JP2008280208A - Porous body - Google Patents

Porous body Download PDF

Info

Publication number
JP2008280208A
JP2008280208A JP2007125508A JP2007125508A JP2008280208A JP 2008280208 A JP2008280208 A JP 2008280208A JP 2007125508 A JP2007125508 A JP 2007125508A JP 2007125508 A JP2007125508 A JP 2007125508A JP 2008280208 A JP2008280208 A JP 2008280208A
Authority
JP
Japan
Prior art keywords
clay mineral
layered clay
porous body
organic
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007125508A
Other languages
Japanese (ja)
Other versions
JP5202869B2 (en
Inventor
Kazutaka Murata
一高 村田
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2007125508A priority Critical patent/JP5202869B2/en
Publication of JP2008280208A publication Critical patent/JP2008280208A/en
Application granted granted Critical
Publication of JP5202869B2 publication Critical patent/JP5202869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous body which has excellent adsorption capability, has a large surface area usable as an adsorption material or a separation/filter material, has a pore diameter of submicromer size, and is formed by using a layered clay mineral. <P>SOLUTION: The porous body has pores (a) each isolated by a layer formed of a layered clay mineral (A) and each having a pore diameter of 20-500 nm. In the porous body, the layer formed of the layered clay mineral (A) has a thickness of 3-100 nm and fine pores (b) each having a pore diameter of <20 nm, measured by surface area measurement, are included. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、層状粘土鉱物により形成された大きな表面積を有するナノオーダーの空孔を有する多孔質構造体とその製造法に関するものである。   The present invention relates to a porous structure having nano-scale pores having a large surface area formed of layered clay mineral and a method for producing the same.

層状粘土鉱物は、有機化合物や無機化合物、更には金属化合物など、非常に幅広い化合物との相互作用が強く、分離濾過材、吸着剤、触媒担体などとして利用が期待されている(例えば、非特許文献1参照)。アミノ基、カルボン酸基、水酸基などの官能基と強い相互作用を示すため、アミノ酸や糖類などに対して強い吸着能を示す。特に、層状粘土鉱物との相互作用が強い物質には、アミン化合物やボロン酸、更には金属塩などのような有害物質が多い。そのため広範な種類の有害物質を吸着除去し、水や空気を浄化するのに有効である。   Layered clay minerals have a strong interaction with a wide range of compounds such as organic compounds, inorganic compounds, and even metal compounds, and are expected to be used as separation filter media, adsorbents, catalyst carriers, etc. Reference 1). Since it exhibits a strong interaction with functional groups such as amino groups, carboxylic acid groups, and hydroxyl groups, it exhibits a strong adsorption ability for amino acids and saccharides. In particular, there are many harmful substances such as amine compounds, boronic acids, and metal salts among substances having strong interaction with the layered clay mineral. Therefore, it is effective to adsorb and remove a wide variety of harmful substances and purify water and air.

水や空気の浄化が効果的に行われるためには、高い表面積を持つ多孔質体であることが望ましい。層状粘土鉱物は、板状の粘土が一枚一枚層状剥離した状態である場合、高い表面積を示す。粘土鉱物を水に分散させてゲル状にした後、急冷凍結し凍結乾燥法により層状剥離した状態の粘土鉱物を得る方法は一般によく知られている。これにより、得られた粉末状の粘土物を吸着剤として利用することができる。しかし、粉末であるため、多孔質体などに比べて、安定した性能を発揮し難いなどの問題があった。また、凍結乾燥法などにより層状剥離させた粘土鉱物は熱安定性に乏しく、加熱により粘土鉱物がスタッキングしてしまい性能が大きく低下するという問題もあった。つまり、粘土鉱物は層状剥離した状態では100m/g以上の高い表面積をしめすが、500℃程度に加熱すると10m/g程度まで表面積が低下し、吸着効率が大きく低下するという問題があった。 In order to effectively purify water and air, a porous body having a high surface area is desirable. The layered clay mineral exhibits a high surface area when the plate-like clay is in a state of being separated one by one. A method of obtaining a clay mineral in a state where the clay mineral is dispersed in water to form a gel and then rapidly frozen and then separated into layers by freeze drying is well known. Thereby, the obtained powdery clay can be used as an adsorbent. However, since it is a powder, there is a problem that it is difficult to exhibit stable performance as compared with a porous body. In addition, the clay mineral that has been exfoliated by freeze-drying or the like has poor thermal stability, and there has been a problem that the clay mineral is stacked by heating and the performance is greatly reduced. In other words, the clay mineral shows a high surface area of 100 m 2 / g or more in the state of delamination, but when heated to about 500 ° C., the surface area is reduced to about 10 m 2 / g, and the adsorption efficiency is greatly reduced. .

層状粘土鉱物を用いた多孔質状の構造体については、多くの開発研究がなされている。粘土を含む均質分散溶液から液体成分を固液分離する方法が知られている(特許文献1参照)。しかし、この方法では多孔質粘土膜は、一般に表面積が小さく分離吸着性能に劣るという問題があった。   Much development research has been conducted on porous structures using layered clay minerals. A method for solid-liquid separation of a liquid component from a homogeneous dispersion solution containing clay is known (see Patent Document 1). However, this method has a problem that the porous clay membrane generally has a small surface area and inferior separation and adsorption performance.

発泡法による多孔質セラッミック用粘土組成物の製造方法も知られている(例えば、特許文献2参照)。しかし、この方法で得られる多孔質体の孔径は通常1ミクロン以上であり、1ミクロン程度の大きさの粒子を分離することができなく、十分ではなかった。   A method for producing a porous ceramic clay composition by a foaming method is also known (for example, see Patent Document 2). However, the pore size of the porous body obtained by this method is usually 1 micron or more, and particles having a size of about 1 micron cannot be separated.

また、1ミクロン以下の孔径を持つ多孔質体についても開示されている(特許文献3参照)。しかし、この方法は1000℃以上の高温で焼成処理するために、表面積が高い多孔質体は得られなかった。   A porous body having a pore size of 1 micron or less is also disclosed (see Patent Document 3). However, since this method calcinates at a high temperature of 1000 ° C. or higher, a porous body having a high surface area could not be obtained.

また、層状粘土鉱物と高分子からなる複合体の多孔質構造体についても報告されている(例えば、特許文献4参照)。しかし、この方法で得られる多孔質体は高分子との複合体であるため粘土鉱物が持つ分離能や吸着性が十分に発揮できないという問題があった。また、得られる多孔質体も部分的にはサブミクロンの大きさの孔径が形成されるが全体的に1ミクロン以上の大きな孔径の多孔質体となるため、分離能や濾過能力が十分では無かった。   Moreover, the porous structure of the composite material which consists of a layered clay mineral and a polymer is also reported (for example, refer patent document 4). However, since the porous body obtained by this method is a complex with a polymer, there is a problem that the separation ability and adsorptivity of the clay mineral cannot be fully exhibited. In addition, the obtained porous body partially has a pore size of a submicron size, but since it is a porous body having a large pore size of 1 micron or more as a whole, the separation ability and filtration ability are not sufficient. It was.

特開2006−188418号JP 2006-188418 A 特開2006−307295号JP 2006-307295 A 特開平11−292653号JP-A-11-292653 特開2004−359747号JP 2004-359747 A 白水春雄「粘土鉱物学−粘土科学の基礎−」朝倉書店、1988年Haruo Shiramizu “Clay Mineralogy-Basics of Clay Science” Asakura Shoten, 1988

本発明が解決しようとする課題は、本発明は大きな表面積を持ち、且つ、サブミクロンの大きさの孔径を有する、層状粘土鉱物により形成された多孔質構造体を提供することである。   The problem to be solved by the present invention is to provide a porous structure formed of a layered clay mineral having a large surface area and a submicron size pore size.

本発明者らは、上記課題を解決するべく鋭意研究に取り組んだ結果、大きな比表面積を有し、1ミクロン以下の大きさの孔径で、しかも、孔径の大きさの分布の少ない極めて高性能の層状粘土鉱物により形成された多孔質体を得るに至った。   As a result of diligent research to solve the above problems, the present inventors have a very high performance with a large specific surface area, a pore diameter of 1 micron or less, and a small distribution of pore diameters. It came to obtain the porous body formed with the layered clay mineral.

すなわち、本発明は、層状粘土鉱物(A)により形成された層により隔てられた、孔径が20〜500nmの空孔(a)を有する多孔質体であって、
前記粘土鉱物により形成された層が3〜100nmの厚みを有し、且つ、表面積測定による孔径が20nm未満の微細空孔(b)を有することを特徴とする多孔質体を提供する。
That is, the present invention is a porous body having pores (a) having a pore diameter of 20 to 500 nm separated by a layer formed of layered clay mineral (A),
Provided is a porous body characterized in that the layer formed of the clay mineral has a thickness of 3 to 100 nm and has fine pores (b) having a pore diameter of less than 20 nm by surface area measurement.

また、本発明は、上記多孔質体の製造方法であって、層状粘土鉱物(A)と反応性モノマー(B)を溶媒(C)中に分散混合させた後、前記反応性モノマー(B)を重合することにより前記層状粘土鉱物(A)と有機高分子(D)からなる有機無機複合ゲルを製造し、
次いで、前記有機無機複合ゲルから前記溶媒(C)の一部又は全てを除去することにより前記層状粘土鉱物(A)と前記有機高分子(D)の複合体を製造した後、
前記複合体を焼成することにより前記有機高分子(D)の一部又は全てを除去すること特徴とする製造方法を提供する。
The present invention also relates to a method for producing the porous body, wherein the layered clay mineral (A) and the reactive monomer (B) are dispersed and mixed in the solvent (C), and then the reactive monomer (B). To produce an organic-inorganic composite gel composed of the layered clay mineral (A) and the organic polymer (D),
Next, after producing a composite of the layered clay mineral (A) and the organic polymer (D) by removing a part or all of the solvent (C) from the organic-inorganic composite gel,
There is provided a production method characterized in that a part or all of the organic polymer (D) is removed by firing the composite.

本発明の多孔質体は、ナノオーダーの孔径分布の小さい空孔(a)が網目状に形成された多孔質構造体であり、空孔(a)を形成する隔壁となっている層状粘土鉱物(A)の層には分子レベルの微細空孔(b)が形成されている。いわば構造制御が成された多孔質構造体である。層状粘土鉱物(A)と反応性モノマー(B)の均質溶液中でモノマーを重合させることにより、層状粘土鉱物(A)と反応性モノマー(B)の3次元網目構造(ゲル構造)が形成されることが構造形成の第一段階と推定される。このゲル構造体から溶媒成分を除去する際、3次元網目構造は均質に収縮すると思われる。層状粘土鉱物(A)は高分子鎖を通じて連なっているため、重合された高分子を取り込んだ形で凝集することになる。次いで、高分子を焼成除去することにより、3次元網目構造に基づく構造が空孔(a)として形成された多孔質構造となり、更に、高分子がカーボンとして層状粘土鉱物(A)中に残存するために、層状粘土鉱物(A)の層に微細空孔(b)が形成されるものと推測される。また、焼成により、層状粘土鉱物(A)は焼結され、熱や水に対して安定となるものと推測される。   The porous body of the present invention is a layered clay mineral which is a porous structure in which pores (a) having a small nano-order pore size distribution are formed in a network, and serves as partition walls forming the pores (a) In the layer (A), fine pores (b) at the molecular level are formed. In other words, it is a porous structure with controlled structure. By polymerizing monomers in a homogeneous solution of layered clay mineral (A) and reactive monomer (B), a three-dimensional network structure (gel structure) of layered clay mineral (A) and reactive monomer (B) is formed. This is presumed to be the first stage of structure formation. When removing the solvent component from the gel structure, the three-dimensional network structure seems to shrink uniformly. Since the layered clay mineral (A) is continuous through the polymer chain, the layered clay mineral (A) aggregates in the form of taking in the polymerized polymer. Subsequently, the polymer is burned and removed to form a porous structure in which the structure based on the three-dimensional network structure is formed as pores (a), and the polymer remains in the layered clay mineral (A) as carbon. Therefore, it is presumed that fine pores (b) are formed in the layer of the layered clay mineral (A). Further, it is presumed that the layered clay mineral (A) is sintered by firing and becomes stable against heat and water.

本発明は、優れた吸着特性や分離特性を有する層状粘土鉱物により形成された大きな表面積とナノオーダーの小さな孔径からなる多孔質構造体に関するもので、得られた多孔質体は、優れた吸着能力を有することから、吸着材料、分離濾過機材などとして利用できる。また、本発明の多孔質体は100nm以下のサイズの揃った孔径からなる多孔質体をも提供するため、触媒担体、酵素担体など担体として有効に利用される。   The present invention relates to a porous structure composed of a layered clay mineral having excellent adsorption characteristics and separation characteristics and having a large surface area and a nano-order small pore diameter, and the obtained porous body has an excellent adsorption capacity. Therefore, it can be used as an adsorbing material, separation filtration equipment, and the like. In addition, since the porous body of the present invention also provides a porous body having a uniform pore size of 100 nm or less, it is effectively used as a carrier such as a catalyst carrier or an enzyme carrier.

本発明の層状粘土鉱物(A)は層状に剥離可能な膨潤性の粘土鉱物が用いられ、好ましくは水若しくは有機溶媒中で分子状(単一層)又はそれに近いレベルで膨潤し均一分散可能な粘土鉱物が用いられる。スメクタイトや雲母、更には、4級アンモニウムカチオン、アニオン系ポリマー、アルコキシシラン、カルボキシビニルポリマーなどで表面処理を施した有機化スメクタイトなどを挙げることができる。具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性サポナイト、水膨潤性モンモリロナイト、水膨潤性雲母などが挙げられ、これらは天然物であっても合成物であっても構わない。また、有機化スメクタイトとしては、例えば、ホージュン株式会社製の有機ベントナイトのエスベンやオルガナイト・シリーズやコープケミカル株式会社の親油性スメクタイトのルーセンタイト・シリーズなどを挙げることができる。中でも、水若しくは水と有機溶媒との混合溶媒中で分子状(単一層)又はそれに近いレベルで均一分散可能な無機粘土鉱物が特に好ましく用いられ、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性サポナイト、水膨潤性モンモリロナイト、水膨潤性雲母などが特に好ましい。   As the layered clay mineral (A) of the present invention, a swellable clay mineral that can be peeled in layers is used, and preferably a clay that swells in a molecular (single layer) or close to it in water or an organic solvent and can be uniformly dispersed. Minerals are used. Examples thereof include smectite, mica, and organic smectite that has been surface-treated with quaternary ammonium cation, anionic polymer, alkoxysilane, carboxyvinyl polymer, and the like. Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable saponite, water-swellable montmorillonite, water-swellable mica, and these may be natural products or synthetic products. I do not care. Examples of the organic smectite include esben and organite series of organic bentonite manufactured by Hojun Co., Ltd., and the Lucentite series of lipophilic smectite manufactured by Coop Chemical Co., Ltd. Among them, an inorganic clay mineral that can be uniformly dispersed at a molecular level (single layer) or a level close to that in water or a mixed solvent of water and an organic solvent is particularly preferably used, and a water-swellable hectorite containing sodium as an interlayer ion, Water-swellable saponite, water-swellable montmorillonite, water-swellable mica and the like are particularly preferable.

本発明の多孔質体は、質量比で80%以上、好ましくは90%以上が上述した層状粘土鉱物により形成されている。多孔質体中の層状粘土鉱物以外の20%未満の構成物は、特に制限はされないが、炭化物、金属酸化物、金属などが挙げられる。これらの含有量や成分は、例えば、焼成による方法、蛍光X線分析など、公知の成分分析法や元素分析法により求めることができる。   The porous body of the present invention is formed by the layered clay mineral described above at 80% or more, preferably 90% or more by mass ratio. The composition of less than 20% other than the layered clay mineral in the porous body is not particularly limited, and examples thereof include carbides, metal oxides, and metals. These contents and components can be determined by a known component analysis method or elemental analysis method such as a method by firing or fluorescent X-ray analysis, for example.

本発明の多孔質体は、主として層状粘土鉱物により形成された層により隔てられた空孔(a)により形成されている。本発明の空孔(a)の大きさ(孔径)は20〜500nm、特に好ましくは25〜300nmの範囲である。孔径の分布の小さなものが好ましく、孔径の平均値(Rav)に対して、空孔の70%以上、好ましくは80%以上が、Rav±50%の範囲、好ましくはRav±30%の範囲にある多孔質体が好ましい。また、空孔の形状は球状、楕円状、筒状或いは複雑な形状でも構わない。尚、本明細書では、球状以外の形状の場合、空孔の最も長い対角径と最も短い対角径の平均を孔径とする。本発明の多孔質構造は、例えば、図2及び図3(SEM写真)で見られるような構造体である。多孔質体中の空孔は層状粘土鉱物の層で完全に覆われ独立気泡のようになっている構造であっても、隣の空孔とを隔てる粘土鉱物の層の一部分が無くなっていて、空孔が連続的に連なっている構造であっても構わない。本発明における空孔(a)が連続的に連なった構造とは、層状粘土鉱物の層により隔てられた多数の空孔があり、それらの空孔(a)の層の一部分が無くなっていて隣の空孔と連なった構造が網目状に連続的に連なっている構造を示す。特に、空孔の連なりが多孔質体の一面から他の一面に渡って連続的である構造では、フィルターや分離膜として利用する場合、吸着や分離が効率的に行うことができる場合があり好ましい。また、本発明の多孔質体がフィルム・シート状やロット状などの構造物であった場合、表面部分に層状粘土鉱物の層が形成されていても構わない。空孔の連なりが多孔質体の一面から他の一面に渡って連続的であるかどうかは、水や有機溶媒などの液体が容易に出入り可能であるかどうかなどの方法で確認できる。また、本発明が目的とする性能に問題ない限り、10%以下、好ましくは5%以下、特に好ましくは2%以下の範囲で500nm以上の孔径が含まれていても構わない。   The porous body of the present invention is formed by pores (a) separated by layers formed mainly by layered clay minerals. The size (pore diameter) of the pore (a) of the present invention is 20 to 500 nm, particularly preferably 25 to 300 nm. Those having a small pore size distribution are preferable, and 70% or more, preferably 80% or more of the pores are within the range of Rav ± 50%, preferably Rav ± 30% of the average value (Rav) of the pore diameter. Some porous bodies are preferred. The shape of the holes may be spherical, elliptical, cylindrical, or complicated. In the present specification, in the case of a shape other than a spherical shape, the average of the longest diagonal diameter and the shortest diagonal diameter of the holes is defined as the hole diameter. The porous structure of the present invention is a structure as seen in FIGS. 2 and 3 (SEM photograph), for example. Even though the pores in the porous body are completely covered with a layered clay mineral layer and are like closed cells, a part of the clay mineral layer separating the adjacent pores is lost, A structure in which holes are continuously connected may be used. The structure in which the vacancies (a) are continuously connected in the present invention is a large number of vacancies separated by a layered clay mineral layer, and a part of the vacancies (a) is missing and adjacent to the structure. The structure which continued to the void | hole of this is continuously connected like a mesh. In particular, in a structure in which a series of pores is continuous from one surface of the porous body to the other surface, when used as a filter or a separation membrane, adsorption and separation may be performed efficiently, which is preferable. . In addition, when the porous body of the present invention is a structure such as a film / sheet or lot, a layered clay mineral layer may be formed on the surface portion. Whether a series of pores is continuous from one surface of the porous body to the other surface can be confirmed by a method such as whether liquid such as water or an organic solvent can easily enter and exit. Moreover, as long as there is no problem in the performance intended by the present invention, a pore diameter of 500 nm or more may be contained within a range of 10% or less, preferably 5% or less, particularly preferably 2% or less.

本発明の孔径20〜500nmの範囲の空孔(a)を有する多孔質構造は、走査型電子顕微鏡(SEM)などにより確認することができる。例えば、SEMを用いて、1千〜50万倍の範囲に拡大した写真を撮影し、必要によってはその写真を引き延ばすなどの方法で更に拡大し、その写真若しくは拡大写真から、定規やノギス等を用いて直接孔径を測定する方法や、また、公知の画像処理法を用いる方法が挙げられる。また、SEM写真中の少なくとも10個以上、好ましくは15個以上の空孔の平均値を孔径とし、孔径の分布も少なくとも10個以上、好ましくは15個以上の空孔の分布から求めることが好ましい。本明細書では孔径はSEM写真から定規を用いて直接測定し、空孔30個の平均値を孔径とし、空孔30個の分布から孔径の分布を求めた。尚、画像処理法にて孔径を求める場合、例えば、フーリエ変換により得られる構造周期を孔径とすることも可能である。   The porous structure having pores (a) having a pore diameter of 20 to 500 nm in the present invention can be confirmed by a scanning electron microscope (SEM) or the like. For example, using a SEM, take a photo that has been enlarged to a range of 1,000 to 500,000 times, and if necessary, further enlarge the photo by a method such as extending the photo, and use a ruler or caliper from the photo or enlarged photo. And a method of directly measuring the pore diameter using the method, and a method of using a known image processing method. The average value of at least 10 or more, preferably 15 or more vacancies in the SEM photograph is used as the pore diameter, and the pore diameter distribution is preferably determined from the distribution of at least 10 or more, preferably 15 or more vacancies. . In this specification, the hole diameter was directly measured from a SEM photograph using a ruler, the average value of 30 holes was defined as the hole diameter, and the distribution of hole diameters was determined from the distribution of 30 holes. In addition, when calculating | requiring a hole diameter with an image-processing method, it is also possible to use the structural period obtained by a Fourier transformation as a hole diameter, for example.

また、本発明の多孔質体中の層状粘土鉱物により形成された層は、3〜100nmの厚み、好ましくは5〜50nmの厚みを持つ。且つ、層部分は、表面積測定による孔径が20nm径未満、好ましくは15nm以下の微細空孔(b)を有するものである。具体的には、微細孔径(b)は、細孔径分布を求める代表的なドーリモア−ヘールの方法(DH法、近藤精一、石川達雄、安部郁夫、「吸着の科学」、丸善株式会社、1991年参照)により求めるもので、細孔面積(A)と細孔容積(V)対して、細孔半径(r)は式(1)r=2V/Aで定義される。細孔径(b)(2r)を横軸に、分布頻度を縦軸としてプロットした孔径分布において、孔径分布の最大値が0.8〜15nmの範囲、特に好ましくは1〜10nmの範囲にとなるものが好ましい。なお、測定条件は上記文献などで開示されている一般的条件が可能で、例えば、吸着物質を窒素とし、無定型シリカ微粉末の窒素に対する吸着等温線を標準等温線として求める方法などが挙げられる。また、分布頻度としては、細孔半径に対応する吸着容積(dV/dr)などとする方法などを挙げることができる。 Moreover, the layer formed of the layered clay mineral in the porous body of the present invention has a thickness of 3 to 100 nm, preferably 5 to 50 nm. The layer portion has fine pores (b) having a pore diameter of less than 20 nm, preferably 15 nm or less, as measured by surface area. Specifically, the fine pore size (b) is determined by a typical Dollimore-Hale method for obtaining pore size distribution (DH method, Seiichi Kondo, Tatsuo Ishikawa, Ikuo Abe, “Science of adsorption”, Maruzen Co., Ltd., 1991. The pore radius (r p ) is defined by the formula (1) r p = 2V p / A p with respect to the pore area (A p ) and the pore volume (V p ). . In the pore diameter distribution plotted with the pore diameter (b) (2r p ) on the horizontal axis and the distribution frequency on the vertical axis, the maximum value of the pore diameter distribution is in the range of 0.8 to 15 nm, particularly preferably in the range of 1 to 10 nm. Is preferred. The measurement conditions can be the general conditions disclosed in the above-mentioned documents, and examples include a method in which the adsorption substance is nitrogen and the adsorption isotherm for amorphous silica fine powder is obtained as a standard isotherm. . Examples of the distribution frequency include a method of setting an adsorption volume (dV p / dr p ) corresponding to the pore radius.

DH法によるガス吸着測定は市販のガス吸着測定装置で行うことができ、例えば、日本ベル株式会社製のガス吸着測定装置 ベルソープ18などを挙げることができる。   The gas adsorption measurement by the DH method can be performed with a commercially available gas adsorption measurement device, and examples thereof include a gas adsorption measurement device Bell Soap 18 manufactured by Nippon Bell Co., Ltd.

また、粘土鉱物により形成された層の厚みは、空孔の孔径と同じように、SEMを用いて、拡大写真を撮影し、その拡大写真から、定規やノギス等を用いて直接孔径を測定する方法や、また、公知の画像処理法を用いる方法により求めることができる。また、SEM写真中の少なくとも10個以上、好ましくは15個以上の層の厚みの平均値を層の厚みとすることが好ましい。本明細書はSEM写真から定規を用いて直接測定し、30箇所の層の厚みの平均値を層の厚みとした。   As for the thickness of the layer formed of clay mineral, as with the pore diameter, take an enlarged photo using SEM, and directly measure the pore size using a ruler or caliper from the enlarged photo. It can be obtained by a method or a method using a known image processing method. Moreover, it is preferable that the average value of the thickness of at least 10 or more, preferably 15 or more layers in the SEM photograph is the layer thickness. This specification measured directly from the SEM photograph using the ruler, and made the average value of the thickness of 30 layers into the layer thickness.

本発明の多孔質体は、多孔質体中の層状粘土鉱物の層に微細空孔(b)を有するものであるが、恐らく、層を形成する層状粘土鉱物が完全にスタッキングした状態にはなく、僅かな隙間が形成されており、その隙間が微細空孔(b)となっているものと推測される。本発明の多孔質体の構造は熱的に安定である。例えば、600℃以上の高温度に熱履歴をかけたとしても安定であり、高い比表面積を示す。層状粘土鉱物間の隙間に炭化物、金属酸化物、金属ナノ粒子などが本発明の規定する範囲内で入り込むことは、更に、耐熱性が向上するなどの理由で好ましい。また、本発明の多孔質体は水に対して安定であり、水に浸漬させても構造が壊れることはない。   The porous body of the present invention has fine pores (b) in the layered clay mineral layer in the porous body, but the layered clay mineral forming the layer is probably not completely stacked. A slight gap is formed, and it is assumed that the gap is a fine hole (b). The structure of the porous body of the present invention is thermally stable. For example, even if a thermal history is applied to a high temperature of 600 ° C. or higher, it is stable and exhibits a high specific surface area. It is preferable for carbides, metal oxides, metal nanoparticles and the like to enter the gaps between the layered clay minerals within the range defined by the present invention for the reason that heat resistance is further improved. Moreover, the porous body of the present invention is stable against water, and the structure is not broken even when immersed in water.

本発明の多孔質体は微細空孔(b)を有するために、非常に大きな表面積を有し、好ましくは50〜1000m2/g、特に好ましくは80〜800m2/gの表面積を有する。一般的に、20〜500nmの大きさの空孔(a)だけによる多孔質体の場合、大きな表面積は得られなく、通常50m/g以下である。表面積はベット法などの公知のガス吸着などによる表面積測定法などにより求めることができる。また、吸着ガスは窒素などを用いることができる。 Since the porous body of the present invention has fine pores (b), it has a very large surface area, preferably 50 to 1000 m 2 / g, particularly preferably 80 to 800 m 2 / g. Generally, in the case of a porous body having only pores (a) having a size of 20 to 500 nm, a large surface area cannot be obtained, and is usually 50 m 2 / g or less. The surface area can be determined by a known surface area measurement method such as a gas adsorption method such as a bed method. Moreover, nitrogen etc. can be used for adsorption gas.

本発明の多孔質体の孔径は20〜500nmであるために、1ミクロン程度の大きさの粒子も濾別可能であり、また、空孔(a)の連なりが多孔質体の一面から他の一面に渡って連続的である構造の場合には、多孔質体中を液体或いはガスは多孔質体中を容易に移動することが可能となる。更に、層状粘土鉱物の層の部分には、孔径が20nm以下の微細空孔(b)が形成されているために高い表面積を持ち、分離、吸着などを良好に行うことができる構造となっている。本発明の多孔質体は、粉体として使用することができるが、シート状、フィルム状、ロット状、更に、複雑な形状の構造物として提供することができる。写真1(図1)では、シート状の自立膜の例を示している。   Since the porous body of the present invention has a pore diameter of 20 to 500 nm, particles having a size of about 1 micron can be filtered out, and a series of pores (a) can be separated from one surface of the porous body to another. In the case of a structure that is continuous over one surface, liquid or gas can easily move in the porous body. Furthermore, since the fine pores (b) having a pore diameter of 20 nm or less are formed in the layered clay mineral layer portion, the layered clay mineral has a high surface area and can be separated and adsorbed satisfactorily. Yes. The porous body of the present invention can be used as a powder, but can be provided as a structure having a sheet shape, a film shape, a lot shape, or a complicated shape. Photo 1 (FIG. 1) shows an example of a sheet-like self-supporting film.

本発明の多孔質体の製造方法について述べる。本発明の多孔質体は、例えば、上述した層状粘土鉱物(A)を含む均質分散溶液を調製した後、層状粘土鉱物を相分離やゲル化させるなどの方法で網目状構造体を形成させた後、その構造を壊さないように層状粘土鉱物以外の成分を除去する方法などにより得ることができる。均質分散溶液中で層状粘土鉱物は層状剥離した状態かそれに近い状態で溶液中に分散していることは大きな表面積を得る上で特に好ましい。また、層状粘土鉱物と溶媒以外の第三成分を用いることは、網目状の相分離構造やゲル構造を形成させるうえで好ましい。本発明では層状粘土鉱物(A)と反応性モノマー(B)を溶媒(C)中で均質に分散混合させた後、反応性モノマー(B)を重合する方法が好ましく用いられ、以下に詳細に説明する。   The method for producing the porous body of the present invention will be described. In the porous body of the present invention, for example, after preparing a homogeneous dispersion solution containing the layered clay mineral (A) described above, a network structure is formed by a method such as phase separation or gelation of the layered clay mineral. Then, it can obtain by the method of removing components other than a layered clay mineral so that the structure may not be broken. In order to obtain a large surface area, it is particularly preferable that the layered clay mineral is dispersed in the solution in a state in which the layered clay mineral is separated or close to it in the homogeneously dispersed solution. Moreover, it is preferable to use a third component other than the layered clay mineral and the solvent in order to form a network-like phase separation structure or gel structure. In the present invention, a method in which the layered clay mineral (A) and the reactive monomer (B) are homogeneously dispersed and mixed in the solvent (C) and then the reactive monomer (B) is polymerized is preferably used. explain.

本発明で使用する反応性モノマー(B)は、熱や光などで重合可能な重合反応性モノマーで水や有機溶媒に可溶なものであって、単官能モノマーが好ましく用いられる。(メタ)アクリル酸エステル誘導体、(メタ)アクリル酸誘導体、(メタ)アクリルアミド誘導体、ビニル誘導体などが挙げられ、中でも水や水溶性の有機溶媒に可溶な(メタ)アクリル酸エステル誘導体と(メタ)アクリルアミド誘導体が特に好ましく用いられる。例えば、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレートなどの(メタ)アクリル酸エステル誘導体、N-メチルアクリルアミド、N-エチルアクリルアミド、N-シクロプロピルアクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N,N-ジエチルアクリルアミド、N-エチル-N-イソプロピルアクリルアミド、N-エチル-N-n-プロピルアクリルアミド、N-アクリロイルピロリディン、N-アクリロイルピペリディン、N-メチルメタクリルアミドなどが好ましいものとして挙げられる。中でもメトキシエチル(メタ)アクリレート及びエトキシエチル(メタ)アクリレートを用いると均一な微細構造の多孔質体を得ることが出来るので好ましい。   The reactive monomer (B) used in the present invention is a polymerizable reactive monomer that can be polymerized by heat or light and is soluble in water or an organic solvent, and a monofunctional monomer is preferably used. Examples include (meth) acrylic acid ester derivatives, (meth) acrylic acid derivatives, (meth) acrylamide derivatives, vinyl derivatives, etc. Among them, (meth) acrylic acid ester derivatives that are soluble in water and water-soluble organic solvents and (meta) ) Acrylamide derivatives are particularly preferably used. For example, (meth) acrylic acid ester derivatives such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, N-methylacrylamide, N-ethylacrylamide, N -Cyclopropylacrylamide, N-isopropylacrylamide, N, N-dimethylacrylamide, N-methyl-Nn-propylacrylamide, N, N-diethylacrylamide, N-ethyl-N-isopropylacrylamide, N-ethyl-Nn-propylacrylamide N-acryloylpyrrolidine, N-acryloylpiperidine, N-methylmethacrylamide and the like are preferable. Among these, methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate are preferably used because a porous body having a uniform fine structure can be obtained.

本発明の溶媒(C)は、反応性モノマー(B)を溶解させ、且つ、層状粘土鉱物(A)を層状剥離させた状態若しくはそれに近い状態で分散させることができる単独若しくは混合溶媒が用いられ、使用する層状粘土鉱物や反応性モノマーの種類により異なる。例えば、層状粘土鉱物として、水膨潤性のものを使用する場合には、水、若しくは、アルコール類、アセトンなどのケトン類、テトラヒドロフランなどのエーテル類、ジメチルスルホキシド、ジメチルホルムアミドやジエチルアセトアミドなどアミド系溶媒などの親水性有機溶媒と水との混合溶媒が好ましく用いられる。更に、層状粘土鉱物の表面が有機物で処理された有機化粘土などの有機溶媒に可溶な層状粘土鉱物を用いる場合には、上述した親水性有機溶媒の他に、トルエンなどの炭化水素系溶媒、酢酸エチルなどのエステル系溶媒やクロロホルムなどハロゲン類などの親油性有機溶媒を用いることも可能となる。   As the solvent (C) of the present invention, a single solvent or a mixed solvent that can dissolve the reactive monomer (B) and disperse the layered clay mineral (A) in a state where the layered clay mineral (A) is separated or close to the layer is used. Depends on the type of layered clay mineral and reactive monomer used. For example, when using a water-swellable layered clay mineral, water or amide solvents such as alcohols, ketones such as acetone, ethers such as tetrahydrofuran, dimethyl sulfoxide, dimethylformamide and diethylacetamide A mixed solvent of a hydrophilic organic solvent such as water and water is preferably used. Furthermore, in the case of using a layered clay mineral that is soluble in an organic solvent such as an organized clay whose surface is treated with an organic substance, in addition to the hydrophilic organic solvent described above, a hydrocarbon solvent such as toluene. It is also possible to use ester solvents such as ethyl acetate and lipophilic organic solvents such as halogens such as chloroform.

層状粘土鉱物(A)と反応性モノマー(B)との混合溶液(以下、単に「混合溶液」と称する場合がある)では、反応性モノマーが溶解し、層状粘土鉱物が層状剥離若しくはそれに近い状態で分散混合していることが好ましく、例えば、反応性モノマーを溶解させた溶液と層状粘土鉱物が層状剥離した溶液をあらかじめ調製し、両者を混合する方法や、層状粘土鉱物が層状剥離させた溶液を調製した後、その溶液に反応性モノマーを添加して溶解させる方法、反対に、反応性モノマーを溶解させた後、層状粘土鉱物を添加して層状剥離する方法などにより、混合溶液を調製することができる。混合する際には、公知の攪拌機を用いることができる。また、良好な分散溶液とするために、反応性モノマーの重合反応が進行しない範囲で加熱すること、或いは冷却することも可能である。   In the mixed solution of the layered clay mineral (A) and the reactive monomer (B) (hereinafter sometimes simply referred to as “mixed solution”), the reactive monomer is dissolved and the layered clay mineral is in a state where the layered clay mineral is separated or close to it. It is preferable to disperse and mix, for example, a solution in which a reactive monomer is dissolved and a solution in which the layered clay mineral is exfoliated in advance, and a method in which both are mixed, or a solution in which the layered clay mineral is exfoliated in layers After preparing the solution, prepare a mixed solution by adding the reactive monomer to the solution and dissolving it, and conversely, dissolving the reactive monomer and then adding the layered clay mineral and peeling off the layer. be able to. When mixing, a known stirrer can be used. Further, in order to obtain a good dispersion solution, it is possible to heat or cool the reactive monomer within a range in which the polymerization reaction does not proceed.

反応性モノマー(B)と層状粘土鉱物(A)の割合は、使用する目的などにより異なるが、良好な多孔質体を得るためには通常、質量比[層状粘土鉱物]/[反応性モノマー]=0.003〜3、好ましくは0.005〜2、特に好ましくは0.01〜1.5である。   The ratio of the reactive monomer (B) to the layered clay mineral (A) varies depending on the purpose of use, but in order to obtain a good porous body, the mass ratio [layered clay mineral] / [reactive monomer] is usually used. = 0.003 to 3, preferably 0.005 to 2, particularly preferably 0.01 to 1.5.

また、溶媒(C)の割合は、反応性モノマーを溶解させ、層状粘土鉱物を層状剥離させうる溶媒量が用いられる。通常、反応性モノマーと層状粘土鉱物の1質量に対して、50〜1質量、好ましくは40〜2質量が用いられる。50質量を超える場合、重合後、均質なゲル体が得られ難い場合があり、1質量未満では均質な混合溶液が得られ難い場合がある。   Further, the solvent (C) is used in such an amount that the reactive monomer can be dissolved and the layered clay mineral can be exfoliated. Usually, 50 to 1 mass, preferably 40 to 2 mass is used with respect to 1 mass of the reactive monomer and the layered clay mineral. When it exceeds 50 masses, it may be difficult to obtain a homogeneous gel after polymerization, and when it is less than 1 mass, it may be difficult to obtain a homogeneous mixed solution.

本発明では、層状粘土鉱物(A)と反応性モノマー(B)を溶媒(C)中に分散混合させた後、混合溶液中で反応性モノマーを重合させることにより、反応性モノマー(B)の重合体である有機高分子(D)と層状粘土鉱物(A)からなる有機無機複合ゲルを得る。この際に、層状粘土鉱物と有機高分子の相分離が進行し網目状の相分離構造が形成されたり、或いは、層状粘土鉱物と有機高分子による3次元網目構造が形成されていると推定される。反応性モノマーを重合させる方法としては、反応性モノマーと層状粘土鉱物との混合溶液中に重合開始剤、更に、必要に応じて触媒又は/及び有機架橋剤を添加して、反応性モノマー(B)を熱重合や光重合などの方法で重合させる方法が挙げられる。   In the present invention, the layered clay mineral (A) and the reactive monomer (B) are dispersed and mixed in the solvent (C), and then the reactive monomer (B) is polymerized in the mixed solution to polymerize the reactive monomer (B). An organic-inorganic composite gel composed of a polymer organic polymer (D) and a layered clay mineral (A) is obtained. At this time, it is presumed that phase separation between the layered clay mineral and the organic polymer proceeds to form a network-like phase separation structure, or a three-dimensional network structure composed of the layered clay mineral and the organic polymer is formed. The As a method for polymerizing the reactive monomer, a polymerization initiator and, if necessary, a catalyst or / and an organic crosslinking agent are added to the mixed solution of the reactive monomer and the layered clay mineral, and the reactive monomer (B ) By a method such as thermal polymerization or photopolymerization.

重合開始剤としては、熱重合の場合、公知のラジカル重合開始剤を選択して用いることができる。使用する溶媒に溶解する重合開始剤が好ましく、例えば、水溶性の重合開始剤として、水溶性の過酸化物、例えば、ペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えば、VA-044,V−50,V−501,VA-075(いずれも和光純薬工業株式会社製)の他、Fe2+と過酸化水素との混合物などが挙げられる。また、親油性の重合開始剤としては、過酸化ベンゾイルやアゾビスイソブチルニトリルなどが挙げられる。 As the polymerization initiator, in the case of thermal polymerization, a known radical polymerization initiator can be selected and used. A polymerization initiator that is soluble in the solvent to be used is preferable. For example, as a water-soluble polymerization initiator, a water-soluble peroxide such as potassium peroxodisulfate or ammonium peroxodisulfate, a water-soluble azo compound such as VA- In addition to 044, V-50, V-501, and VA-075 (all manufactured by Wako Pure Chemical Industries, Ltd.), a mixture of Fe 2+ and hydrogen peroxide may be used. Examples of the lipophilic polymerization initiator include benzoyl peroxide and azobisisobutylnitrile.

光重合の場合、公知の重合開始剤を選択して使用することができる。例えば、p−tert−ブチルトリクロロアセトフェノン、2‘−2−ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン等のアセトフェノン類、ベンゾフェノン、4,4’−ビスジメチルアミノベンゾフェノン、2−クロロチオキサントン、2−メチルチオキサントン、2−イソプロピルチオキサントン等のケトン類、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル類、ベンジルジメチルケタール、ヒドロキシシクロヘキシルフェニルケトン等のベンジルケタール類などを挙げることができる。   In the case of photopolymerization, a known polymerization initiator can be selected and used. For example, acetophenones such as p-tert-butyltrichloroacetophenone, 2′-2-diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzophenone, 4,4′-bisdimethylamino Ketones such as benzophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, benzoin ethers such as benzoin, benzoin methyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyldimethyl ketal, hydroxycyclohexyl phenyl ketone, etc. Benzyl ketals can be mentioned.

また、使用する溶媒には溶解しない重合開始剤も溶解可能な溶媒に溶解し、その溶液を添加する方法も可能である。   Further, a method in which a polymerization initiator that is not soluble in the solvent to be used is also dissolved in a soluble solvent, and the solution is added is also possible.

触媒としては、3級アミン化合物であるN,N,N',N'-テトラメチルエチレンジアミンなどは好ましく用いられる。但し、触媒は必ずしも用いなくて良い。   As the catalyst, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine are preferably used. However, the catalyst is not necessarily used.

重合温度は、重合触媒や開始剤の種類に合わせて、0〜100℃が用いられる。重合時間も数十秒〜数時間の間で行うことができる。また、光重合による方法の場合、電子線や紫外線、可視光線などの活性エネルギー線を挙げることができる。また、重合雰囲気も、使用するモノマーや開始剤などにより、適宜選択されるが、窒素やアルゴンなどの不活性ガス雰囲気で行うことは好ましい。   0-100 degreeC is used for superposition | polymerization temperature according to the kind of polymerization catalyst or initiator. The polymerization time can also be performed between several tens of seconds to several hours. Moreover, in the case of the method by photopolymerization, active energy rays, such as an electron beam, an ultraviolet-ray, visible light, can be mentioned. The polymerization atmosphere is also appropriately selected depending on the monomers and initiators used, but it is preferable to carry out in an inert gas atmosphere such as nitrogen or argon.

また、有機架橋剤などとして働く多官能性モノマーを併用することは可能である。汎用の多官能有機架橋剤が用いられ、例えば、N,N'-メチレンビスアクリルアミドが例示される。通常、重合性モノマー中の10モル%以下、好ましくは5モル%以下が用いられる。   Moreover, it is possible to use a polyfunctional monomer that works as an organic crosslinking agent or the like. A general-purpose polyfunctional organic crosslinking agent is used, and examples thereof include N, N′-methylenebisacrylamide. Usually, 10 mol% or less, preferably 5 mol% or less of the polymerizable monomer is used.

本発明では、層状粘土鉱物と反応性モノマー、必要に応じて、重合開始剤などを含む溶液を目的とする形状の金型の中に入れたり、支持板などに塗布するなどして、層状粘土鉱物の存在下で反応性モノマーを重合することにより、目的とする形状の溶媒を多く含んだ有機高分子(D)と層状粘土鉱物との複合体が形成される。これを有機無機複合ゲルと称する。有機無機複合ゲルを調製する金型の形状には特に制限はなく、ロット状、フィルム状、シート状、更に複雑な形状など任意の形状が可能である。本発明の有機無機複合ゲルは、透明なものから、白濁化、或いは乳白濁化している場合もあり、強度的にも非常に強いものから、弱く脆いものもある。溶媒含有率も、重合で使用した溶媒量100%を保持している場合もあるが、収縮して使用した溶媒量の100%以下、100〜50%を含有している場合もある。得られた有機無機複合ゲルは、未反応や反応不十分のオリゴマー、添加した重合開始剤を取り除き精製除去する目的などで、水、温水や水溶液、或いは有機溶媒中に浸漬したり、流水下に保持したり、蒸気雰囲気下に保持するなどの方法で洗浄することも可能である。   In the present invention, a layered clay mineral, a reactive monomer, and, if necessary, a solution containing a polymerization initiator or the like is placed in a mold having a desired shape, or applied to a support plate, etc. By polymerizing the reactive monomer in the presence of the mineral, a complex of the organic polymer (D) containing a large amount of the solvent having the desired shape and the layered clay mineral is formed. This is called an organic-inorganic composite gel. There is no restriction | limiting in particular in the shape of the metal mold | die which prepares organic-inorganic composite gel, Arbitrary shapes, such as a lot shape, a film form, a sheet form, and a more complicated shape, are possible. The organic-inorganic composite gel of the present invention may be transparent, white turbid or milky white, and may be very strong in strength, or weak and brittle. The solvent content may also hold 100% of the solvent used in the polymerization, but may contain 100% or less, 100-50% of the solvent used after shrinking. The obtained organic-inorganic composite gel is immersed in water, warm water, an aqueous solution, or an organic solvent for the purpose of removing unreacted or insufficiently reacted oligomers, added polymerization initiators, and purifying and removing them. It is also possible to wash by a method such as holding or holding in a steam atmosphere.

本発明では、上記方法で得られた有機無機複合ゲルから、層状粘土鉱物以外の成分を除去することにより得られるが、最初に、溶媒を一部又は全て除去することにより層状粘土鉱物(A)と有機高分子(D)の複合体を得た後、有機高分子を除去する方法が好ましい。最初に有機溶媒を除去することにより、孔径分布の小さく、規則正しい孔径の多孔質体が得られ易い。溶媒成分を除去し層状粘土鉱物と有機溶媒を除去する方法は、自然乾燥、熱風雰囲気での乾燥、減圧乾燥など公知の方法が可能であり、これらの方法を併用することもできる。本発明では、乾燥後の高分子複合体中の溶媒量(Wsol=W-Wdry)は、Wsol/Wdry(×100)が300%以下、特に200%以下であることは良好な構造の多孔質体を得る上で好ましい。但し、高分子複合体の質量(W)、高分子複合体の完全乾燥質量(Wdry)とし、例えば、100℃以上の温度で6時間以上真空乾燥を行うなどの方法で得られる。 In the present invention, it is obtained by removing components other than the layered clay mineral from the organic-inorganic composite gel obtained by the above method. First, the layered clay mineral (A) is obtained by removing a part or all of the solvent. A method of removing the organic polymer after obtaining a complex of the organic polymer (D) is preferred. By removing the organic solvent first, it is easy to obtain a porous body having a small pore size distribution and a regular pore size. As a method for removing the solvent component and removing the layered clay mineral and the organic solvent, known methods such as natural drying, drying in a hot air atmosphere, and drying under reduced pressure can be used, and these methods can be used in combination. In the present invention, the amount of solvent (W sol = WW dry ) in the polymer composite after drying is such that W sol / W dry (× 100) is 300% or less, particularly 200% or less. It is preferable when obtaining a porous body. However, the mass (W) of the polymer composite and the completely dry mass (W dry ) of the polymer composite are used, and for example, vacuum drying is performed at a temperature of 100 ° C. or higher for 6 hours or more.

更に、上記方法により得られた複合体から、有機高分子(D)成分の一部又は全てを除去することにより本発明の多孔質体を得ることができる。有機高分子成分を除去する方法は公知の方法が可能であり、高温で焼成する方法、強酸や強アルカリ、或いは有機溶媒によるエッチング除去、或いは溶解除去する方法や、プラズマや高エネルギー紫外線などの活性エネルギー線によるエッチング処理、ミリング処理する方法などが挙げられるが、焼成による方法が好ましい。焼成温度は使用する有機高分子の分解温度以上で行われ、通常400〜1200℃、500℃〜1000℃が好ましい。また、焼成雰囲気は空気中、不活性ガス中などが可能であり、水等をバブリングさせ湿気を含むガスを導入する賦活処理などの方法も可能である。焼成時間についても特に制限は無いが、通常、1分以上、24時間以下の時間で行われる。   Furthermore, the porous body of the present invention can be obtained by removing part or all of the organic polymer (D) component from the composite obtained by the above method. The method for removing the organic polymer component can be a known method, such as a method of baking at a high temperature, a method of etching or dissolving with a strong acid or strong alkali, or an organic solvent, or an activity such as plasma or high-energy ultraviolet light. Examples of the method include an etching process using energy rays and a milling process, and a baking process is preferable. The firing temperature is at or above the decomposition temperature of the organic polymer used, and is usually preferably 400 to 1200 ° C and 500 to 1000 ° C. The firing atmosphere can be in air, in an inert gas, or the like, and a method such as activation treatment in which water or the like is bubbled to introduce a gas containing moisture is also possible. Although there is no restriction | limiting in particular also about baking time, Usually, it is performed for 1 minute or more and 24 hours or less.

焼成後に得られる層状粘土鉱物からなる多孔質体は焼成前の形状をほぼ維持したものが得られることもあるが、使用目的によっては粉体として使用しても構わない。多孔質体の色は、真っ白なものから、灰色、黒色などがある。灰色や黒色の多孔質体では層状粘土鉱物間に炭化物が存在していると推定され、表面特性や熱安定性が向上し、好ましい。本発明の多孔質体は、熱安定性に優れることから、例えば、有害物質を吸着させた後、焼成により吸着物質を除去することができ、吸着剤として再利用することが可能である。   A porous body made of layered clay mineral obtained after calcination may be obtained by maintaining the shape before calcination, but may be used as a powder depending on the purpose of use. The color of the porous body is from white to gray or black. It is presumed that carbides are present between layered clay minerals in a gray or black porous body, which is preferable because surface characteristics and thermal stability are improved. Since the porous body of the present invention is excellent in thermal stability, for example, after adsorbing a harmful substance, the adsorbed substance can be removed by firing, and can be reused as an adsorbent.

また、有機無機複合ゲルを乾燥させる前に、1軸或いは2軸延伸処理を施したり、延伸させた状態で乾燥させることが可能であり、この方法により層状粘土鉱物が配向した多孔質体が得られる。   In addition, before the organic-inorganic composite gel is dried, it can be uniaxially or biaxially stretched or dried in the stretched state. By this method, a porous body in which the layered clay mineral is oriented is obtained. It is done.

本発明の多孔質体は、ナノオーダーの孔径分布の小さい空孔(a)からなる多孔質構造体であり、空孔を隔てる層状粘土鉱物の層には分子レベルの微細空孔(b)が形成されている。いわば構造制御が成された多孔質構造体である。層状粘土鉱物と反応性モノマーの均質溶液中でモノマーを重合させることにより、層状粘土鉱物を反応性モノマーの3次元網目構造(ゲル構造)が形成されることが構造形成の第一段階と推定される。このゲル構造体から溶媒成分を除去する際、3次元網目構造は均質に収縮すると思われる。層状粘土鉱物は高分子鎖を通じて連なっているため、重合された高分子を取り込んだ形で凝集することになる。次いで、高分子を焼成除去することにより、3次元網目構造に基づく構造が空孔(a)により形成された多孔質構造となり、更に、高分子がカーボンとして層状粘土鉱物中に残存するために、層状粘土鉱物の層に微細空孔(b)が形成されるものと推測される。また、焼成により、層状粘土鉱物は焼結され、熱や水に対して安定となるものと推測される。   The porous body of the present invention is a porous structure composed of pores (a) having a small pore size distribution on the order of nanometers, and the layered clay mineral layer separating the pores has fine pores (b) at the molecular level. Is formed. In other words, it is a porous structure with controlled structure. It is presumed that the first stage of structure formation is to form a three-dimensional network structure (gel structure) of reactive monomers by polymerizing monomers in a homogeneous solution of layered clay minerals and reactive monomers. The When the solvent component is removed from this gel structure, the three-dimensional network structure seems to shrink uniformly. Since layered clay minerals are linked through polymer chains, they aggregate in a form that incorporates polymerized polymers. Next, by removing the polymer by baking, the structure based on the three-dimensional network structure becomes a porous structure formed by the pores (a), and the polymer remains in the layered clay mineral as carbon. It is estimated that fine pores (b) are formed in the layered clay mineral layer. Further, it is presumed that the layered clay mineral is sintered by firing and becomes stable against heat and water.

以下で本発明を実施例により具体的に例示する。   Hereinafter, the present invention will be specifically illustrated by examples.

(実施例1)
反応性モノマーとして4−メトキシエチルアクリレート(MEA、東亜合成株式会社製 アクリックスC−1)6.5g、層状粘土鉱物として合成ヘクトライト(ラポナイトXLG,日本シリカ株式会社製)0.8g ([粘土]/[MEA]=0.12(g/g))を用い、MEAとヘクトライトを窒素バブリング下で純水48gに均質分散させ、無色透明な溶液を得た。層状粘土鉱物は層状剥離した状態で分散しているのが判る。氷冷撹拌下で、反応触媒N,N,N‘,N’−テトラメチルエチレンジアミン(TEMED;和光純薬工業株式会社製)32μLを加え、次いで、反応開始剤ペルオキソ二硫酸カリウム(KPS;関東化学株式会社製)の水溶液(KPS 0.2g/純水10g)2gを添加し、重合溶液を調製した。3(厚さ)×150×150mmの容積の容器に重合溶液を入れ、密封し、20℃で2日間保持した。白化した有機無機複合ゲルが得られた。ゲルは仕込みに使用した90%以上の水を保持していた。ゲルを厚さ1mmのポリプロピレン板の上に置き、室温で2日間静置して乾燥させた。乾燥後、無色透明なフィルム状の複合体1(厚さ約0.5mm)が得られた。熱質量分析(TGA)より得られた高分子複合体1中の水の量は2%以下であった。得られた複合体1を空気中で3時間かけて650℃まで昇温し、650℃で2時間保持させた。黒みのかかった焼成物(多孔質体1)が得られた。焼成物はフィルム状の形状を保持していた(図1参照)。また、水に浸漬させても溶け出すなど形状が変化することはなかった。蛍光X線で成分を調べたところ、有機物成分は1%以下で殆ど全てが層状粘土鉱物だった。走査型電子顕微鏡(SEM)で、構造を調べたところ粘土鉱物が多孔質構造を形成していた。図2及び図3に示す。網目の大きさ(空孔)は均質で30個の網目の大きさの平均は125nmで、全てが125nm±50%の範囲、90%が125nm±30%の範囲であった。また、層状粘土鉱物の層は約20nmであった。ガス吸着測定を行いベット法より比表面積を求めたところ、316m2/gであり、非常に大きな表面積を有することが判る。また、DH法にて細孔径分布を測定したところ、半径1.6nmをピークとするマイクロ孔が存在することが判った(図9参照)。フィルム状の多孔質体の表面にメタノールの液滴を落としたところ、容易に裏面まで到達した。空孔(a)の連なりが多孔質体の一面から他の一面に渡って連続的であることが確認できた。
Example 1
Reactive monomer 4-methoxyethyl acrylate (MEA, Acrix C-1 manufactured by Toa Gosei Co., Ltd.) 6.5g, layered clay mineral synthetic hectorite (Laponite XLG, Nippon Silica Co., Ltd.) 0.8g ([clay ] / [MEA] = 0.12 (g / g)), MEA and hectorite were homogeneously dispersed in 48 g of pure water under nitrogen bubbling to obtain a colorless and transparent solution. It can be seen that the layered clay mineral is dispersed in a layered state. Under ice-cooling and stirring, 32 μL of reaction catalyst N, N, N ′, N′-tetramethylethylenediamine (TEMED; manufactured by Wako Pure Chemical Industries, Ltd.) was added, and then reaction initiator potassium peroxodisulfate (KPS; Kanto Chemical) 2 g of an aqueous solution (KPS 0.2 g / pure water 10 g) was added to prepare a polymerization solution. 3 (thickness) × 150 × 150 mm The polymerization solution was put into a container having a volume of 3 , sealed, and kept at 20 ° C. for 2 days. A whitened organic-inorganic composite gel was obtained. The gel retained more than 90% of the water used for the preparation. The gel was placed on a 1 mm thick polypropylene plate and allowed to stand at room temperature for 2 days to dry. After drying, a colorless and transparent film-like composite 1 (thickness: about 0.5 mm) was obtained. The amount of water in the polymer composite 1 obtained by thermal mass spectrometry (TGA) was 2% or less. The obtained composite 1 was heated to 650 ° C. in air over 3 hours and held at 650 ° C. for 2 hours. A blackened fired product (porous body 1) was obtained. The fired product maintained a film-like shape (see FIG. 1). In addition, the shape did not change even if it was immersed in water. When the components were examined by fluorescent X-ray, the organic component was 1% or less and almost all was a layered clay mineral. When the structure was examined with a scanning electron microscope (SEM), the clay mineral had a porous structure. It shows in FIG.2 and FIG.3. The mesh size (holes) was homogeneous, and the average size of 30 meshes was 125 nm, all in the range of 125 nm ± 50% and 90% in the range of 125 nm ± 30%. The layer of layered clay mineral was about 20 nm. When the gas adsorption measurement was performed and the specific surface area was determined by the bed method, it was found to be 316 m 2 / g, indicating a very large surface area. Further, when the pore size distribution was measured by the DH method, it was found that there were micropores having a peak at a radius of 1.6 nm (see FIG. 9). When a methanol droplet was dropped on the surface of the film-like porous body, it easily reached the back surface. It was confirmed that the series of pores (a) was continuous from one surface of the porous body to the other surface.

多孔質体の孔径、孔径分布、層の厚みはSEM写真(図3)から、定規を用いて、直接測定した。図中の30個の空孔の大きさ、30カ所の層の厚みの平均値をそれぞれ孔径、層の厚みとし、30個の空孔の大きさのバラツキから孔径分布を求めた。また、写真中で空孔が円形でない場合は、最も長い径と最も短い径の平均値をその空孔の径とした。更に、空孔は部分的に層が無く、隣の空孔と連なっているため、層の無い部分の空孔の形は外挿した。実施例では以後特に断りの無い場合、孔径、孔径分布、層の厚みは上述したように算出している。   The pore size, pore size distribution, and layer thickness of the porous body were directly measured from a SEM photograph (FIG. 3) using a ruler. The average value of the size of the 30 holes and the thickness of the 30 layers in the figure was taken as the hole diameter and the layer thickness, respectively, and the hole diameter distribution was determined from the variation in the size of the 30 holes. Moreover, when a hole was not circular in a photograph, the average value of the longest diameter and the shortest diameter was made into the diameter of the hole. Furthermore, since the void | hole does not have a layer partially and continues with the adjacent void | hole, the shape of the void | hole of the part without a layer was extrapolated. In the examples, unless otherwise specified, the pore diameter, the pore diameter distribution, and the layer thickness are calculated as described above.

SEMは日立製作所株式会社製のFE−SEM S−800を用い、約5nmの白金パナジウムをコートして観察を行った。ガス吸着測定は日本ベル株式会社製のベルソープ18を用い、吸着物質を窒素とし、無定型シリカ微粉末の窒素に対する吸着等温線を標準等温線として表面積と細孔径分布を求めた。また、TGA測定はセイコー電子工業株式会社製のTG/DTA220を用い、毎分10℃の速度で150℃まで昇温し、150℃で20分間保持させた際の質量減少量により水分量を求めた。   The SEM was observed using FE-SEM S-800 manufactured by Hitachi, Ltd., coated with about 5 nm of platinum panadium. The gas adsorption measurement was carried out using a bell soap 18 manufactured by Bell Japan Co., Ltd., using nitrogen as the adsorbing material and the adsorption isotherm for nitrogen of amorphous silica fine powder as a standard isotherm to determine the surface area and pore size distribution. In addition, TGA measurement uses TG / DTA220 manufactured by Seiko Denshi Kogyo Co., Ltd., and the water content is obtained from the amount of mass decrease when the temperature is raised to 150 ° C. at a rate of 10 ° C./min and held at 150 ° C. for 20 minutes. It was.

(実施例2)
MEA6.5g、合成ヘクトライト2.0g ([粘土]/[MEA]=0.3(g/g))を用い、MEAとヘクトライトを窒素バブリング下で純水48gに均質分散させ、無色透明な溶液を得た。層状粘土鉱物は層状剥離した状態で分散しているのが判る。アゾ系の重合開始剤(VA−057、和光純薬株式会社製)の水溶液(VA057 0.2g/純水10g)2gを添加し、攪拌機で均質になるよう撹拌した。厚さ3mmの容器に溶液を入れ、密封し、45℃で1時間、次いで60℃で2日間保持した。白化した有機無機複合ゲルが得られた。ゲルを厚さ1mmのポリプロピレン板の上に置き、室温で静置して乾燥させた。乾燥後、無色透明なフィルム状の高分子複合体2(厚さ約0.4mm)が得られた。熱質量分析(TGA)より得られた高分子複合体1中の水の量は1%以下であった。得られた複合体2を空気中で3時間かけて650℃まで昇温し、650℃で2時間保持させた。黒っぽい焼成物(多孔質体2)が得られた。焼成物はフィルム状の形状を保持していた。水に浸漬させても溶け出すなど形状に変化は見られなかった。蛍光X線で成分を調べたところ、有機物成分は1%以下であり、殆ど全てが層状粘土鉱物だった。SEMで、構造を調べたところ粘土鉱物が多孔質構造を形成していた。図4に示す。網目の大きさ(空孔)は均質で30個の網目の大きさの平均は68nm、全てが68nm±50%の範囲、95%以上が68nm±30%の範囲にあり、均質な構造であることが確認できた。また、層状粘土鉱物の層は約20nmであった。ガス吸着測定を行いベット法より比表面積を求めたところ、344m2/gであり、非常に大きな表面積を有することが判る。また、DH法にて細孔径分布を測定したところ、半径1.6nmをピークとするマイクロ孔が存在することが判った(図9参照)。なお、攪拌機はシンキイ株式会社製の攪拌機練太郎AR250を用いた。
(Example 2)
Using MEA 6.5 g and synthetic hectorite 2.0 g ([clay] / [MEA] = 0.3 (g / g)), MEA and hectorite were uniformly dispersed in 48 g of pure water under nitrogen bubbling, and colorless and transparent Solution was obtained. It can be seen that the layered clay mineral is dispersed in a layered state. 2 g of an aqueous solution (VA057 0.2 g / pure water 10 g) of an azo polymerization initiator (VA-057, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and stirred with a stirrer to be homogeneous. The solution was placed in a 3 mm thick container, sealed and held at 45 ° C. for 1 hour and then at 60 ° C. for 2 days. A whitened organic-inorganic composite gel was obtained. The gel was placed on a 1 mm thick polypropylene plate and allowed to stand at room temperature to dry. After drying, a colorless and transparent film-like polymer composite 2 (thickness: about 0.4 mm) was obtained. The amount of water in the polymer composite 1 obtained by thermal mass spectrometry (TGA) was 1% or less. The obtained composite 2 was heated to 650 ° C. in air over 3 hours and held at 650 ° C. for 2 hours. A dark baked product (porous body 2) was obtained. The fired product maintained a film-like shape. There was no change in shape such as dissolution even when immersed in water. When the component was examined by fluorescent X-ray, the organic component was 1% or less and almost all was a layered clay mineral. When the structure was examined by SEM, the clay mineral formed a porous structure. As shown in FIG. The mesh size (holes) is uniform, the average size of 30 meshes is 68 nm, all are in the range of 68 nm ± 50%, 95% or more are in the range of 68 nm ± 30%, and have a homogeneous structure. I was able to confirm. The layer of layered clay mineral was about 20 nm. When the specific surface area was determined by the gas adsorption measurement and the bed method, it was found to be 344 m 2 / g, indicating a very large surface area. Further, when the pore size distribution was measured by the DH method, it was found that there were micropores having a peak at a radius of 1.6 nm (see FIG. 9). In addition, Shinki Co., Ltd. stirrer Nertaro AR250 was used for the stirrer.

(実施例3)
合成ヘクトライト4.0g ([粘土]/[MEA]=0.62(g/g))を用いた以外は実施例2同じ方法で、無色透明なフィルム状の高分子複合体3(厚さ約0.3mm)を調製した。TGA測定より得られた高分子複合体3中の水の量は2%以下であった。得られた高分子複合体3を実施例2と同じ方法で焼成し、黒い焼成物(多孔質体3)を得た。焼成物はフィルム状の形状を保持していた。水に浸漬させても溶け出すなど全く形状に変化は見られなかった。蛍光X線で成分を調べたところ、有機物成分は1%以下であり、殆ど全てが層状粘土鉱物だった。SEMで、構造を調べたところ非常に細かい多孔質構造が観察された。写真4(図5)に示す。網目の大きさ(空孔)は均質で30個の網目の大きさの平均は30nmで、95%以上が30nm±50%の範囲、87%以上が30nm±30%の範囲にあり、均質な構造であることが確認できた。また、層状粘土鉱物の層は約12nmであった。ガス吸着測定を行いベット法より比表面積を求めたところ、290m2/gであり、非常に大きな表面積を有することが判る。また、DH法にて細孔径分布を測定したところ、半径1.6nmをピークとするマイクロ孔が存在することが判った(図9参照)。
(Example 3)
A colorless and transparent film-like polymer composite 3 (thickness) was prepared in the same manner as in Example 2, except that 4.0 g of synthetic hectorite ([clay] / [MEA] = 0.62 (g / g)) was used. About 0.3 mm) was prepared. The amount of water in the polymer composite 3 obtained by TGA measurement was 2% or less. The obtained polymer composite 3 was fired by the same method as in Example 2 to obtain a black fired product (porous body 3). The fired product maintained a film-like shape. There was no change in shape, such as dissolution even when immersed in water. When the component was examined by fluorescent X-ray, the organic component was 1% or less and almost all was a layered clay mineral. When the structure was examined by SEM, a very fine porous structure was observed. Shown in Photo 4 (Fig. 5). The mesh size (holes) is uniform, the average size of 30 meshes is 30 nm, 95% or more is in the range of 30 nm ± 50%, 87% or more is in the range of 30 nm ± 30%, and is uniform. The structure was confirmed. Moreover, the layer of the layered clay mineral was about 12 nm. When the specific surface area was determined by the gas adsorption measurement and the bed method, it was found to be 290 m 2 / g and to have a very large surface area. Further, when the pore size distribution was measured by the DH method, it was found that there were micropores having a peak at a radius of 1.6 nm (see FIG. 9).

(実施例4)
反応性モノマーとしてN−イソプロピルアクリルアミド(NIPA)5.65g、合成ヘクトライト2.0g ([粘土]/[NIPA]=0.35(g/g))を用い、NIPAとヘクトライトを窒素バブリング下で純水48gに均質分散させ、無色透明な溶液を得た。層状粘土鉱物は層状剥離した状態で分散しているのが判る。TEMED40μLを加え、次いで、KPSの水溶液(KPS 0.2g/純水10g)2.5gを添加し攪拌機で撹拌した。厚さ3mmの容器に溶液を流し込み、密封し、20℃で2日間保持した。無色透明な有機無機複合ゲル4が得られた。ゲルを厚さ1mmのポリプロピレン板の上に置き、室温で静置して乾燥させた。更に、80℃で1日間熱風乾燥後、無色透明なフィルム状の複合体4(厚さ約0.3mm)が得られた。TGAより得られた高分子複合体1中の水の量は2%以下であった。得られた複合体4を空気中で3時間かけて650℃まで昇温し、650℃で2時間保持させた。黒い焼成物(多孔質体4)が得られた。焼成物はフィルム状の形状を保持していた。水に浸漬させても溶け出すなど全く形状に変化は見られなかった。蛍光X線で成分を調べたところ、有機物成分は1%以下であり、殆ど全てが層状粘土鉱物だった。SEMで、構造を調べたところ粘土鉱物が連続的な多孔質構造を形成していた。写真5(図6)に示す。孔径の大きさ(空孔)を見積もると110nm程度であった。孔径を見積もることができる孔30個の大きさを測定したところ、80%以上が110nm±30%の範囲にあり、均質な孔径の多孔質構造であることが確認できた。また、層状粘土鉱物の層は約60nmであった。ガス吸着測定を行いベット法より比表面積を求めたところ、300m2/gであり、非常に大きな表面積を有することが判る。また、DH法にて細孔径分布を測定したところ、半径1.6nmをピークとするマイクロ孔が存在することが判った(図10参照)。
Example 4
N-isopropylacrylamide (NIPA) 5.65g and synthetic hectorite 2.0g ([clay] / [NIPA] = 0.35 (g / g)) were used as reactive monomers, and NIPA and hectorite were bubbled with nitrogen. Were uniformly dispersed in 48 g of pure water to obtain a colorless and transparent solution. It can be seen that the layered clay mineral is dispersed in a layered state. 40 μL of TEMED was added, and then 2.5 g of an aqueous solution of KPS (KPS 0.2 g / pure water 10 g) was added and stirred with a stirrer. The solution was poured into a 3 mm thick container, sealed and kept at 20 ° C. for 2 days. A colorless and transparent organic-inorganic composite gel 4 was obtained. The gel was placed on a 1 mm thick polypropylene plate and allowed to stand at room temperature to dry. Further, after drying with hot air at 80 ° C. for 1 day, a colorless and transparent film-like composite 4 (thickness: about 0.3 mm) was obtained. The amount of water in the polymer composite 1 obtained from TGA was 2% or less. The obtained composite 4 was heated to 650 ° C. in air for 3 hours and held at 650 ° C. for 2 hours. A black fired product (porous body 4) was obtained. The fired product maintained a film-like shape. There was no change in shape, such as dissolution even when immersed in water. When the component was examined by fluorescent X-ray, the organic component was 1% or less and almost all was a layered clay mineral. When the structure was examined by SEM, the clay mineral formed a continuous porous structure. Shown in Photo 5 (Fig. 6). The size of pores (holes) was estimated to be about 110 nm. When the size of 30 holes whose pore diameter can be estimated was measured, 80% or more was in the range of 110 nm ± 30%, and it was confirmed that the porous structure had a uniform pore diameter. The layer of layered clay mineral was about 60 nm. When the gas adsorption measurement was performed and the specific surface area was determined by the bed method, it was found to be 300 m 2 / g and to have a very large surface area. Further, when the pore size distribution was measured by the DH method, it was found that there were micropores having a peak at a radius of 1.6 nm (see FIG. 10).

(実施例5)
合成ヘクトライト6.0g ([粘土]/[NIPA]=1.1(g/g))を用い、実施例4と同じ方法で多孔質体5を調製した。多孔質体5は黒く、フィルム状の形状を保持していた。水に浸漬させても溶け出すなど全く形状に変化は見られなかった。蛍光X線で成分を調べたところ、有機物成分は1%以下であり、殆ど全てが層状粘土鉱物だった。SEMで、構造を調べたところ粘土鉱物が多孔質構造を形成していた。写真6(図7)に示す。多孔質構造は網目状で、孔径の大きさを見積もったところ30nmほどであった。孔径が確認できる孔30個の大きさを測定したところ、80%以上が30nm±30%の範囲にあり、均質な孔径の多孔質構造であることが確認できた。また、層状粘土鉱物の層は約40nmであった。ガス吸着測定を行いベット法より比表面積を求めたところ、280m2/gであり、非常に大きな表面積を有することが判る。また、DH法にて細孔径分布を測定したところ、半径1.6nmをピークとするマイクロ孔が存在することが判った(図10参照)。
(Example 5)
Porous material 5 was prepared in the same manner as in Example 4 using 6.0 g of synthetic hectorite ([clay] / [NIPA] = 1.1 (g / g)). The porous body 5 was black and maintained a film-like shape. There was no change in shape, such as dissolution even when immersed in water. When the component was examined by fluorescent X-ray, the organic component was 1% or less and almost all was a layered clay mineral. When the structure was examined by SEM, the clay mineral formed a porous structure. This is shown in Photo 6 (Figure 7). The porous structure was a network, and the pore size was estimated to be about 30 nm. When the size of 30 holes whose pore diameter can be confirmed was measured, 80% or more was in the range of 30 nm ± 30%, and it was confirmed that the porous structure had a uniform pore diameter. Moreover, the layer of the layered clay mineral was about 40 nm. When the gas adsorption measurement was performed and the specific surface area was determined by the bed method, it was found to be 280 m 2 / g, indicating a very large surface area. Further, when the pore size distribution was measured by the DH method, it was found that there were micropores having a peak at a radius of 1.6 nm (see FIG. 10).

(実施例6)
実施例3において、高分子複合体3を調製した後、高分子複合体3を約2時間純水に浸漬させた。含水した高分子複合体3を500%延伸し、伸張状態で保持し、1日間空気中で乾燥させた。高分子複合体3の伸張フィルムを得た。実施例3と同じように焼成し、黒い多孔質体6を得た。多孔質体6はフィルム状の形状を維持していた。SEMで構造を観察したところ、粘土鉱物が配向した多孔質構造が観察された。図8に結果を示す。孔径は20−50nmであった。また、層状粘土鉱物の層は約25nmであった。表面積を求めたところ、290m/gであった。
(Example 6)
In Example 3, after preparing the polymer composite 3, the polymer composite 3 was immersed in pure water for about 2 hours. The polymer composite 3 containing water was stretched 500%, held in an extended state, and dried in air for 1 day. A stretched film of the polymer composite 3 was obtained. Firing was performed in the same manner as in Example 3 to obtain a black porous body 6. The porous body 6 maintained a film-like shape. When the structure was observed by SEM, a porous structure in which clay minerals were oriented was observed. The results are shown in FIG. The pore diameter was 20-50 nm. The layer of layered clay mineral was about 25 nm. When the surface area was calculated | required, it was 290 m < 2 > / g.

(比較例1)
合成ヘクトライト4.0gを純水50gに撹拌機を使って分散させた。分散液は透明性があり、層状剥離かそれに近い状態にあることが確認できた。しばらく、放置するとゲル化した。−30℃で1日間保持し、凍結させた後、3日間かけて凍結乾燥を行った。粉体状の層状粘土鉱物が得られた。SEMで構造を確認したが多孔質構造は確認できなかった。ガス吸着測定を行いベット法より比表面積を求めたところ、290m2/gであり、非常に大きな表面積を有することが判る。この粉末状の粘土鉱物を600℃で2時間焼成し、比表面積を求めたところ、10m2/gとなり、表面積が大きく低下することが判る。
(Comparative Example 1)
Synthetic hectorite (4.0 g) was dispersed in 50 g of pure water using a stirrer. It was confirmed that the dispersion was transparent and was in a state of delamination or a state close thereto. It gelled when left standing for a while. After being kept at −30 ° C. for 1 day and frozen, it was freeze-dried over 3 days. A powdery layered clay mineral was obtained. Although the structure was confirmed by SEM, the porous structure was not confirmed. When the specific surface area was determined by the gas adsorption measurement and the bed method, it was found to be 290 m 2 / g and to have a very large surface area. When this powdery clay mineral was calcined at 600 ° C. for 2 hours and the specific surface area was determined, it was found to be 10 m 2 / g, and the surface area was greatly reduced.

(写真1)実施例1で得られたシート状の多孔質体の写真である。(Photo 1) A photograph of the sheet-like porous body obtained in Example 1. (写真2a)実施例1の多孔質体の電子顕微鏡写真である。(Photo 2a) An electron micrograph of the porous material of Example 1. (写真2b)実施例1の多孔質体の電子顕微鏡写真である。(Photo 2b) An electron micrograph of the porous material of Example 1. (写真3)実施例2の多孔質体の電子顕微鏡写真である。(Photo 3) An electron micrograph of the porous body of Example 2. (写真4)実施例3の多孔質体の電子顕微鏡写真である。(Photo 4) An electron micrograph of the porous material of Example 3. (写真5)実施例4の多孔質体の電子顕微鏡写真である。(Photo 5) An electron micrograph of the porous material of Example 4. (写真6)実施例5の多孔質体の電子顕微鏡写真である。(Photo 6) An electron micrograph of the porous material of Example 5. (写真7)実施例6の多孔質体の電子顕微鏡写真である。(Photo 7) An electron micrograph of the porous material of Example 6. 実施例1〜3の多孔質体の細孔径分布である。It is pore diameter distribution of the porous body of Examples 1-3. 実施例4、5の多孔質体の細孔径分布である。4 is a pore size distribution of the porous bodies of Examples 4 and 5.

Claims (7)

層状粘土鉱物(A)により形成された層により隔てられた、孔径が20〜500nmの空孔(a)を有する多孔質体であって、
前記粘土鉱物により形成された層が3〜100nmの厚みを有し、且つ、表面積測定による孔径が20nm未満の微細空孔(b)を有することを特徴とする多孔質体。
A porous body having pores (a) having a pore diameter of 20 to 500 nm separated by a layer formed of layered clay mineral (A),
A porous body characterized in that a layer formed of the clay mineral has a thickness of 3 to 100 nm and has fine pores (b) having a pore diameter of less than 20 nm by surface area measurement.
前記空孔(a)が連続的に連なっている請求項1記載の多孔質体。 The porous body according to claim 1, wherein the pores (a) are continuously connected. 表面積が50〜1000m/gの範囲である請求項1又は2記載の多孔質体。 The porous body according to claim 1, wherein the surface area is in the range of 50 to 1000 m 2 / g. 層状粘土鉱物(A)と反応性モノマー(B)を溶媒(C)中に分散混合させた後、前記反応性モノマー(B)を重合することにより前記層状粘土鉱物(A)と有機高分子(D)からなる有機無機複合ゲルを製造し、
次いで、前記有機無機複合ゲルから前記溶媒(C)の一部又は全てを除去することにより前記層状粘土鉱物(A)と前記有機高分子(D)の複合体を製造した後、
前記複合体を焼成することにより前記有機高分子(D)の一部又は全てを除去すること特徴とする請求項1〜3のいずれかに記載の多孔質体の製造方法。
The layered clay mineral (A) and the reactive monomer (B) are dispersed and mixed in the solvent (C), and then the reactive monomer (B) is polymerized to polymerize the layered clay mineral (A) and the organic polymer ( D) An organic-inorganic composite gel consisting of
Next, after producing a composite of the layered clay mineral (A) and the organic polymer (D) by removing a part or all of the solvent (C) from the organic-inorganic composite gel,
The method for producing a porous body according to any one of claims 1 to 3, wherein a part or all of the organic polymer (D) is removed by firing the composite.
前記複合体を延伸処理した後に焼成する請求項4記載の多孔質体の製造方法。 The method for producing a porous body according to claim 4, wherein the composite is fired after being stretched. 前記反応性モノマー(B)が反応性の(メタ)アクリル酸エステル誘導体又は(メタ)アクリルアミド誘導体である請求項4又は5記載の多孔質体の製造方法。 The method for producing a porous body according to claim 4 or 5, wherein the reactive monomer (B) is a reactive (meth) acrylic acid ester derivative or (meth) acrylamide derivative. 前記層状粘土鉱物(A)と前記反応性モノマー(B)を前記溶媒(C)中で分散混合させる際に、前記層状粘土鉱物(A)を層状剥離させた状態で分散混合させた請求項4〜6のいずれかに記載の多孔質体の製造方法。 5. When the layered clay mineral (A) and the reactive monomer (B) are dispersed and mixed in the solvent (C), the layered clay mineral (A) is dispersed and mixed in a state of being separated in layers. The manufacturing method of the porous body in any one of -6.
JP2007125508A 2007-05-10 2007-05-10 Porous material Expired - Fee Related JP5202869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125508A JP5202869B2 (en) 2007-05-10 2007-05-10 Porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125508A JP5202869B2 (en) 2007-05-10 2007-05-10 Porous material

Publications (2)

Publication Number Publication Date
JP2008280208A true JP2008280208A (en) 2008-11-20
JP5202869B2 JP5202869B2 (en) 2013-06-05

Family

ID=40141338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125508A Expired - Fee Related JP5202869B2 (en) 2007-05-10 2007-05-10 Porous material

Country Status (1)

Country Link
JP (1) JP5202869B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090959A1 (en) * 2008-01-14 2009-07-23 Ntn Corporation Polymer organogel, polymer composition, process for production of the polymer organogel, and process for production of polymer composition
JP2019014609A (en) * 2017-07-03 2019-01-31 日本ケミコン株式会社 Method for producing inorganic compound and method for producing sealing material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246879A (en) * 1986-04-15 1987-10-28 松下電工株式会社 Manufacture of inorganic layer porous body
JPH10259016A (en) * 1997-03-18 1998-09-29 Kanegafuchi Chem Ind Co Ltd Intercalation clay compound, thermoplastic resin composition composed of intercalation clay compound and thermoplastic resin and their production
JPH11292653A (en) * 1998-04-02 1999-10-26 Noritake Co Ltd Ceramic porous body and its production
JP2004091784A (en) * 2002-08-15 2004-03-25 Eastman Kodak Co Material containing oriented anisotropic particle and method for production of the same and article
JP2004359747A (en) * 2003-06-03 2004-12-24 Kawamura Inst Of Chem Res Porous material and method for producing the same
JP2005162504A (en) * 2003-11-28 2005-06-23 Tokuyama Corp Binary porous silica particle
JP2006188418A (en) * 2004-12-10 2006-07-20 National Institute Of Advanced Industrial & Technology Porous clay film and method of manufacturing the same
JP2006307295A (en) * 2005-04-28 2006-11-09 National Institute Of Advanced Industrial & Technology Clay composition for porous metal or porous ceramic, and method for producing porous metal or porous ceramic using it
JP2010515786A (en) * 2007-01-05 2010-05-13 ボード オブ トラスティーズ オブ ミシガン ステイト ユニバーシティ Polymer-mesoporous silicate composite material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246879A (en) * 1986-04-15 1987-10-28 松下電工株式会社 Manufacture of inorganic layer porous body
JPH10259016A (en) * 1997-03-18 1998-09-29 Kanegafuchi Chem Ind Co Ltd Intercalation clay compound, thermoplastic resin composition composed of intercalation clay compound and thermoplastic resin and their production
JPH11292653A (en) * 1998-04-02 1999-10-26 Noritake Co Ltd Ceramic porous body and its production
JP2004091784A (en) * 2002-08-15 2004-03-25 Eastman Kodak Co Material containing oriented anisotropic particle and method for production of the same and article
JP2004359747A (en) * 2003-06-03 2004-12-24 Kawamura Inst Of Chem Res Porous material and method for producing the same
JP2005162504A (en) * 2003-11-28 2005-06-23 Tokuyama Corp Binary porous silica particle
JP2006188418A (en) * 2004-12-10 2006-07-20 National Institute Of Advanced Industrial & Technology Porous clay film and method of manufacturing the same
JP2006307295A (en) * 2005-04-28 2006-11-09 National Institute Of Advanced Industrial & Technology Clay composition for porous metal or porous ceramic, and method for producing porous metal or porous ceramic using it
JP2010515786A (en) * 2007-01-05 2010-05-13 ボード オブ トラスティーズ オブ ミシガン ステイト ユニバーシティ Polymer-mesoporous silicate composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090959A1 (en) * 2008-01-14 2009-07-23 Ntn Corporation Polymer organogel, polymer composition, process for production of the polymer organogel, and process for production of polymer composition
JP2009191260A (en) * 2008-01-14 2009-08-27 Ntn Corp Polymer organogel, polymer composition, and process for producing them
JP2019014609A (en) * 2017-07-03 2019-01-31 日本ケミコン株式会社 Method for producing inorganic compound and method for producing sealing material

Also Published As

Publication number Publication date
JP5202869B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
US9495991B2 (en) Method for forming silicon oxide and metal nanopattern&#39;s, and magnetic recording medium for information storage using the same
Hoa et al. Preparation of porous materials with ordered hole structure
Zhou et al. Preparation and characterization of nano-TiO2/chitosan/poly (N-isopropylacrylamide) composite hydrogel and its application for removal of ionic dyes
Liu et al. Design, preparation, and application of ordered porous polymer materials
Lee et al. A hierarchically porous catalytic monolith prepared from a Pickering high internal phase emulsion stabilized by microporous organic polymer particles
KR101490405B1 (en) Forming method of metal nano-structure of metal nano-wire pattern or metal nano-mesh pattern
Zhou et al. Nanoporous block copolymer membranes immobilized with gold nanoparticles for continuous flow catalysis
WO2019209493A1 (en) Additive manufacturing of hierarchical three-dimensional micro-architected aerogels
Nguyen et al. Direct preparation of mesoporous carbon by pyrolysis of poly (acrylonitrile-b-methylmethacrylate) diblock copolymer
Liu Nanostructures of functional block copolymers
KR101373228B1 (en) Method of preparing multipurpose monodisperse hollow mesoporous silica particles
JP5202869B2 (en) Porous material
Turnšek et al. Macroporous alumina with cellular interconnected morphology from emulsion templated polymer composite precursors
Jiu et al. Preparation of nanoporous ZnO using copolymer gel template
Yu et al. Tailored preparation of porous aromatic frameworks in a confined environment
Feng et al. Hollow mesoporous titania microspheres: New technology and enhanced photocatalytic activity
CN116474742A (en) Preparation method of charged porous microsphere for DNA loading
Niu et al. In situ growth of the ZIF‐8 on the polymer monolith via CO2‐in‐water HIPEs stabilized using metal oxide nanoparticles and its photocatalytic activity
KR20170121469A (en) Porous organic/inorganic composite and method for preparing the same
Ren et al. Preparations and properties of a tunable void with shell thickness SiO2@ SiO2 core–shell structures via activators generated by electron transfer for atom transfer radical polymerization
Zhang Porous materials by templating of small liquid drops
Jiu et al. Preparation of nanoporous silica using copolymer template
JP5930015B2 (en) Temperature-responsive porous body and method for producing the same
Choi et al. Spherical Pseudo‐Inverse Opal Silica with Pomegranate‐Like Polymer Microparticles as Templates
이강훈 et al. Effects of Aluminum Hydroxide on the Mechanical and Thermal Properties of Vinyl Ester Composites Reinforced with Continuous Carbon Fibers of Different Tow Sizes Produced by Pultrusion Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Ref document number: 5202869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees