JP2008276898A - Method for manufacturing magnetic recording medium and magnetic recording system - Google Patents

Method for manufacturing magnetic recording medium and magnetic recording system Download PDF

Info

Publication number
JP2008276898A
JP2008276898A JP2007122749A JP2007122749A JP2008276898A JP 2008276898 A JP2008276898 A JP 2008276898A JP 2007122749 A JP2007122749 A JP 2007122749A JP 2007122749 A JP2007122749 A JP 2007122749A JP 2008276898 A JP2008276898 A JP 2008276898A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
film
protective film
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007122749A
Other languages
Japanese (ja)
Inventor
Shoichi Miyahara
昭一 宮原
Tetsukazu Nakamura
哲一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007122749A priority Critical patent/JP2008276898A/en
Publication of JP2008276898A publication Critical patent/JP2008276898A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for depositing DLC protection film with sufficient characteristic while thinning the DLC protection film, and a magnetic recording system comprising a magnetic recording medium with the thinned DLC protection film. <P>SOLUTION: The recording medium has at least a recording layer and protection film formed on a substrate. The protection film is the protection film for the magnetic recording medium, and the magnetic recording medium has a transition layer between the protection film for the magnetic recording and the recording layer. In a process for depositing the protection film for the magnetic recording medium by a plasma CVD method, in order to thin the transition layer, the method deposits the film while increasing negative bias voltage. The magnetic recording system using the same is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁気記録媒体の製造方法および情報処理などの分野で多用されている磁気記録装置に関するものである。   The present invention relates to a method of manufacturing a magnetic recording medium and a magnetic recording apparatus that is widely used in fields such as information processing.

磁気記録装置は、コンピュータや各種情報端末などの外部記憶装置として一般に広く使用されている。現在の磁気記録媒体は、硬質非磁性基板上に良好な磁気特性を示すコバルト系合金等からなる磁性薄膜を記録層として使用しているが、磁気ヘッドとの接触、摺動による摩耗や湿気吸着による腐食により、磁気特性の劣化や機械的また化学的損傷が生じ易い。そこで現状では、磁気ヘッドとの接触によるヘッドクラッシュを防ぐために、磁気記録媒体の表面に、磁性膜を摩耗や腐食から守る磁気記録媒体用保護膜がコーティングされている。   Magnetic recording devices are generally widely used as external storage devices such as computers and various information terminals. Current magnetic recording media use a magnetic thin film made of a cobalt-based alloy or the like that exhibits good magnetic properties on a hard non-magnetic substrate as the recording layer, but wear and moisture adsorption due to contact with the magnetic head and sliding. Corrosion due to corrosion tends to cause deterioration of magnetic properties and mechanical and chemical damage. Therefore, at present, in order to prevent head crash due to contact with the magnetic head, the surface of the magnetic recording medium is coated with a protective film for the magnetic recording medium that protects the magnetic film from abrasion and corrosion.

図1は従来の磁気記録媒体の構造を説明するための断面構造図であり、1は基板、2は記録層、3は保護膜、4は潤滑膜をそれぞれ示している。耐熱性、耐蝕性および耐摩耗性の点で優れるダイヤモンド状炭素(Diamond Like Carbon)から保護膜(以下、DLC保護膜とする)が磁気記録媒体および磁気ヘッドの保護膜として好適であり、現在多くの磁気記録装置で適用されている。
DLC保護膜として高い硬度を有することが要求される。フィルタードカソーディックアーク(Filtered Cathodic Arc)法(以下FCA法とする)は、得られる膜の硬度が高いことで注目されている(例えば、非特許文献1)。これは、炭素イオンのみで成膜するため、水素の混入が少なく、それによって硬度低下の原因であるC-H結合の生成が抑えられるため高硬度のDLC保護膜が得られる。しかしながら、FCA法では、アーク放電で大きな粒子が発生しやすく、偏向型質量分析器を通して大きな粒子を分別しているが、完全に分別できず、粒子が基板に付着してしまう問題がある。このような粒子は、ヘッドクラッシュの原因となってしまう。さらに、アーク放電の制御は難しく、成膜速度、膜厚分布の均一化の課題も残っている。従って、現状では、成膜面積の小さいヘッド保護膜での適用に支障のないレベルとなっているが、成膜面積の大きい磁気記録媒体では量産できる状況に至っていない。
FIG. 1 is a cross-sectional structural view for explaining the structure of a conventional magnetic recording medium, wherein 1 is a substrate, 2 is a recording layer, 3 is a protective film, and 4 is a lubricating film. A protective film (hereinafter referred to as DLC protective film) from diamond-like carbon, which is excellent in heat resistance, corrosion resistance and wear resistance, is suitable as a protective film for magnetic recording media and magnetic heads. It is applied in the magnetic recording device.
The DLC protective film is required to have high hardness. The filtered cathodic arc method (hereinafter referred to as FCA method) is attracting attention because of the high hardness of the resulting film (for example, Non-Patent Document 1). This is because the film is formed only with carbon ions, and therefore, there is little mixing of hydrogen, thereby suppressing the generation of CH bonds, which is a cause of hardness reduction, and thus a high hardness DLC protective film can be obtained. However, in the FCA method, large particles are likely to be generated by arc discharge, and large particles are separated through a deflection mass analyzer. However, there is a problem that particles cannot be completely separated and the particles adhere to the substrate. Such particles cause a head crash. Furthermore, it is difficult to control arc discharge, and there are still problems of uniform film formation speed and film thickness distribution. Therefore, at present, it is at a level that does not hinder the application of the head protective film having a small film formation area, but it has not yet reached a state where mass production is possible with a magnetic recording medium having a large film formation area.

一方、磁気記録装置のDLC保護膜としての応用では、スパッタ法が長い間主流の成膜方法として用いられてきたが、薄膜化技術の進行とともに、現在では、緻密で被覆率の高い膜が形成できるプラズマCVD(Chemical Vapor Deposition)法による成膜が主流となっている。プラズマCVD法においては、炭化水素系ガスをチャンバー内に導入した後、プラズマ化した炭化水素ガスを分解させ、磁気記録媒体へ負バイアス電圧を印加して炭素イオンを堆積させる方法である。
近年の情報化社会ではあらゆる用途において、取り扱う情報量が増大傾向にあり、これに伴って磁気記録装置は、一層の高記録密度化、大容量化が切望されている。高記録密度化への要求に応えるためには、記録層と磁気ヘッドとの間隔、いわゆる磁気スペーシングを小さくすることが不可欠である。磁気スペーシングを小さくするためには、DLC保護膜自身のさらなる薄層化が必要であり、量産性に優れるプラズマCVD 法により形成されたDLC保護膜のニーズが高まってきた。ところが、薄層化の進展とともに、膜の被覆性、硬度、耐食性、信頼性の改善が必要となり、高信頼性と薄膜化の両立が課題となっている。
これらプラズマCVD 法により形成されたDLC保護膜の特性を改善するために、種々の改善する方法が試みられている(例えば、特許文献1,2)。しかしながら、十分な性能を得るに至っていない。
H.Hyodo et al, IEEE Trans. Mag., No37, p1789-1791 (2001) 特許第3034241号 特開2004-269991号公報
On the other hand, in the application as a DLC protective film of magnetic recording devices, the sputtering method has been used as the mainstream film forming method for a long time, but with the progress of thinning technology, a dense and high coverage film is now formed Deposition by plasma CVD (Chemical Vapor Deposition) method has become the mainstream. The plasma CVD method is a method in which after hydrocarbon gas is introduced into a chamber, the plasma hydrocarbon gas is decomposed and a negative bias voltage is applied to the magnetic recording medium to deposit carbon ions.
In the information-oriented society in recent years, the amount of information to be handled tends to increase in every application, and accordingly, magnetic recording devices are desired to have higher recording density and larger capacity. In order to meet the demand for higher recording density, it is essential to reduce the distance between the recording layer and the magnetic head, so-called magnetic spacing. In order to reduce the magnetic spacing, it is necessary to further reduce the thickness of the DLC protective film itself, and there is an increasing need for a DLC protective film formed by the plasma CVD method which is excellent in mass productivity. However, with the progress of thinning, it is necessary to improve the coating properties, hardness, corrosion resistance, and reliability of the film, and there is a problem of achieving both high reliability and thinning.
In order to improve the characteristics of the DLC protective film formed by the plasma CVD method, various methods for improving it have been tried (for example, Patent Documents 1 and 2). However, sufficient performance has not been achieved.
H. Hyodo et al, IEEE Trans. Mag., No37, p1789-1791 (2001) Patent No. 3034241 JP 2004-269991 A

そこで、本発明は、プラズマCVD法によるDLC保護膜を成膜する工程において、DLC保護膜の記録層に近い部分の構造に着目することによって高信頼性と薄膜化を両立する磁気記録媒体の製造方法を提供することを目的としている。さらに、この製造方法により製造された磁気記録媒体とこれを搭載する磁気記録装置を提供することを目的としている。   Therefore, the present invention provides a method for manufacturing a magnetic recording medium that achieves both high reliability and thinning by focusing on the structure of the portion of the DLC protective film close to the recording layer in the step of forming the DLC protective film by the plasma CVD method. It aims to provide a method. Furthermore, it aims at providing the magnetic recording medium manufactured by this manufacturing method, and the magnetic recording apparatus which mounts this.

本発明の態様の一つは、記録層上にプラズマCVD法によるDLC保護膜を有する磁気記録媒体の製造方法において、DLC保護膜の成膜開始時のバイアス電圧が、成膜終了時のバイアス電圧より低いことを特徴とする磁気記録媒体の製造方法、である。
また、本発明の他の態様は、上記磁気記録媒体を備えることを特徴とする磁気記録装置、である。
One aspect of the present invention is a method of manufacturing a magnetic recording medium having a DLC protective film on a recording layer by a plasma CVD method, wherein the bias voltage at the start of film formation of the DLC protective film is a bias voltage at the end of film formation. A method of manufacturing a magnetic recording medium, characterized by being lower.
Another aspect of the present invention is a magnetic recording apparatus comprising the above magnetic recording medium.

以上説明した通り、本発明の成膜方法により、遷移層を薄くすることで、十分な機械的および化学的性能を維持したままDLC保護膜の薄膜化が実現でき、また、薄膜化したDLC保護膜を有する磁気記録媒体、および薄膜化したDLC保護膜を有する磁気記録媒体を備える磁気記録装置を提供できる。このため、磁気スペーシングをより小さくすることができる。また、記録密度と信頼性を向上することもできる。   As described above, by making the transition layer thin by the film forming method of the present invention, it is possible to reduce the thickness of the DLC protective film while maintaining sufficient mechanical and chemical performance, and to reduce the thickness of the DLC protective film. A magnetic recording medium including a magnetic recording medium having a film and a magnetic recording medium having a thinned DLC protective film can be provided. For this reason, the magnetic spacing can be further reduced. Further, the recording density and reliability can be improved.

図2は、平行平板型プラズマCVD装置10の概略図である。基板14は第1の電極12上に設置され、チャンバ11内は真空度5×10-5Paまで排気する。その後炭化水素系の原料ガス、例えばCH4をマスフローコントローラ(図示せず)で所望の流量で調整してチャンバ11内に供給して、所望の圧力に維持する。そして、基板14が取り付けられた第1の電極12に、バイアス電圧として直流バイアス電源から出力される電圧を印加する。また、RF電源17から第2の電極13に周波数13.56MHzの高周波電力を供給して、プラズマを発生させる。プラズマ発生域と基板14はシャッター15で隔離されており、シャッター15を開閉することで成膜時間の制御を行っている。
以下に、本発明について具体的に説明する。
図3、図4は本発明の実施形態の磁気記録媒体の構造を示す断面図である。本実施形態の磁気記録媒体は、基板21と、その上に形成された記録層22、DLC保護層23、及び潤滑膜24とより構成されている。
FIG. 2 is a schematic view of the parallel plate type plasma CVD apparatus 10. The substrate 14 is set on the first electrode 12 and the inside of the chamber 11 is evacuated to a vacuum degree of 5 × 10 −5 Pa. Thereafter, a hydrocarbon-based source gas, for example, CH 4 is adjusted at a desired flow rate by a mass flow controller (not shown) and supplied into the chamber 11 to maintain a desired pressure. Then, a voltage output from a DC bias power supply is applied as a bias voltage to the first electrode 12 to which the substrate 14 is attached. Further, plasma is generated by supplying high-frequency power having a frequency of 13.56 MHz from the RF power source 17 to the second electrode 13. The plasma generation region and the substrate 14 are separated by a shutter 15, and the film formation time is controlled by opening and closing the shutter 15.
The present invention will be specifically described below.
3 and 4 are sectional views showing the structure of the magnetic recording medium according to the embodiment of the present invention. The magnetic recording medium according to the present embodiment includes a substrate 21, a recording layer 22 formed thereon, a DLC protective layer 23, and a lubricating film 24.

基板21は、アルミニウム合金又はガラスからなり、例えば直径が3.5インチあるいは2.5インチのディスク状の部材である。表面の硬度と平坦性を確保するために基板21上に非磁性のNiPからなる層(図示せず)を設ける場合もある。   The substrate 21 is made of an aluminum alloy or glass and is, for example, a disk-shaped member having a diameter of 3.5 inches or 2.5 inches. In order to ensure the hardness and flatness of the surface, a layer (not shown) made of nonmagnetic NiP may be provided on the substrate 21.

記録層22は、長手記録、垂直記録、あるいはパターンドメディアに用いられる記録層であれば、どのような記録層であっても本発明に適用することができる。例えば、Coを含有する記録層を用い、CoCrPt、CoCrTa、CoCrPtとSiO2からなるグラニュラー膜などを用い、50nm程度の厚さをスパッタ法により成膜される。
DLC保護膜23は、前述したように図2に示したプラズマCVD装置10を用いて成膜される。通常、プラズマCVD法によるDLC保護膜の成膜は、ガス状の原料が電場などで励起され、励起された炭素ラジカルが基板上に移送されることで、硬質の炭素膜が得られる。
As long as the recording layer 22 is a recording layer used for longitudinal recording, perpendicular recording, or patterned media, any recording layer can be applied to the present invention. For example, a recording layer containing Co is used, a granular film made of CoCrPt, CoCrTa, CoCrPt and SiO 2 or the like is used, and a thickness of about 50 nm is formed by sputtering.
As described above, the DLC protective film 23 is formed using the plasma CVD apparatus 10 shown in FIG. Usually, in the formation of a DLC protective film by plasma CVD, a hard carbon film is obtained by exciting a gaseous raw material with an electric field or the like and transferring the excited carbon radicals onto the substrate.

DLC保護膜23と記録層22との界面に、DLC保護膜の主成分である炭素(C)と記録層成分であるコバルト(Co)等とがミキシングした層23a(以下、遷移層と呼ぶ)が生じる。この遷移層23aは、プラズマに励起された炭素ラジカルが記録層22にアタックして、記録層22の成分であるコバルト(Co)等をはね上げることで形成されているものと考えられている。遷移層23aはミキシングのないDLC層23bに比べて機械的強度が低く、薄膜化に伴い耐食性の低い金属であるCoなどがDLC層23bの表面に溶出するようになると、耐食性が低下すると言った問題が生じる。発明者らによる鋭意検討の結果、DLC保護膜23の薄膜化に伴い性能と信頼性を維持するため、DLC保護膜の成膜条件を制御することにより解決されることを見出した。   A layer 23a (hereinafter referred to as a transition layer) in which carbon (C), which is the main component of the DLC protective film, and cobalt (Co), which is the recording layer component, are mixed at the interface between the DLC protective film 23 and the recording layer 22. Occurs. The transition layer 23 a is considered to be formed by carbon radicals excited by plasma attacking the recording layer 22 and splashing cobalt (Co) or the like as a component of the recording layer 22. . The transition layer 23a has lower mechanical strength than the unmixed DLC layer 23b, and the corrosion resistance decreases when Co, which is a metal having low corrosion resistance, elutes on the surface of the DLC layer 23b as the film thickness decreases. Problems arise. As a result of intensive studies by the inventors, it has been found that in order to maintain performance and reliability as the DLC protective film 23 becomes thinner, the problem can be solved by controlling the film forming conditions of the DLC protective film.

潤滑膜24は、DLC保護膜23の上にPFPE(パーフルオロポリエーテル)系の潤滑剤(例えば、伊アウジモンド社製のFomblim AM3001等)をディップ法により1nmの厚さで付着させて形成したものである。   The lubricating film 24 is formed by adhering a PFPE (perfluoropolyether) -based lubricant (for example, Fomblim AM3001 made by I-Aumondon Inc.) with a thickness of 1 nm on the DLC protective film 23 by a dip method. It is.

本発明のDLC保護膜23は遷移層23aとその上にあるDLC層23bから構成されている。発明者らによる鋭意検討の結果、遷移層の厚みは成膜過程中の成膜エネルギーの強度と関係していることを見出した。本発明は、遷移層3aを薄くすることによって、DLC保護膜として性能を落とさずに薄層化することで、磁気スペーシングを小さくするものである。
成膜エネルギーの強度は、RF電源の放電電圧、電流およびガス圧、または第1の電極に印加するバイアス電圧により制御することができる。プラズマ放電電圧、電流を高くするか、あるいはガス圧を低くするか、または、バイアス電圧の絶対値を高くすることで、成膜エネルギーを高くできる。逆に、プラズマ放電電圧、電流を低くするか、あるいはガス圧を高くするか、または、バイアス電圧の絶対値を低くすることで、成膜エネルギーを低くできる。以下、成膜エネルギーが高い成膜条件を強エネルギー条件と呼び、成膜エネルギーが低い成膜条件を弱エネルギー条件と呼ぶ。
プラズマCVD法により形成したDLC保護膜の遷移層は、成膜過程中の成膜エネルギーの強度を制御することで膜厚を制御することができる。強エネルギー条件では、コバルト(Co)等をはね上がる量が多く、はね上がる高度も高いが、緻密かつ高硬度なDLC保護膜を得ることができる。しかし、コバルトと炭素の化合物であるカーバイドが生成し易く、遷移層が厚くなってしまって、DLC保護膜を薄層化することが困難である。一方、弱エネルギー条件で成膜すると、遷移層を薄くすることが出来るが、膜の緻密性と硬度が問題となる。
そこで、本発明は、プラズマCVD法によるDLC保護膜の成膜条件として、成膜工程中に、当初の弱エネルギー条件から、エネルギーが段階的、若しくは連続的に強エネルギー条件に変化させることによって、遷移層を薄くするとともに、充分な機械的および化学的な性能を持つDLC保護膜を有する磁気記録媒体を提供するものである。
The DLC protective film 23 of the present invention is composed of a transition layer 23a and a DLC layer 23b thereon. As a result of intensive studies by the inventors, it has been found that the thickness of the transition layer is related to the strength of the deposition energy during the deposition process. In the present invention, the magnetic spacing is reduced by thinning the transition layer 3a without reducing performance as a DLC protective film.
The intensity of the film formation energy can be controlled by the discharge voltage, current and gas pressure of the RF power source, or the bias voltage applied to the first electrode. The deposition energy can be increased by increasing the plasma discharge voltage and current, decreasing the gas pressure, or increasing the absolute value of the bias voltage. On the contrary, the film formation energy can be lowered by lowering the plasma discharge voltage and current, raising the gas pressure, or lowering the absolute value of the bias voltage. Hereinafter, a film formation condition having a high film formation energy is referred to as a strong energy condition, and a film formation condition having a low film formation energy is referred to as a weak energy condition.
The film thickness of the transition layer of the DLC protective film formed by the plasma CVD method can be controlled by controlling the strength of the film formation energy during the film formation process. Under strong energy conditions, a large amount of cobalt (Co) and the like is splashed and the altitude is high, but a dense and hard DLC protective film can be obtained. However, carbide, which is a compound of cobalt and carbon, is easily generated, the transition layer becomes thick, and it is difficult to make the DLC protective film thinner. On the other hand, when the film is formed under weak energy conditions, the transition layer can be thinned, but the denseness and hardness of the film are problematic.
Therefore, in the present invention, as the film formation condition of the DLC protective film by the plasma CVD method, the energy is changed from the initial weak energy condition to the high energy condition stepwise or continuously during the film formation process, The present invention provides a magnetic recording medium having a DLC protective film having a thin transition layer and sufficient mechanical and chemical performance.

以下に、本発明の実施の形態を図、実施例等を使用して説明する。なお、これらの図、実施例等及び説明は本発明の例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属することは言うまでもない。なお、図中、同一の番号は同一の要素を指す。   Embodiments of the present invention will be described below with reference to the drawings, examples and the like. In addition, these figures, Examples, etc., and description are illustrations of the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments belong to the category of the present invention as long as they match the gist of the present invention. In the drawings, the same number indicates the same element.

図5は、磁気記録装置の構造を示す概略図である。磁気記録装置は、磁気記録媒体5と、磁気ヘッドを搭載したヘッドスライダ7と、磁気記録媒体5の回転機構6(例えばスピンドルモータ)と、ヘッドの位置決め機構9および記録再生信号の処理回路8(リードライトアンプ等)を主要構成要素として構成されている。   FIG. 5 is a schematic view showing the structure of the magnetic recording apparatus. The magnetic recording apparatus includes a magnetic recording medium 5, a head slider 7 on which a magnetic head is mounted, a rotating mechanism 6 (for example, a spindle motor) of the magnetic recording medium 5, a head positioning mechanism 9, and a recording / reproducing signal processing circuit 8 ( A read / write amplifier).

磁気記録媒体5はモータにより回転される。この磁気記録媒体5の上に、スライダー7に搭載された磁気ヘッドが配置される。磁気ヘッドを介して、磁気記録媒体5にデータが書き込まれ、又は磁気記録媒体からデータが読み出される。磁気ヘッドはアクチュエータにより、磁気記録媒体の半径方向に移動される。   The magnetic recording medium 5 is rotated by a motor. A magnetic head mounted on the slider 7 is disposed on the magnetic recording medium 5. Data is written to or read from the magnetic recording medium 5 via the magnetic head. The magnetic head is moved in the radial direction of the magnetic recording medium by an actuator.

次に本発明の実施例および比較例を詳述する。なお、各物性値は次のようにして測定した。
[耐久性試験]
DLC保護膜の耐久性試験としては、POD(ピン・オン・ディスク)耐久試験により評価した。これは、DLC保護膜上にアルミナのピンを接触させ、周速0.25 m/secで500周回摺動させた後、DLC保護膜表面の破壊状態を観察することで、耐久性を評価する方法である。破壊状態の確認は、摩擦力の変化、磁気記録媒体表面に発生する摺動痕、電子顕微鏡観察でDLC保護膜が消失している部分が見られるか否か等によって判断する。
[耐食試験]
耐食試験としては、記録層材料として使われているCoの溶出試験により行った。
Next, examples and comparative examples of the present invention will be described in detail. Each physical property value was measured as follows.
[Durability test]
The durability test of the DLC protective film was evaluated by a POD (pin-on-disk) durability test. This is a method of evaluating durability by contacting an alumina pin on the DLC protective film, sliding it 500 times at a peripheral speed of 0.25 m / sec, and then observing the destruction state of the DLC protective film surface. is there. Confirmation of the state of destruction is made by judging changes in frictional force, sliding marks generated on the surface of the magnetic recording medium, whether or not a portion where the DLC protective film has disappeared is observed by electron microscope observation, and the like.
[Corrosion resistance test]
As the corrosion resistance test, an elution test of Co used as a recording layer material was performed.

Co溶出状態の分析方法は、DLC保護膜上へ希硝酸を2ml滴下し、1時間放置後に滴下した希硝酸を吸い出して回収し、誘導結合プラズマ質量分析装置(ICP-MS)により希硝酸中のCo量を分析することにより行った。
[遷移層の膜厚]
XPS(X線光電子分光法)により遷移層膜厚を求める。多層構造を有する試料の厚さと光電子強度との関係が式(1)で表わされる。
The analysis method of Co elution state is as follows: 2ml of dilute nitric acid is dropped on the DLC protective film, and the diluted nitric acid is sucked and recovered after being left for 1 hour, and the inductively coupled plasma mass spectrometer (ICP-MS) This was done by analyzing the amount of Co.
[Transition layer thickness]
The transition layer thickness is determined by XPS (X-ray photoelectron spectroscopy). The relationship between the thickness of the sample having a multilayer structure and the photoelectron intensity is expressed by the formula (1).

具体的にはDLC保護膜を成膜した試料について、XPS測定を行い、遷移層成分であるカーバイドの光電子強度Ikとその下の記録層成分であるコバルトの光電子強度ICoの比率を求め、各試料のIkとICoを下記式(1)に入力し、数値計算法(ニュートン法)により遷移層膜厚dを求める。 Specifically, for the sample on which the DLC protective film was formed, XPS measurement was performed, and the ratio of the photoelectron intensity I k of the carbide that is the transition layer component and the photoelectron intensity I Co of the cobalt that is the recording layer component below it, I k and I Co of each sample are input to the following formula (1), and the transition layer thickness d is obtained by a numerical calculation method (Newton method).

この計算において、膜構造を単一化し、カーバイドの構造をCo3Cと仮定する。

Figure 2008276898
In this calculation, the film structure is unified and the carbide structure is assumed to be Co 3 C.
Figure 2008276898


ここで、dは遷移層膜厚である。Ikはカーバイドの光電子強度、ICoはコバルトの光電子強度である。本発明において、1nmのDLC保護膜を成膜して、XPSにより光電子強度の比率を求めた。XPSでは、ある程度の深さ(平均自由行程の3倍程度)までの積算された元素比が分析される。本発明において、試料の表面から数(3〜6)nmまでの範囲の光電子強度の比率を用いた。

Here, d is the transition layer thickness. I k is the photoelectron intensity of carbide, and I Co is the photoelectron intensity of cobalt. In the present invention, a DLC protective film having a thickness of 1 nm was formed, and the ratio of photoelectron intensity was determined by XPS. XPS analyzes the integrated element ratios up to a certain depth (about 3 times the mean free path). In the present invention, the ratio of the photoelectron intensity in the range of several (3 to 6) nm from the surface of the sample was used.

nkはカーバイドの原子数密度、nCoはコバルトの原子数密度である。nk/ nCoは、下記の式(2)により計算される。

Figure 2008276898
n k is the atom number density of carbide, and n Co is the atom number density of cobalt. n k / n Co is calculated by the following equation (2).
Figure 2008276898

ここで、ρkはカーバイドの密度、ρCoは コバルトの密度、MCoはコバルトの原子量、MCは炭素の原子量である。例えば、ρk=8.427g/cm3、ρCo=8.9g/cm3、MCo=58.9332、MC=12.011を用いた場合、nk/ nCo=0.295540である。 Here, [rho k density of carbides, [rho Co is the density of cobalt is M Co atomic weight of cobalt, M C is the atomic weight of carbon. For example, when ρ k = 8.427 g / cm 3 , ρ Co = 8.9 g / cm 3 , M Co = 58.9332, and M C = 12.011, n k / n Co = 0.295540.

θは、光電子の検出位置を表す。本発明においては、試料表面法線方向の光電子を検出するために、θ=90°で検出した。   θ represents the photoelectron detection position. In the present invention, in order to detect photoelectrons in the normal direction of the sample surface, detection was performed at θ = 90 °.

λk1sは、遷移層成分であるカーバイドの1s光電子の平均自由行程、λCo2p3/2は、記録層成分であるコバルトの2p3/2光電子の平均自由行程である。各々、下記の式により求められる。 λ k1s is the mean free path of carbide 1s photoelectrons as the transition layer component, and λ Co2p3 / 2 is the mean free path of cobalt 2p3 / 2 photoelectrons as the recording layer component. Each is calculated | required by the following formula.

λk1s=0.72a (aEk1s)1/2
λCo2p3/2=0.72a(aECo2P3/2)1/2
ここで、aはカーバイド構造中の単原子層厚、Ek1sはカーバイド光電子の運動エネルギー、ECo2P3/2はコバルト光電子の電子運動エネルギーである。a=0.210304nm、Ek1s=970eV、 ECo2P3/2=475.6eVを用いた。
λ k1s = 0.72a (aE k1s ) 1/2
λ Co2p3 / 2 = 0.72a (aE Co2P3 / 2 ) 1/2
Here, a is the monoatomic layer thickness in the carbide structure, E k1s is the kinetic energy of carbide photoelectrons, and E Co2P3 / 2 is the electron kinetic energy of cobalt photoelectrons. a = 0.210304 nm, E k1s = 970 eV, E Co2P3 / 2 = 475.6 eV were used.

[膜厚]
TEM(透過型電子顕微鏡)で成膜した膜厚を計ることによって、成膜レートを求めた。
[Thickness]
The film formation rate was determined by measuring the film thickness formed with a TEM (transmission electron microscope).

プラズマCVD法による成膜条件としては、炭化水素および水素を原料ガスとして、プラズマ出力1000W、成膜室内のガス圧は4Pa、基板にバイアス電圧を印加して、下記の実施例および比較例を行った。
(実施例1)
基板上にコバルトを含有する磁性材料からなる記録層を積層した後、DLC保護膜を成膜した。
The film formation conditions by the plasma CVD method include hydrocarbon and hydrogen as source gases, plasma output of 1000 W, gas pressure in the film formation chamber of 4 Pa, bias voltage applied to the substrate, and the following examples and comparative examples. It was.
Example 1
After a recording layer made of a magnetic material containing cobalt was laminated on the substrate, a DLC protective film was formed.

DLC保護膜の成膜条件は、基板に開始バイアス電圧として100Vを印加し、1.0秒間成膜を行った後、続けてバイアス電圧を300Vに増加し、2.0秒間成膜工程を行った。具体的には、まず、チャンバー11内を排気し、その後基板14上に設置されているシャッタ15が閉じた状態で原料ガスを導入し、チャンバー11内に置かれた平行平板の第2の電極13にRF電力を印加し、第1の電極12にはバイアス電圧を印加する。ガス圧とバイアス電圧が設定値になったらプラズマを立て、シャッタ12を開いて、成膜を開始する。所望の成膜時間が経過後シャッタ12を閉じ、成膜を終了する。本発明では、成膜中バイアス電圧を変更するときは、プラズマを切らずにシャッタ12も開いたまま行う。シャッタを一度閉じてしまうと、その間にDLC保護膜にコンタミなどが堆積してしまい、最悪の場合ヘッドクラッシュが発生する可能性があり、これによる品質低下を防止するためである。   The DLC protective film was formed by applying a starting bias voltage of 100 V to the substrate, forming a film for 1.0 second, then increasing the bias voltage to 300 V and performing a film forming process for 2.0 seconds. Specifically, first, the inside of the chamber 11 is evacuated, and then the source gas is introduced in a state in which the shutter 15 installed on the substrate 14 is closed, and the second electrode of the parallel plate placed in the chamber 11. RF power is applied to 13 and a bias voltage is applied to the first electrode 12. When the gas pressure and the bias voltage reach the set values, plasma is generated, the shutter 12 is opened, and film formation is started. After the desired film formation time has elapsed, the shutter 12 is closed and film formation is completed. In the present invention, when changing the bias voltage during film formation, the shutter 12 is kept open without turning off the plasma. This is because once the shutter is closed, contaminants and the like are deposited on the DLC protective film during that period, and in the worst case, a head crash may occur, thereby preventing quality deterioration.

成膜開始後一定時間バイアス電圧を一定に保つ理由は、記録層に直接プラズマイオンが衝突する成膜開始時には、跳ね上がるCo粒子をできるだけ少なくするために弱エネルギー条件で成膜し、遷移層厚を薄くする必要があるからである。記録層表面にDLC保護膜がある程度被覆された後、強エネルギー条件での成膜に切り替えることでDLC保護膜の表面には緻密な膜を形成することができる。   The reason for keeping the bias voltage constant for a certain time after the start of film formation is that at the start of film formation where plasma ions directly collide with the recording layer, the film is formed under weak energy conditions in order to minimize the jumping Co particles. This is because it is necessary to make it thinner. After the surface of the recording layer is covered with the DLC protective film to some extent, a dense film can be formed on the surface of the DLC protective film by switching to film formation under strong energy conditions.

また、DLC保護膜を形成した後、その表面にパーフルオロポリエーテルを成分とする潤滑剤をスピン法またはディップ法で塗布する。   Further, after the DLC protective film is formed, a lubricant containing perfluoropolyether as a component is applied to the surface by a spin method or a dip method.

図6に本実施例におけるバイアス電圧のプロファイルを示す。   FIG. 6 shows a bias voltage profile in this embodiment.

本実施例によって形成したDLC保護膜の硬度は13GPa以上を得ることができ、POD試験により評価したが、DLC保護膜の破壊は見られなかった。また、図9に示すように、遷移層の膜厚は0.5nm以下であり、図10に示すように、Coの溶出量は0.2μg/m2と少なく、要求される耐食性としては十分であった。
(実施例2)
実施例1と同じ条件で成膜した記録層までを積層した後、DLC保護膜の成膜を行った。図7に示すように、DLC保護膜の成膜条件としては、基板に開始バイアス電圧として100Vを印加し、0.5秒間成膜を行った後、続けて2.5秒間、終了バイアス電圧を300Vになるまで連続的に電圧を増加させながら、成膜工程を行った。また、実施例1と同様に、DLC保護膜を形成した後、その表面に潤滑剤を塗布する。
The hardness of the DLC protective film formed in this example was 13 GPa or higher, and evaluation was made by the POD test, but no destruction of the DLC protective film was observed. Further, as shown in FIG. 9, the film thickness of the transition layer is 0.5 nm or less, and as shown in FIG. 10, the Co elution amount is as small as 0.2 μg / m 2 , which is sufficient as the required corrosion resistance. It was.
(Example 2)
After the recording layer was deposited under the same conditions as in Example 1, a DLC protective film was formed. As shown in FIG. 7, the DLC protective film is formed by applying 100 V as a starting bias voltage to the substrate, forming a film for 0.5 seconds, and then continuing for 2.5 seconds until the end bias voltage reaches 300 V. The film forming process was performed while increasing the voltage continuously. Further, as in Example 1, after forming the DLC protective film, a lubricant is applied to the surface.

本実施例によって形成したDLC保護膜の硬度は13GPa以上を得ることができ、POD試験により評価したが、DLC保護膜の破壊は見られなかった。また、図9に示すように、本遷移層の膜厚は0.5nm以下であり、図10に示すように、Coの溶出量は0.2μg/m2少なく、要求される耐食性としては十分であった。
(比較例1)
実施例1と同じ条件で成膜した記録層上に、基板に100V一定のバイアス電圧を印加して4nmのDLC保護膜を成膜した。また、実施例1と同様に、DLC保護膜を形成した後、その表面に潤滑剤を塗布する。
The hardness of the DLC protective film formed in this example was 13 GPa or higher, and evaluation was made by the POD test, but no destruction of the DLC protective film was observed. Further, as shown in FIG. 9, the film thickness of this transition layer is 0.5 nm or less, and as shown in FIG. 10, the elution amount of Co is small by 0.2 μg / m 2 , which is sufficient as the required corrosion resistance. It was.
(Comparative Example 1)
On the recording layer formed under the same conditions as in Example 1, a constant bias voltage of 100 V was applied to the substrate to form a 4 nm DLC protective film. Further, as in Example 1, after forming the DLC protective film, a lubricant is applied to the surface.

図9に示すように、遷移層の膜厚は0.5nm以下薄くすることができ、また、図10に示すように、Coの溶出量は0.2μg/m2に低くすることができるが、DLC保護膜の硬度は7GPaに低下し、保護膜として十分な硬度を得ることはできない。
(比較例2)
実施例1と同じ条件で成膜した記録層上に、基板に300V一定のバイアス電圧を印加して4nmのDLC保護膜を成膜した。また、実施例1と同様に、DLC保護膜を形成した後、その表面に潤滑剤を塗布する。
As shown in FIG. 9, the thickness of the transition layer can be reduced to 0.5 nm or less, and as shown in FIG. 10, the elution amount of Co can be reduced to 0.2 μg / m 2. The hardness of the protective film is reduced to 7 GPa, and a sufficient hardness as the protective film cannot be obtained.
(Comparative Example 2)
On the recording layer formed under the same conditions as in Example 1, a constant bias voltage of 300 V was applied to the substrate to form a 4 nm DLC protective film. Further, as in Example 1, after forming the DLC protective film, a lubricant is applied to the surface.

図9に示したように、形成したDLC保護膜の硬度は13GPaまで高くすることができるが、遷移層の膜厚の計算結果は1.2nm以上厚くなる。   As shown in FIG. 9, the hardness of the formed DLC protective film can be increased up to 13 GPa, but the calculation result of the film thickness of the transition layer becomes 1.2 nm or more.

また、図10に示すように、Coの溶出量は0.8μg/m2までに増大し、耐食性は不十分である。
(比較例3)
実施例1と同じ条件で成膜した記録層上に、基板に600Vのバイアス電圧を印加して4nmのDLC保護膜を成膜した。また、実施例1と同様に、DLC保護膜を形成した後、その表面に潤滑剤を塗布する。
As shown in FIG. 10, the elution amount of Co increases to 0.8 μg / m 2 , and the corrosion resistance is insufficient.
(Comparative Example 3)
On the recording layer formed under the same conditions as in Example 1, a bias voltage of 600 V was applied to the substrate to form a 4 nm DLC protective film. Further, as in Example 1, after forming the DLC protective film, a lubricant is applied to the surface.

図9に示すように、形成したDLC保護膜の硬度は300V印加時に比べて10.7GPaまで低下した。また、遷移層の膜厚の計算結果は3.8nm以上とさらに厚くなる。   As shown in FIG. 9, the hardness of the formed DLC protective film decreased to 10.7 GPa as compared to when 300 V was applied. Moreover, the calculation result of the film thickness of the transition layer is further increased to 3.8 nm or more.

また、図10に示すように、Coの溶出量も5μg/m2までにさらに増大し、耐食性はさらに低くなる。 Further, as shown in FIG. 10, the amount of Co elution is further increased to 5 μg / m 2 , and the corrosion resistance is further decreased.

図8は、成膜のバイアス電圧と膜硬度の関係を示す。バイアス電圧の増加とともに、膜の硬度が増加し、300〜400Vの条件では膜の硬度は最も高くなり、バイアス電圧をさらに増加すると、膜の硬度は低下する。従来のプラズマCVD法では、高い硬度を得るためだけを目的として、比較例2のようにバイアス電圧は300〜400Vに一定して、成膜工程を行っていた。これに対し、本発明では、成膜終了バイアス電圧を300Vにすることにより従来プラズマCVD法による形成したDLC保護膜と同程度の硬度が得られた。また、成膜開始バイアス電圧を100Vにすることで、遷移層膜厚を薄くすることで、保護膜全体の膜厚を薄くできた。これにより、磁気スペーシングを小さくすることができ、記録密度を向上させることができる。さらに、Coの溶出量も抑えられるため、薄膜化しているにも関わらず、耐食性も維持することができる。   FIG. 8 shows the relationship between the bias voltage for film formation and the film hardness. As the bias voltage increases, the hardness of the film increases. Under the conditions of 300 to 400 V, the film hardness becomes the highest, and when the bias voltage is further increased, the film hardness decreases. In the conventional plasma CVD method, the film forming process is performed with the bias voltage kept constant at 300 to 400 V as in Comparative Example 2 only for the purpose of obtaining high hardness. On the other hand, in the present invention, the hardness comparable to that of the DLC protective film formed by the conventional plasma CVD method was obtained by setting the film forming end bias voltage to 300V. Further, the film thickness of the entire protective film could be reduced by reducing the film thickness of the transition layer by setting the film formation start bias voltage to 100V. As a result, the magnetic spacing can be reduced and the recording density can be improved. Furthermore, since the amount of Co elution can be suppressed, the corrosion resistance can be maintained despite the thinning.

以上の説明のように、本発明は、基板に印加するバイアス電圧を成膜中に時間とともに段階的に、または連続的に増加させることで、成膜開始の200V以下から成膜終了の400Vまでに上がることにより、高信頼性、高硬度、高耐腐食性DLC保護膜を提供することができた。   As described above, the present invention increases the bias voltage applied to the substrate stepwise or continuously with time during film formation, from 200 V or less at the start of film formation to 400 V at the end of film formation. As a result, it was possible to provide a DLC protective film with high reliability, high hardness, and high corrosion resistance.

以上詳述した本発明は、以下の様な特徴の構成を有する。
(付記1) 記録層上にプラズマCVD法によるダイヤモンド状炭素からなる磁気記録媒体用保護膜の成膜方法において、DLC保護膜の成膜開始時のバイアス電圧が、成膜終了時のバイアス電圧より低いことを特徴とする磁気記録媒体用保護膜を有する磁気記録媒体の製造方法。(1)
(付記2)前記バイアス電圧が、成膜開始から所定時間一定のバイアス電圧を印加することを特徴とする付記1に記載の磁気記録媒体の製造方法。(2)
(付記3)前記所定の時間経過後、成膜終了までの間、バイアス電圧を連続的に増加することを特徴とする付記2に記載の磁気記録媒体の製造方法。(3)
(付記4)前記所定の時間経過後、成膜終了までの間、バイアス電圧を段階的に増加することを特徴とする付記2に記載の磁気記録媒体の製造方法。(4)
(付記5)前記バイアス電圧は、成膜開始時のバイアス電圧が100〜200V、成膜終了時が200〜400Vであることを特徴とする付記1〜4のいずれかに記載の磁気記録媒体の製造方法。
(付記6)付記1〜5記載の磁気記録媒体による製造された磁気記録媒体。(5)
(付記7)記録層と磁気記録媒体用保護膜の界面にある遷移層の膜厚が、0.3〜1nmであることを特徴とする付記6に記載の磁気記録媒体。
(付記8)記録層として、少なくともコバルトを含有する磁性材料を用いた場合、前記保護膜の硬度は10〜20GPaであり、Co溶出量は0.2〜0.5μg/m2に抑えることを特徴とする付記6あるいは付記7に記載の磁気記録媒体。
(付記9)付記6〜8のいずれかに記載の磁気記録媒体を備えることを特徴とする磁気記録装置。(6)
The present invention described above in detail has the following features.
(Supplementary note 1) In the method of forming a protective film for magnetic recording media made of diamond-like carbon by plasma CVD on the recording layer, the bias voltage at the start of the formation of the DLC protective film is greater than the bias voltage at the end of the film formation. A method of manufacturing a magnetic recording medium having a protective film for a magnetic recording medium, characterized by being low. (1)
(Supplementary note 2) The method of manufacturing a magnetic recording medium according to supplementary note 1, wherein the bias voltage is a constant bias voltage applied for a predetermined time from the start of film formation. (2)
(Supplementary note 3) The method for manufacturing a magnetic recording medium according to supplementary note 2, wherein the bias voltage is continuously increased after the predetermined time has elapsed until the film formation is completed. (3)
(Supplementary note 4) The method for manufacturing a magnetic recording medium according to supplementary note 2, wherein the bias voltage is increased stepwise after the predetermined time has elapsed until the film formation is completed. (4)
(Appendix 5) The bias voltage of the magnetic recording medium according to any one of appendices 1 to 4, wherein the bias voltage at the start of film formation is 100 to 200 V and the end of film formation is 200 to 400 V. Production method.
(Additional remark 6) The magnetic recording medium manufactured by the magnetic recording medium of Additional remark 1-5. (5)
(Supplementary note 7) The magnetic recording medium according to supplementary note 6, wherein the thickness of the transition layer at the interface between the recording layer and the protective film for a magnetic recording medium is 0.3 to 1 nm.
(Appendix 8) When a magnetic material containing at least cobalt is used as the recording layer, the hardness of the protective film is 10 to 20 GPa, and the Co elution amount is suppressed to 0.2 to 0.5 μg / m 2. The magnetic recording medium according to appendix 6 or appendix 7.
(Supplementary note 9) A magnetic recording apparatus comprising the magnetic recording medium according to any one of supplementary notes 6 to 8. (6)

従来の磁気記録媒体の断面構造図。FIG. 6 is a cross-sectional structure diagram of a conventional magnetic recording medium. 本発明に使用されるプラズマCVD装置の概略図。1 is a schematic view of a plasma CVD apparatus used in the present invention. 実施例1に形成した膜の構成説明図。FIG. 3 is a configuration explanatory diagram of a film formed in Example 1. 実施例2に形成した膜の構成説明図。FIG. 6 is a configuration explanatory diagram of a film formed in Example 2. 磁気記録装置の構造を示す概略図。Schematic which shows the structure of a magnetic-recording apparatus. 実施例1におけるバイアス電圧のプロファイル。2 is a bias voltage profile according to the first embodiment. 実施例2におけるバイアス電圧のプロファイル。6 is a bias voltage profile according to the second embodiment. 成膜工程のバイアス電圧と膜硬度の関係。Relationship between bias voltage and film hardness in film formation process. 遷移層膜厚換算値。Transition layer thickness conversion value. Co溶出量。Co elution amount.

符号の説明Explanation of symbols

1 基板
2 記録層
3 DLC保護膜
4 潤滑膜
5 磁気記録媒体
6 回転機構
7 ヘッドスライダ
8 記録再生信号の処理回路
9 ヘッドの位置決め機構
10 プラズマCVD装置
11 チャンバ
12 第1の電極
13 第2の電極
14 基板
15 シャッター
16 直流バイアス電源
17 RF電源
21 基板
22 記録層
23 DLC保護膜
23a 遷移層
23b DLC層
24 潤滑膜
S 強エネルギー条件による成膜した領域
W 弱エネルギー条件による成膜した領域
DESCRIPTION OF SYMBOLS 1 Substrate 2 Recording layer 3 DLC protective film 4 Lubricating film 5 Magnetic recording medium 6 Rotating mechanism 7 Head slider 8 Recording / reproducing signal processing circuit 9 Head positioning mechanism 10 Plasma CVD apparatus 11 Chamber 12 First electrode 13 Second electrode 14 Substrate 15 Shutter 16 DC bias power source 17 RF power source 21 Substrate 22 Recording layer 23 DLC protective film 23a Transition layer 23b DLC layer 24 Lubricating film S Region formed under high energy conditions W Region formed under low energy conditions

Claims (5)

記録層上にプラズマCVD法によるダイヤモンド状炭素からなる磁気記録媒体用保護膜を有する磁気記録媒体の製造方法おいて、DLC保護膜の成膜開始時のバイアス電圧が、成膜終了時のバイアス電圧より低いことを特徴とする磁気記録媒体の製造方法。 In the method of manufacturing a magnetic recording medium having a protective film for a magnetic recording medium made of diamond-like carbon by plasma CVD on the recording layer, the bias voltage at the start of film formation of the DLC protective film is the bias voltage at the end of film formation. A method of manufacturing a magnetic recording medium characterized by being lower. 前記バイアス電圧が、成膜開始から所定時間一定のバイアス電圧を印加することを特徴とする請求項1に記載の磁気記録媒体の成膜方法。 2. The method of forming a magnetic recording medium according to claim 1, wherein the bias voltage is applied with a constant bias voltage for a predetermined time from the start of film formation. 前記所定の時間経過後、成膜終了までの間、バイアス電圧を連続的に増加することを特徴とする請求項2に記載の磁気記録媒体の成膜方法。 3. The method of forming a magnetic recording medium according to claim 2, wherein the bias voltage is continuously increased after the predetermined time has elapsed until the film formation is completed. 前記所定の時間経過後、成膜終了までの間、バイアス電圧を段階的に増加することを特徴とする請求項2に記載の磁気記録媒体の製造方法。 3. The method of manufacturing a magnetic recording medium according to claim 2, wherein the bias voltage is increased stepwise after the predetermined time elapses until the film formation is completed. 請求項1〜4のいずれかに記載の製造方法により製造された磁気記録媒体を備えることを特徴とする磁気記録装置。

A magnetic recording apparatus comprising the magnetic recording medium manufactured by the manufacturing method according to claim 1.

JP2007122749A 2007-05-07 2007-05-07 Method for manufacturing magnetic recording medium and magnetic recording system Pending JP2008276898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122749A JP2008276898A (en) 2007-05-07 2007-05-07 Method for manufacturing magnetic recording medium and magnetic recording system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122749A JP2008276898A (en) 2007-05-07 2007-05-07 Method for manufacturing magnetic recording medium and magnetic recording system

Publications (1)

Publication Number Publication Date
JP2008276898A true JP2008276898A (en) 2008-11-13

Family

ID=40054657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122749A Pending JP2008276898A (en) 2007-05-07 2007-05-07 Method for manufacturing magnetic recording medium and magnetic recording system

Country Status (1)

Country Link
JP (1) JP2008276898A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146683A (en) * 2008-12-22 2010-07-01 Fuji Electric Device Technology Co Ltd Method of forming protective film, protective film obtained by the method and magnetic recording medium including the protective film
JP2011096307A (en) * 2009-10-28 2011-05-12 Wd Media Singapore Pte Ltd Method for manufacturing perpendicular magnetic recording medium
JP2012185877A (en) * 2011-03-04 2012-09-27 Fuji Electric Co Ltd Manufacturing method and manufacturing apparatus of dlc film
US8865269B2 (en) 2008-08-27 2014-10-21 Fuji Electric Co., Ltd. Method of forming a protective film for a magnetic recording medium, a protective film formed by the method and a magnetic recording medium having the protective film
JP2019220246A (en) * 2019-01-10 2019-12-26 和喬科技股▲ふん▼有限公司 Magnetic recording device having graphene protection film and manufacturing method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865269B2 (en) 2008-08-27 2014-10-21 Fuji Electric Co., Ltd. Method of forming a protective film for a magnetic recording medium, a protective film formed by the method and a magnetic recording medium having the protective film
JP2010146683A (en) * 2008-12-22 2010-07-01 Fuji Electric Device Technology Co Ltd Method of forming protective film, protective film obtained by the method and magnetic recording medium including the protective film
US8334028B2 (en) 2008-12-22 2012-12-18 Fuji Electric Co., Ltd. Method of forming a protective film
JP2011096307A (en) * 2009-10-28 2011-05-12 Wd Media Singapore Pte Ltd Method for manufacturing perpendicular magnetic recording medium
JP2012185877A (en) * 2011-03-04 2012-09-27 Fuji Electric Co Ltd Manufacturing method and manufacturing apparatus of dlc film
JP2019220246A (en) * 2019-01-10 2019-12-26 和喬科技股▲ふん▼有限公司 Magnetic recording device having graphene protection film and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP4247535B2 (en) Magnetic disk for load / unload system, method for manufacturing magnetic disk for load / unload system, and method for evaluating magnetic disk for load / unload system
JP4634874B2 (en) Method for manufacturing magnetic recording medium
US20100028563A1 (en) Method of forming carbon film, method of manufacturing magnetic recording medium, and apparatus for forming carbon film
US20100323221A1 (en) Magnetic disk and magnetic disk manufacturing method
JP4072321B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus using the same
JP4839723B2 (en) Protective film forming method and magnetic recording medium provided with the protective film
JP2008276898A (en) Method for manufacturing magnetic recording medium and magnetic recording system
US8573149B2 (en) Film deposition apparatus for magnetic recording medium
JP6083154B2 (en) Magnetic recording medium
Matlak et al. Nanostructure, structural stability, and diffusion characteristics of layered coatings for heat-assisted magnetic recording head media
JP5811672B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
CN104170014B (en) The manufacture method of magnetic recording media
JP2006277779A (en) Magnetic recording medium and magnetic recording apparatus
JP3755765B2 (en) Manufacturing method of magnetic disk
WO2006019176A1 (en) Magnetic recording medium and production process thereof
CN105229739B (en) Method for manufacturing carbon -containing protective film
WO2015122847A1 (en) An improved magnetic recording medium
JP2009120895A (en) Film deposition apparatus and film deposition method
JP5104584B2 (en) Film forming apparatus and film forming method
US7560038B2 (en) Thin film forming method and system
JP2014099235A (en) Magnetic recording medium and hard amorphous carbon film for magnetic head containing ultra small amount of hydrogen
JP2002050032A (en) Magnetic recording medium, method for producing the same and method for inspecting the same
JP5566734B2 (en) Carbon film forming method and magnetic recording medium manufacturing method
JP4193320B2 (en) Method for manufacturing magnetic recording medium
JP2008052833A (en) Magnetic recording medium and manufacturing method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090917