JP2008275622A - 内面クラックを検査するシステムおよび方法 - Google Patents

内面クラックを検査するシステムおよび方法 Download PDF

Info

Publication number
JP2008275622A
JP2008275622A JP2008119449A JP2008119449A JP2008275622A JP 2008275622 A JP2008275622 A JP 2008275622A JP 2008119449 A JP2008119449 A JP 2008119449A JP 2008119449 A JP2008119449 A JP 2008119449A JP 2008275622 A JP2008275622 A JP 2008275622A
Authority
JP
Japan
Prior art keywords
probe
eddy current
internal cavity
component
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008119449A
Other languages
English (en)
Inventor
Changting Wang
チャンティン・ワン
Shridhar Champaknath Nath
シリダッール・チャンパァクナス・ナス
Weston Blaine Griffin
ウェストン・ブレイン・グリフィン
Michael Wayne Fields
マイケル・ウェイン・フィールズ
Darren L Hallman
ダレン・リー・ホールマン
Abdul Rahman Abdallah Al-Khalidy
アブドュル・ラーマン・アブダラ・アル−カリディ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2008275622A publication Critical patent/JP2008275622A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】部品(12)の内部空洞(44)を検査する方法(60)を提供する。
【解決手段】この方法(60)は、内部空洞(44)内にプローブ(14)を挿入するステップ(62)を含む。この方法(60)は、内部空洞(44)内の注目の区域上をプローブ(14)をスキャンさせるために、画定されたスキャンパスを使用してプローブ(14)の移動を制御するステップ(62)も含む。この方法(60)は、多数の多周波応答信号を発生させるようにプローブ(14)に多重の多周波励磁信号を加えるステップ(64)も含む。この多周波励磁信号は、内部空洞(14)内の複数の位置で加えられる(68)。この方法(60)は、内部空洞(14)を検査するために多周波応答信号に多周波相解析を実施するステップをさらに含む。
【選択図】図1

Description

本発明は一般に非破壊試験に関し、より詳しくは製造される構成部品の渦電流検査に関する。
ガスタービンエンジンは、ファン、圧縮機、高圧タービン、および低圧タービンの回転ブレードを支持する回転シャフトおよびディスクを含む。この回転構成部品は動作中、構成部品の寿命を最大にするために制限されなければならない対応する応力を発生させる相当な遠心荷重に曝される。そのうえ、材料内の欠陥、傷、または他の異常部が、エンジン構成部品の当初の製造中に導入される可能性があり、またはその動作寿命中に起きる可能性がある。したがってエンジン構成部品は通常、その構成部品の耐用寿命を制限する可能性のあるその中のどのような異常部をも発見するために、製造工程中にかつ定期保守停止中に検査される。
一般的な非破壊検査技術は、主として金属構成部品の渦電流(EC)検査である。ECプローブは、その先端近くに搭載される交流電流が発生させられる小さな電気コイルを含み、この交流電流が次に構成部品内に渦電流を生じさせる。このプローブ先端部は、検査のために構成部品の表面に沿って移動させられ、電磁場と構成部品の間の相互作用を測定するために使用される。材料の均一性を変化させる材料内の欠陥または幾何学的異常は、渦電流を乱すであろう。この乱された渦電流は、プローブコイル内の励磁電流を改変し、この改変された電流が次いで適切に検出され、そして対応する異常部を示す材料の特定の特性に関連付けられる。
例えば渦電流検査は、主として金属構成部品の残留応力、密度および熱処理の程度を測定するために一般的に使用される。それは、材料表面上のまた表面近くの、凹み、***、または材料内の微小なクラックなどの物理的欠陥または異常部を検出するためにも通常使用される。
クラック検出は、適切に対応されない場合、クラックが応力の下で伝播し、実質的に構成部品の耐用寿命を短縮させ、最終的に構成部品故障に繋がる可能性があるので、タービンエンジン構成部品において特に重要である。しかしながら、通常の渦電流検出装置は、試験品の外部表面を検査するように具体的に構成され、内部に複雑な幾何学的形状を有するどのような内部空洞または通路も、通常光学的なボアスコープを使用して視覚的に検査される。内部通路内の小さなまたは微小なクラックは、視覚的に検出するのは困難であり、実質的に試験品の耐用寿命を減少させる可能性がある。
例えば、高圧タービン(HPT)ブレードは、その支持蟻継ぎ手(supporting dovetail)を貫通して下向きに延びるいくつかの入り口通路を通る冷却材が供給される中空のエーロフォイル(airfoil)を含む。この蟻継ぎ手は、曲がりくねった形状を有する対応するローブを含む。この蟻継ぎ手ローブの外部表面は従来型の渦電流装置を使用して容易に検査できる可能性があるけれども、蟻継ぎ手の内部通路は比較的小さく、かつその表面は実際上隠されており容易にアクセスできない。そのうえ、そのような内部空洞の形状効果は、小さなクラックおよび他の微細な欠陥が従来型のEC検査技術を使用して検出できないような相当なノイズを応答信号内に生じさせる。
米国特許第7,206,706号公報 米国特許第4,203,069号公報 米国特許第4,271,393号公報 米国特許第4,495,466号公報 米国特許第4,761,610号公報 米国特許第5,311,128号公報 米国特許第5,315,234号公報 米国特許第5,345,514号公報 米国特許第5,510,709号公報 米国特許第5,610,517号公報 米国特許第5,864,229号公報 米国特許第5,969,260号公報 米国特許第6,037,768号公報 米国特許第6,420,867号公報 米国特許第6,657,429号公報 米国特許第6,784,662号公報 米国特許第6,972,561号公報 米国特許出願公開第2003/0,071,615号公報 米国特許出願公開第2003/0,164,700号公報 米国特許出願公開第2005/0,007,108号公報 米国特許出願公開第2006/0,202,687号公報 特開昭59−009552号公報 特開昭59−108955号公報
したがって、アクセスが制限される製造部品内の内部空洞を検査するための改善されたEC検査技術が求められている。さらに、このEC検査技術が再現性があり、かつ小さなクラックを検出可能であることが望ましい。
本発明の一実施形態によれば、部品の内部空洞を検査する方法が提供される。この方法は、内部空洞内にプローブを挿入するステップを含む。この方法は、内部空洞内の注目の区域上をプローブをスキャンさせるために、画定されたスキャンパスを使用してプローブの移動を制御するステップも含む。この方法は、多数の多周波応答信号を発生させるためにプローブに多重の多周波励磁信号を加えるステップをさらに含む。この多周波励磁信号は、内部空洞内の画定されたスキャンパスに沿って加えられる。この方法は、内部空洞を検査するために多周波応答信号に多周波相解析を実施するステップも含む。
本発明の別の実施形態によれば、部品の内部空洞を検査する別の方法が提供される。この方法は、内部空洞内の注目の区域を検査するために、画定されたスキャンパスを生成させるステップを含む。この画定されたスキャンパスは、部品のコンピュータモデルおよび渦電流プローブのコンピュータモデルを使用して生成される。この方法は、内部空洞内に渦電流プローブを挿入するステップも含む。この方法は、注目の区域上を渦電流プローブをスキャンさせるために、画定されたスキャンパスを使用してプローブの移動を制御するステップをさらに含む。この方法は、多数の応答信号を発生させるためにプローブに多重の励磁信号を加えるステップも含む。この励磁信号は、内部空洞内の画定されたスキャンパスに沿って加えられる。この方法は、内部空洞を検査するために応答信号を解析するステップも含む。
本発明の別の実施形態によれば、検査システムが提供される。この検査システムは、部品内に渦電流を誘起するように構成される渦電流プローブを含む。この検査システムは、渦電流プローブと接続される渦電流機器も含み、この渦電流機器は、多数の応答信号を発生させるように渦電流プローブに多重の励磁信号を加えるように構成される。この検査システムは、渦電流プローブに連結され、渦電流プローブを部品の内部空洞内に挿入し、かつ画定されたスキャンパスに従って内部空洞内の注目の区域上を渦電流プローブをスキャンさせるように構成されるロボットをさらに含む。この検査システムは、部品の内部空洞内の注目の区域を検査するために、渦電流機器からの応答信号を解析するように構成されるプロセッサも含む。
本発明のこれらのおよび別の特徴、態様および利点は、同様な記号が図面を通して同様な部品を示す添付の図面を参照して以下の詳細な説明を読むとき、より良く理解されるようになるであろう。
以下に詳細に論じるように、本発明の実施形態は内面クラックを検査するためのシステムおよび方法を含む。本明細書で使用されるとき、術語「内面クラック」は、ブレードのエーロフォイルの凸側またはエーロフォイルの凹側のいずれかの、空洞の内側で内部表面上にある、注目の区域のところの異常部を呼ぶ。部品の凸側上の内部表面は、凹側上のものより外側からアクセスするのがより困難である。いくつかの非限定的な異常部にはクラックおよび孔(pit)が含まれる。
図面に転じると、図1は部品12内の内面クラックを検出するのに使用される検査システム10の線図である。具体的な一実施形態では、この部品12は航空機エンジンに使用されるブレードである。この検査システム10は、部品12内に渦電流を誘起するように構成される渦電流プローブ14を含む。渦電流プローブ14は、ロボット16によって部品12に対し相対的に移動させることができる。本明細書で使用されるとき、術語「ロボット」は変化する自由度の自動化された動きを有する単軸または多軸機械を呼ぶ。一例では、ロボット16は少なくとも6自由度を有する。例示的な一実施形態では、ロボット16は、渦電流プローブ14の自動化された移動のために動作制御器18に接続される。別の実施形態では、この渦電流プローブ14は手動で移動させられる。さらに別の実施形態では、部品12が、静止して保持される渦電流プローブ14に対して相対的に移動させることができる。ロボット16は、渦電流プローブ14を画定されたスキャンパスに従って、部品12の内面クラック内の注目の区域上を正確にスキャンさせる。この画定されたスキャンパスは、プローブ14および部品12の相対的な移動を決める。具体的な一実施形態によれば、この画定されたスキャンパスは、渦電流プローブ14のスキャンが多数の制約を満足させるように決められる。この制約のいくつかの非限定的例には、渦電流プローブ14の部品12の表面との持続するかつ直接的な接触、プローブ14の部品12の表面に対する垂直な向き、検査される注目の領域が部品12の内部空洞またはクラック内にあること、および渦電流プローブ14と部品12の残りの部分との間の衝突が回避されることが含まれる。この画定されたスキャンパスは、スムーススキャンパスとしても呼ぶことができ、それはプローブ14のパスの突然の変化に対する急激なEC応答を避け、離昇または部品の幾何学的形状に起因する動きの不自然な結果を最小限にする。急激な渦電流応答は、欠陥に対する渦電流応答の信号解析で潜在的に偽の実在に結果としてなる可能性のある信号の急激な変化に繋がる。したがって、スムーススキャンパスは、欠陥認識に対する信号解析の堅牢性を増加させる。図示の実施形態に対して、渦電流プローブ14は、ロボット16の座標系に対するプローブ14の位置合わせを容易にするプローブ保持器20も含む。部品12は、固定具28を介して平坦な表面26に固定することができる。この固定具28によってロボット16の座標系に対する部品12の位置合わせが可能になる。
この検査システム10は、渦電流プローブ14に接続される、部品12の内面クラックに対応する応答信号を発生させるために渦電流プローブ14に多重励磁信号を加える渦電流機器22も含む。渦電流機器22に接続されるプロセッサ24は、部品12の内部空洞内の注目の区域を検査するために、渦電流機器22からの応答信号を解析するように構成される。具体的な一実施形態では、この渦電流機器22は、選択的な周波数で励磁信号を供給するように構成され、プロセッサ24は部品12の内面クラックを検査するために応答信号に多周波相解析を実施するように構成される。多周波相解析は、Changting Wangらによる米国特許第7,206,706号“Inspection Method and System Using Multifrequency Phase Analysis”に論じられており、その全体は参照により本明細書に組み込まれている。
図2は、図1に参照番号のつけられたような渦電流プロセッサ14を含む、図1の検査システム10の拡大図の線図である。この渦電流プローブ14は、図1に参照番号のつけられた部品12の非平面領域30のところの、またその近くの内面クラックを渦電流応答信号を介して検査する。非平面領域30の内面クラックの渦電流応答信号は、領域30の幾何学的形状効果に起因する暗騒音に対応する応答信号、かつ部品12とプローブ14の間の相対的な動きに起因するプローブ14の応答によって、低下させられた信号対雑音比を有する。非限定的な例では、暗騒音に対応する応答信号は、底部32の非平面的曲率変化に起因して生じる。内面クラックに起因する渦電流応答信号が、暗騒音に起因する応答信号より優れて検出されるのに十分大きな信号対雑音比を有することが望ましい。多周波相解析によってそのような信号対雑音比を達成することが可能になる。多周波相解析の更なる詳細は、同じ譲受人に譲渡されている、Wangらによる“Inspection of non−planar parts using multifrequency eddy current with phase analysis”という名称の米国特許出願公開第11/210,119号に得ることができる。渦電流プローブ14は、容易な取り扱いのために図1に参照されたような保持器20も含む。
図3は部品内の内部空洞44を検査するための検査システム42の構成部品のブロック線図40である。この検査システム42は、部品内の内部空洞44を検査する渦電流プローブ46を含む。この渦電流プローブ46は、正確なスキャニング動作を可能にするロボット48によって作動される。渦電流機器50は、内面クラック44に対応する多周波渦電流応答信号を発生させるための多重励磁信号を加えるように渦電流プローブ46に接続される。プロセッサ52は、内部空洞44によって発生される渦電流応答信号を解析するように渦電流機器50に接続される。
図4は、部品内の内部空洞を検査するための例示的な方法60のステップを示すフローチャートである。この方法60は、ステップ62でプローブを内部空洞内に挿入するステップを含む。プローブの移動は、ステップ64でプローブを内部空洞内の注目の区域上をスキャンさせるために画定されたスキャンパスを使用して制御される。具体的な一実施形態では、この移動はロボットによって制御される。別の実施形態では、この画定されたスキャンパスは、ソフトウエアを介して入手可能な部品の情報およびプローブのモデルを用いたコンピュータでのシミュレーションに基づいて生成される。部品の幾何学的形状およびプローブの幾何学的形状は、衝突なしのかつ注目の区域が十分にスキャンされるのを確実にする画定されたスキャンパスを作り出すために使用することができる。さらに別の実施形態では、この画定されたスキャンパスは、部品の表面とのプローブの持続する接触を可能にしかつプローブを部品の表面に対して垂直な方向に向けること、部品の内部空洞内の注目の領域を検査すること、ならびにプローブと部品の間の衝突を回避することを含む多数の制約を満足させるように生成される。別の実施形態では、この画定されたスキャンパスは、衝突検知アルゴリズム、ポテンシャル場アルゴリズム、および仮想弾性アルゴリズム(virtual elastic algorithm)を使用して生成される。
多重励磁信号が、ステップ66で多周波応答信号を発生させるように内部空洞に沿ってスキャニングするプローブに加えられる。具体的な一実施形態では、この励磁信号は、部品内の渦電流プローブが結果として多周波応答信号を発生させる渦電流を誘起する。ステップ68で内部空洞を検査するためにこの多周波応答信号に多周波相解析が実施される。例示的な一実施形態では、プローブの位置に関する情報が供給され、多周波応答信号は、内部空洞内の検査データの位置を特定するためにこの位置の情報と相互関連付けがされる。
図5は、部品内の内部空洞を検査するための別の例示的な方法80のステップを示すフローチャートである。この方法80は、内部空洞内の注目の区域を検査するための画定されたスキャンパスを生成することを含み、この生成はステップ82で部品のコンピュータモデルおよび渦電流プローブのコンピュータモデルを使用して実施される。画定されたスキャンパス生成のためのモデルに基づく技術は、同一出願人による同時係属の、Shankarappaらによる“Method for performing model based defined scan path generation of a component under inspection.”という名称の米国特許出願公開第11/100,106号に開示されている。具体的な一実施形態では、この画定されたスキャンパスは、部品の表面とのプローブの持続する接触を可能し、かつプローブを部品の表面に対して垂直な方向に向けること、部品の内部空洞内の注目の領域を検査すること、およびプローブと部品の間の衝突を回避することを含む多数の制約を満足させるように生成される。別の実施形態では、この画定されたスキャンパスは、衝突検知アルゴリズム、ポテンシャル場アルゴリズム、および仮想弾性アルゴリズムを使用して生成される。
渦電流プローブがステップ84で内部空洞内に挿入される。ステップ86で、渦電流プローブの移動は、注目の区域上を渦電流プローブをスキャンさせるようにこの画定されたスキャンパスを使用して制御される。具体的な一実施形態では、この移動はロボットによって制御される。多重励磁信号が、ステップ88で多周波応答信号を発生させるために内部空洞内の多数の位置でプローブに加えられる。応答信号は、ステップ90で内部空洞を検査するために解析される。例示的な一実施形態では、プローブの位置に関する情報が供給され、多周波応答信号は内部空洞内の検査データの位置を特定するためにこの位置の情報と相互関連付けがされる。別の実施形態では、内部空洞は部品の凸側上で検査される。
したがって、上記で説明した内面クラックを検査するためのシステムの様々な実施形態、およびそのための方法は、容易にアクセスできない領域の欠陥の便利な、効率的なかつ正確な検出を達成するための1つの方法を提供する。これらのシステムにより、内面クラックの改善された検出に起因して、高効率な航空機システムも可能になる。
勿論、上記で説明した全てのそのような目的または利点は、どのような具体的な実施形態に従っても、必ずしも達成されない可能性があることは理解されたい。したがって例えば当業者は、本明細書で説明されたシステムおよび技術は、本明細書で教示されるまたは示唆される可能性のある別の目的または利点を必ずしも達成することなく、本明細書で教示される1つの利点または利点群を達成するようにまたは最適化するように実施し、または実行することができることを理解するであろう。
さらに技術者は、異なる実施形態からの様々な特徴の互換性を理解するであろう。例えば、1つの実施形態に対する渦電流プローブの使用は、部品の凹側上の欠陥を検出するために適用することができる。同様に、説明される様々な特徴、ならびに各特徴に対する他の知られた均等物は、本開示の原理に従った追加のシステムおよび技術を構築するように当業者によって混合され、かつ適合させられることができる。
本発明のいくつかの特徴のみ本明細書で図示され説明されてきたけれども、当業者は多くの改変および変更を思いつくであろう。したがって、添付の特許請求の範囲は、本発明の真の趣旨内にある全てのそのような改変および変更を包含することを意図していることを理解されたい。また、図面の符号に対応する特許請求の範囲中の符号は、単に本願発明の理解をより容易にするために用いられているものであり、本願発明の範囲を狭める意図で用いられたものではない。そして、本願の特許請求の範囲に記載した事項は、明細書に組み込まれ、明細書の記載事項の一部となる。
本発明の実施形態による検査システムの線図である。 本発明の実施形態による、内部空洞の検査用の図1の検査システムに使用されるような渦電流プローブの線図である。 図1の検査システムのブロック線図である。 本発明の実施形態による、部品内の内部空洞を検査するための例示的な方法のステップを示すフローチャートである。 本発明の実施形態による、部品内の内部空洞を検査するための別の例示的な方法のステップを示すフローチャートである。
符号の説明
10 検査システム
12 部品
14 渦電流プローブ
16 ロボット
18 動作制御器
20 プローブ保持器
22 渦電流機器
24 プロセッサ
26 平坦な表面
28 固定具
30 非平面領域
40 ブロック線図
42 検査システム
44 内部空洞
46 渦電流プローブ
48 ロボット
50 渦電流機器
52 プロセッサ

Claims (10)

  1. 内部空洞内にプローブ(14)を挿入するステップ(62)と、
    前記内部空洞内の注目の区域上を前記プローブをスキャンさせるために、画定されたスキャンパスを使用して前記プローブの移動を制御するステップ(64)と、
    複数の多周波応答信号を発生させるように前記プローブに複数の多周波励磁信号を加えるステップ(66)であって、前記加えるステップが前記内部空洞内の前記画定されたスキャンパスに沿って実施されるステップと、
    前記内部空洞を検査するために前記多周波応答信号に多周波相解析を実施するステップ(68)とを含む、部品(12)の内部空洞(44)を検査する方法(60)。
  2. 前記プローブが渦電流プローブである、請求項1記載の方法(60)。
  3. 前記加えるステップ(66)が、前記部品内に複数の渦電流を誘起させ、前記渦電流プローブで前記部品内に誘起される前記渦電流によって、前記多周波応答信号が発生させられる、請求項2記載の方法(60)。
  4. 前記画定されたスキャンパスが、
    前記部品の表面との前記プローブの持続する接触を可能にすることと、
    前記プローブを前記部品の表面に対して垂直な方向に向けることと、
    前記部品の前記内部空洞内の注目の領域を検査することと、
    前記プローブと前記部品の間の衝突を回避することとを含む、複数の制約を満足させるように生成される、請求項3記載の方法(60)。
  5. 内部空洞内の注目の区域を検査するための画定されたスキャンパスを生成させるステップ(82)であって、前記生成が前記部品のコンピュータモデルと渦電流プローブ(14)のコンピュータモデルとを使用して実施されるステップと、
    前記内部空洞内に前記渦電流プローブを挿入するステップ(84)と、
    前記注目の区域上を前記渦電流プローブをスキャンさせるために前記画定されたスキャンパスを使用して前記プローブの移動を制御するステップ(86)と、
    複数の応答信号を発生させるように前記プローブに複数の励磁信号を加えるステップ(88)であって、前記加えるステップが前記内部空洞内の複数の位置のところで実施されるステップと、
    前記内部空洞を検査するために前記応答信号を解析するステップ(90)とを含む、部品(12)の内部空洞(44)を検査する方法(80)。
  6. 前記プローブの位置に関する情報を供給ステップと、前記内部空洞内の複数の検査データの位置を特定するために、前記応答信号を前記位置の情報と相互関連付けるステップとをさらに含む、請求項5記載の方法(80)。
  7. 画定されたスキャンパスの前記生成が、
    前記部品の表面との前記渦電流プローブの持続する接触を可能にすることと、
    前記渦電流プローブを前記部品の表面に対して垂直な方向に向けることと、
    前記部品の前記内部空洞内の注目の領域を検査することと、
    前記プローブと前記部品の間の衝突を回避することとを含む、多数の制約を満足させることを含む、請求項5記載の方法(80)。
  8. 部品(12)内に渦電流を誘起するように構成される渦電流プローブ(22)と、
    前記渦電流プローブ(14)に接続される渦電流機器(22)であって、前記渦電流機器(22)が、複数の応答信号を発生させるように前記渦電流プローブ(14)に複数の励磁信号を加えるように構成される渦電流機器と、
    前記渦電流プローブ(14)に連結され、前記渦電流プローブ(14)を前記部品(12)の内部空洞(44)内に挿入するように、かつ画定されたスキャンパスに従って前記内部空洞(44)内の注目の区域上を前記渦電流プローブ(14)をスキャンさせるように構成されるロボット(16)と、
    前記部品(12)の前記内部空洞(44)内の注目の区域を検査するために、前記渦電流機器(22)からの前記応答信号を解析するように構成されるプロセッサ(52)とを備える、検査システム(10)。
  9. 前記渦電流機器(22)が、選択的な周波数で前記励磁信号を供給するように構成され、前記プロセッサ(52)が、前記部品(12)の前記内部空洞(44)内の注目の区域を検査するために、前記応答信号に多周波相解析を実施するように構成される、請求項8記載の検査システム(10)。
  10. 前記画定されたスキャンパスが、
    前記部品(12)の表面との前記プローブ(14)の直接接触と、
    前記プローブ(14)の前記部品(12)の表面に対する垂直な向きと、
    検査される注目の領域が前記部品(12)の前記内部空洞(44)内にあることと、
    前記プローブ(14)と前記部品(12)の残りの部分との間の衝突が回避されることとを含む複数の制約を満足させるように構成される、請求項8記載の検査システム(10)。
JP2008119449A 2007-05-07 2008-05-01 内面クラックを検査するシステムおよび方法 Withdrawn JP2008275622A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/745,122 US20080278151A1 (en) 2007-05-07 2007-05-07 System and methods for inspecting internal cracks

Publications (1)

Publication Number Publication Date
JP2008275622A true JP2008275622A (ja) 2008-11-13

Family

ID=39540343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008119449A Withdrawn JP2008275622A (ja) 2007-05-07 2008-05-01 内面クラックを検査するシステムおよび方法

Country Status (7)

Country Link
US (1) US20080278151A1 (ja)
EP (1) EP1990637A3 (ja)
JP (1) JP2008275622A (ja)
CN (1) CN101303328A (ja)
BR (1) BRPI0801976A2 (ja)
CA (1) CA2629707A1 (ja)
SG (1) SG147393A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513302A (ja) * 2013-01-22 2016-05-12 ゼネラル・エレクトリック・カンパニイ 自己主導された点検計画

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994780B2 (en) * 2007-09-14 2011-08-09 General Electric Company System and method for inspection of parts with an eddy current probe
US8395378B2 (en) * 2010-04-29 2013-03-12 General Electric Company Nondestructive robotic inspection method and system therefor
US8409102B2 (en) 2010-08-31 2013-04-02 General Electric Company Multi-focus ultrasound system and method
US9193402B2 (en) 2013-11-26 2015-11-24 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
US9193068B2 (en) 2013-11-26 2015-11-24 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
US9435766B2 (en) * 2013-12-05 2016-09-06 General Electric Company System and method for inspection of components
CN103950028A (zh) * 2014-04-24 2014-07-30 苏州科曼特自动化科技有限公司 工业部件探伤机器人
US10067256B2 (en) * 2015-03-26 2018-09-04 General Electric Company Proximity probe interchange compensation
US10025289B2 (en) 2015-05-26 2018-07-17 Pratt & Whitney Canada Corp. System and method for automated part inspection
CN109490410B (zh) * 2018-12-25 2020-09-08 西安交通大学 残余应力作用下的应力腐蚀裂纹多频涡流定量评价方法
CN110514745B (zh) * 2019-09-02 2020-08-21 北京理工大学 一种基于多频声发射信号的缆索断丝位置确定的方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203069A (en) * 1977-12-29 1980-05-13 Electric Power Research Institute, Inc. Method and apparatus for non-destructively testing electrically conductive elongate cylindrical components using an eddy current producing coil with a rotor to concentrate the magnetic field in a selected area
US4271393A (en) * 1978-12-29 1981-06-02 The Boeing Company Apparatus and method for eddy current detection of subsurface discontinuities in conductive bodies
US4495466A (en) * 1982-04-08 1985-01-22 The United States Of America As Represented By The Secretary Of The Air Force Eddy current test probe with circumferential Segments and method of testing material surrounding fastener holes
SE456532B (sv) * 1985-10-18 1988-10-10 Asea Ab Arrangemang for ytavsokning av ett provobjekt
AU650049B2 (en) * 1990-06-29 1994-06-09 Abb Amdata Inc. Eddy current imaging system
EP0518635B1 (en) * 1991-06-11 2003-05-21 Newt Holdings Limited Probe
US5345514A (en) * 1991-09-16 1994-09-06 General Electric Company Method for inspecting components having complex geometric shapes
US5315234A (en) * 1992-04-03 1994-05-24 General Electric Company Eddy current device for inspecting a component having a flexible support with a plural sensor array
US5510709A (en) * 1993-09-27 1996-04-23 General Electric Company Eddy current surface inspection probe for aircraft fastener inspection, and inspection method
US5610517A (en) * 1995-06-07 1997-03-11 Vanderbilt University Method and apparatus for detecting flaws below the surface of an electrically conductive object
US6657429B1 (en) * 1995-08-25 2003-12-02 Jentek Sensors, Inc. Material condition assessment with spatially periodic field sensors
CA2282650A1 (en) * 1997-03-13 1998-09-17 Jentek Sensors, Inc. Magnetometer detection of fatigue damage in aircraft
US6037768A (en) * 1997-04-02 2000-03-14 Iowa State University Research Foundation, Inc. Pulsed eddy current inspections and the calibration and display of inspection results
US5969260A (en) * 1998-03-30 1999-10-19 Mcdonnell Douglas Corporation Remotely interrogatable apparatus and method for detecting defects in structural members
US20030164700A1 (en) * 2001-03-19 2003-09-04 Jentek Sensors, Inc. High resolution hidden damage imaging
US6784662B2 (en) * 2001-03-19 2004-08-31 Jentek Sensors, Inc. Eddy current sensor arrays having drive windings with extended portions
US6907358B2 (en) * 2003-01-30 2005-06-14 General Electric Company Eddy current inspection method
US6972561B2 (en) * 2003-02-28 2005-12-06 General Electric Company Internal eddy current inspection
US20050007108A1 (en) * 2003-07-11 2005-01-13 Teodor Dogaru Probes and methods for detecting defects in metallic structures
US7206706B2 (en) * 2005-03-09 2007-04-17 General Electric Company Inspection method and system using multifrequency phase analysis
US7518359B2 (en) * 2005-03-09 2009-04-14 General Electric Company Inspection of non-planar parts using multifrequency eddy current with phase analysis
US7337651B2 (en) 2005-04-05 2008-03-04 General Electric Company Method for performing model based scanplan generation of a component under inspection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513302A (ja) * 2013-01-22 2016-05-12 ゼネラル・エレクトリック・カンパニイ 自己主導された点検計画

Also Published As

Publication number Publication date
CA2629707A1 (en) 2008-11-07
EP1990637A2 (en) 2008-11-12
EP1990637A3 (en) 2012-10-17
SG147393A1 (en) 2008-11-28
CN101303328A (zh) 2008-11-12
US20080278151A1 (en) 2008-11-13
BRPI0801976A2 (pt) 2008-12-30

Similar Documents

Publication Publication Date Title
JP2008275622A (ja) 内面クラックを検査するシステムおよび方法
JP5557412B2 (ja) 部品を検査するための装置およびシステム
US7689030B2 (en) Methods and apparatus for testing a component
EP3077807B1 (en) System and method for inspection of components
JP5155566B2 (ja) 位相分析による多周波渦電流を使用した非平面状部品の検査
US7888932B2 (en) Surface flaw detection system to facilitate nondestructive inspection of a component and methods of assembling the same
JP4870393B2 (ja) 構成部品を試験するための方法及び装置
US6907358B2 (en) Eddy current inspection method
US7313961B2 (en) Method and apparatus for inspecting a component
US8269489B2 (en) System and method for eddy current inspection of parts with complex geometries
JP2008275614A (ja) 自動較正を備えた非破壊検査用の渦電流を用いた方法および装置
JP2011107127A (ja) ターボ機関のロータブレードの亀裂検査法
JP5531257B2 (ja) タービン翼の探傷方法
JP2007121300A (ja) 渦電流検査装置および方法
US6198280B1 (en) Eddy current flexible field probe deployed through a loading platform
US7436992B2 (en) Methods and apparatus for testing a component
CN101122581B (zh) 改进已制成的机器零件锻件的超声检查覆盖范围的方法
CN110542717A (zh) 基于加工机床的整体叶盘无损检测装置和方法
US20030062892A1 (en) Use of eddy current to non-destructively measure crack depth
Frackowiak et al. Near-wing multi-sensor diagnostics of jet engine components
JP2006133031A (ja) 鋳造部材の欠陥検出方法および装置
WO2024150473A1 (ja) 渦電流探傷装置、及び渦電流探傷方法
JP2005233717A (ja) 渦電流探傷プローブ
CN114813922A (zh) 发动机压气机叶片无损检测装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120509