JP2008274168A - Styrenic resin composition, extruded foam sheet and container, and flat extruded foam - Google Patents

Styrenic resin composition, extruded foam sheet and container, and flat extruded foam Download PDF

Info

Publication number
JP2008274168A
JP2008274168A JP2007121616A JP2007121616A JP2008274168A JP 2008274168 A JP2008274168 A JP 2008274168A JP 2007121616 A JP2007121616 A JP 2007121616A JP 2007121616 A JP2007121616 A JP 2007121616A JP 2008274168 A JP2008274168 A JP 2008274168A
Authority
JP
Japan
Prior art keywords
extruded foam
resin composition
foam
weight
styrenic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007121616A
Other languages
Japanese (ja)
Other versions
JP5464631B2 (en
Inventor
Ryozo Okumura
量三 奥村
Yoshiji Hiratsuka
義嗣 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Japan Corp
Original Assignee
PS Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Japan Corp filed Critical PS Japan Corp
Priority to JP2007121616A priority Critical patent/JP5464631B2/en
Publication of JP2008274168A publication Critical patent/JP2008274168A/en
Application granted granted Critical
Publication of JP5464631B2 publication Critical patent/JP5464631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a styrenic resin composition which allows weight reduction of a foam container such as a foam tray while maintaining the strength thereof, an extruded foam sheet obtained by extrusion foaming using the composition, and a lightweight container obtained by vacuum forming of the extruded foam sheet, and to provide a styrenic resin composition which allows weight reduction of a flat extruded foam used for a heat insulating material or the like while maintaining the insulation efficiency thereof and the flat extruded foam using the composition. <P>SOLUTION: Disclosed is a styrenic resin composition comprising an aromatic vinyl monomer, wherein the melt mass flow rates (MFR) measured at 200°C and a load of 49 N is 1.0-6.0 g/10 minutes; and the ratio G'(0.1)/G'(100) is 0.003 or more, wherein G'(0.1) is the storage modulus measured at an angular velocity of 0.1 radian/second and G'(100) is the storage modulus measured at an angular velocity of 100 radian/second, at 240°C by means of a cone and plate-type melt viscoelasticity measuring apparatus. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発泡トレー等の発泡容器において製品強度を維持したまま軽量化が可能なスチレン系樹脂組成物およびその材料を用いて押出発泡成形した押出発泡シート、さらに押出発泡シートを真空成型して得られる軽量化容器に関するものである。
また本発明は断熱材等に用いられる板状押出発泡体の断熱性能を維持したまま軽量化が可能なスチレン系樹脂組成物およびその材料を用いた板状押出発泡体に関するものである。
The present invention relates to a styrene-based resin composition that can be reduced in weight while maintaining product strength in a foam container such as a foam tray, an extruded foam sheet formed by extrusion foaming using the material, and a vacuum-molded extruded foam sheet. The present invention relates to a lightweight container obtained.
The present invention also relates to a styrene-based resin composition that can be reduced in weight while maintaining the heat insulation performance of a plate-like extruded foam used for a heat insulating material and the like, and a plate-like extruded foam using the material.

ポリスチレン系樹脂押出発泡シートから熱成形により成形した食品用の簡易容器は、例えば、肉、魚、惣菜等々のトレー、カップめん容器、納豆容器等種々の食品用の簡易容器として汎用的に使われている。このような発泡シートの熱成形による簡易容器においてはコストダウンのために容器の軽量化が計られているが、容器を軽量化すると製品強度が低下してトレーのラッピングの際に容器が割れる等の問題がある。
これに対して押出発泡成形時における発泡セル形態をコントロールしたり、真空成型容器の厚み、特に割れやすい部分の厚みを厚くしたりして軽量化しても容器強度を保つ工夫がされている(非特許文献1)。
Simple containers for foods molded from polystyrene resin extruded foam sheets by thermoforming are widely used as simple containers for various foods such as trays for meat, fish, prepared foods, cup noodle containers, natto containers, etc. Yes. In such a simple container formed by thermoforming a foam sheet, the weight of the container is reduced for cost reduction. However, when the container is lightened, the strength of the product is reduced and the container is broken when the tray is wrapped. There is a problem.
On the other hand, the strength of the container is maintained even if the weight is reduced by controlling the foam cell shape during extrusion foam molding, or by increasing the thickness of the vacuum molded container, particularly the fragile part. Patent Document 1).

また材料としては特定の分岐数を有するスチレン系樹脂を用いる方法(特許文献1)が開示されているが、さらなる軽量化に適した材料が求められている。
さらに断熱材や畳の芯材等に用いられている板状押出発泡体についても軽量化が望まれているが、発泡倍率を上げて軽量化しようとすると発泡セルがうまく形成されず、発泡セルがつながったいわゆる連泡ができて断熱効率が低下したり、また外観が荒れたものになってしまうといった問題があった。
Moreover, although the method (patent document 1) using the styrene resin which has a specific branch number is disclosed as a material, the material suitable for the further weight reduction is calculated | required.
Furthermore, weight reduction is also desired for the plate-like extruded foam used for heat insulating materials and tatami core materials, but when trying to reduce the weight by increasing the foaming ratio, the foam cells are not formed well, and the foam cells. There was a problem that the so-called continuous bubbles were formed and the heat insulation efficiency was lowered, and the appearance was rough.

この問題を解決するために特定のZ平均分子量および重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが特定の範囲であるスチレン系樹脂を用いる方法(特許文献2)、Z平均分子量Mzと重量平均分子量Mwの比Mz/Mwが特定の値以上であるスチレン系樹脂を用いる方法(特許文献3)等が提案されているが、軽量化は十分でなかった。   In order to solve this problem, a method using a styrene-based resin in which the ratio Mw / Mn of a specific Z average molecular weight and weight average molecular weight Mw to number average molecular weight Mn is in a specific range (Patent Document 2), Z average molecular weight Mz and A method using a styrene resin having a weight average molecular weight Mw ratio Mz / Mw of a specific value or more (Patent Document 3) has been proposed, but the weight reduction has not been sufficient.

特開2003−49033JP 2003-49033 A 特開平10−182870号公報Japanese Patent Laid-Open No. 10-182870 特開2005−335373号公報JP 2005-335373 A 日経エコロジー/2005年10月号、38−39頁Nikkei Ecology / October 2005, 38-39

発泡トレー等の発泡容器において発泡セル形態や容器形状で容器の軽量化を図るには限界があり、さらなる軽量化のために適した材料の登場が望まれていた。また板状押出発泡体の断熱性能を落とすことなく軽量化できる材料が望まれていた。
本発明は、少ない材料で製品強度及び熱強度を維持することができるスチレン系樹脂組成物を提供することを目的とする。また、本発明は当該スチレン系樹脂組成物を押出発泡成形してなる押出発泡シートおよび当該押出発泡シートを真空成形して得られる軽量化容器を提供すること並びに断熱性能を損なうことなく軽量化が可能な板状押出発泡体を提供することを目的とする。
In foaming containers such as foaming trays, there is a limit to reducing the weight of the container in the form of foamed cells and the shape of the container, and the appearance of materials suitable for further weight reduction has been desired. In addition, a material that can be reduced in weight without reducing the heat insulation performance of the plate-like extruded foam has been desired.
An object of this invention is to provide the styrene resin composition which can maintain product intensity | strength and heat intensity with few materials. The present invention also provides an extruded foam sheet obtained by extrusion foam molding of the styrenic resin composition and a weight-reduced container obtained by vacuum molding the extruded foam sheet, and weight reduction without impairing the heat insulation performance. It is an object of the present invention to provide a plate-like extruded foam that can be used.

本発明者らはかかる現状を鑑み、鋭意検討を重ねた結果、特定のメルトマスフローレイトと特定の貯蔵弾性率の角速度依存性を有するスチレン系樹脂組成物を用いることにより、少ない材料で製品強度を維持した発泡容器、あるいは断熱性能を維持した板状押出発泡体が得られることを見出し、本発明を完成させるに至った。
即ち、本発明は、以下に記載する通りのスチレン系樹脂組成物を提供するものである。
As a result of intensive investigations in view of the current situation, the present inventors have achieved a product strength with a small amount of material by using a styrene resin composition having a specific melt mass flow rate and a specific storage elastic modulus having an angular velocity dependency. The inventors have found that a foamed container maintained or a plate-like extruded foam maintaining heat insulation performance can be obtained, and the present invention has been completed.
That is, the present invention provides a styrenic resin composition as described below.

(1)200℃、49N荷重で測定したメルトマスフローレイト(MFR)が1.0〜6.0グラム/10分であって、かつコーン&プレート型溶融粘弾性測定装置によって240℃、角速度0.1ラジアン/秒で測定した貯蔵弾性率G’(0.1)と角速度100ラジアン/秒で測定した貯蔵弾性率G’(100)の比G’(0.1)/G’(100)が0.003以上であることを特徴とするスチレン系樹脂組成物。
(2)G’(0.1)/G’(100)が0.003〜0.006である上記(1)に記載のスチレン系樹脂組成物。
(3)上記(1)又は(2)に記載のスチレン系樹脂組成物を押出発泡成形してなる押出発泡シート。
(4)上記(3)に記載の押出発泡シートを真空成型して得られる容器。
(5)上記(1)又は(2)記載のスチレン系樹脂組成物を押出発泡成形してなる板状押出発泡体。
(1) Melt mass flow rate (MFR) measured at 200 ° C. under a load of 49 N is 1.0 to 6.0 grams / 10 minutes, and 240 ° C. and angular velocity of 0.1 with a cone and plate type melt viscoelasticity measuring apparatus. The ratio G ′ (0.1) / G ′ (100) of the storage elastic modulus G ′ (0.1) measured at 1 radians / second and the storage elastic modulus G ′ (100) measured at an angular velocity of 100 radians / second is A styrenic resin composition characterized by being 0.003 or more.
(2) The styrenic resin composition according to (1) above, wherein G ′ (0.1) / G ′ (100) is 0.003 to 0.006.
(3) An extruded foam sheet formed by extrusion foam molding of the styrenic resin composition according to the above (1) or (2).
(4) A container obtained by vacuum forming the extruded foam sheet described in (3) above.
(5) A plate-like extruded foam formed by extrusion foam molding of the styrenic resin composition described in (1) or (2) above.

本発明のスチレン系樹脂組成物を用いた押出発泡シートを用いることにより、少量の材料で製品強度に優れた発泡容器を得ることができ、製品のコストダウンに寄与することができる。板状押出発泡体においても同様に少量の材料で断熱性能に優れた製品を得ることができ、製品のコストダウンに寄与することができる。   By using the extruded foam sheet using the styrenic resin composition of the present invention, a foam container having excellent product strength can be obtained with a small amount of material, which can contribute to cost reduction of the product. Similarly, in a plate-like extruded foam, a product having excellent heat insulation performance can be obtained with a small amount of material, which can contribute to cost reduction of the product.

以下、本願発明について具体的に説明する。
本発明のスチレン系樹脂に使用される単量体としてはスチレン、α−メチルスチレン、パラメチルスチレン、エチルスチレン、プロピルスチレン、ブチルスチレン、クロロスチレン、ブロモスチレン等を用いることができる。スチレンが好ましい。本発明に使用されるスチレン系樹脂の目的を損なわない範囲において、スチレンと共重合可能なコモノマーをスチレンと共重合させてもかまわない。スチレンと共重合可能なコモノマーとしては例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル類、α−メチルスチレン、o−、m−、p−メチルスチレン、ブロモスチレン、ジブロモスチレン、クロロスチレン、ジクロロスチレン等のスチレン以外の芳香族ビニル単量体類、(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和脂肪酸類、無水マレイン酸、無水イタコン酸等の不飽和ジ脂肪酸無水物類,N−フェニルマレイミド等の不飽和ジ脂肪酸イミド類等が挙げられる。これらの単量体は1種類または2種類以上併用してもかまわない。
Hereinafter, the present invention will be specifically described.
As the monomer used in the styrene resin of the present invention, styrene, α-methylstyrene, paramethylstyrene, ethylstyrene, propylstyrene, butylstyrene, chlorostyrene, bromostyrene and the like can be used. Styrene is preferred. A comonomer copolymerizable with styrene may be copolymerized with styrene within a range not impairing the purpose of the styrene resin used in the present invention. Examples of comonomers copolymerizable with styrene include (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate, α-methylstyrene, o-, m -, P-methylstyrene, bromostyrene, dibromostyrene, chlorostyrene, dichlorostyrene and other aromatic vinyl monomers other than styrene, (meth) acrylic acid, maleic acid, fumaric acid and other unsaturated fatty acids, anhydrous Examples thereof include unsaturated difatty acid anhydrides such as maleic acid and itaconic anhydride, and unsaturated difatty acid imides such as N-phenylmaleimide. These monomers may be used alone or in combination of two or more.

本発明においては、スチレン系樹脂はスチレン系単量体を熱重合するかまたは有機過酸化物群を重合開始剤として重合することによって得ることができる。有機過酸化物の具体例としては、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン等のパーオキシケタール類、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン等のジアルキルパーオキサイド類、ベンゾイルパーオキサイド、m−トルオイルパーオキサイド等のジアシルパーオキサイド類、ジミリスチルパーオキシジカーボネート等のパーオキシエステル類、シクロヘキサノンパーオキサイド等のケトンパーオキサイド類、p−メンタハイドロパーオキサイド等のハイドロパーオキサイド類、2,2−ビス(4,4−ジターシャリーブチルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジターシャリーアミルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジターシャリーブチルパーオキシシクロヘキシル)ブタン、2,2−ビス(4,4−ジクミルパーオキシシクロヘキシル)プロパンなどの多官能開始剤類を挙げることができる。特に2,2−ビス(4,4−ジターシャリーブチルパーオキシシクロヘキシル)プロパンが好ましい。   In the present invention, the styrenic resin can be obtained by thermally polymerizing a styrenic monomer or polymerizing an organic peroxide group as a polymerization initiator. Specific examples of the organic peroxide include peroxyketals such as 1,1-bis (t-butylperoxy) cyclohexane and 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane. Dialkyl peroxides such as di-t-butyl peroxide and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, diacyl peroxides such as benzoyl peroxide and m-toluoyl peroxide , Peroxyesters such as dimyristylperoxydicarbonate, ketone peroxides such as cyclohexanone peroxide, hydroperoxides such as p-mentahydroperoxide, 2,2-bis (4,4-ditertiary Butylperoxycyclohexyl) propane, 2,2-bis (4,4 Multifunctional initiation of ditertiary amylperoxycyclohexyl) propane, 2,2-bis (4,4-ditertiarybutylperoxycyclohexyl) butane, 2,2-bis (4,4-dicumylperoxycyclohexyl) propane Agents can be mentioned. 2,2-bis (4,4-ditertiary butyl peroxycyclohexyl) propane is particularly preferable.

これらの有機過酸化物はスチレン単量体重合のいずれかの工程にて重合系(重合原料溶液または重合途中の溶液)に添加される。これらの有機過酸化物は重合原料溶液に加えても良いし、重合途中の溶液に必要に応じて複数回に分割して添加しても良い。上記有機過酸化物の添加量は重合原料溶液100重量部に対して0.0005〜0.2重量部であり、より好ましい添加量は、0.01〜0.1重量部である。上記有機過酸化物の添加量が0.0005重量部未満の場合は開始剤添加の目的の効果を得られない。又、0.2重量部を超える場合は重合時に大量の反応熱が発生するため重合の制御が困難となる場合がある。   These organic peroxides are added to the polymerization system (polymerization raw material solution or solution during polymerization) in any step of styrene monomer polymerization. These organic peroxides may be added to the polymerization raw material solution, or may be added to the solution in the middle of polymerization divided into a plurality of times as necessary. The addition amount of the organic peroxide is 0.0005 to 0.2 parts by weight with respect to 100 parts by weight of the polymerization raw material solution, and a more preferable addition amount is 0.01 to 0.1 parts by weight. When the addition amount of the organic peroxide is less than 0.0005 parts by weight, the intended effect of adding the initiator cannot be obtained. On the other hand, if the amount exceeds 0.2 parts by weight, a large amount of reaction heat is generated during the polymerization, which may make it difficult to control the polymerization.

本発明において、その重合方法には特に制約はなく、通常の塊状重合、溶液重合、懸濁重合等が用いられる。また、本発明においては分子量調整のために、溶媒や連鎖移動剤を使用することも可能である。溶媒としては、トルエン、エチルベンゼン、キシレン等が使用できる。溶媒の使用量は特に限定されるものではないが、0重量%〜50重量%の範囲の使用が好ましい。連鎖移動剤としてはn−ドデシルメルカプタン、t−ドデシルメルカプタン、α−メチルスチレンダイマー等が用いられ、n−ドデシルメルカプタンが好ましい。連鎖移動剤の使用量は0重量%〜1重量%の範囲が好ましい。反応温度は、80〜200℃、より好ましくは90〜180℃の範囲である。反応温度が80℃より低いと生産性が低下し、工業的に不適当である。200℃を超えると低分子量重合体が多量に生成して好ましくない。目標分子量が重合温度のみで調整できない場合は、開始剤量、溶媒量、連鎖移動剤量等で制御すればよい。反応時間は一般に0.5〜20時間、より好ましくは2〜10時間である。反応時間が0.5時間より短いと反応が充分に進行しない。20時間より長い場合は生産性が低く、工業的に不適当である。   In the present invention, the polymerization method is not particularly limited, and usual bulk polymerization, solution polymerization, suspension polymerization and the like are used. In the present invention, it is also possible to use a solvent or a chain transfer agent for molecular weight adjustment. As the solvent, toluene, ethylbenzene, xylene and the like can be used. Although the usage-amount of a solvent is not specifically limited, Use of the range of 0 weight%-50 weight% is preferable. As the chain transfer agent, n-dodecyl mercaptan, t-dodecyl mercaptan, α-methylstyrene dimer or the like is used, and n-dodecyl mercaptan is preferable. The amount of chain transfer agent used is preferably in the range of 0% to 1% by weight. The reaction temperature is in the range of 80 to 200 ° C, more preferably 90 to 180 ° C. When the reaction temperature is lower than 80 ° C., the productivity is lowered, which is industrially unsuitable. If it exceeds 200 ° C., a large amount of low molecular weight polymer is produced, which is not preferable. When the target molecular weight cannot be adjusted only by the polymerization temperature, it may be controlled by the initiator amount, the solvent amount, the chain transfer agent amount, or the like. The reaction time is generally 0.5 to 20 hours, more preferably 2 to 10 hours. When the reaction time is shorter than 0.5 hours, the reaction does not proceed sufficiently. If it is longer than 20 hours, the productivity is low and industrially unsuitable.

スチレン系単量体の重合転化率については、特に限定されるものではないが、工業的な見地から、40%以上であることが望ましい。このようにして得られた重合溶液は、未反応単量体や溶媒を除去することにより、目的とするスチレン系樹脂を分離することができる。懸濁重合の場合はそのまま次の工程に供される。   The polymerization conversion rate of the styrene monomer is not particularly limited, but is preferably 40% or more from an industrial viewpoint. The polymerization solution thus obtained can separate the target styrene resin by removing unreacted monomers and solvent. In the case of suspension polymerization, it is used for the next step as it is.

また、スチレン系樹脂に慣用されている添加剤、例えば酸化防止剤、滑剤、着色剤等を本発明の目的を損なわない範囲で添加してもかまわない。具体的には流動パラフィン、白色鉱油等の可塑剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等の滑剤、ヘキサブロモシクロドデカン等の難燃剤等があげられる。またペレットの外部潤滑剤として、エチレンビスステアリルアミド、ステアリン酸亜鉛、ステアリン酸マグネシウム等をペレットにまぶしても良い。   In addition, additives commonly used in styrene resins, such as antioxidants, lubricants, colorants, etc., may be added within a range that does not impair the object of the present invention. Specific examples include plasticizers such as liquid paraffin and white mineral oil, lubricants such as stearic acid, palmitic acid, zinc stearate, calcium stearate and magnesium stearate, and flame retardants such as hexabromocyclododecane. Further, as the external lubricant for the pellet, ethylene bisstearylamide, zinc stearate, magnesium stearate or the like may be applied to the pellet.

本発明のスチレン系樹脂の200℃、49N荷重で測定したメルトマスフローレイト(MFR)は1.0〜6.0グラム/10分である。MFRが1.0グラム/10分より小さいと外観が荒れたものになる。またMFRが6.0グラム/10分より大きいと樹脂の粘度が低いため押出発泡成形の際に発泡セルが大きく成長してしまい、製品の強度が低下したり、連泡ができたりする原因となる。好ましいMFRの範囲は1.2〜5.0グラム/10分である。   The melt mass flow rate (MFR) measured at 200 ° C. and a load of 49 N of the styrene resin of the present invention is 1.0 to 6.0 grams / 10 minutes. When the MFR is smaller than 1.0 gram / 10 minutes, the appearance becomes rough. Also, if the MFR is larger than 6.0 grams / 10 minutes, the viscosity of the resin is low, and the foam cell grows greatly during extrusion foaming, causing the strength of the product to decrease and the cause of continuous foaming. Become. A preferred MFR range is 1.2 to 5.0 grams / 10 minutes.

また本発明のスチレン系樹脂はコーン&プレート型溶融粘弾性測定装置によって240℃、角速度0.1ラジアン/秒で測定した貯蔵弾性率G’(0.1)と角速度100ラジアン/秒で測定した貯蔵弾性率G’(100)の比G’(0.1)/G’(100)が0.003以上である。貯蔵弾性率は高分子の緩和時間分布に関係づけられている。G’(0.1)/G’(100)が大きいことは発泡セルが成長する際に相当する低剪断領域での非ニュートン性が大きいことを意味し、0.003未満であると発泡セルの壁厚みに不均一性を生じて製品強度や断熱性能が低下する。比G’(0.1)/G’(100)の好ましい範囲は0.003〜0.006である。なおコーン&プレート型溶融粘弾性測定装置とは例えばレオメトリックス社のRMS−800等として広く知られている。   The styrenic resin of the present invention was measured by a cone and plate type melt viscoelasticity measuring device at 240 ° C. and an angular velocity of 0.1 radians / second and a storage elastic modulus G ′ (0.1) and an angular velocity of 100 radians / second. The ratio G ′ (0.1) / G ′ (100) of the storage elastic modulus G ′ (100) is 0.003 or more. The storage modulus is related to the relaxation time distribution of the polymer. A large G ′ (0.1) / G ′ (100) means a large non-Newtonian property in a low shear region corresponding to the growth of the foam cell, and a foam cell of less than 0.003. As a result, non-uniformity in the wall thickness of the product causes a reduction in product strength and heat insulation performance. A preferable range of the ratio G ′ (0.1) / G ′ (100) is 0.003 to 0.006. The cone-and-plate type melt viscoelasticity measuring apparatus is widely known as, for example, RMS-800 manufactured by Rheometrics.

本発明の樹脂組成物の平均分子量は、重量平均分子量Mwで20万〜40万、より好ましくは25万〜40万とする。Mwが40万を超える場合は、溶融体の粘度が高くなり、成形、加工性等が極端に低下し、生産性が悪化する。また20万未満の場合は、成形体の強度が低下する。またMwと数平均分子量Mnとの比Mw/Mnは5以上であることが好ましい。またZ平均分子量MzとMwの比Mz/Mwは2.5以上であることが好ましい。ここでいうMw、Mn、Mzは、40℃、テトラヒドロフランを溶媒としてゲルパーミエーションクロマトグラフィーにより測定される。   The average molecular weight of the resin composition of the present invention is 200,000 to 400,000, more preferably 250,000 to 400,000 in terms of weight average molecular weight Mw. When Mw exceeds 400,000, the viscosity of the melt is increased, the molding and workability are extremely lowered, and the productivity is deteriorated. On the other hand, if it is less than 200,000, the strength of the molded product is lowered. Moreover, it is preferable that ratio Mw / Mn of Mw and number average molecular weight Mn is 5 or more. Moreover, it is preferable that ratio Mz / Mw of Z average molecular weight Mz and Mw is 2.5 or more. Mw, Mn, and Mz here are measured by gel permeation chromatography using 40 ° C. and tetrahydrofuran as a solvent.

本発明のスチレン系樹脂組成物による押出発泡シートの製造方法は、通常知られている方法を用いることができる。押出発泡時の発泡剤や発泡核剤については通常用いられる物質を使用できる。発泡剤としてはブタン、ペンタン、フロン、水等を使用することができ、ブタンが好適である。また発泡核剤としてはタルク等を使用できる。ポリスチレン系樹脂押出発泡シートは、厚み0.5mm〜5.0mm、見かけ密度50g/L〜300g/L、坪量80g/m〜300g/mであることが好ましい。
また、押出発泡シートにフィルムをラミネートしても良い。使用するフィルムの種類として、一般のポリスチレンに使用されるもので差し支えない。
この押出発泡シートを真空成型してトレー等の容器を作る。
As a method for producing an extruded foam sheet using the styrenic resin composition of the present invention, a generally known method can be used. As the foaming agent and foaming nucleating agent during extrusion foaming, commonly used substances can be used. As the foaming agent, butane, pentane, chlorofluorocarbon, water and the like can be used, butane is preferred. Moreover, talc etc. can be used as a foam nucleating agent. Extruded polystyrene resin foam sheet had a thickness of 0.5 mm to 5.0 mm, an apparent density of 50 g / to 300 g / L, it is preferably a basis weight of 80g / m 2 ~300g / m 2 .
Further, a film may be laminated on the extruded foam sheet. As a kind of film to be used, it may be one used for general polystyrene.
A container such as a tray is formed by vacuum forming the extruded foam sheet.

また本発明のスチレン系樹脂組成物による板状押出発泡体の製造方法についても、通常知られている方法を用いることができる。押出発泡時の発泡剤や発泡核剤については通常用いられる物質を使用できる。発泡剤としてはブタン、ペンタン、フロン、水等を使用することができ、ブタンが好適である。また発泡核剤としてはタルク等を使用できる。ポリスチレン系樹脂板状押出発泡体は、厚み10mm〜50mm、見かけ密度20g/L〜100g/L、発泡セル径は0.005〜0.5mmであることが好ましい。
次に、実施例および比較例によって本発明をさらに詳細に説明する。
Also, a generally known method can be used as a method for producing a plate-like extruded foam using the styrene resin composition of the present invention. As the foaming agent and foaming nucleating agent during extrusion foaming, commonly used substances can be used. As the foaming agent, butane, pentane, chlorofluorocarbon, water and the like can be used, butane is preferred. Moreover, talc etc. can be used as a foam nucleating agent. The polystyrene resin plate-like extruded foam preferably has a thickness of 10 mm to 50 mm, an apparent density of 20 g / L to 100 g / L, and a foamed cell diameter of 0.005 to 0.5 mm.
Next, the present invention will be described in more detail with reference to examples and comparative examples.

以下に分析法と発泡体特性の測定法を記す。
(1)メルトマスフローレイト(MFR)
JIS K 7210にしたがって200℃、49N荷重でメルトマスフローレイト(グラム/10分)を測定した。
(2)貯蔵弾性率
レオメトリックス社製溶融粘弾性測定装置RMS−800を用いて貯蔵弾性率(Pa)を測定した。
測定は測定温度240℃、窒素気流中で行う。コーン&プレート治具は直径25mm、コーンの角度0.1ラジアンのものを用いた。歪みは20%、角速度100ラジアン/秒から0.01ラジアン/秒まで測定を行った。
(3)容器の腰強度
押出発泡シートを図1に示すトレーに真空成型して腰強度(N)を測定した。トレー容器の大きさは縦12cm、横20cm、深さ2cmである。トレーの横側面より圧縮して極大荷重を腰強度とした。
(4)分子量
分子量の測定に用いた装置及び条件は次の通りである。
使用装置:東ソー製HLC8020
分別カラム:東ソー製TSK−gel−GMH−XL
測定溶媒:テトラヒドロフラン
試料濃度:スチレン樹脂5mgを10mlの溶媒に溶解
測定温度:40℃
流速:0.35ml/分。
(5)板状押出発泡体の発泡体密度
発泡体の重量/発泡体の体積から発泡体密度(kg/m3)を計算した。
(6)板状押出発泡体の平均気泡径
ASTM・D3576−77に準じて発泡体押出断面の平均気泡径(mm)を測定した。
(7)板状押出発泡体の独立気泡率
ASTM・D2856−Aに準じて独立気泡率(%)を測定した。
(8)熱伝導率
下記の装置、条件で熱伝導率(W/(m・K))を測定した。
使用装置:京都電子工業株式会社製 熱伝導率計 Kemtherm QTM−D3
測定温度:室温
The analysis method and the measurement method of foam properties are described below.
(1) Melt mass flow rate (MFR)
The melt mass flow rate (grams / 10 minutes) was measured at 200 ° C. and 49 N load according to JIS K 7210.
(2) Storage elastic modulus The storage elastic modulus (Pa) was measured using a rheometrics melt viscoelasticity measuring device RMS-800.
The measurement is performed at a measurement temperature of 240 ° C. in a nitrogen stream. A cone and plate jig having a diameter of 25 mm and a cone angle of 0.1 radians was used. The strain was measured from 20% and angular velocity from 100 radians / second to 0.01 radians / second.
(3) Waist Strength of Container The extruded foam sheet was vacuum-formed on the tray shown in FIG. 1, and the waist strength (N) was measured. The size of the tray container is 12 cm long, 20 cm wide, and 2 cm deep. Compressed from the side of the tray, the maximum load was used as waist strength.
(4) Molecular weight The apparatus and conditions used for the measurement of molecular weight are as follows.
Equipment used: Tosoh HLC8020
Fractionation column: Tosoh TSK-gel-GMH-XL
Measurement solvent: Tetrahydrofuran Sample concentration: 5 mg of styrene resin dissolved in 10 ml of solvent Measurement temperature: 40 ° C
Flow rate: 0.35 ml / min.
(5) Foam density of plate-like extruded foam The foam density (kg / m 3 ) was calculated from the weight of the foam / volume of the foam.
(6) Average Cell Diameter of Plate Extruded Foam The average cell diameter (mm) of the foam extrusion cross section was measured according to ASTM D3576-77.
(7) Closed cell ratio of plate-like extruded foam The closed cell ratio (%) was measured according to ASTM D2856-A.
(8) Thermal conductivity Thermal conductivity (W / (m · K)) was measured with the following apparatus and conditions.
Equipment used: Thermal conductivity meter, Chemtherm QTM-D3, manufactured by Kyoto Electronics Industry Co., Ltd.
Measurement temperature: room temperature

[実施例1]
[スチレン系樹脂の製造]
スチレン90重量%、エチルベンゼン10重量%の混合液100重量部に対し、2,2−ビス(4,4−ジターシャリーブチルパーオキシシクロヘキシル)プロパンを0.035重量部添加した重合液を4.6リットルの完全混合型反応器に0.78リットル/Hrで連続的に仕込み、101℃に調整した。重合体溶液を引き続き、攪拌器を備え3ゾーンで温度コントロール可能な1.5リットルの層流型反応器−1に連続的に仕込んだ。層流型反応器−1の温度を105℃/108℃/110℃に調整した。
完全混合型反応器および層流型反応器−1と並列に接続された、攪拌器を備え、3ゾーンで温度コントロール可能な1.5リットルの層流型反応器−2にスチレン80重量%、エチルベンゼン20重量%の混合液100重量部に対し、1,1−ジ−t−ブチルパーオキシシクロヘキサン0.07重量部およびn−ドデシルメルカプタン0.35重量部を添加した重合液を0.42リットル/Hrで連続的に仕込み、層流型反応器−2の温度を140℃/150℃/160℃に順次調節した。
層流型反応器−1と層流型反応器−2の重合体溶液は混合され、混合された重合体溶液を引き続き、静的攪拌器を備え3ゾーンで温度コントロール可能な1.5リットルの層流型反応器−3に連続的に仕込んだ。層流型反応器−3の温度を120℃/130℃/145℃に調整した。
[Example 1]
[Manufacture of styrene resin]
A polymerization solution obtained by adding 0.035 parts by weight of 2,2-bis (4,4-ditertiarybutylperoxycyclohexyl) propane to 100 parts by weight of a mixture of 90% by weight of styrene and 10% by weight of ethylbenzene was 4.6. A liter fully mixed reactor was continuously charged at 0.78 liter / hr and adjusted to 101 ° C. The polymer solution was continuously charged into a 1.5 liter laminar flow reactor-1 equipped with a stirrer and temperature-controlled in 3 zones. The temperature of the laminar flow reactor-1 was adjusted to 105 ° C / 108 ° C / 110 ° C.
80% by weight of styrene was added to a 1.5 liter laminar flow reactor-2 equipped with a stirrer connected in parallel with a fully mixed reactor and laminar flow reactor-1, and temperature controlled in 3 zones, 0.42 liter of a polymerization solution obtained by adding 0.07 part by weight of 1,1-di-t-butylperoxycyclohexane and 0.35 part by weight of n-dodecyl mercaptan to 100 parts by weight of a mixture of 20% by weight of ethylbenzene / Hr was continuously charged, and the temperature of the laminar flow reactor-2 was sequentially adjusted to 140 ° C / 150 ° C / 160 ° C.
The polymer solutions in the laminar flow reactor-1 and the laminar flow reactor-2 are mixed, and the mixed polymer solution is continuously added to 1.5 liters of which temperature can be controlled in three zones with a static stirrer. The laminar flow reactor-3 was continuously charged. The temperature of the laminar flow reactor-3 was adjusted to 120 ° C / 130 ° C / 145 ° C.

重合反応器より連続して排出される重合体溶液を直列に配置した2基の、予熱器として0.6リットルの静的混合器を内蔵した4リットルの脱揮タンクに導いた。予熱器温度を240℃とし、脱揮タンク内で240℃に保ちながら、10torrの減圧下、脱揮後ペレタイズした。重合条件を表1−1に示した。また、得られたポリスチレン樹脂のゲルパーミエイション・クロマトマトグラフィーによる分子量測定、メルトマスフローレイト測定、溶融粘弾性側定を行った。この結果を表2に示した。
メルトマスフローレイトは1.8グラム/10分であった。240℃、角速度0.1および100ラジアン/秒で測定した、コーン&プレート型溶融粘弾性測定装置による貯蔵弾性率の比G’(0.1)/G’(100)は0.0044であった。重量平均分子量は33.9万であった。
The polymer solution discharged continuously from the polymerization reactor was led to a 4 liter devolatilization tank containing a 0.6 liter static mixer as a preheater and arranged in series. The preheater temperature was 240 ° C., and devolatilization was performed after devolatilization under a reduced pressure of 10 torr while maintaining the temperature in the devolatilization tank at 240 ° C. The polymerization conditions are shown in Table 1-1. In addition, the obtained polystyrene resin was subjected to molecular weight measurement, gel mass flow rate measurement, and melt viscoelasticity determination by gel permeation chromatography. The results are shown in Table 2.
The melt mass flow rate was 1.8 grams / 10 minutes. The storage modulus ratio G ′ (0.1) / G ′ (100) measured at 240 ° C., angular velocity 0.1 and 100 radians / second by a cone and plate type melt viscoelasticity measuring apparatus was 0.0044. It was. The weight average molecular weight was 330,000.

[ポリスチレン樹脂組成物の発泡押出し]
直径150mmのサーキュラーダイを備えた押出発泡機を用いて、上記のポリスチレン樹脂組成物100重量部に対して、発泡核剤としてタルク(平均粒径1.3μm)を0.15重量部、発泡剤として液化ブタンを4重量部添加して押出発泡シートを製造した。樹脂溶融ゾーンの温度は200〜230℃、ロータリークーラー温度は130〜170℃、ダイス温度を150℃に調整した。押出発泡された発泡体を冷却マンドレルで冷却し、円周上の1点でカッターにより切断後、幅1000mm、シート厚み:1.9mm、見かけ密度:100g/L(発泡倍率:10.5倍)、坪量:180g/mのポリスチレン樹脂発泡シートを得た。
[ポリスチレン樹脂組成物発泡シートの熱成形]
上記発泡シートを真空成形して図1に示す形状の発泡トレー容器を得た。この容器について腰強度の測定を行った結果を表2に示す。
[Polystyrene resin composition foam extrusion]
Using an extrusion foaming machine equipped with a circular die having a diameter of 150 mm, 0.15 parts by weight of talc (average particle size 1.3 μm) as a foam nucleating agent with respect to 100 parts by weight of the above polystyrene resin composition, a foaming agent As a result, 4 parts by weight of liquefied butane was added to produce an extruded foam sheet. The temperature of the resin melting zone was adjusted to 200 to 230 ° C, the rotary cooler temperature was adjusted to 130 to 170 ° C, and the die temperature was adjusted to 150 ° C. The extruded foam is cooled with a cooling mandrel, cut with a cutter at one point on the circumference, then width 1000 mm, sheet thickness 1.9 mm, apparent density: 100 g / L (foaming ratio: 10.5 times) A polystyrene resin foam sheet having a basis weight of 180 g / m 2 was obtained.
[Thermoforming of polystyrene resin composition foam sheet]
The foamed sheet was vacuum formed to obtain a foamed tray container having the shape shown in FIG. Table 2 shows the results of measuring the waist strength of this container.

[実施例2]
液化ブタン量を5重量部にして発泡倍率を高くした以外は実施例1と同様に実施した。
結果を表2に示す。
[Example 2]
The same operation as in Example 1 was carried out except that the amount of liquefied butane was 5 parts by weight and the expansion ratio was increased.
The results are shown in Table 2.

[実施例3、4]
重合条件を表1−1のとおり変更した以外は実施例2と同様に実施して、表2に示す性状のポリスチレン樹脂を製造した。結果を表2に示す。
[Examples 3 and 4]
Except having changed superposition | polymerization conditions as shown in Table 1-1, it implemented similarly to Example 2 and manufactured the polystyrene resin of the property shown in Table 2. The results are shown in Table 2.

[比較例1]
[スチレン系樹脂の製造]
スチレン90重量%、エチルベンゼン10重量%の混合液100重量部に対し、2,2−ビス(4,4−ジターシャリーブチルパーオキシシクロヘキシル)プロパンを0.027重量部添加した重合液を4.6リットルの完全混合型反応器に0.72リットル/Hrで連続的に仕込み、102℃に調整した。完全混合型反応器と並列に接続された、攪拌器を備え3ゾーンで温度コントロール可能な1.5リットルの層流型反応器−1にスチレン70重量%、エチルベンゼン30重量%の混合液100重量部に対し、1,1−ジ−t−ブチルパーオキシシクロヘキサン0.026重量部およびα−メチルスチレンダイマー0.3重量部を添加した重合液を0.25リットル/Hrで連続的に仕込み、層流型反応器−2の温度を125℃/130℃/112℃に順次調節した。
完全混合型反応器と層流型反応器−1の重合体溶液は混合され、混合された重合体溶液を引き続き、静的攪拌器を備え3ゾーンで温度コントロール可能な1.5リットルの層流型反応器−2およびそれと直列に配された、攪拌器を備え3ゾーンで温度コントロール可能な1.5リットルの層流型反応器−3に連続的に仕込んだ。層流型反応器−2および層流型反応器−3の温度を110℃/120℃/130℃および140℃/150℃/160℃に調整した。
重合反応器より連続して排出される重合体溶液を直列に配置した2基の、予熱器として0.6リットルの静的混合器を内蔵した4リットルの脱揮タンクに導いた。予熱器温度を240℃とし、脱揮タンク内で240℃に保ちながら、10torrの減圧下、脱揮後ペレタイズした。
以下実施例1と同様に実施した。重合条件を表1−2に示す。また結果を表2に示す。
[Comparative Example 1]
[Manufacture of styrene resin]
A polymerization solution obtained by adding 0.027 parts by weight of 2,2-bis (4,4-ditertiarybutylperoxycyclohexyl) propane to 100 parts by weight of a mixture of 90% by weight of styrene and 10% by weight of ethylbenzene was 4.6. A liter fully mixed reactor was continuously charged at 0.72 liter / hr and adjusted to 102 ° C. A 1.5-liter laminar flow reactor-1 equipped with a stirrer and connected in parallel with a fully mixed reactor and capable of temperature control in three zones is mixed with 100 wt.% Of a mixture of 70 wt.% Styrene and 30 wt.% Ethylbenzene. Part of which is a polymerization solution prepared by adding 0.026 part by weight of 1,1-di-t-butylperoxycyclohexane and 0.3 part by weight of α-methylstyrene dimer continuously at 0.25 liter / hr, The temperature of the laminar flow reactor-2 was sequentially adjusted to 125 ° C / 130 ° C / 112 ° C.
The polymer solutions in the fully mixed reactor and laminar flow reactor-1 are mixed, and the mixed polymer solution is continuously added to a 1.5 liter laminar flow having a static stirrer and temperature control in three zones. The reactor was continuously charged in a reactor 1.5 and a 1.5 liter laminar flow reactor-3, which was equipped with a stirrer and was temperature-controlled in three zones. The temperature of laminar flow reactor-2 and laminar flow reactor-3 was adjusted to 110 ° C / 120 ° C / 130 ° C and 140 ° C / 150 ° C / 160 ° C.
The polymer solution discharged continuously from the polymerization reactor was led to a 4 liter devolatilization tank containing a 0.6 liter static mixer as a preheater and arranged in series. The preheater temperature was 240 ° C., and devolatilization was performed after devolatilization under a reduced pressure of 10 torr while maintaining the temperature in the devolatilization tank at 240 ° C.
Thereafter, the same procedure as in Example 1 was performed. The polymerization conditions are shown in Table 1-2. The results are shown in Table 2.

[比較例2、3]
重合条件を表2のとおり変更した以外は比較例1と同様に実施して、表3に示す性状のポリスチレン樹脂を製造した。結果を表2に示す。
[Comparative Examples 2 and 3]
Except having changed polymerization conditions as shown in Table 2, it implemented similarly to the comparative example 1, and manufactured the polystyrene resin of the property shown in Table 3. The results are shown in Table 2.

[実施例5]
実施例1〜4で得たポリスチレン樹脂を用いて板状押出発泡体を製造した。
[ポリスチレン樹脂の板状発泡押出]
ポリスチレン樹脂を、単軸押出機、ミキサー、ロータリークーラー、及びダイからなる押出発泡機を用いて、発泡核剤を樹脂に対して1重量部、発泡剤を樹脂に対して5重量部添加し、厚さ30mmの板状押出発泡体を製造した。樹脂の溶融ゾーンの温度は180〜200℃、ロータリークーラー温度は150〜160℃、ダイ温度を120〜130℃に調整した。発泡核剤には日本ミストロン製、ミストロンベーパーを用い、発泡剤にはLPG(ノルマルブタン/イソブタン=70/30<体積分率>)を用いた。得られた発泡体の発泡体密度、平均気泡径、独立気泡率、熱伝導率測定を行った。この結果を表3に示した。
[Example 5]
A plate-like extruded foam was produced using the polystyrene resin obtained in Examples 1 to 4.
[Plastic foam extrusion of polystyrene resin]
Using polystyrene foam, an extrusion foaming machine consisting of a single screw extruder, a mixer, a rotary cooler, and a die, adding 1 part by weight of the foam nucleating agent to the resin and 5 parts by weight of the foaming agent to the resin, A plate-like extruded foam having a thickness of 30 mm was produced. The temperature of the resin melting zone was adjusted to 180 to 200 ° C, the rotary cooler temperature was adjusted to 150 to 160 ° C, and the die temperature was adjusted to 120 to 130 ° C. As the foam nucleating agent, Mistrone Vapor made by Nippon Mistron was used, and as the foaming agent, LPG (normal butane / isobutane = 70/30 <volume fraction>) was used. The foam density, average cell diameter, closed cell rate, and thermal conductivity of the obtained foam were measured. The results are shown in Table 3.

[実施例6〜8]
発泡剤を6重量部にして発泡倍率を高くした以外は実施例5と同様に実施した。結果を表3に示す。
[Examples 6 to 8]
The same operation as in Example 5 was conducted except that the foaming agent was increased to 6 parts by weight and the expansion ratio was increased. The results are shown in Table 3.

[比較例4〜6]
比較例1〜3のポリスチレン樹脂を用いた以外は比較例1と同様に実施して、板状押出発泡体を製造した。結果を表3に示す。
[Comparative Examples 4 to 6]
Except having used the polystyrene resin of Comparative Examples 1-3, it implemented similarly to the comparative example 1 and manufactured the plate-shaped extrusion foam. The results are shown in Table 3.

Figure 2008274168
Figure 2008274168

Figure 2008274168
Figure 2008274168

Figure 2008274168
Figure 2008274168

本発明は、トレー等の発泡容器および断熱材等の板状押出発泡体向けのスチレン系樹脂組成物として好適である。   The present invention is suitable as a styrene resin composition for foamed containers such as trays and plate-like extruded foams such as heat insulating materials.

本発明のスチレン系樹脂組成物の押出発泡シートを真空成型して得られた発泡トレー及びその腰強度試験の概要を示す図である。It is a figure which shows the outline | summary of the foaming tray obtained by vacuum-molding the extrusion foaming sheet of the styrene resin composition of this invention, and its waist strength test.

Claims (5)

200℃、49N荷重で測定したメルトマスフローレイト(MFR)が1.0〜6.0グラム/10分であって、かつコーン&プレート型溶融粘弾性測定装置によって240℃、角速度0.1ラジアン/秒で測定した貯蔵弾性率G’(0.1)と角速度100ラジアン/秒で測定した貯蔵弾性率G’(100)の比G’(0.1)/G’(100)が0.003以上であることを特徴とするスチレン系樹脂組成物。   The melt mass flow rate (MFR) measured at 200 ° C. under a load of 49 N is 1.0 to 6.0 g / 10 min. The ratio G ′ (0.1) / G ′ (100) of the storage elastic modulus G ′ (0.1) measured in seconds and the storage elastic modulus G ′ (100) measured at an angular velocity of 100 radians / second is 0.003. A styrenic resin composition characterized by the above. G’(0.1)/G’(100)が0.003〜0.006である請求項1記載のスチレン系樹脂組成物。   The styrenic resin composition according to claim 1, wherein G '(0.1) / G' (100) is 0.003 to 0.006. 請求項1又は2記載のスチレン系樹脂組成物を押出発泡成形してなる押出発泡シート。   An extruded foam sheet obtained by extrusion foam molding of the styrenic resin composition according to claim 1. 請求項3記載の押出発泡シートを真空成型して得られる容器。   A container obtained by vacuum forming the extruded foam sheet according to claim 3. 請求項1又は2記載のスチレン系樹脂組成物を押出発泡成形してなる板状押出発泡体。   A plate-like extruded foam formed by extrusion foam molding of the styrenic resin composition according to claim 1 or 2.
JP2007121616A 2007-05-02 2007-05-02 Styrenic resin, extruded foam sheet and container, and plate-like extruded foam Active JP5464631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007121616A JP5464631B2 (en) 2007-05-02 2007-05-02 Styrenic resin, extruded foam sheet and container, and plate-like extruded foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007121616A JP5464631B2 (en) 2007-05-02 2007-05-02 Styrenic resin, extruded foam sheet and container, and plate-like extruded foam

Publications (2)

Publication Number Publication Date
JP2008274168A true JP2008274168A (en) 2008-11-13
JP5464631B2 JP5464631B2 (en) 2014-04-09

Family

ID=40052558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007121616A Active JP5464631B2 (en) 2007-05-02 2007-05-02 Styrenic resin, extruded foam sheet and container, and plate-like extruded foam

Country Status (1)

Country Link
JP (1) JP5464631B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043171A (en) * 2008-08-11 2010-02-25 Sekisui Plastics Co Ltd Method for producing polystyrene resin foamed sheet, polystyrene resin foamed sheet, and container
JP2011153261A (en) * 2010-01-28 2011-08-11 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particles, polystyrene-based resin prefoamed particles, polystyrene-based resin foam molding, and method of producing the same
JP2015193761A (en) * 2014-03-31 2015-11-05 積水化成品工業株式会社 Polystyrene resin composition for foaming, and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110931A (en) * 1995-10-24 1997-04-28 Asahi Chem Ind Co Ltd Styrene resin excellent in foamability and its production
JPH10251434A (en) * 1997-03-10 1998-09-22 Jsp Corp Production of polystyrene resin foam board
JP2004075865A (en) * 2002-08-20 2004-03-11 Idemitsu Petrochem Co Ltd Rubber-modified styrene resin composition for blow molding, and its molded article
JP2005281475A (en) * 2004-03-30 2005-10-13 Toyo Styrene Co Ltd Styrene polymer and its production method
JP2007291224A (en) * 2006-04-25 2007-11-08 Ps Japan Corp Polystyrene-based resin extrusion foamed sheet and container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110931A (en) * 1995-10-24 1997-04-28 Asahi Chem Ind Co Ltd Styrene resin excellent in foamability and its production
JPH10251434A (en) * 1997-03-10 1998-09-22 Jsp Corp Production of polystyrene resin foam board
JP2004075865A (en) * 2002-08-20 2004-03-11 Idemitsu Petrochem Co Ltd Rubber-modified styrene resin composition for blow molding, and its molded article
JP2005281475A (en) * 2004-03-30 2005-10-13 Toyo Styrene Co Ltd Styrene polymer and its production method
JP2007291224A (en) * 2006-04-25 2007-11-08 Ps Japan Corp Polystyrene-based resin extrusion foamed sheet and container

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高分子実験学 第9巻 力学的性質I, JPN6013017060, 15 April 1982 (1982-04-15), JP, pages 31 - 1, ISSN: 0002504678 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043171A (en) * 2008-08-11 2010-02-25 Sekisui Plastics Co Ltd Method for producing polystyrene resin foamed sheet, polystyrene resin foamed sheet, and container
JP2011153261A (en) * 2010-01-28 2011-08-11 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particles, polystyrene-based resin prefoamed particles, polystyrene-based resin foam molding, and method of producing the same
JP2015193761A (en) * 2014-03-31 2015-11-05 積水化成品工業株式会社 Polystyrene resin composition for foaming, and application thereof

Also Published As

Publication number Publication date
JP5464631B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US20080108718A1 (en) Foamed sheet containing a styrenic copolymer
JP2003026876A (en) Aromatic vinyl resin composition and molding thereof
JPH1149822A (en) Styrene-based resin and its foam
JP5580557B2 (en) Styrene resin, extruded foam sheet and container
JP2008274024A (en) Polypropylene based resin pre-expansion particle and in-mold expansion molded product
JP5464631B2 (en) Styrenic resin, extruded foam sheet and container, and plate-like extruded foam
JP2005281475A (en) Styrene polymer and its production method
JP2011126996A (en) Styrene-methacrylic acid-methyl methacrylate resin, extruded sheet, and molded article
JP4948028B2 (en) Styrene resin extruded foam sheet and container
JP2009029871A (en) Styrenic resin composition and method for producing foamed sheet
JP6302629B2 (en) Styrene- (meth) acrylic acid copolymer composition
JP5930899B2 (en) Styrenic resin composition for plate-like extruded foam
JP2005239951A (en) Method for producing aromatic vinyl compound-based polymer
JP2014074080A (en) Styrenic resin, extrusion foamed sheet and its molded article
JP6717599B2 (en) Styrene resin, styrene resin foam sheet, and food container
JP5234723B2 (en) Method for producing styrene resin foam sheet
JP2015071678A (en) Heat-resistant resin composition, and foam molding of the same
JP2008144025A (en) Method for producing styrene-based resin foam sheet
JP6333140B2 (en) Extruded foam plate
WO2016067814A1 (en) Modified polypropylene-based resin, foamed polypropylene-based resin sheet, container constituted of foamed resin, and process for producing modified polypropylene-based resin
JP2019156880A (en) Heat-resistant styrene-based resin composition, formed product, foam sheet, and food packaging container
JP2004315692A (en) Styrene-based resin composition for expansion molding, foamed sheet and container
JP2019210437A (en) Styrene-based copolymer and its compact, sheet
JP2017171769A (en) Polystyrene resin foam sheet and method for producing the same, and molding and container
JP3634935B2 (en) Modified polypropylene resin foam and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5464631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150