JP2008272912A - Fine structure body and its manufacturing method - Google Patents

Fine structure body and its manufacturing method Download PDF

Info

Publication number
JP2008272912A
JP2008272912A JP2007122537A JP2007122537A JP2008272912A JP 2008272912 A JP2008272912 A JP 2008272912A JP 2007122537 A JP2007122537 A JP 2007122537A JP 2007122537 A JP2007122537 A JP 2007122537A JP 2008272912 A JP2008272912 A JP 2008272912A
Authority
JP
Japan
Prior art keywords
anodized
fine
metal body
microstructure
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007122537A
Other languages
Japanese (ja)
Inventor
Yuichi Tomaru
雄一 都丸
Shizunami Ri
静波 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007122537A priority Critical patent/JP2008272912A/en
Priority to CNA2008100887895A priority patent/CN101302639A/en
Publication of JP2008272912A publication Critical patent/JP2008272912A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To simply and stably manufacture a fine structure body provided with an anode oxide material having a plurality of pores that have good penetrability and pass through to an electrode. <P>SOLUTION: An anodized metal body 10 is prepared and anodized halfway to form an anodized part 11, which has the plurality of the bottomed pores 12 opened in a surface 10s where anodization of the anodized metal body 10 starts, and a non-anodized part 13. An anodized part 14b positioned between bottom faces of the plurality of the bottomed pores 12 and the non-anodized part 13 is removed until reaching to the non-anodized part 13 by dry etching. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、表面に複数の微細孔を有する微細構造体及びその製造方法に関し、特に金属を陽極酸化して得られる微細構造体に関するものである。   The present invention relates to a microstructure having a plurality of fine holes on the surface and a method for manufacturing the same, and more particularly to a microstructure obtained by anodizing a metal.

金属を陽極酸化して得られる陽極酸化皮膜の複数の微細孔内に、物質を充填させることにより機能性を持たせたデバイスが提案されている。金属(Al等)を陽極酸化して得られる陽極酸化皮膜(Al等)は、陽極酸化の過程で陽極酸化皮膜表面に自然形成され、ナノメータオーダの孔径を有して略規則配列された複数の微細孔を有する金属酸化物である。従って、例えば、陽極酸化皮膜の複数の微細孔に金属を充填させると、ナノオーダの大きさを有する微細金属体が誘電体を介して略規則的に配列されて固定化された微細構造体とすることができる。このような金属微細構造を有する微細構造体は、光の照射により微細金属体に局在プラズモンを生じるので、この局在プラズモンによる電場増強効果を利用した電場増強デバイスとして、センサデバイスや表面増強ラマンデバイス等に利用することができる。 There has been proposed a device having functionality by filling a plurality of fine holes in an anodized film obtained by anodizing a metal. An anodized film (Al 2 O 3 or the like) obtained by anodizing a metal (Al or the like) is naturally formed on the surface of the anodized film in the course of anodization, and has a pore size of nanometer order and is generally ordered. And a metal oxide having a plurality of fine holes. Therefore, for example, when a plurality of fine holes in the anodized film are filled with metal, a fine metal body having a nano-order size is arranged in a regular manner via a dielectric and fixed into a fine structure. be able to. A microstructure having such a metal microstructure produces localized plasmons in the fine metal body by light irradiation. Therefore, sensor devices and surface-enhanced Raman can be used as an electric field enhancing device utilizing the electric field enhancing effect of the localized plasmons. It can be used for devices.

複数の微細孔内への金属の充填方法としては、真空蒸着法等種々の方法を採用することができるが、孔径に対する深さの比が大きい微細孔へ充填する場合等は電解メッキ法が用いられる。電解メッキ法を用いる場合は、微細孔の金属充填を開始する側に電極として導電体を形成し、微細孔内をメッキ液で満たして電解をかけることにより、電極側から金属が析出し、金属成長により微細孔内に金属を充填することができる。   Various methods such as vacuum vapor deposition can be adopted as a method of filling the metal into the plurality of fine holes, but the electrolytic plating method is used when filling the fine holes having a large ratio of the depth to the hole diameter. It is done. When using the electrolytic plating method, a conductor is formed as an electrode on the side where the metal filling of the micropores is started, and the micropores are filled with a plating solution and electrolyzed, so that metal is deposited from the electrode side, The metal can be filled into the micropores by the growth.

陽極酸化皮膜は、被陽極酸化金属体の一表面から略垂直方向に酸化反応が進行して形成され、その進行に伴って表面から深さ方向に複数の微細孔が開孔される。被陽極酸化金属体を完全に陽極酸化しない場合は、非陽極酸化部が残り、非陽極酸化部と微細孔の底面との間にはバリア層と呼ばれる陽極酸化部が存在する。   The anodized film is formed by an oxidation reaction progressing in a substantially vertical direction from one surface of the metal body to be anodized, and a plurality of fine holes are opened from the surface in the depth direction as the progress proceeds. When the anodized metal body is not completely anodized, a non-anodized portion remains, and an anodized portion called a barrier layer exists between the non-anodized portion and the bottom surface of the fine hole.

微細孔の底部から金属を充填する場合には、バリア層は薄いため導電体である非陽極酸化部を電極として利用して微細孔内に金属を充填させることが可能である。この場合、新たに電極を形成する必要がなく、簡易なプロセスにて金属を充填させることが可能であるが、バリア層の存在により析出電位よりも高電位でのメッキ処理が必要となる上、金属の充填状態にばらつきを生じやすいことが知られている。   When the metal is filled from the bottom of the fine hole, since the barrier layer is thin, it is possible to fill the fine hole with the metal by using a non-anodized portion which is a conductor as an electrode. In this case, it is not necessary to form a new electrode and it is possible to fill the metal with a simple process, but due to the presence of the barrier layer, a plating treatment at a higher potential than the deposition potential is required. It is known that the metal filling state tends to vary.

低電位でのメッキが可能であり、充填状態にばらつきを抑制する方法として、陽極酸化皮膜の微細孔を貫通孔として、導電体と微細孔との間にバリア層が存在しない構成とする方法が検討されている。特許文献1には、被陽極酸化金属体の一方の面にTiやNb、貴金属等の細孔終点部材を形成し、その反対側から、細孔終点部材に到達して微細孔が貫通するまで陽極酸化を実施して微細孔と細孔終点部材との間のバリア層を除去した構成とし、細孔終点部材を電極として電解メッキ処理を実施することが記載されている(特許文献1実施例12、特許文献2実施例4他)。   As a method that can be plated at a low potential and suppresses variation in the filling state, there is a method in which the fine holes of the anodized film are formed as through holes and no barrier layer exists between the conductor and the fine holes. It is being considered. In Patent Document 1, a pore end point member such as Ti, Nb, or a noble metal is formed on one surface of a metal to be anodized, and from the opposite side to the pore end point member until the fine hole penetrates. It is described that an anodization is performed to remove the barrier layer between the fine pores and the pore end point member, and the electrolytic plating process is performed using the pore end point member as an electrode (Patent Document 1 Example) 12, Patent Document 2, Example 4, etc.).

また、特許文献1には被陽極酸化金属体を途中まで陽極酸化した後に非陽極酸化部をHgCl飽和溶液を用いたウエットエッチングにより除去し、更に微細孔底部のバリア層をリン酸溶液を用いたウエットエッチングにより除去して貫通孔とすることが記載されている(特許文献1実施例11他)。しかしながら、この方法では、バリア層のエッチングと同時に隣接する微細孔の孔間の隔壁もエッチングされてしまうので、孔間の隔壁が極端に薄くならないようにすると充分な貫通性を確保することができない。特許文献3には、孔間の隔壁に充分な厚みを保った状態で電極まで貫通した孔を有する陽極酸化皮膜を作製する方法として、被陽極酸化金属体を、エッチング溶液に対して易溶性の陽極酸化皮膜を形成可能なアルミニウム合金からなる下部層の上に、難溶性の陽極酸化皮膜を形成可能なアルミニウム合金からなる上部層が積層されたものを用いて、易溶性の下部層の途中まで陽極酸化を実施することにより、微細孔の底部と側面のエッチング性を異ならせた多孔質体の製造方法が開示されている。
特開2001−105400号公報 特開2001−9800号公報 特開20016−283122号公報
In Patent Document 1, the anodized metal body is anodized halfway, the non-anodized portion is removed by wet etching using a saturated solution of HgCl 2 , and the barrier layer at the bottom of the micropore is further phosphoric acid solution It is described that a through-hole is removed by wet etching (Patent Document 1, Example 11 and others). However, in this method, the partition walls between adjacent micropores are etched simultaneously with the etching of the barrier layer, so that sufficient penetrability cannot be ensured if the partition walls between the holes are not made extremely thin. . In Patent Document 3, as a method for producing an anodized film having a hole penetrating to an electrode while maintaining a sufficient thickness in a partition wall between holes, an anodized metal body is easily soluble in an etching solution. Using an aluminum alloy upper layer made of an aluminum alloy capable of forming a poorly soluble anodic oxide film on the lower layer made of an aluminum alloy capable of forming an anodized film, up to the middle of the easily soluble lower layer A method of manufacturing a porous body in which the etching properties of the bottom and side surfaces of micropores are made different by performing anodization is disclosed.
JP 2001-105400 A Japanese Patent Laid-Open No. 2001-9800 Japanese Patent Laid-Open No. 2006-283122

上記の特許文献1及び特許文献2に記載の細孔終点部材まで到達して微細孔が貫通するまで陽極酸化を実施する方法では、特許文献3の段落にも記載されているように、微細孔が貫通孔となるまで陽極酸化を行うと、細孔終点部材から陽極酸化皮膜が剥離しやすく、安定して陽極酸化皮膜を作製することが難しい。   In the method of carrying out anodization until the fine pore end point member described in Patent Literature 1 and Patent Literature 2 is reached and the fine pore penetrates, as described in the paragraph of Patent Literature 3, If the anodic oxidation is performed until it becomes a through hole, the anodic oxide film is easily peeled off from the pore end point member, and it is difficult to stably produce the anodic oxide film.

また、特許文献3に記載のウエットエッチングにより貫通孔を有する陽極酸化皮膜を得る方法において良好な貫通性を安定して得るためには、微細孔の側面はエッチング液に対して難溶性である必要があり、易溶性の陽極酸化皮膜を形成するアルミニウム合金は、非陽極酸化部を残さず且つ貫通孔とさせないように陽極酸化する必要がある。従って、易溶性の陽極酸化皮膜を形成するアルミニウム合金の膜厚をバリア層と略同一にする必要があり、精密な膜厚の制御及び個々の微細孔に対する陽極酸化終了点の制御が必要とされ、プロセスが複雑となる。   In addition, in order to stably obtain good penetrability in the method of obtaining an anodic oxide film having a through hole by wet etching described in Patent Document 3, the side surface of the fine hole needs to be hardly soluble in the etching solution. Therefore, an aluminum alloy that forms a readily soluble anodized film needs to be anodized so as not to leave a non-anodized part and not to be a through hole. Therefore, it is necessary to make the film thickness of the aluminum alloy forming the readily soluble anodic oxide film substantially the same as that of the barrier layer, and it is necessary to precisely control the film thickness and control the anodic oxidation end point for each micropore. The process becomes complicated.

本発明は上記事情に鑑みてなされたものであり、良好な貫通性を有して導電体まで貫通した複数の微細孔を有する陽極酸化物体を備えた微細構造体を、簡易に且つ安定して製造する方法、及び該製造方法により製造された微細構造体を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and a microstructure including an anodic oxide body having a plurality of fine holes penetrating to a conductor having good penetrability can be easily and stably obtained. It is an object to provide a manufacturing method and a microstructure manufactured by the manufacturing method.

本発明の第1の微細構造体の製造方法は、被陽極酸化金属体を用意し、この被陽極酸化金属体を途中まで陽極酸化することにより、被陽極酸化金属体の陽極酸化が開始される表面にて開口した複数の有底の微細孔を有する陽極酸化部と非陽極酸化部とを形成し、複数の有底の微細孔の底面と非陽極酸化部との間に位置する陽極酸化部を、非陽極酸化部に到達するまでドライエッチングにより除去することを特徴とするものである。   In the first microstructure manufacturing method of the present invention, an anodized metal body is prepared, and anodization of the anodized metal body is started by anodizing the anodized metal body halfway. An anodized portion formed between a bottom surface and a non-anodized portion of a plurality of bottomed micropores, wherein an anodized portion and a non-anodized portion having a plurality of bottomed micropores opened on the surface are formed Is removed by dry etching until it reaches the non-anodized portion.

本発明の第2の微細構造体の製造方法は、被陽極酸化金属体を用意し、この被陽極酸化金属体を途中まで陽極酸化することにより、被陽極酸化金属体の陽極酸化が開始される表面にて開口した複数の有底の微細孔を有する陽極酸化部と非陽極酸化部とを形成する工程(A)と、複数の有底の微細孔の底部に充填物質を充填し、複数の有底の微細孔の側面に耐ウエットエッチング性を付与する表面修飾処理を施す工程(B)と、充填物質を除去し、複数の有底の微細孔の底面と非陽極酸化部との間に位置する陽極酸化部を、非陽極酸化部に到達するまでウエットエッチングにより除去する工程(C)とを順次実施することを特徴とするものである。   The second microstructure manufacturing method of the present invention prepares an anodized metal body, and anodizes the anodized metal body halfway to start anodization of the anodized metal body. A step (A) of forming an anodized portion and a non-anodized portion having a plurality of bottomed micropores opened on the surface; and filling a bottom portion of the plurality of bottomed micropores with a filling material; A step (B) of applying a surface modification treatment for imparting wet etching resistance to the side surfaces of the bottomed micropores, and removing the filling material between the bottom surfaces of the plurality of bottomed micropores and the non-anodized portions; The step (C) of removing the anodized portion located by wet etching until reaching the non-anodized portion is sequentially performed.

前記被陽極酸化金属体は、アルミニウム(Al)を主成分とするものであることが好ましい。
本明細書において、「主成分」は、含量90質量%以上の成分と定義する。
The anodized metal body is preferably composed mainly of aluminum (Al).
In the present specification, the “main component” is defined as a component having a content of 90% by mass or more.

本発明の微細構造体は、表面にて開口され、裏面に到達して貫通した複数の微細孔を有する陽極酸化物体と、陽極酸化物体の裏面に形成された導電体とを備えた微細構造体であって、上記本発明の微細構造体の製造方法により製造されたものであることを特徴とするものである。   The microstructure of the present invention includes a anodic oxide body having a plurality of micropores that are open at the front surface and penetrate through the back surface and a conductor formed on the back surface of the anodic oxide body. And it is what was manufactured by the manufacturing method of the fine structure of the said invention, It is characterized by the above-mentioned.

本発明の微細構造体の好適な態様としては、前記複数の微細孔の少なくとも底部に金属が充填されているものが挙げられる。その金属は、メッキ処理により充填されたものであることが好ましい。   As a preferable aspect of the microstructure of the present invention, one in which at least bottom portions of the plurality of fine holes are filled with metal can be cited. The metal is preferably filled by plating.

また本発明の微細構造体のその他の好適な態様としては、前記複数の微細孔のそれぞれが、微細孔内に充填された充填部と、その充填部上に表面より突出して形成され、充填部の径よりも大きく且つ局在プラズモンを誘起しうる大きさの径を有する頭部を備えた突出部とからなる微細金属体を有するものが挙げられる。   Further, as another preferable aspect of the microstructure of the present invention, each of the plurality of micropores is formed with a filling portion filled in the micropores, and protruding from the surface on the filling portion. One having a fine metal body composed of a projecting portion having a head portion having a diameter larger than the diameter and having a size capable of inducing localized plasmons.

前記微細金属体は、複数の微細孔内に、一部が表面から突出するまでメッキ処理を実施することにより形成されたものであることが好ましい。   The fine metal body is preferably formed by performing a plating process in a plurality of fine holes until a part protrudes from the surface.

本発明の微細構造体の製造方法は、被陽極酸化金属体を途中まで陽極酸化することにより複数の有底の微細孔を有する陽極酸化部と非陽極酸化部と形成し、非陽極酸化部を残したまま、バリア層と呼ばれる複数の有底の微細孔の底面と非陽極酸化部との間に位置する陽極酸化部を除去して、複数の微細孔を非陽極酸化部に到達して貫通させるようにしているので、陽極酸化物体とその裏面に形成されている導電体とが、元々一つの被陽極酸化金属体の陽極酸化部と非陽極酸化部とにより構成されているため、無駄がない上に導電体が剥離してしまう恐れがない。   The microstructure manufacturing method of the present invention comprises forming an anodized portion having a plurality of bottomed micropores and a non-anodized portion by anodizing a metal body to be anodized halfway, Leave the anodized part located between the bottom of the bottomed micropores called the barrier layer and the non-anodized part, and leave the micropores through the non-anodized part. Since the anodic oxide body and the conductor formed on the back surface thereof are originally composed of the anodized portion and the non-anodized portion of one anodized metal body, there is no waste. In addition, there is no risk of the conductor peeling off.

また、貫通化させる工程は、いずれもエッチング処理により複数の微細孔を一括して貫通化させるものである。ドライエッチングにより貫通化させる方法では、ドライエッチングの直進性により微細孔内の側面等に及ぼす影響が少ないため、バリア層のみを安定して除去して貫通化させることができる。またウエットエッチングにより貫通化させる方法では、微細孔内部の側面がエッチングされないように、側面に表面修飾を施した後に、バリア層のみをウエットエッチングにより除去するため、孔間の隔壁が極端に薄くなってしまうことがない。従って、どちらのエッチング方法を用いても充分な貫通性を確保するまでエッチング処理を施すことが可能である。   Moreover, in the step of penetrating, all of the plurality of fine holes are penetrated at once by an etching process. In the method of penetrating by dry etching, since the straight advanceability of dry etching has little influence on the side surfaces in the fine holes, only the barrier layer can be stably removed and penetrated. In addition, in the method of penetrating by wet etching, only the barrier layer is removed by wet etching after surface modification is performed on the side surfaces so that the side surfaces inside the fine holes are not etched, so that the partition walls between the holes become extremely thin. There is no end. Therefore, it is possible to carry out the etching process until sufficient penetrability is ensured regardless of which etching method is used.

従って、本発明によれば、良好な貫通性を有して導電体まで貫通した複数の微細孔を有する陽極酸化物体を備えた微細構造体を、簡易に且つ安定して製造することができる。   Therefore, according to the present invention, it is possible to easily and stably manufacture a microstructure including an anodic oxide body having a plurality of micropores penetrating to a conductor with good penetrability.

「微細構造体の製造方法の第1実施形態」
図面を参照し、本発明に係る微細構造体の製造方法の第1実施形態について説明する。図1及び図2は製造方法を示す工程図であり、図1は斜視図、図2は図1に対応する断面図である。
“First Embodiment of Manufacturing Method of Microstructure”
A first embodiment of a method for manufacturing a microstructure according to the present invention will be described with reference to the drawings. 1 and 2 are process diagrams showing a manufacturing method, FIG. 1 is a perspective view, and FIG. 2 is a cross-sectional view corresponding to FIG.

まず、被陽極酸化金属体10として、アルミニウム(Al)を主成分とし、微少不純物を含んでいても被陽極酸化金属体10を用意する(図1(a)、図2(a))。被陽極酸化金属体10の形状は制限されず、板状等が挙げられる。また、支持体の上に被陽極酸化金属体10が層状に成膜されたものなど、支持体付きの形態で用いることも差し支えない。   First, as the metal body 10 to be anodized, the metal body 10 to be anodized is prepared even if it contains aluminum (Al) as a main component and contains minute impurities (FIGS. 1A and 2A). The shape of the anodized metal body 10 is not limited, and examples thereof include a plate shape. Further, it may be used in a form with a support such as a layered metal object 10 to be anodized on a support.

次に、被陽極酸化金属体10を途中まで陽極酸化して、複数の有底の微細孔12を有するアルミナ(Al)層からなる陽極酸化皮膜(陽極酸化部、陽極酸化物体)11を形成する。図1(b)、図2(b)に示されるように、陽極酸化は、表面10s(図示上面)から該面に対して略垂直方向に酸化反応が進行し、略ストレートな微細孔12を有する陽極酸化皮膜11が生成される。 Next, the anodized metal body 10 is anodized halfway, and an anodized film (anodized portion, anodized body) 11 composed of an alumina (Al 2 O 3 ) layer having a plurality of bottomed fine holes 12 is formed. Form. As shown in FIG. 1B and FIG. 2B, in the anodic oxidation, an oxidation reaction proceeds from the surface 10s (upper surface in the drawing) in a direction substantially perpendicular to the surface, so that the substantially straight fine holes 12 are formed. The anodic oxide film 11 is produced.

陽極酸化は、例えば、被陽極酸化金属体10を陽極とし、カーボンやアルミニウム等を陰極(対向電極)として、これらを陽極酸化用電解液に浸漬させ、陽極と陰極の間に電圧を印加することで実施できる。電解液としては制限されず、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等の酸を、1種又は2種以上含む酸性電解液が好ましく用いられる。   In anodization, for example, the metal body 10 to be anodized is used as an anode, carbon or aluminum is used as a cathode (counter electrode), these are immersed in an anodizing electrolyte, and a voltage is applied between the anode and the cathode. Can be implemented. The electrolytic solution is not limited, and an acidic electrolytic solution containing one or more acids such as sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, and amidosulfonic acid is preferably used.

陽極酸化により生成される陽極酸化皮膜11は、平面視略正六角形状の微細柱状体14が隣接して配列した構造を有するものとなる。各微細柱状体14の略中心部には、表面11sから深さ方向に微細孔12が開孔される。また、各微細孔12及び微細柱状体14の底面は、図示する如く、丸みを帯びた形状を有している。陽極酸化により生成される陽極酸化皮膜の構造は、益田秀樹、「陽極酸化法によるメソポーラスアルミナの調製と機能材料としての応用」、材料技術Vol.15,No.10、1997年、p.34等に記載されている。   The anodized film 11 produced by anodization has a structure in which fine columnar bodies 14 having a substantially regular hexagonal shape in plan view are arranged adjacent to each other. A minute hole 12 is opened in a depth direction from the surface 11 s at a substantially central portion of each minute columnar body 14. Further, the bottom surfaces of the fine holes 12 and the fine columnar bodies 14 have rounded shapes as shown in the figure. The structure of the anodized film produced by anodization is shown by Hideki Masuda, “Preparation of mesoporous alumina by anodization and application as a functional material”, Material Technology Vol.15, No.10, 1997, p.34, etc. It is described in.

陽極酸化条件は、非陽極酸化部が残る範囲内で適宜設計すればよい。電解液としてシュウ酸を用いる場合、好適な条件例としては、電解液濃度0.5M、液温15℃、印加電圧40Vが挙げられる。電解時間を変えることで、任意の層厚の陽極酸化皮膜11を生成できる。陽極酸化前の被陽極酸化金属体10の厚みを、生成される陽極酸化皮膜11よりも厚く設定しておけば、非陽極酸化部13が残り、非陽極酸化部13上に設けられ、平面視略同一形状の多数の微細孔12が、陽極酸化皮膜表面11sにおいて開口して略規則配列した陽極酸化皮膜11を得ることができる。   What is necessary is just to design anodizing conditions suitably in the range with which a non-anodizing part remains. When oxalic acid is used as the electrolytic solution, preferable conditions include an electrolytic solution concentration of 0.5 M, a liquid temperature of 15 ° C., and an applied voltage of 40 V. An anodic oxide film 11 having an arbitrary layer thickness can be generated by changing the electrolysis time. If the thickness of the anodized metal body 10 before anodization is set to be thicker than the generated anodized film 11, the non-anodized portion 13 remains and is provided on the non-anodized portion 13. Anodized film 11 in which a large number of micropores 12 having substantially the same shape are opened on the surface 11s of the anodized film and arranged in a regular order can be obtained.

通常、互いに隣接する微細孔12同士のピッチは10〜500nmの範囲で、また微細孔の孔径は、5〜400nmの範囲でそれぞれ制御可能である。特開2001−9800号公報や特開2001−138300号公報には、微細孔の形成位置や孔径をより細かく制御する方法が開示されている。これらの方法を用いることにより、上記範囲内において任意の孔径及び深さを有する微細孔12を略規則的に配列形成することができる。   Usually, the pitch between adjacent fine holes 12 can be controlled in the range of 10 to 500 nm, and the diameter of the fine holes can be controlled in the range of 5 to 400 nm. Japanese Patent Application Laid-Open Nos. 2001-9800 and 2001-138300 disclose methods for finely controlling the formation position and the hole diameter of fine holes. By using these methods, the fine holes 12 having an arbitrary hole diameter and depth within the above-mentioned range can be arranged almost regularly.

次に、ドライエッチング処理を施して有底の微細孔12の底面と非陽極酸化部13との間に位置する陽極酸化部(バリア層)14bを除去して、微細孔12を非陽極酸化部13に到達して貫通させ、複数の貫通孔である微細孔12が表面11sにて開口した陽極酸化皮膜11の裏面11rに非陽極酸化部13からなる導電体を備えた微細構造体1を得る(図1(c)、図2(c))。ドライエッチング処理としては特に制限なく、反応性イオンエッチング等が挙げられる。ドライエッチングは、直進性が高いため、微細孔12の開口部側からドライエッチングを施すことにより、微細孔12の側面をほとんどエッチングすることなく、バリア層14bをエッチングにより除去することができる。この際、陽極酸化皮膜11の表面11sもドライエッチングにより除去されるので、ドライエッチングによる除去量を考慮して、陽極酸化皮膜11の層厚を設計しておくことが好ましい。
以上のようにして、本実施形態の微細構造体1は製造される。
Next, dry etching treatment is performed to remove the anodized portion (barrier layer) 14b located between the bottom surface of the bottomed microhole 12 and the non-anodized portion 13, and the microhole 12 is removed from the non-anodized portion. 13 is obtained, and a fine structure 1 having a conductor made of a non-anodized portion 13 is obtained on the back surface 11r of the anodized film 11 having a plurality of through-holes of fine holes 12 opened at the surface 11s. (FIG. 1 (c), FIG. 2 (c)). The dry etching process is not particularly limited and includes reactive ion etching. Since dry etching has high straightness, the barrier layer 14b can be removed by etching with little etching of the side surfaces of the fine holes 12 by performing dry etching from the opening side of the fine holes 12. At this time, since the surface 11s of the anodized film 11 is also removed by dry etching, it is preferable to design the layer thickness of the anodized film 11 in consideration of the amount removed by dry etching.
As described above, the microstructure 1 of the present embodiment is manufactured.

本実施形態の微細構造体1の製造方法は、被陽極酸化金属体10を陽極酸化することにより複数の有底の微細孔12を有する陽極酸化皮膜11と非陽極酸化部13とを形成し、非陽極酸化部13を残したままバリア層と呼ばれる複数の有底の微細孔12の底面と非陽極酸化部13との間に位置する陽極酸化部14bを除去して、複数の微細孔12を非陽極酸化部13に到達して貫通させるようにしているので、陽極酸化皮膜11とその裏面に形成されている導電体が、元々一つの被陽極酸化金属体10の陽極酸化部11と非陽極酸化部13とにより構成されているため、無駄がない上に導電体が剥離してしまう恐れがない。   In the manufacturing method of the microstructure 1 of the present embodiment, the anodized metal body 10 is anodized to form an anodized film 11 having a plurality of bottomed micropores 12 and a non-anodized portion 13, By removing the anodized portion 14b located between the bottom surface of the plurality of bottomed micropores 12 called the barrier layer and the nonanodized portion 13 while leaving the non-anodized portion 13 left, Since the non-anodized portion 13 is reached and penetrated, the anodic oxide film 11 and the conductor formed on the back surface thereof originally form the anodized portion 11 of the single anodized metal body 10 and the non-anodized portion. Since it is comprised by the oxidation part 13, there is no possibility that a conductor will peel, and there is no waste.

また、貫通化させる工程は、エッチング処理により複数の微細孔12を一括して貫通化させるものである。ドライエッチングにより貫通化させる本実施形態では、ドライエッチングの直進性により微細孔12内の側面等に及ぼす影響が少ないため、バリア層14bのみを安定して除去して貫通化させることができ、充分な貫通性を確保するまでエッチング処理を施すことが可能である。   Further, the step of penetrating is a step of penetrating the plurality of micro holes 12 by etching. In the present embodiment in which penetration is performed by dry etching, since the straight advanceability of dry etching has little influence on the side surfaces and the like in the micropores 12, only the barrier layer 14b can be stably removed and penetrated. It is possible to perform an etching process until sufficient penetrability is ensured.

従って、本実施形態によれば、良好な貫通性を有して導電体まで貫通した複数の微細孔12を有する陽極酸化皮膜11を備えた微細構造体1を、簡易に且つ安定して製造することができる。   Therefore, according to the present embodiment, the microstructure 1 including the anodized film 11 having a plurality of fine holes 12 having good penetrability and penetrating to the conductor is easily and stably manufactured. be able to.

微細構造体1は、複数の貫通孔である微細孔12を表面に有する陽極酸化皮膜11の裏面に、非陽極酸化部13からなる導電体を備えたものである。背景技術において述べたように、陽極酸化皮膜は、陽極酸化の過程で陽極酸化皮膜表面に自然形成され、ナノメータオーダの孔径を有して略規則配列された複数の微細孔を有する金属酸化物であるので、微細構造体1の複数の微細孔12に金属を充填することにより、光の照射により微細金属体に局在プラズモンを生じる電場増強デバイスとすることができる。図3に微細構造体1の微細孔12に金属を充填させた場合の一例を示す。図3(a)は斜視図、(b)は断面図である。   The fine structure 1 includes a conductor made of a non-anodized portion 13 on the back surface of an anodized film 11 having a plurality of fine holes 12 as through holes on the surface. As described in the background art, an anodized film is a metal oxide that is formed naturally on the surface of an anodized film in the process of anodization, and has a plurality of micropores arranged in a regular order with a pore size of nanometer order. Therefore, by filling the plurality of fine holes 12 of the fine structure 1 with metal, an electric field enhancing device that generates localized plasmons in the fine metal body by light irradiation can be obtained. FIG. 3 shows an example when the fine holes 12 of the fine structure 1 are filled with metal. 3A is a perspective view, and FIG. 3B is a cross-sectional view.

図示されるように、微細構造体2は、微細構造体1の略規則配列された複数の微細孔12に、充填部21と突出部22とからなる微細金属体20を備えたものであり、微細金属体20は、微細孔12に非陽極酸化部13を電極として電解メッキ処理を施すことにより形成されたものである。   As shown in the drawing, the fine structure 2 is provided with a fine metal body 20 including a filling portion 21 and a protruding portion 22 in a plurality of fine holes 12 arranged in a substantially regular manner in the fine structure 1. The fine metal body 20 is formed by subjecting the fine holes 12 to electrolytic plating using the non-anodized portion 13 as an electrode.

電解メッキを行う場合には、電場が強い微細孔12の非陽極酸化部13側から優先的に金属が析出する。この電解メッキ処理を継続して行うことにより、微細孔12内に金属が充填されて微細金属体20の充填部21が形成される。充填部21が形成された後、更に電解メッキ処理を続けると、微細孔12から充填金属が溢れるが、微細孔12付近の電場が強いことから、微細孔12周辺に継続して金属が析出していき、充填部21上に陽極酸化皮膜表面11sより突出し、充填部21の径よりも大きい径を有する頭部を備えた突出部22が形成される。本実施形態では、突出部22が充填部21の径よりも大きい径を有する頭部からなる構成としている。   When electrolytic plating is performed, metal is preferentially deposited from the non-anodized portion 13 side of the fine hole 12 having a strong electric field. By continuously performing the electrolytic plating process, the fine holes 12 are filled with metal, and the filling portion 21 of the fine metal body 20 is formed. If the electrolytic plating process is continued after the filling portion 21 is formed, the filling metal overflows from the fine holes 12, but since the electric field near the fine holes 12 is strong, the metal is continuously deposited around the fine holes 12. As a result, a protruding portion 22 is formed on the filling portion 21, which protrudes from the surface of the anodic oxide film 11 s and has a head having a diameter larger than the diameter of the filling portion 21. In the present embodiment, the protruding portion 22 is constituted by a head having a diameter larger than the diameter of the filling portion 21.

微細金属体20は、突出部22(頭部)の大きさが、局在プラズモンを誘起可能な大きさであればよいが、入射光Lの波長を考慮すると、突出部22の径が10nm以上300nm以下の範囲であることが好ましい。   The fine metal body 20 may be any size as long as the protruding portion 22 (head) can induce localized plasmons. However, in consideration of the wavelength of the incident light L, the diameter of the protruding portion 22 is 10 nm or more. A range of 300 nm or less is preferable.

互いに隣接する突出部22同士は離間されていることが好ましく、その平均離間距離wは、数nm〜10nmの範囲であることがより好ましい。平均離間距離が上記範囲内である場合は、局在プラズモン効果による電場増強効果を効果的に得ることができる。   The adjacent protrusions 22 are preferably separated from each other, and the average separation distance w is more preferably in the range of several nm to 10 nm. When the average separation distance is within the above range, the electric field enhancement effect by the localized plasmon effect can be effectively obtained.

局在プラズモン現象は、凸部の自由電子が光の電場に共鳴して振動することで凸部周辺に強い電場を生じる現象であるので、微細金属体20としては特に制限なく、Au,Ag,Cu,Pt,Ni,Ti等が挙げられ、電場増強効果の高いAu,Ag等が特に好ましい。   The localized plasmon phenomenon is a phenomenon in which a free electric field in a convex portion oscillates in resonance with the electric field of light to generate a strong electric field around the convex portion. Therefore, the fine metal body 20 is not particularly limited, and Au, Ag, Cu, Pt, Ni, Ti and the like can be mentioned, and Au, Ag and the like having a high electric field enhancing effect are particularly preferable.

微細構造体2は、微細構造体1の複数の微細孔12内に、電解メッキ処理により金属を充填させて形成されたものである。微細構造体1の複数の微細孔12と電極となる非陽極酸化部13との間にバリア層が存在しないことから、微細孔12内に金属の析出電位に近い低電位にてメッキ処理を施すことが可能であり、バリア層の存在により充填むらを生じる恐れもなく良好に金属を充填させることができ、従って突出部22の大きさのばらつきも少ないものとすることができる。従って、本実施形態によれば、大きさの均一性の高いナノオーダの複数の微細金属体が略規則的に配列されて固定化された微細構造体2を提供することができる。   The fine structure 2 is formed by filling a plurality of fine holes 12 of the fine structure 1 with a metal by electrolytic plating. Since there is no barrier layer between the plurality of fine holes 12 of the fine structure 1 and the non-anodized portion 13 to be an electrode, a plating process is performed in the fine holes 12 at a low potential close to the metal deposition potential. It is possible to fill the metal satisfactorily without the occurrence of filling unevenness due to the presence of the barrier layer, and therefore the variation in the size of the protrusion 22 can be reduced. Therefore, according to the present embodiment, it is possible to provide a microstructure 2 in which a plurality of nano-order fine metal bodies having high uniformity in size are arranged and fixed substantially regularly.

微細構造体2は、上記のように大きさの均一性の高いナノオーダの複数の微細金属体が略規則的に配列されて固定化されたものであるので、光の照射により微細金属体に局在プラズモンを生じる電場増強デバイスとして、センサデバイスや表面増強ラマンデバイス等に利用することができる。   As described above, the fine structure 2 is composed of a plurality of nano-order fine metal bodies having a highly uniform size, which are arranged in a regular manner and fixed thereto. As an electric field enhancing device that generates plasmons, it can be used for sensor devices, surface-enhanced Raman devices, and the like.

「微細構造体の製造方法の第2実施形態」
図面を参照し、本発明に係る微細構造体の製造方法の第2実施形態について説明する。図4は製造方法を示す工程断面図である。
“Second Embodiment of Manufacturing Method of Microstructure”
A second embodiment of the method for manufacturing a microstructure according to the present invention will be described with reference to the drawings. FIG. 4 is a process sectional view showing the manufacturing method.

第1実施形態では、ドライエッチングにより微細孔12の底面と非陽極酸化部13との間に位置する陽極酸化部(バリア層)14bを除去して非陽極酸化部13に到達して貫通した微細孔12を形成したが、第2実施形態ではウエットエッチングによりバリア層14bの除去を行う。エッチング方法以外は第1実施形態と同様であるが、直進性のあるドライエッチングに比して、ウエットエッチングでは、エッチング液が接触している部分が同様に反応してエッチングされてしまうため、微細孔12の側面の陽極酸化物体がエッチングされないように、側面部分のみを耐エッチング性の表面修飾を施す前処理をした後にウエットエッチングを行う。以下にその製造方法を説明する。   In the first embodiment, the anodized portion (barrier layer) 14b located between the bottom surface of the fine hole 12 and the non-anodized portion 13 is removed by dry etching to reach the non-anodized portion 13 and penetrate therethrough. Although the hole 12 is formed, in the second embodiment, the barrier layer 14b is removed by wet etching. Except for the etching method, it is the same as in the first embodiment. However, in wet etching, the portion in contact with the etchant reacts and is etched in the same manner as compared with the dry etching having straightness. In order to prevent the anodic oxide body on the side surface of the hole 12 from being etched, wet etching is performed after a pretreatment for applying a surface modification with etching resistance to only the side surface portion. The manufacturing method will be described below.

(工程(A))
第1実施形態と同様に、まず被陽極酸化金属体10として、アルミニウム(Al)を主成分とし、微少不純物を含んでいても被陽極酸化金属体10を用意し(図4(a))、陽極酸化を途中まで実施して複数の有底の微細孔12を有するアルミナ(Al)層からなる陽極酸化皮膜11(陽極酸化部)と非陽極酸化部13とを形成する(図4(b))。陽極酸化の好ましい条件や材料等は第1実施形態と同様である。
(Process (A))
As in the first embodiment, first, as the metal body 10 to be anodized, the metal body 10 to be anodized is prepared even if it contains aluminum (Al) as a main component and contains minute impurities (FIG. 4A). Anodization is performed halfway to form an anodized film 11 (anodized portion) and a non-anodized portion 13 made of an alumina (Al 2 O 3 ) layer having a plurality of bottomed micropores 12 (FIG. 4). (B)). Preferred conditions and materials for anodization are the same as those in the first embodiment.

(工程(B))
工程(B)は、ウエットエッチング処理を行う前処理として、微細孔12の側面に耐ウエットエッチング性の表面修飾処理を施す工程である。まず、図4(c)に示されるように、微細孔12の底部12bが表面修飾されないように充填物31を底部12bに充填する。充填物31としては、表面修飾処理から底部12bを保護可能なものであれば特に制限なく、炭素やPb、Sn、ZnなどのAlより融点の低い金属、ポリスチレン(PS)球などが挙げられる。充填物31を蒸着等により充填する場合は、図示されるように、陽極酸化皮膜11の表面11sにも充填物31と同様の物質が付着されてもよい。
(Process (B))
The step (B) is a step of performing wet etching resistance surface modification treatment on the side surfaces of the fine holes 12 as pretreatment for performing wet etching treatment. First, as shown in FIG. 4C, the bottom 12b is filled with a filling 31 so that the bottom 12b of the micropores 12 is not surface-modified. The filler 31 is not particularly limited as long as it can protect the bottom 12b from the surface modification treatment, and examples thereof include carbon, metals having a melting point lower than Al, such as Pb, Sn, and Zn, and polystyrene (PS) spheres. When filling the filling material 31 by vapor deposition or the like, a substance similar to the filling material 31 may be attached to the surface 11s of the anodized film 11 as shown in the drawing.

充填物31は微細孔12の底部12bのみに接して充填されることが好ましい。充填物31が微細孔12の側面に接して充填されている場合等は、その部分の側面は表面修飾が施されないことになり、後工程(C)により良好にバリア層14bのみを除去することができなくなる可能性がある。従って、表面修飾処理の前に、微細孔12にポアワイド処理を施して、微細孔12の孔経を広げることにより充填物31が微細孔12の側面に接していないようにすることが好ましい。ポアワイド処理としては、充填物31が溶解せず、陽極酸化皮膜11の構成材料(アルミナ)が溶解するもの、若しくは陽極酸化皮膜11の構成材料に比して充填物31の溶解速度が遅いものを用いて(りん酸等)微細孔12の側面を溶解させる方法等が挙げられる。次に、図4(d)に示されるように、微細孔12の側面に耐エッチング性の表面修飾32を施す。表面修飾処理としては、ウエットエッチングの際に使用する試薬に対して難溶性となるように側面が表面修飾される処理であればよく、例えば珪酸ソーダで処理するシリケート処理により耐酸特性を付与する処理等が挙げられる。   It is preferable that the filling 31 is filled in contact with only the bottom 12b of the fine hole 12. When the filler 31 is filled in contact with the side surface of the fine hole 12, the side surface of the portion is not subjected to surface modification, and only the barrier layer 14b is removed favorably in the subsequent step (C). May not be possible. Therefore, before the surface modification treatment, it is preferable that the pores 12 are subjected to a pore-wide treatment to widen the diameter of the fine holes 12 so that the filler 31 is not in contact with the side surfaces of the fine holes 12. As the pore-wide treatment, the filler 31 does not dissolve and the constituent material (alumina) of the anodized film 11 dissolves, or the filler 31 has a slower dissolution rate than the constituent material of the anodized film 11. And a method of dissolving the side surfaces of the micropores 12 (such as phosphoric acid). Next, as shown in FIG. 4D, an etching resistant surface modification 32 is applied to the side surface of the micropore 12. As the surface modification treatment, any treatment may be used as long as the side surface is modified so as to be hardly soluble in the reagent used in wet etching, for example, treatment for imparting acid resistance characteristics by silicate treatment with sodium silicate. Etc.

(工程(C))
工程(C)は、充填物31を除去した後に、バリア層14bをウエットエッチングにより除去する工程である。
(Process (C))
Step (C) is a step of removing the barrier layer 14b by wet etching after removing the filler 31.

まず図4(e)に示されるように微細孔12の底部12bに充填した充填物31を除去してバリア層14bを露出させる。充填物31の除去方法としては、表面修飾32を除去せずに充填物31が除去されれば特に制限なく、充填物31の材質に依存して好ましい方法を用いればよい。例えば充填物31等が炭素である場合や融点が低い金属である場合は熱処理により、PS球等の場合は有機溶剤等で溶解させて除去すればよい。陽極酸化皮膜11の表面11sに充填物31と同様物質が付着されている場合はその付着物質も充填物31と同時に除去する。   First, as shown in FIG. 4E, the filler 31 filled in the bottom 12b of the micropore 12 is removed to expose the barrier layer 14b. The method for removing the filler 31 is not particularly limited as long as the filler 31 is removed without removing the surface modification 32, and a preferred method may be used depending on the material of the filler 31. For example, when the filler 31 or the like is carbon or a metal having a low melting point, it may be removed by heat treatment, and when it is a PS sphere or the like, it is dissolved by an organic solvent or the like. When a substance similar to the filler 31 is attached to the surface 11 s of the anodized film 11, the attached substance is also removed simultaneously with the filler 31.

次に、図4(f)に示されるように、バリア層14bをウエットエッチングにより除去して微細孔12を非陽極酸化部13に到達して貫通させ、複数の貫通孔である微細孔12が表面11sにて開口した陽極酸化皮膜11の裏面に非陽極酸化部13からなる導電体を備えた微細構造体3を得る。ウエットエッチング液としては陽極酸化皮膜11の構成材料(アルミナ)が溶解可能であれば特に制限されず、りん酸等が挙げられる。   Next, as shown in FIG. 4 (f), the barrier layer 14 b is removed by wet etching so that the fine holes 12 reach the non-anodized portion 13 and penetrate therethrough, so that the fine holes 12 as a plurality of through holes are formed. A microstructure 3 having a conductor made of a non-anodized portion 13 on the back surface of the anodized film 11 opened at the front surface 11s is obtained. The wet etching solution is not particularly limited as long as the constituent material (alumina) of the anodic oxide film 11 can be dissolved, and examples thereof include phosphoric acid.

微細構造体3は、微細孔12の側面に表面修飾32を有している点で微細構造体1とは異なっている。表面修飾32は必要に応じて除去しても構わないが、微細孔12に金属を充填させて電場増強デバイス等に利用する場合等は除去しなくてもよい。
以上のようにして、本実施形態の微細構造体3は製造される。
The fine structure 3 is different from the fine structure 1 in that a surface modification 32 is provided on the side surface of the fine hole 12. The surface modification 32 may be removed as necessary, but may not be removed when the fine holes 12 are filled with metal and used for an electric field enhancing device or the like.
As described above, the microstructure 3 of the present embodiment is manufactured.

本実施形態の微細構造体3の製造方法は、微細孔12の貫通化させる工程が異なる以外は上記微細構造体1と略同様の方法であり、ウエットエッチングにおいても、微細孔12内部の側面がエッチングされないように、側面に表面修飾を施した後に、バリア層14bのみを除去するため、孔間の隔壁が極端に薄くなってしまうことがなく充分な貫通性を確保するまでエッチング処理を施すことが可能である。従って、上記微細構造体1の製造方法と同様の効果を奏し、本実施形態においても、良好な貫通性を有して導電体まで貫通した複数の微細孔12を有する陽極酸化皮膜11を備えた微細構造体3を、簡易に且つ安定して製造することができる。   The manufacturing method of the fine structure 3 of the present embodiment is substantially the same method as the fine structure 1 except that the step of penetrating the fine holes 12 is different, and the side surface inside the fine holes 12 is also in wet etching. In order to prevent etching, only the barrier layer 14b is removed after the side surface is modified, so that the partition wall between the holes is not extremely thin, and etching is performed until sufficient penetrability is ensured. Is possible. Therefore, the same effect as the manufacturing method of the fine structure 1 is obtained, and the present embodiment also includes the anodized film 11 having a plurality of fine holes 12 having good penetrability and penetrating to the conductor. The fine structure 3 can be manufactured easily and stably.

微細構造体3は、微細孔12の側面に表面修飾32を有している以外は微細構造体1と同様の構成としているので、微細構造体1と同様に、複数の微細孔12に金属を充填することにより、光の照射により微細金属体に局在プラズモンを生じる電場増強デバイスとすることができる。図5に微細構造体3の微細孔12に金属を充填させた場合の一例(微細構造体4)を示す。   Since the fine structure 3 has the same structure as the fine structure 1 except that the surface modification 32 is provided on the side surface of the fine hole 12, the metal is formed in the plurality of fine holes 12 similarly to the fine structure 1. By filling, it can be set as the electric field enhancement device which produces a local plasmon in a fine metal body by light irradiation. FIG. 5 shows an example (fine structure 4) when the fine holes 12 of the fine structure 3 are filled with metal.

図示されるように、微細構造体4は、微細孔12の側面に表面修飾32を有している以外は微細構造体2と同様の構成を有しているので、微細構造体2と同様の方法により製造することができ、その効果も同様である。従って、微細構造体4も光の照射により微細金属体に局在プラズモンを生じる電場増強デバイスとして、センサデバイスや表面増強ラマンデバイス等に利用することができる。   As shown in the drawing, the microstructure 4 has the same configuration as the microstructure 2 except that the surface modification 32 is provided on the side surface of the micropore 12, and therefore the same as the microstructure 2. It can be manufactured by the method, and the effect is also the same. Therefore, the fine structure 4 can also be used for a sensor device, a surface-enhanced Raman device, and the like as an electric field enhancing device that generates localized plasmons in a fine metal body by light irradiation.

(設計変更例)
上記実施形態においては、微細構造体の陽極酸化部が陽極酸化皮膜である場合について説明したが、陽極酸化皮膜以外の陽極酸化物体を有する微細構造体にも適用可能である。
また、被陽極酸化金属体10の主成分として、Alのみを挙げたが、陽極酸化可能な任意の金属が使用できる。Al以外の陽極酸化可能な金属としては、Ti、Ta、Hf、Zr等が挙げられる。また、被陽極酸化金属体10は、陽極酸化可能な金属を2種以上含むものであってもよい。
(Design change example)
In the above embodiment, the case where the anodized portion of the microstructure is an anodized film has been described. However, the present invention is applicable to a microstructure having an anodized body other than the anodized film.
Moreover, although only Al was mentioned as a main component of the metal body 10 to be anodized, any metal that can be anodized can be used. Examples of metals that can be anodized other than Al include Ti, Ta, Hf, and Zr. Further, the anodized metal body 10 may contain two or more kinds of metals that can be anodized.

陽極酸化を用いる場合には、条件によっては規則性の低い構造も得られる。規則性の低い凹凸金属基板を用いて、上記実施形態と同様の方法で得られる微細構造体も、本発明に含まれる。   When anodic oxidation is used, a structure with low regularity can be obtained depending on conditions. A fine structure obtained by a method similar to that of the above embodiment using an irregular metal substrate with low regularity is also included in the present invention.

また、微細構造体1及び微細構造体3の複数の微細孔12に、充填部21と突出部22とからなる微細金属体20を備えた場合について説明したが、金属の充填形態は特に制限されない。   Moreover, although the case where the plurality of fine holes 12 of the fine structure 1 and the fine structure 3 were provided with the fine metal body 20 including the filling portion 21 and the protruding portion 22 was described, the metal filling form is not particularly limited. .

本発明の微細構造体は、バイオセンサ等に用いられるセンサデバイスやラマン分光用デバイスとして好ましく利用できる。   The microstructure of the present invention can be preferably used as a sensor device or a Raman spectroscopic device used for a biosensor or the like.

(a)〜(c)は本発明に係る第1実施形態の微細構造体の製造工程を示す斜視図(A)-(c) is a perspective view which shows the manufacturing process of the microstructure of 1st Embodiment which concerns on this invention. (a)〜(c)は図1に対応する製造工程断面図(A)-(c) is manufacturing process sectional drawing corresponding to FIG. (a)は本発明に係る第一実施形態の製造方法により作製された微細構造体の微細孔に金属を充填した一例を示す斜視図、(b)は(a)に対応する断面図(A) is a perspective view which shows an example which filled the fine hole of the microstructure produced by the manufacturing method of 1st embodiment which concerns on this invention with the metal, (b) is sectional drawing corresponding to (a) (a)〜(f)は本発明に係る第2実施形態の微細構造体の製造工程を示す断面図(A)-(f) is sectional drawing which shows the manufacturing process of the microstructure of 2nd Embodiment which concerns on this invention. 本発明に係る第2実施形態の製造方法により作製された微細構造体の微細孔に金属を充填した一例を示す断面図Sectional drawing which shows an example which filled the metal into the micropore of the microstructure produced by the manufacturing method of 2nd Embodiment which concerns on this invention

符号の説明Explanation of symbols

1〜4 微細構造体
10 被陽極酸化金属体
10s 被陽極酸化金属体表面
11 陽極酸化皮膜(陽極酸化部、陽極酸化物体)
11s 陽極酸化皮膜表面
11r 陽極酸化皮膜裏面
12 微細孔
12b 微細孔の底部
13 非陽極酸化部(電極)
14b 微細孔の底面と非陽極酸化部との間に位置する陽極酸化部(バリア層)
20 微細金属体
21 充填部
22 突出部(頭部)
31 充填物質
32 表面修飾
1-4 Fine structure 10 Anodized metal body 10s Anodized metal body surface 11 Anodized film (anodized portion, anodized body)
11s surface of anodized film 11r back surface of anodized film 12 minute hole 12b bottom part of minute hole 13 non-anodized part (electrode)
14b Anodized portion (barrier layer) located between the bottom surface of the micropore and the non-anodized portion
20 Fine metal body 21 Filling part 22 Protruding part (head)
31 Filling material 32 Surface modification

Claims (9)

被陽極酸化金属体を用意し、
該被陽極酸化金属体を途中まで陽極酸化することにより、該被陽極酸化金属体の陽極酸化が開始される表面にて開口した複数の有底の微細孔を有する陽極酸化部と非陽極酸化部とを形成し
前記複数の有底の微細孔の底面と前記非陽極酸化部との間に位置する前記陽極酸化部を、前記非陽極酸化部に到達するまでドライエッチングにより除去することを特徴とする微細構造体の製造方法。
Prepare an anodized metal body,
Anodized portions and non-anodized portions having a plurality of bottomed micropores opened at the surface where the anodization of the anodized metal body is started by anodizing the anodized metal body halfway And the anodized portion located between the bottom surfaces of the plurality of bottomed micropores and the non-anodized portion is removed by dry etching until the non-anodized portion is reached. A manufacturing method of a fine structure.
前記ドライエッチングが、反応性イオンエッチングであることを特徴とする請求項1に記載の微細構造体の製造方法。   The method for manufacturing a microstructure according to claim 1, wherein the dry etching is reactive ion etching. 被陽極酸化金属体を用意し、該被陽極酸化金属体を途中まで陽極酸化することにより、該被陽極酸化金属体の陽極酸化が開始される表面にて開口した複数の有底の微細孔を有する陽極酸化部と非陽極酸化部とを形成する工程(A)と、
前記複数の有底の微細孔の底部に充填物質を充填し、前記複数の有底の微細孔の側面に耐ウエットエッチング性を付与する表面修飾処理を施す工程(B)と、
前記充填物質を除去し、前記複数の有底の微細孔の底面と前記非陽極酸化部との間に位置する前記陽極酸化部を、前記非陽極酸化部に到達するまでウエットエッチングにより除去する工程(C)とを順次実施することを特徴とする微細構造体の製造方法。
By preparing an anodized metal body and anodizing the anodized metal body halfway, a plurality of bottomed micropores opened at the surface where anodization of the anodized metal body is started Forming an anodized portion and a non-anodized portion having (A),
Filling the bottom of the plurality of bottomed micropores with a filling material, and performing a surface modification treatment for imparting wet etching resistance to the side surface of the plurality of bottomed micropores (B);
Removing the filling material, and removing the anodized portion located between the bottom surfaces of the plurality of bottomed micropores and the non-anodized portion by wet etching until reaching the non-anodized portion (C) is implemented sequentially, The manufacturing method of the microstructure characterized by the above-mentioned.
前記被陽極酸化金属体がアルミニウム(Al)を主成分とするものであることを特徴とする請求項1〜3のいずれかに記載の微細構造体の製造方法。   The method for producing a microstructure according to any one of claims 1 to 3, wherein the metal to be anodized is mainly composed of aluminum (Al). 表面にて開口され、裏面に到達して貫通した複数の微細孔を有する陽極酸化物体と、該陽極酸化物体の裏面に形成された導電体とを備えた微細構造体において、
請求項1〜4のいずれかに記載の製造方法を用いて製造されたものであることを特徴とする微細構造体。
In a microstructure comprising an anodic oxide body having a plurality of fine holes that are opened at the front surface and penetrated to reach the back surface, and a conductor formed on the back surface of the anodic oxide body,
A microstructure manufactured by using the manufacturing method according to claim 1.
前記複数の微細孔の少なくとも底部に金属が充填されていることを特徴とする請求項5に記載の微細構造体。   The microstructure according to claim 5, wherein at least bottom portions of the plurality of micropores are filled with metal. 前記金属は、メッキ処理により充填されたものであることを特徴とする請求項6に記載の微細構造体。   The microstructure according to claim 6, wherein the metal is filled by plating. 前記複数の微細孔のそれぞれが、該微細孔内に充填された充填部と、該充填部上に前記表面より突出して形成され、該充填部の径よりも大きく且つ局在プラズモンを誘起しうる大きさの径を有する頭部を備えた突出部とからなる微細金属体を有することを特徴とする請求項5に記載の微細構造体。   Each of the plurality of micropores is formed with a filling portion filled in the micropore, and protruding from the surface on the filling portion, and can induce a localized plasmon that is larger than the diameter of the filling portion. The fine structure according to claim 5, comprising a fine metal body including a projecting portion having a head having a large diameter. 前記微細金属体は、前記複数の微細孔内に、一部が前記表面から突出するまでメッキ処理を実施することにより形成されたものであることを特徴とする請求項8に記載の微細構造体。   9. The fine structure according to claim 8, wherein the fine metal body is formed by performing a plating process in the plurality of fine holes until a part thereof protrudes from the surface. .
JP2007122537A 2007-05-07 2007-05-07 Fine structure body and its manufacturing method Withdrawn JP2008272912A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007122537A JP2008272912A (en) 2007-05-07 2007-05-07 Fine structure body and its manufacturing method
CNA2008100887895A CN101302639A (en) 2007-05-07 2008-05-07 Microstructure body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122537A JP2008272912A (en) 2007-05-07 2007-05-07 Fine structure body and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008272912A true JP2008272912A (en) 2008-11-13

Family

ID=40051535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122537A Withdrawn JP2008272912A (en) 2007-05-07 2007-05-07 Fine structure body and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2008272912A (en)
CN (1) CN101302639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029881A1 (en) * 2013-08-30 2015-03-05 富士フイルム株式会社 Method for manufacturing metal-filled microstructure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727402B2 (en) * 2011-04-05 2015-06-03 富士フイルム株式会社 Metal substrate with insulating layer, method for manufacturing the same, and semiconductor device
WO2015115531A1 (en) * 2014-01-31 2015-08-06 富士フイルム株式会社 Method for manufacturing aluminum plate, aluminum plate, current collector for electric storage device, and electric storage device
EP3431637A1 (en) * 2017-07-18 2019-01-23 IMEC vzw Porous solid materials and methods for fabrication
CN109652838B (en) * 2018-12-27 2021-05-18 浙江工业大学 Titanium-niobium alloy surface anodic oxidation coloring method
CN110042448B (en) * 2019-04-30 2021-04-30 铜仁学院 Preparation method of porous anodic aluminum oxide template
KR20210121445A (en) * 2020-03-30 2021-10-08 (주)포인트엔지니어링 Anodic aluminum oxide structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029881A1 (en) * 2013-08-30 2015-03-05 富士フイルム株式会社 Method for manufacturing metal-filled microstructure
JP6029764B2 (en) * 2013-08-30 2016-11-24 富士フイルム株式会社 Method for producing metal-filled microstructure
KR101745485B1 (en) * 2013-08-30 2017-06-09 후지필름 가부시키가이샤 Method for manufacturing metal-filled microstructure

Also Published As

Publication number Publication date
CN101302639A (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP2008272912A (en) Fine structure body and its manufacturing method
US6972146B2 (en) Structure having holes and method for producing the same
JP5394627B2 (en) Method for producing fine structure and fine structure
US20090229989A1 (en) Method for the preparation of nanostructures and nanowires
WO2014020939A1 (en) Anodic oxidation porous alumina and method for producing same, and through-hole alumina membrane and method for producing same
JP5851165B2 (en) Method for forming microstructure and method for producing porous alumina composite
JP4838201B2 (en) Method for producing anodized porous alumina
JP4708596B2 (en) Method for producing nanostructure
JP5094208B2 (en) Manufacturing method of structure
JP2004217961A (en) Anodized porous alumina composite material and its producing method
US7288203B2 (en) Process for producing structure, process for producing magnetic recording medium, and process for producing molded product
JP4136730B2 (en) Structure having pores and method for producing the same
JP4641442B2 (en) Method for producing porous body
US6986838B2 (en) Nanomachined and micromachined electrodes for electrochemical devices
KR20230015412A (en) Structures and methods of manufacturing structures
TWI461552B (en) Aluminum oxide template for making nanorods, method for making aluminum oxide template, and method for making nanorods
Nemes et al. Porous anodic alumina films obtained by two step anodization
Grüner et al. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating
EP2630078B1 (en) Nano-scale structures
JP6797535B2 (en) Manufacturing method of anisotropic conductive film and anisotropic conductive film
JP4136723B2 (en) Structure and manufacturing method of structure
JP2006283122A (en) Production method of nanostructure
JP6727046B2 (en) Pillar array structure manufacturing method
JP2009127080A (en) Method for manufacturing fine structure
JP2008275972A (en) Plasmon waveguide and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803