶

Also Published As

Publication number Publication date
US20080277679A1 (en) 2008-11-13
US7795631B2 (en) 2010-09-14
CN101304065B (zh) 2010-06-30
CN101304065A (zh) 2008-11-12

Similar Documents

Publication Publication Date Title
JP2008283037A (ja) 発光素子
JP5315513B2 (ja) 発光素子及びその製造方法
US7391059B2 (en) Isotropic collimation devices and related methods
US8378567B2 (en) Light-polarizing structure
US7348603B2 (en) Anisotropic collimation devices and related methods
JP2008311317A (ja) 半導体発光素子
US20180097144A1 (en) Method for manufacturing light emitting element and light emitting element
KR101281504B1 (ko) 피라미드형 광 결정 발광 소자
JP5071087B2 (ja) 半導体発光素子
US8502194B2 (en) Light-emitting device
Yanagihara et al. Red‐Emitting InGaN‐Based Nanocolumn Light‐Emitting Diodes with Highly Directional Beam Profiles
JP2011091251A (ja) 窒化物半導体発光素子
TWI484663B (zh) 半導體發光元件及其製作方法
JP5866044B1 (ja) 発光素子の製造方法及び発光素子
JP6041265B2 (ja) 発光ダイオード
WO2018025805A1 (ja) 半導体発光素子及びその製造方法
JP2009043895A (ja) 発光素子
KR102244218B1 (ko) 나노구조 반도체 발광소자 제조방법
JP2012104739A (ja) 発光素子
KR101182104B1 (ko) 질화물계 반도체 발광소자 및 이의 제조방법
WO2023095573A1 (ja) 発光ダイオード素子
KR20110024762A (ko) 패턴 사파이어 서브스트레이트 및 이를 이용한 발광소자
WO2015194382A1 (ja) 発光素子の製造方法及び発光素子
KR20230119660A (ko) 축형 3차원 발광 다이오드를 갖는 광전자 장치
JP4850058B2 (ja) 半導体素子、ならびにこれを用いた照明装置および画像受像機