JP2008277790A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2008277790A
JP2008277790A JP2008086012A JP2008086012A JP2008277790A JP 2008277790 A JP2008277790 A JP 2008277790A JP 2008086012 A JP2008086012 A JP 2008086012A JP 2008086012 A JP2008086012 A JP 2008086012A JP 2008277790 A JP2008277790 A JP 2008277790A
Authority
JP
Japan
Prior art keywords
ruthenium oxide
oxide nanoparticles
double layer
electric double
ketjenblack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008086012A
Other languages
Japanese (ja)
Inventor
Shuichi Ishimoto
修一 石本
Kenji Tamamitsu
賢次 玉光
Katsuhiko Naoi
勝彦 直井
Kazuko Naoi
和子 直井
Nobuhiro Ogiwara
信宏 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
K and W Corp
Original Assignee
Nippon Chemi Con Corp
K and W Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp, K and W Corp filed Critical Nippon Chemi Con Corp
Priority to JP2008086012A priority Critical patent/JP2008277790A/en
Publication of JP2008277790A publication Critical patent/JP2008277790A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor excellent in electric voltage endurance property. <P>SOLUTION: A predetermined amount of cold water, ruthenium chloride solution, and Ketjenblack are supplied in a revolution reactor. The reactor is churned for 1-20 minutes with predetermined centrifugal force, and sodium hydroxide is added. With predetermined centrifugal force, the inner cylinder is turned for 30 seconds to 10 minutes so that thin film of reactive material is formed on the inner wall. At the same time, shearing stress and centrifugal force are applied to the reactive material, and chemical reaction is promoted to obtain Ketjenblack, in which ruthenium oxide nano-particles are subjected to high dispersion support. The obtained ruthenium oxide Ketjenblack complex is passed and filtered through a filter holder and subjected to vacuum drying at 100°C for 12 hours so as to obtain complex powder, in which ruthenium oxide nano-particles are supported by Ketjenblack in a highly dispersed state. Then, the ruthenium oxide nano-particles supported by the Ketjenblack in a highly dispersed state is made to be supported by polarizing electrode material or supported by an inner wall of an exterior case so that it is contained inside a capacitor element. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐電圧を向上させるべく改良を施した電気二重層キャパシタに関するものである。   The present invention relates to an electric double layer capacitor that has been improved to improve withstand voltage.

従来より、電気二重層キャパシタの耐電圧向上のために、電解液に特定のアンモニウムを添加した試みがある(特許文献1参照)。しかしながら、この特許文献1に記載された発明においては、容量が十分でないといった問題点があった。   Conventionally, there has been an attempt to add specific ammonium to an electrolytic solution in order to improve the withstand voltage of an electric double layer capacitor (see Patent Document 1). However, the invention described in Patent Document 1 has a problem that the capacity is not sufficient.

そこで、本出願人等は、従来にない液相反応において反応を促進する方法を提供し、さらにはこの反応方法を用いて作製した、金属酸化物ナノ粒子および電気化学素子用電極材として用いられるこの金属酸化物ナノ粒子を高分散担持させたカーボン、ならびにこの電極を用いた電気化学素子を提供することを目的として、特願2005−356845として先に特許出願した。
特開2004−335875号公報
Therefore, the present applicants provide a method for accelerating the reaction in an unprecedented liquid phase reaction, and further used as an electrode material for metal oxide nanoparticles and electrochemical devices produced using this reaction method. A patent application was previously filed as Japanese Patent Application No. 2005-356845 for the purpose of providing carbon in which the metal oxide nanoparticles were supported in a highly dispersed manner and an electrochemical device using this electrode.
JP 2004-335875 A

しかしながら、上述したような先願の明細書に記載された発明においても、未だ耐電圧が十分でないといった問題点があった。   However, the invention described in the specification of the prior application as described above still has a problem that the withstand voltage is not sufficient.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであって、その目的は、耐電圧特性に優れた電気二重層キャパシタを提供することにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and an object thereof is to provide an electric double layer capacitor having excellent withstand voltage characteristics.

本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、本出願人等が先に特許出願した明細書に記載されたメカノケミカル反応にさらに改良を加えて形成した酸化ルテニウムナノ粒子をキャパシタ素子内に含有させてなる電気二重層キャパシタは、耐電圧特性に優れていることが判明したものである。   As a result of intensive studies to solve the above problems, the present inventors have made ruthenium oxide nanoparticles formed by further improving the mechanochemical reaction described in the specification previously filed by the present applicant. It has been found that an electric double layer capacitor in which is contained in a capacitor element is excellent in withstand voltage characteristics.

(酸化ルテニウムナノ粒子をキャパシタ素子内に含有させる方法)
本発明に係る酸化ルテニウムナノ粒子をキャパシタ素子内に含有させる方法としては、(1)酸化ルテニウムナノ粒子を電気二重層キャパシタ用電極に含有させる方法、あるいは、(2)酸化ルテニウムナノ粒子をケース内壁に担持させる方法を用いることができる。以下、各方法について詳述する。
(Method of incorporating ruthenium oxide nanoparticles in the capacitor element)
The method of incorporating the ruthenium oxide nanoparticles according to the present invention into the capacitor element includes (1) a method of incorporating ruthenium oxide nanoparticles into the electrode for an electric double layer capacitor, or (2) an inner wall of the case containing ruthenium oxide nanoparticles. It is possible to use a method of supporting the carrier. Hereinafter, each method will be described in detail.

(1)電気二重層キャパシタ用電極に含有させる方法
(1−1)ケッチェンブラック
本発明においては、ケッチェンブラックを用いて電気二重層キャパシタを形成する。ケッチェンブラックとしては、通常、電気化学素子用電極に導電材として用いられるカーボンブラックであるインターナショナル社製ケッチェンブラック等が用いられる。
(1) Method of including in electrode for electric double layer capacitor (1-1) Ketjen black In the present invention, an electric double layer capacitor is formed using ketjen black. As the ketjen black, ketjen black manufactured by International Co., Ltd., which is carbon black used as a conductive material for an electrode for an electrochemical element is usually used.

(1−2)酸化ルテニウム・ケッチェンブラック複合体の作製方法
旋回反応器内に、所定量の水、超音波によって塩化ルテニウムを溶解した塩化ルテニウム水溶液及び上記ケッチェンブラックを投入し、所定の遠心力で1〜20分間撹拌し、さらに水酸化ナトリウムを添加して所定の遠心力で30秒〜10分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成すると共に、反応物にずり応力と遠心力を加えて化学反応を促進させ、酸化ルテニムナノ粒子を高分散担持したケッチェンブラックを得る。
(1-2) Preparation Method of Ruthenium Oxide / Ketjen Black Complex Into a swirl reactor, a predetermined amount of water, a ruthenium chloride aqueous solution in which ruthenium chloride is dissolved by ultrasonic waves, and the above ketjen black are charged, and a predetermined centrifugation is performed. Stirring for 1 to 20 minutes with force, adding sodium hydroxide and rotating the inner cylinder for 30 seconds to 10 minutes with a predetermined centrifugal force to form a thin film of reactant on the inner wall of the outer cylinder, A chemical reaction is promoted by applying a shear stress and a centrifugal force to obtain Ketjen Black carrying highly dispersed ruthenium oxide nanoparticles.

得られた酸化ルテニウム・ケッチェンブラック複合体をフィルターフォルダーに通してろ過し、100℃で12時間真空乾燥することにより、酸化ルテニウムナノ粒子がケッチェンブラックに高分散担持された複合体粉末を得る。   The obtained ruthenium oxide / ketene black composite is filtered through a filter folder and vacuum dried at 100 ° C. for 12 hours to obtain a composite powder in which ruthenium oxide nanoparticles are highly dispersed and supported on ketchen black. .

(1−3)電気二重層キャパシタ用電極の作製方法
上記のようにして得られた酸化ルテニウムナノ粒子を高分散担持したケッチェンブラックを、活性炭及びポリテトラフルオロエチレンと1:10:1の割合で混合して、電気二重層キャパシタ用電極材料とする。
(1-3) Method for Producing Electrode for Electric Double Layer Capacitor Ketjen Black carrying highly dispersed ruthenium oxide nanoparticles obtained as described above is in a ratio of 1: 10: 1 with activated carbon and polytetrafluoroethylene. To obtain an electrode material for an electric double layer capacitor.

このようにして得られた電気二重層キャパシタ用電極材料を、ロールを用いて約150μmまで圧延し、導電性接着剤を用いてAl箔上に接着して電気二重層キャパシタ用電極とする。   The electric double layer capacitor electrode material thus obtained is rolled to about 150 μm using a roll and adhered onto an Al foil using a conductive adhesive to form an electric double layer capacitor electrode.

上記のようにしてメカノケミカル反応によって形成した酸化ルテニウムナノ粒子を、電気二重層キャパシタ用電極に含有させることにより耐電圧特性が向上する理由は、このナノ粒子が、高電圧を負荷した時の電極反応によって発生する水素ガスを吸収するものと思われるが、通常は生じるガス発生に起因するケースの膨れを抑制することができるためであると考えられる。   The reason why the withstand voltage characteristics are improved by incorporating the ruthenium oxide nanoparticles formed by the mechanochemical reaction as described above into the electrode for the electric double layer capacitor is that the nanoparticles are electrodes when a high voltage is applied. The hydrogen gas generated by the reaction is considered to be absorbed, but it is considered that it is possible to suppress the swelling of the case due to the gas generation that is usually generated.

(2)ケース内壁に担持させる方法
上記のようにして得られたケッチェンブラックに高分散担持された酸化ルテニウムナノ粒子を、電気二重層キャパシタを外装するケースの内壁に担持させる。ケースの内壁に担持させる方法としては、例えば、本発明のケッチェンブラックに高分散担持された酸化ルテニウムナノ粒子をバインダーと溶剤に溶解したものを塗布する等の方法が用いられる。
(2) Method of supporting on the inner wall of the case The ruthenium oxide nanoparticles highly dispersed and supported on the ketjen black obtained as described above are supported on the inner wall of the case that covers the electric double layer capacitor. As a method for supporting the inner wall of the case, for example, a method in which ruthenium oxide nanoparticles highly dispersed and supported on the ketjen black of the present invention are dissolved in a binder and a solvent is applied.

このようにして、ケッチェンブラックに高分散担持された酸化ルテニウムナノ粒子をケースの内壁に担持させることにより、該ナノ粒子が電極反応によって発生する水素ガスを吸収するものと思われるが、高電圧を負荷した時に通常は生じるガス発生に起因するケースの膨れを抑制することができる。   In this way, it is considered that the ruthenium oxide nanoparticles supported in a highly dispersed manner on the ketjen black are supported on the inner wall of the case, so that the nanoparticles absorb the hydrogen gas generated by the electrode reaction. It is possible to suppress swelling of the case due to gas generation that normally occurs when a load is applied.

(メカノケミカル反応)
なお、本発明で用いる反応方法は、本出願人等が先に特許出願した上記明細書に示したメカノケミカル反応にさらに改良を加えたものであって、化学反応の過程で、旋回する反応器内でより効果的に反応物にずり応力と遠心力を加えて化学反応を促進させるものである。
(Mechanochemical reaction)
The reaction method used in the present invention is a mechanochemical reaction shown in the above-mentioned specification previously filed by the applicant of the present application and further improved, and a reactor that rotates in the course of the chemical reaction. In this method, a chemical reaction is promoted by applying shear stress and centrifugal force to the reactant more effectively.

すなわち、金属塩とカーボンを混合した段階で遠心処理を行うことにより、ずり応力と遠心力を加えることによって、金属塩とカーボンの官能基である水酸基との縮合反応が促進され、金属塩がカーボンに結合した状態となるものと考えられる。この状態で触媒を加え、さらに遠心処理を行うことによりずり応力と遠心力を加えることによって、金属塩の加水分解、縮合反応をより効果的に促進させて、金属酸化物ナノ粒子を生成するとともに、この金属酸化物とカーボンを分散して、金属酸化物ナノ粒子を高分散担持させたカーボンを形成するものである。   That is, by performing a centrifugal treatment at the stage where the metal salt and carbon are mixed, by applying shear stress and centrifugal force, the condensation reaction between the metal salt and the hydroxyl group that is a functional group of carbon is promoted, and the metal salt becomes carbon. It is thought that it will be in the state which couple | bonded with. In this state, the catalyst is added, and further shear treatment and centrifugal force are applied to further promote the hydrolysis and condensation reaction of the metal salt to produce metal oxide nanoparticles. The metal oxide and carbon are dispersed to form carbon in which metal oxide nanoparticles are supported in a highly dispersed state.

この反応方法においては、反応物にずり応力と遠心力の双方の機械的エネルギーが同時に加えられることによって、このエネルギーが化学エネルギーに転化することによるものと思われるが、従来にない速度で化学反応を促進させることができる。   In this reaction method, mechanical energy of both shear stress and centrifugal force is applied to the reactant at the same time, which seems to be due to the conversion of this energy into chemical energy. Can be promoted.

そして、このような化学反応を促進させるには、外筒と内筒の同心円筒からなり、内筒の側面に貫通孔を備えるとともに、外筒の開口部にせき板を配置してなる反応器を用い、内筒の旋回による遠心力によって内筒内の反応物を内筒の貫通孔を通じて外筒の内壁面に移動させる。   And in order to promote such a chemical reaction, the reactor which consists of a concentric cylinder of an outer cylinder and an inner cylinder, is equipped with a through-hole in the side surface of an inner cylinder, and arrange | positions a slat in the opening part of an outer cylinder. The reactant in the inner cylinder is moved to the inner wall surface of the outer cylinder through the through-hole of the inner cylinder by the centrifugal force generated by the turning of the inner cylinder.

この時、反応物は内筒の遠心力によって外筒の内壁に衝突し、薄膜状となって内壁の上部へずり上がる。この状態では反応物には内壁との間のずり応力と内筒からの遠心力の双方が同時に加わり、薄膜状の反応物に大きな機械的エネルギーが加わり、さらに薄膜にずり応力と遠心力が加わると回転力(渦巻く力)が発生することになる。この機械的なエネルギーと回転力(渦巻く力)による局所的なエネルギーが反応に必要な化学エネルギー、いわゆる活性化エネルギーに転化するものと思われるが、短時間で反応が進行する。   At this time, the reaction product collides with the inner wall of the outer cylinder due to the centrifugal force of the inner cylinder, becomes a thin film, and moves up to the upper part of the inner wall. In this state, both the shear stress between the inner wall and the centrifugal force from the inner cylinder are simultaneously applied to the reactant, a large mechanical energy is applied to the thin-film reactant, and the shear stress and centrifugal force are further applied to the thin film. Rotational force (swirl force) is generated. It is considered that local energy by this mechanical energy and rotational force (swirl force) is converted into chemical energy necessary for the reaction, so-called activation energy, but the reaction proceeds in a short time.

さらに、このような金属塩の加水分解反応、縮合反応による金属酸化物の生成反応において、反応過程でカーボンを加えることによって、金属酸化物ナノ粒子を高分散担持させたカーボンを得ることができる。すなわち、反応器の内筒の内部に金属塩とカーボンを投入して、内筒を旋回して金属塩とカーボンを混合、分散する。このことによって、金属塩と、カーボンの官能基である水酸基との縮合反応が促進され、金属塩がカーボンに結合した金属塩が多数形成される。   Further, in such a metal salt hydrolysis reaction and a metal oxide production reaction by a condensation reaction, carbon in which metal oxide nanoparticles are highly dispersed and supported can be obtained by adding carbon during the reaction process. That is, a metal salt and carbon are introduced into the inner cylinder of the reactor, and the inner cylinder is rotated to mix and disperse the metal salt and carbon. This promotes the condensation reaction between the metal salt and the hydroxyl group that is a functional group of carbon, and a large number of metal salts in which the metal salt is bonded to carbon are formed.

さらに内筒を旋回させながら水酸化ナトリウムなどの触媒を投入して金属塩の加水分解、縮合反応を進行させ、金属酸化物を生成するとともに、この金属酸化物とカーボンを分散状態で混合する。その結果、反応終了とともに、金属酸化物ナノ粒子を高分散担持させたカーボンを形成することができる。   Further, while turning the inner cylinder, a catalyst such as sodium hydroxide is added to cause hydrolysis and condensation reaction of the metal salt to generate a metal oxide, and the metal oxide and carbon are mixed in a dispersed state. As a result, the carbon in which the metal oxide nanoparticles are supported in a highly dispersed state can be formed with the completion of the reaction.

本発明によれば、耐電圧特性に優れた電気二重層キャパシタを得ることができる。   According to the present invention, an electric double layer capacitor having excellent withstand voltage characteristics can be obtained.

以下、実施例により本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(1)酸化ルテニウム・ケッチェンブラック複合体について
(実施例)
旋回反応器内に90mlの水、超音波によって塩化ルテニウムを溶解した17.78mMの塩化ルテニウム水溶液を21.3ml、2.78gのケッチェンブラック(ケッチェンブラック・インターナショナル社製、商品名:ケッチェンブラックEC600JD、空隙率78Vol.%、一次粒子径40nm、平均二次粒径337.8nm)を投入し、66,000N(kgms-2)の遠心力で5分間撹拌した。さらに1Mの水酸化ナトリウムを68.9g添加して66,000N(kgms-2)の遠心力で2分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成するとともに、反応物にずり応力と遠心力を加えて化学反応を促進させ、酸化ルテニウムを高分散担持したケッチェンブラックを得た。
(1) About Ruthenium Oxide / Ketjen Black Composite (Example)
21.3 ml of a 17.78 mM ruthenium chloride aqueous solution in which 90 ml of water and ultrasonically dissolved ruthenium chloride were dissolved in a swirl reactor, and 2.78 g of Ketjen Black (trade name: Ketjen Black EC600JD, porosity 78 Vol.%, Primary particle size 40 nm, average secondary particle size 337.8 nm) were added, and the mixture was stirred for 5 minutes at a centrifugal force of 66,000 N (kgms −2 ). Further, 68.9 g of 1M sodium hydroxide was added and the inner cylinder was swirled for 2 minutes with a centrifugal force of 66,000 N (kgms -2 ) to form a thin film of reactant on the inner wall of the outer cylinder. A chemical reaction was promoted by applying a shear stress and a centrifugal force to obtain Ketjen Black carrying highly dispersed ruthenium oxide.

得られた酸化ルテニウム・ケッチェンブラック複合体をフィルターフォルダーに通してろ過し、100℃で12時間乾燥することにより、酸化ルテニウムナノ粒子がケッチェンブラックに高分散担持された複合体粉末を得た。   The obtained ruthenium oxide / Ketjen black composite was filtered through a filter folder and dried at 100 ° C. for 12 hours to obtain a composite powder in which ruthenium oxide nanoparticles were supported on Ketjen black in a highly dispersed state. .

図1に、酸化ルテニウムナノ粒子がケッチェンブラックに高分散担持された複合体のTEM像を示す。図1においては1nm〜5nmの酸化ルテニウムナノ粒子がケッチェンブラックに高分散担持していることが分かる。   FIG. 1 shows a TEM image of a composite in which ruthenium oxide nanoparticles are supported on Ketjen Black in a highly dispersed state. In FIG. 1, it can be seen that ruthenium oxide nanoparticles of 1 nm to 5 nm are highly dispersed and supported on ketjen black.

得られた酸化ルテニウムを高分散担持したケッチェンブラックと、活性炭及びPTFEを1:10:1の重量比で混合・混練して、ロールを用いて約150μmまで圧延し、導電性接着剤を用いてAl箔上に接着して電極とした。得られた電極を正極に用い、酸化ルテニウムを高分散担持したケッチェンブラックの代わりに、ケッチェンブラックを用いた電極を負極に用いて、セパレータを挟んで対向させて巻回した後、1M TEABF4/PC電解液に浸して有底筒状のアルミケースに封入し、キャパシタセルとした。 The obtained Ketjen black carrying highly dispersed ruthenium oxide, activated carbon and PTFE were mixed and kneaded at a weight ratio of 1: 10: 1, rolled to about 150 μm using a roll, and a conductive adhesive was used. Thus, an electrode was bonded onto the Al foil. The obtained electrode was used as a positive electrode, and instead of ketjen black carrying highly dispersed ruthenium oxide, an electrode using ketjen black was used as a negative electrode and wound with a separator interposed therebetween, and then 1M TEABF 4 / Soaked in PC electrolyte and sealed in a bottomed cylindrical aluminum case to obtain a capacitor cell.

(従来例)
酸化ルテニウムナノ粒子を高分散担持したケッチェンブラックの代わりに、ケッチェンブラックを用いた電極を両極として、実施例1と同様にしてキャパシタセルを作製した。
(Conventional example)
A capacitor cell was fabricated in the same manner as in Example 1 with the electrode using ketjen black instead of ketjen black carrying highly dispersed ruthenium oxide nanoparticles.

(測定結果)
実施例及び従来例で得られたキャパシタセルについて、60℃の環境下で3.0Vの電圧を印加し、キャパシタセルの容量変化並びにケースの長さ変化を任意の時間で取り出して測定したところ、図2及び図3に示すような結果が得られた。
(Measurement result)
For the capacitor cells obtained in Examples and Conventional Examples, a voltage of 3.0 V was applied in an environment of 60 ° C., and the capacitance change of the capacitor cell and the change in the length of the case were taken out at an arbitrary time and measured. Results as shown in FIGS. 2 and 3 were obtained.

図2及び図3に示したように、実施例の電気二重層キャパシタは、従来例に比べて容量の変化が小さく、膨れも小さかった。   As shown in FIGS. 2 and 3, the electric double layer capacitor of the example had a smaller change in capacitance and less swelling than the conventional example.

(2)耐電圧特性が向上する理由についての検討
上記のようにしてメカノケミカル反応によって形成した酸化ルテニウムナノ粒子を電気二重層キャパシタ用電極に含有させることにより耐電圧特性が向上する理由について検討した。
(2) Examination of the reason why the withstand voltage characteristic is improved The reason why the withstand voltage characteristic is improved by incorporating ruthenium oxide nanoparticles formed by the mechanochemical reaction as described above into the electrode for the electric double layer capacitor was examined. .

まず、上記の実施例及び従来例で得られたキャパシタセルについて、3V、60℃で負荷試験を行ったところ、図4に示すように、実施例のキャパシタセルにおいては、従来例に比べてガス発生量が少ないことが分かった。   First, when a load test was conducted at 3 V and 60 ° C. for the capacitor cells obtained in the above-described example and the conventional example, as shown in FIG. It was found that the amount generated was small.

また、上記の実施例の酸化ルテニウム・ケッチェンブラック複合体をラミネートセルに水素ガスと同時に封入し、高温放置を行ったところ、図5に示すように水素ガスが消失することが分かった。なお、図5は約100時間放置した結果を示したものである。   Further, when the ruthenium oxide / ketene black composite of the above example was sealed in a laminate cell at the same time as hydrogen gas and allowed to stand at high temperature, it was found that the hydrogen gas disappeared as shown in FIG. FIG. 5 shows the result of leaving for about 100 hours.

以上のことから、本発明に係る酸化ルテニウムナノ粒子が、高電圧を負荷した時の電極反応によって発生する水素ガスを吸収することによって、ガス発生に起因するケースの膨れを抑制することができることが判明した。   From the above, the ruthenium oxide nanoparticles according to the present invention can suppress the swelling of the case due to gas generation by absorbing the hydrogen gas generated by the electrode reaction when a high voltage is applied. found.

(3)4Vのサイクル特性
上記実施例の正極と負極を用い、セパレータを挟んで対向させて、1M TEABF4/PC電解液に浸して、ラミネートセルに封入し、キャパシタセルとした。このキャパシタセルを用いて、4〜0Vの充放電サイクル試験を行ったところ、図6に示すような結果が得られた。
(3) 4V cycle characteristics Using the positive electrode and the negative electrode of the above example, the separator was opposed to each other, immersed in 1M TEABF 4 / PC electrolyte, sealed in a laminate cell, and made into a capacitor cell. When a charge / discharge cycle test of 4 to 0 V was performed using this capacitor cell, results as shown in FIG. 6 were obtained.

図6に示すように、実施例は比較例に比べて、サイクル試験中の容量の変化がみられず、4Vという高圧でのサイクル特性を満足し、高耐圧特性を有していることが分かった。   As shown in FIG. 6, compared with the comparative example, the example shows no change in capacity during the cycle test, satisfies the cycle characteristics at a high voltage of 4 V, and has high breakdown voltage characteristics. It was.

本発明に係る実施例の酸化ルテニウム・ケッチェンブラック複合体のTEM像を示す図面代用写真。The drawing substitute photograph which shows the TEM image of the ruthenium oxide ketjen black composite_body | complex of the Example which concerns on this invention. 本発明に係る実施例及び従来例のキャパシタセルの容量変化を示す図。The figure which shows the capacitance change of the capacitor cell of the Example which concerns on this invention, and a prior art example. 本発明に係る実施例及び従来例のキャパシタセルのケースの長さ変化を示す図。The figure which shows the length change of the case of the capacitor cell of the Example which concerns on this invention, and a prior art example. 本発明に係る実施例及び従来例のキャパシタセルにおけるガス発生量の経時変化を示す図。The figure which shows the time-dependent change of the gas generation amount in the capacitor cell of the Example which concerns on this invention, and a prior art example. 本発明に係る実施例の酸化ルテニウム・ケッチェンブラック複合体における水素ガスの吸着効果を示す図。The figure which shows the adsorption effect of the hydrogen gas in the ruthenium oxide ketjen black composite of the Example which concerns on this invention. 本発明に係る実施例及び従来例のキャパシタセルについてのサイクル特性を示す図。The figure which shows the cycle characteristic about the capacitor cell of the Example which concerns on this invention, and a prior art example.

Claims (4)

化学反応の過程で、旋回する反応器内で反応物にずり応力と遠心力を加えて生成した酸化ルテニウムナノ粒子を、キャパシタ素子内に含有させたことを特徴とする電気二重層キャパシタ。   An electric double layer capacitor comprising ruthenium oxide nanoparticles produced by applying shear stress and centrifugal force to a reactant in a swirling reactor in the course of a chemical reaction. 前記酸化ルテニウムナノ粒子をキャパシタ素子内に含有させる手段が、該酸化ルテニウムナノ粒子を分極性電極材料に担持させることであることを特徴とする請求項1に記載の電気二重層キャパシタ。   2. The electric double layer capacitor according to claim 1, wherein the means for incorporating the ruthenium oxide nanoparticles in the capacitor element comprises supporting the ruthenium oxide nanoparticles on a polarizable electrode material. 3. 前記酸化ルテニウムナノ粒子をキャパシタ素子内に含有させる手段が、該酸化ルテニウムナノ粒子を高分散担持したケッチェンブラックを、活性炭及びポリテトラフルオロエチレンと1:10:1の割合で混合して分極性電極材料を形成し、前記分極性電極材料を用いて電極を形成することであることを特徴とする請求項1に記載の電気二重層キャパシタ。   The means for containing the ruthenium oxide nanoparticles in the capacitor element is obtained by mixing ketjen black carrying the ruthenium oxide nanoparticles in a highly dispersed manner with activated carbon and polytetrafluoroethylene in a ratio of 1: 10: 1. 2. The electric double layer capacitor according to claim 1, wherein an electrode material is formed and an electrode is formed using the polarizable electrode material. 前記酸化ルテニウムナノ粒子をキャパシタ素子内に含有させる手段が、該酸化ルテニウムナノ粒子を外装用ケースの内壁に担持させることであることを特徴とする請求項1に記載の電気二重層キャパシタ。   2. The electric double layer capacitor according to claim 1, wherein the means for containing the ruthenium oxide nanoparticles in the capacitor element is to carry the ruthenium oxide nanoparticles on the inner wall of the exterior case.
JP2008086012A 2007-03-30 2008-03-28 Electric double layer capacitor Pending JP2008277790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086012A JP2008277790A (en) 2007-03-30 2008-03-28 Electric double layer capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007095173 2007-03-30
JP2008086012A JP2008277790A (en) 2007-03-30 2008-03-28 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2008277790A true JP2008277790A (en) 2008-11-13

Family

ID=40055324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086012A Pending JP2008277790A (en) 2007-03-30 2008-03-28 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2008277790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062129A1 (en) * 2011-10-29 2013-05-02 日本ケミコン株式会社 Manufacturing method for electrode material
EP2761636A4 (en) * 2011-09-30 2015-12-02 Intel Corp Method of increasing an energy density and an achievable power output of an energy storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280265A (en) * 2001-03-21 2002-09-27 Kyocera Corp Electric double-layer capacitor and production method therefor
JP2002324736A (en) * 2001-02-26 2002-11-08 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JP2003297695A (en) * 2002-03-29 2003-10-17 Nec Tokin Corp Electric double layer capacitor
WO2005121022A1 (en) * 2004-06-11 2005-12-22 Tokyo University Of Agriculture And Technology, National University Corporation Nanocarbon composite structure having ruthenium oxide trapped therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324736A (en) * 2001-02-26 2002-11-08 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JP2002280265A (en) * 2001-03-21 2002-09-27 Kyocera Corp Electric double-layer capacitor and production method therefor
JP2003297695A (en) * 2002-03-29 2003-10-17 Nec Tokin Corp Electric double layer capacitor
WO2005121022A1 (en) * 2004-06-11 2005-12-22 Tokyo University Of Agriculture And Technology, National University Corporation Nanocarbon composite structure having ruthenium oxide trapped therein

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2761636A4 (en) * 2011-09-30 2015-12-02 Intel Corp Method of increasing an energy density and an achievable power output of an energy storage device
US10777366B2 (en) 2011-09-30 2020-09-15 Intel Corporation Method of increasing an energy density and an achievable power output of an energy storage device
WO2013062129A1 (en) * 2011-10-29 2013-05-02 日本ケミコン株式会社 Manufacturing method for electrode material
CN103891013A (en) * 2011-10-29 2014-06-25 日本贵弥功株式会社 Manufacturing method for electrode material
JPWO2013062129A1 (en) * 2011-10-29 2015-04-02 日本ケミコン株式会社 Method for producing electrode material
US9299977B2 (en) 2011-10-29 2016-03-29 Nippon Chemi-Con Corporation Manufacturing method of electrode material
CN103891013B (en) * 2011-10-29 2016-11-09 日本贵弥功株式会社 The manufacture method of electrode material

Similar Documents

Publication Publication Date Title
Liu et al. One‐step synthesis of nanostructured CoS2 grown on titanium carbide MXene for high‐performance asymmetrical supercapacitors
Li et al. High-performance self-assembly MnCo2O4 nanosheets for asymmetric supercapacitors
Wang et al. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors
Iqbal et al. Capacitive and diffusive contribution in strontium phosphide-polyaniline based supercapattery
Zhao et al. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors
Duraisamy et al. Development of asymmetric device using Co 3 (PO 4) 2 as a positive electrode for energy storage application
Kim et al. Carbon nanomaterials supported Ni (OH) 2/NiO hybrid flower structure for supercapacitor
JP4754553B2 (en) Electrode manufacturing method, obtained electrode, and super capacitor including this electrode
Parveen et al. Newly design porous/sponge red phosphorus@ graphene and highly conductive Ni 2 P electrode for asymmetric solid state supercapacitive device with excellent performance
Li et al. Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application
Iqbal et al. Facile synthesis of strontium oxide/polyaniline/graphene composite for the high-performance supercapattery devices
Raj et al. Hybrid SnO 2–Co 3 O 4 nanocubes prepared via a CoSn (OH) 6 intermediate through a sonochemical route for energy storage applications
Ibrahim et al. Hierarchical nickel-based metal-organic framework/graphene oxide incorporated graphene nanoplatelet electrode with exceptional cycling stability for coin cell and pouch cell supercapacitors
Niu et al. N-doped hollow carbon spheres intercalated graphene film induced macroporous frameworks for ultrahigh volumetric energy density supercapacitor
Ma et al. String-like core-shell ZnCo 2 O 4@ NiWO 4 nanowire/nanosheet arrays on Ni foam for binder-free supercapacitor electrodes
Van Hoa et al. A hierarchical porous aerogel nanocomposite of graphene/NiCo2S4 as an active electrode material for supercapacitors
Li et al. Self-supported NiSe@ Ni 3 S 2 core-shell composite on Ni foam for a high-performance asymmetric supercapacitor
Song et al. Na2MoO4 as both etcher for three-dimensional holey graphene hydrogel and pseudo-capacitive feedstock for asymmetric supercapacitors
Wang et al. A new Co-ZIF derived nanoporous cobalt-rich carbons with high-potential-window as high-performance electrodes for supercapacitors
Gnana Sundara Raj et al. Pseudocapacitive properties of nickel oxide nanoparticles synthesized via ultrasonication approach
Yan et al. Hierarchical hybrids of mesoporous NiCo2O4 needles/graphene/carbon nanotubes with high performance for lithium ion batteries and oxygen reduction reactions
Cui et al. A self-assembled and flexible supercapacitor based on redox-active lignin-based nitrogen-doped activated carbon functionalized graphene hydrogels
Kitenge et al. Enhancing the electrochemical properties of a nickel–cobalt-manganese ternary hydroxide electrode using graphene foam for supercapacitors applications
Zhou et al. The preparation of N, S, P self-doped and oxygen functionalized porous carbon via aerophilic interface reaction for high-performance supercapacitors
Naveed et al. Ultrafast, Facile, and Scalable Microwave‐Assisted Synthesis Method to Prepare Nickel Sulfide Nanosheets for High Energy Density Hybrid Capacitors

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20080728

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20110328

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20120326

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Effective date: 20120925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130226

Free format text: JAPANESE INTERMEDIATE CODE: A02