JP2008270552A - Manufacturing method of solid-state electrolytic capacitor - Google Patents

Manufacturing method of solid-state electrolytic capacitor Download PDF

Info

Publication number
JP2008270552A
JP2008270552A JP2007111950A JP2007111950A JP2008270552A JP 2008270552 A JP2008270552 A JP 2008270552A JP 2007111950 A JP2007111950 A JP 2007111950A JP 2007111950 A JP2007111950 A JP 2007111950A JP 2008270552 A JP2008270552 A JP 2008270552A
Authority
JP
Japan
Prior art keywords
porous body
solution
immersed
monomer
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007111950A
Other languages
Japanese (ja)
Other versions
JP4891140B2 (en
Inventor
Junya Tatsuno
純也 辰野
Kiyobumi Aoki
清文 青木
Naoki Kotani
直己 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2007111950A priority Critical patent/JP4891140B2/en
Publication of JP2008270552A publication Critical patent/JP2008270552A/en
Application granted granted Critical
Publication of JP4891140B2 publication Critical patent/JP4891140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase a forming amount of conductive high polymer of a deep part of a porous material by using a two liquid method suitable for a mass production process and to improve yield of conductive high polymer to the porous material. <P>SOLUTION: In the manufacturing method of a solid-state electrolytic capacitor, the porous material formed of a valve operation metal is sequentially immersed in monomer solution and oxidant solution and a conductive high polymer layer is formed. At the time of forming the conductive high polymer layer, the porous material is immersed in monomer solution and is left in humidity atmosphere of 70 to 100%RH. Then, it is immersed in oxidant solution and the conductive high polymer layer is formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、タンタルまたはニオブ等の弁作用金属を利用した固体電解コンデンサの製造方法に関するものである。   The present invention relates to a method for manufacturing a solid electrolytic capacitor using a valve metal such as tantalum or niobium.

通常、この種の固体電解コンデンサは、タンタルまたはニオブなどの弁作用金属の多孔質焼結体を第1の電極(陽極)、その陽極酸化皮膜を誘電体、その上に形成される固体電解質を第2の電極(陰極)の一部とする構造を有している。   Usually, this type of solid electrolytic capacitor has a porous sintered body of a valve action metal such as tantalum or niobium as a first electrode (anode), an anodic oxide film as a dielectric, and a solid electrolyte formed thereon. The structure is a part of the second electrode (cathode).

固体電解質は、多孔質焼結体内部の誘電体全面と電極リード間を電気的に接続する役割を果たしているので、この観点から、導電率の高い物質が好ましい。一方、固体電解質には、誘電体の欠陥に起因する電気的短絡を修復する機能も必要とされる。その結果、高導電率である金属は誘電体修復機能のないため固体電解質として使用できない。よって、短絡電流による熱などで絶縁体に転移する二酸化マンガン、有機化合物のTCNQ錯塩などが固体電解質として用いられてきた。   Since the solid electrolyte plays a role of electrically connecting the entire surface of the dielectric inside the porous sintered body and the electrode leads, a substance having high conductivity is preferable from this viewpoint. On the other hand, the solid electrolyte is also required to have a function of repairing an electrical short circuit caused by a dielectric defect. As a result, a metal having a high conductivity cannot be used as a solid electrolyte because it has no dielectric repair function. Accordingly, manganese dioxide that transitions to an insulator due to heat caused by a short-circuit current, TCNQ complex salt of an organic compound, and the like have been used as solid electrolytes.

また、近年では低ESR化を目的として導電性高分子が注目され、導電性高分子を固体電解質として用いる固体電解コンデンサが実用化されている。一般に、これら導電性高分子としては、ポリチオフェン、ポリピロール、ポリアニリンまたはそれらの誘導体がある。   In recent years, conductive polymers have attracted attention for the purpose of lowering ESR, and solid electrolytic capacitors using the conductive polymers as solid electrolytes have been put into practical use. In general, these conductive polymers include polythiophene, polypyrrole, polyaniline, or derivatives thereof.

これらの導電性高分子を形成する方法としては、多孔質焼結体の表面に陽極酸化皮膜を形成したコンデンサ用多孔質体(以下、「多孔質体」と称す)にモノマーと酸化剤の混合液を低温で導入し、その後多孔質体または混合液の温度を上昇させ、重合を進める方法が知られている(特許文献1参照)。   As a method for forming these conductive polymers, a monomer and an oxidant are mixed in a capacitor porous body (hereinafter referred to as “porous body”) in which an anodized film is formed on the surface of a porous sintered body. A method is known in which the liquid is introduced at a low temperature, and then the temperature of the porous body or the mixed liquid is increased to advance the polymerization (see Patent Document 1).

しかし、この1液法では、たとえ低温であるとしても酸化剤によるモノマーの重合反応を止めることはできないので、重合液が劣化し原料の消費が多くなる。   However, in this one-component method, the polymerization reaction of the monomer by the oxidizing agent cannot be stopped even at a low temperature, so that the polymerization solution deteriorates and the consumption of raw materials increases.

この重合液の劣化防止のため、酸化剤溶液とモノマー溶液を別々に準備し、一方の溶液に多孔質体を浸漬した後、他方の溶液に浸漬する2液法が知られている。例えば、酸化剤溶液とモノマー溶液とに各5分ずつ浸漬した後に30分大気中にて放置して重合を行う方法が提案されている(特許文献2参照)。この2液法によると、上記のような一方の液の重合反応による劣化が無いので、上記原料の消費に関する問題は解決される。   In order to prevent deterioration of the polymerization solution, a two-component method is known in which an oxidant solution and a monomer solution are separately prepared, a porous body is immersed in one solution, and then immersed in the other solution. For example, there has been proposed a method in which polymerization is carried out by immersing in an oxidant solution and a monomer solution for 5 minutes each and then leaving in the air for 30 minutes (see Patent Document 2). According to this two-component method, since there is no deterioration due to the polymerization reaction of one of the above-mentioned solutions, the above-mentioned problem relating to the consumption of raw materials is solved.

しかしながら、上記2液法では、先に浸漬した溶液が後に浸漬した溶液に拡散して反応する。したがって、多孔質体の外部における反応が進み、多孔質体に付着する導電性高分子の収率が低いという問題があった。   However, in the above two-liquid method, the previously immersed solution diffuses into the subsequently immersed solution and reacts. Therefore, there is a problem that the reaction outside the porous body proceeds and the yield of the conductive polymer attached to the porous body is low.

さらに、多孔質体の深部にまで導電性高分子が形成されにくいという問題も存在する。特に、ピロールのように反応が早く進行するモノマーを用いた場合、一方の溶液に浸漬した多孔質体を他方の溶液に浸漬する工程において急激に反応が進行するために、多孔質体の深部にまで導電性高分子を形成することは難しくなる。   Furthermore, there is a problem that the conductive polymer is difficult to be formed deep in the porous body. In particular, when a monomer such as pyrrole whose reaction proceeds quickly is used, the reaction proceeds rapidly in the step of immersing the porous body immersed in one solution in the other solution. It becomes difficult to form a conductive polymer.

一方、モノマー溶液に浸漬後、多孔質体を大気中に放置して、多孔質体から溶媒を揮発させることにより、モノマーを多孔質体に付着させ、その後酸化剤に浸漬することで、多孔質体に付着する導電性高分子の収率を高くすることが提案されている(特許文献3参照)。   On the other hand, after being immersed in the monomer solution, the porous body is left in the atmosphere, and the solvent is volatilized from the porous body to attach the monomer to the porous body, and then immersed in an oxidizing agent to make the porous body It has been proposed to increase the yield of the conductive polymer adhering to the body (see Patent Document 3).

しかし、上記のような技術では、モノマー溶液の溶媒の沸点が比較的低いために、モノマーが多孔質体の表面付近に付着する。したがって、上記と同様に多孔質体の表面付近において急激に反応が進み、多孔質体の深部にまで導電性高分子を形成できないという問題がある。   However, in the technique as described above, since the boiling point of the solvent of the monomer solution is relatively low, the monomer adheres near the surface of the porous body. Therefore, as described above, there is a problem that the reaction proceeds rapidly in the vicinity of the surface of the porous body, and the conductive polymer cannot be formed deep in the porous body.

特開平6−310380号公報JP-A-6-310380 特開平6−29159号公報JP-A-6-29159 特開平7−130579号公報JP-A-7-130579

本発明は、上記技術的課題に鑑みて、なされたもので、量産工程に適した2液法において、多孔質体深部の導電性高分子の形成量を増加させることができ、以って多孔質体への導電性高分子の収率が高く得る、固体電解コンデンサの製造方法の提供を目的とする。   The present invention has been made in view of the above technical problem, and in a two-liquid method suitable for a mass production process, it is possible to increase the formation amount of a conductive polymer in the deep part of the porous body, and thus to increase the porosity. An object of the present invention is to provide a method for producing a solid electrolytic capacitor, which can obtain a high yield of the conductive polymer to the material.

本発明は、弁作用金属粉末を加圧成形、焼結した後、陽極酸化皮膜層を形成してなる多孔質体をモノマー溶液、酸化剤溶液に順次浸漬し、導電性高分子層を形成する固体電解コンデンサの製造方法において、上記導電性高分子層の形成時には、上記モノマー溶液に上記多孔質体を浸漬した後に70〜100%RHの湿度雰囲気中で放置後、上記酸化剤溶液に浸漬させ、上記導電性高分子層を形成させる工程が含まれる。   In the present invention, after forming and sintering a valve action metal powder, a porous body formed with an anodized film layer is sequentially immersed in a monomer solution and an oxidant solution to form a conductive polymer layer. In the method for producing a solid electrolytic capacitor, when the conductive polymer layer is formed, the porous body is immersed in the monomer solution, left in a humidity atmosphere of 70 to 100% RH, and then immersed in the oxidant solution. The step of forming the conductive polymer layer is included.

上記モノマー溶液浸漬時間に関しては、上記湿度雰囲気中の温度、湿度雰囲気中の放置時間および酸化剤溶液浸漬時間には依存しないが、この浸漬時間は、モノマーが多孔質体深部まで浸漬するのに要する時間を考慮して決定されるため、上記多孔質体のモノマー溶液への浸漬時間は、3分以上であることが好ましい。換言すると、モノマー溶液浸漬時間は、多孔質体深部までモノマー溶液が十分浸漬されるのであれば、その時間が長い分には何ら問題はないことを意味する。   The monomer solution immersion time does not depend on the temperature in the humidity atmosphere, the standing time in the humidity atmosphere, and the oxidant solution immersion time, but this immersion time is required for the monomer to be immersed deep in the porous body. Since the time is determined in consideration of the time, the immersion time of the porous body in the monomer solution is preferably 3 minutes or more. In other words, the monomer solution immersion time means that if the monomer solution is sufficiently immersed to the deep part of the porous body, there is no problem if the time is long.

また、上記多孔質体を放置する湿度雰囲気中の温度に関しては、溶媒が蒸発するのに要する時間を考慮して決定される。そこで、上記多孔質体を放置する湿度雰囲気中の温度は、20〜40℃であることが好ましい。これは、20℃未満では溶媒が蒸発せず、他方40℃を超えると溶媒と共にモノマーまで蒸発する可能性があるからである。   Further, the temperature in the humidity atmosphere where the porous body is allowed to stand is determined in consideration of the time required for the solvent to evaporate. Therefore, the temperature in the humidity atmosphere where the porous body is allowed to stand is preferably 20 to 40 ° C. This is because the solvent does not evaporate at a temperature lower than 20 ° C., and the monomer may evaporate with the solvent at a temperature higher than 40 ° C.

さらに、上記湿度雰囲気中での上記多孔質体の放置時間は、10分以上であることが好ましい。   Furthermore, the standing time of the porous body in the humidity atmosphere is preferably 10 minutes or more.

すなわち、上記の湿度雰囲気中の温度の許容範囲と、上記の湿度雰囲気中の放置時間との許容範囲の関係としては、20℃に比べて40℃の方が乾きやすいため、温度が高いほど放置時間は短くなる。よって、上記の両者の関係は、多孔質体に保持された溶媒が乾ききった条件(多孔質体表面が乾いた条件)で決定される。   That is, the relationship between the allowable range of the temperature in the humidity atmosphere and the allowable time in the humidity atmosphere is 40 ° C, which is easier to dry than 20 ° C. Time is shortened. Therefore, the relationship between the two is determined by the condition that the solvent held in the porous body is completely dried (the condition that the surface of the porous body is dried).

加えて、上記多孔質体の酸化剤溶液への浸漬時間は、30秒〜3分であることが好ましい。浸漬時間が3分を超えると、モノマーが酸化剤溶液中に拡散してしまうため、多孔質体に形成される高分子の量が少なくなる。逆に、30秒未満では、コンデンサ素子内部への酸化剤の浸漬が十分ではなくなり、深部において未反応になるモノマーが存在し、容量出現率が悪化するからである。   In addition, the immersion time of the porous body in the oxidant solution is preferably 30 seconds to 3 minutes. When the immersion time exceeds 3 minutes, the monomer diffuses into the oxidant solution, so that the amount of polymer formed in the porous body is reduced. On the other hand, if the time is less than 30 seconds, the oxidant is not sufficiently immersed in the capacitor element, and there is a monomer that becomes unreacted in the deep portion, which deteriorates the capacity appearance rate.

なお、上記の酸化剤溶液浸漬時間の許容範囲と、上記の湿度雰囲気温度および湿度雰囲気放置時間の許容範囲との関係に関しては、湿度雰囲気温度および湿度雰囲気放置時間の条件が互いに異なっても、酸化剤浸漬前の状態は同じであると仮定して、容量出現率が高くなる酸化剤浸漬条件を割り出しているため、酸化剤溶液浸漬時間は、湿度雰囲気温度および湿度雰囲気放置時間の条件には依存しない。   Regarding the relationship between the allowable range of the oxidizer solution immersion time and the allowable range of the humidity atmosphere temperature and the humidity atmosphere leaving time, the oxidation conditions are different even if the conditions of the humidity atmosphere temperature and the humidity atmosphere leaving time are different from each other. Assuming that the conditions before immersion of the oxidant are the same, the oxidant immersion conditions that increase the capacity appearance rate are determined, so the oxidant solution immersion time depends on the conditions of the humidity atmosphere temperature and the humidity atmosphere standing time do not do.

本発明に係る固体電解コンデンサの製造方法によると、効果的に多孔質体深部の導電性高分子の形成量を増加させることができるため、多孔質体へ付着する導電性高分子の収率を高くし、容量出現率を改善することができる。   According to the method for producing a solid electrolytic capacitor according to the present invention, the amount of the conductive polymer formed in the deep part of the porous body can be effectively increased, so that the yield of the conductive polymer adhering to the porous body can be reduced. The capacity appearance rate can be improved by increasing the capacity.

なお、容量出現率は、次式によって定義するものである。   The capacity appearance rate is defined by the following equation.

Figure 2008270552
Figure 2008270552

ここに、「液中静電容量」とは、弁作用金属のタンタル粉末を焼結した多孔質焼結体の表面に陽極酸化皮膜を形成して多孔質体とした後、120Hzでの静電容量を硫酸溶液中で測定した値である。   Here, the “capacitance in liquid” means that an anodized film is formed on the surface of a porous sintered body obtained by sintering tantalum powder of a valve action metal to form a porous body, and then the electrostatic capacity at 120 Hz. The capacity is a value measured in a sulfuric acid solution.

以下、本発明の実施例を添付図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[実施例1]
図1は本発明の実施例1に係る製造方法を適用してなる固体電解コンデンサの断面構造を模式的に示す図である。
[Example 1]
FIG. 1 is a diagram schematically showing a cross-sectional structure of a solid electrolytic capacitor to which a manufacturing method according to Embodiment 1 of the present invention is applied.

図1において、1は多孔質焼結体、2は陽極導出線、3は陽極酸化皮膜層、4は固体電解質層、5はカーボン層、6は陰極銀層、7は導電性接着剤、8は陰極端子、9は陽極端子、10は外装樹脂である。   In FIG. 1, 1 is a porous sintered body, 2 is an anode lead wire, 3 is an anodized film layer, 4 is a solid electrolyte layer, 5 is a carbon layer, 6 is a cathode silver layer, 7 is a conductive adhesive, 8 Is a cathode terminal, 9 is an anode terminal, and 10 is an exterior resin.

まず、弁作用金属のタンタル粉末をタンタル製の陽極導出線2が引き出された状態で角形に成形・焼結して多孔質焼結体1を作製した。この多孔質焼結体1を酸性の溶液に浸け、電圧を印加することにより、多孔質焼結体1の表面に陽極酸化皮膜3を形成して多孔質体とした。この多孔質体の静電容量を硫酸溶液中で測定した結果、その静電容量は120Hzで220μFであった。   First, a porous sintered body 1 was produced by forming and sintering a tantalum powder of valve action metal into a rectangular shape with a tantalum anode lead wire 2 drawn out. The porous sintered body 1 was immersed in an acidic solution and a voltage was applied to form an anodic oxide film 3 on the surface of the porous sintered body 1 to obtain a porous body. As a result of measuring the capacitance of this porous body in a sulfuric acid solution, the capacitance was 220 μF at 120 Hz.

本実施例1に係る固体電解コンデンサの製造方法の特徴は、モノマー溶液に上記多孔質体を浸漬した後に70%RHの湿度雰囲気中での放置後、酸化剤溶液に浸漬させ、導電性高分子層を形成させる点にある。   A feature of the method for producing a solid electrolytic capacitor according to Example 1 is that the porous body is immersed in a monomer solution, left in a humidity atmosphere of 70% RH, then immersed in an oxidant solution, and a conductive polymer. The point is to form a layer.

そこで、導電性高分子層を形成する前にモノマー溶液および酸化剤溶液を準備する。   Therefore, a monomer solution and an oxidant solution are prepared before forming the conductive polymer layer.

上記モノマー溶液の準備に関しては、3,4−エチレンジオキシチオフェンをエタノールに2.0モル/リットルとなるように溶解した。他方、上記酸化剤溶液の準備に関しては、ドーパントを含む酸化剤としてp−トルエンスルホン酸第二鉄をエタノールに4.0モル/リットルとなるように溶解した。   Regarding preparation of the monomer solution, 3,4-ethylenedioxythiophene was dissolved in ethanol so as to be 2.0 mol / liter. On the other hand, regarding the preparation of the oxidizing agent solution, ferric p-toluenesulfonate was dissolved in ethanol so as to be 4.0 mol / liter as an oxidizing agent containing a dopant.

図2は本発明の実施例1に係る固体電解コンデンサの製造方法における導電性高分子層形成工程を示すフローチャートである。   FIG. 2 is a flowchart showing a conductive polymer layer forming step in the method for producing a solid electrolytic capacitor according to Example 1 of the present invention.

図2を参照して、上述したようにモノマー溶液と酸化剤溶液とを準備した後、上記の多孔質体を上記のモノマー溶液に5分間浸漬した(ステップS1)。引き上げ後、温度25℃、湿度70%RHの高湿度雰囲気中で多孔質体を10分間放置した(ステップS2)。   Referring to FIG. 2, after preparing the monomer solution and the oxidant solution as described above, the porous body was immersed in the monomer solution for 5 minutes (step S1). After pulling up, the porous body was left for 10 minutes in a high humidity atmosphere at a temperature of 25 ° C. and a humidity of 70% RH (step S2).

次に、上記の多孔質体を上記の酸化剤溶液に1分間浸漬し(ステップS3)、引き上げ後、大気中で1時間放置して重合を行い、ポリエチレンジオキシチオフェンからなる導電性高分子の形成を行った(ステップS4)。   Next, the porous body is immersed in the oxidant solution for 1 minute (step S3), pulled up, left to stand in the atmosphere for 1 hour to conduct polymerization, and a conductive polymer made of polyethylenedioxythiophene Formation was performed (step S4).

上記のようにして多孔質体を構成する陽極酸化皮膜3上に導電性高分子層を形成し、さらに流水洗浄を行い(ステップS5)、その後、コンデンサ用多孔質体を乾燥した(ステップS6)。   A conductive polymer layer is formed on the anodized film 3 constituting the porous body as described above, and further washed with running water (step S5), and then the capacitor porous body is dried (step S6). .

上記の工程を導電性高分子層が所望の厚さになるまで15回繰り返し、上記陽極酸化皮膜3上にポリエチレンジオキシチオフェンからなる固体電解質層4を形成後、カーボンペーストを塗布して180℃で焼成し、カーボン層5を形成した。さらに、カーボン層5の上に、銀ペーストを塗布後、200℃で乾燥して、陰極銀層6を形成した。   The above process is repeated 15 times until the conductive polymer layer has a desired thickness, and after forming the solid electrolyte layer 4 made of polyethylenedioxythiophene on the anodized film 3, a carbon paste is applied at 180 ° C. And the carbon layer 5 was formed. Further, a silver paste was applied on the carbon layer 5 and then dried at 200 ° C. to form a cathode silver layer 6.

さらに、陰極銀層6に、導電性接着剤7を介して陰極端子8を接続した一方、陽極導出線2に、陽極端子9を抵抗溶接した。   Further, a cathode terminal 8 was connected to the cathode silver layer 6 via a conductive adhesive 7, while an anode terminal 9 was resistance welded to the anode lead-out wire 2.

続いて、トランスファーモールドにより外装10で樹脂封止した。   Subsequently, the exterior 10 was sealed with a resin by transfer molding.

以上の工程を経て、定格4V−220μFの固体電解コンデンサを作製した。   Through the above steps, a solid electrolytic capacitor with a rating of 4V-220 μF was produced.

[実施例2]
本実施例2では、モノマー溶液浸漬後に上記の多孔質体を放置する湿度雰囲気条件を、温度25℃、湿度80%RHとした以外は、実施例1と同様に作製した。
[Example 2]
In Example 2, it was produced in the same manner as in Example 1 except that the humidity atmosphere conditions for leaving the porous body after immersion in the monomer solution were set to a temperature of 25 ° C. and a humidity of 80% RH.

[実施例3]
本実施例3では、モノマー溶液浸漬後に上記の多孔質体を放置する湿度雰囲気条件を、温度25℃、湿度100%RHとした以外は、実施例1と同様に作製した。
[Example 3]
In this Example 3, it was produced in the same manner as in Example 1 except that the humidity atmosphere condition for leaving the porous body after immersion in the monomer solution was set to a temperature of 25 ° C. and a humidity of 100% RH.

[比較例]
比較例では、モノマー溶液浸漬後に上記の多孔質体を放置する雰囲気を大気中とし、その大気条件を、温度25℃、湿度60%RHとした以外は、実施例1と同様に作製した。
[Comparative example]
In the comparative example, it was produced in the same manner as in Example 1 except that the atmosphere in which the porous body was left after immersion in the monomer solution was in the air, and the atmospheric conditions were a temperature of 25 ° C. and a humidity of 60% RH.

上記実施例1〜3、および比較例の固体電解コンデンサに120Hzの交流電圧を印加したときの静電容量を測定した。各50個の固体電解コンデンサを測定し、その平均値を表1に示す。   Capacitance was measured when an AC voltage of 120 Hz was applied to the solid electrolytic capacitors of Examples 1 to 3 and the comparative example. Each of the 50 solid electrolytic capacitors was measured, and the average value is shown in Table 1.

Figure 2008270552
Figure 2008270552

表1から明らかなように、実施例1〜3に係る固体電解コンデンサは、比較例と比較して容量出現率が改善された。これは、図3に示すように、高湿度雰囲気中に放置することで疎水性を有するモノマー11が多孔質体(多孔質焼結体1)の深部にまで保持され(図3(B)の状態)、多孔質体深部の導電性高分子の形成量が増加したためと考えられる。   As is apparent from Table 1, the solid electrolytic capacitors according to Examples 1 to 3 have an improved capacity appearance rate as compared with the comparative example. As shown in FIG. 3, the monomer 11 having hydrophobicity is held in the deep part of the porous body (porous sintered body 1) by being left in a high humidity atmosphere (see FIG. 3B). State), it is considered that the amount of conductive polymer formed in the deep part of the porous body increased.

これに対し、比較例の固体電解コンデンサで容量出現率が不十分な理由は、図4に示すように、高湿度雰囲気が十分でなくモノマー11の多孔質体(多孔質焼結体1)の深部への付着量が減少し(図4(B)の状態)、多孔質体深部の導電性高分子の形成量が少なくなったためと考えられる。   On the other hand, the reason why the capacity appearance rate is insufficient in the solid electrolytic capacitor of the comparative example is that, as shown in FIG. 4, the high humidity atmosphere is not sufficient and the porous body of the monomer 11 (porous sintered body 1) This is probably because the amount of adhesion to the deep part decreased (the state shown in FIG. 4B), and the amount of conductive polymer formed in the deep part of the porous body decreased.

なお、本発明は上記実施例に限定されるものではない。   In addition, this invention is not limited to the said Example.

例えば、上記実施例では、モノマーに3,4−エチレンジオキシチオフェンを使用した例について記載したが、モノマーはこれに限るものではない。すなわち、モノマーとしては、対応するポリマーが導電性を示すものから選択すればよい。チオフェン、ピロール、アニリンまたはそれらの誘導体などがその一例として挙げられる。また、モノマーの溶媒にエタノールを使用しているが、例えば、イソプロピルアルコールやブタノールなどを単独または混合して使用しても差し支えない。   For example, in the said Example, although the example which used 3, 4- ethylene dioxythiophene for the monomer was described, a monomer is not restricted to this. That is, the monomer may be selected from those in which the corresponding polymer exhibits conductivity. Examples thereof include thiophene, pyrrole, aniline or derivatives thereof. Further, ethanol is used as a monomer solvent, but isopropyl alcohol, butanol, etc. may be used alone or in combination.

また、上記実施例では、酸化剤にp−トルエンスルホン酸第二鉄を使用した例について記載したが、酸化剤はモノマー同様に特に限定されない。例えば、有機スルホン酸系、過硫酸系の酸化剤などが挙げられる。また、酸化剤の溶媒にエタノールを使用しているが、例えば、イソプロピルアルコールやブタノールおよび純水などを単独または混合して使用しても差し支えない。   Moreover, although the example which used p-toluenesulfonic acid ferric acid for the oxidizing agent was described in the said Example, an oxidizing agent is not specifically limited like a monomer. Examples thereof include organic sulfonic acid-based and persulfuric acid-based oxidizing agents. Although ethanol is used as the solvent for the oxidizing agent, for example, isopropyl alcohol, butanol and pure water may be used alone or in combination.

さらに、上記実施例では、酸化剤溶液にドーパントを含んでいる例について記載したが、これに限るものではない。例えば、導電性高分子層の形成に使用される溶液として、モノマー溶液と重合用の酸化剤溶液を準備した後、いずれか一方または双方にドーパントを加えてもよい。ドーパントとしては、アリールスルホン酸イオン、アリール燐酸イオン等を利用することができる。具体的には、これらのイオンのナトリウム塩、その他のアルカリ塩として、上記の溶液に添加することが好ましい。   Furthermore, in the said Example, although the example which contained the dopant in the oxidizing agent solution was described, it does not restrict to this. For example, after preparing a monomer solution and an oxidizer solution for polymerization as a solution used for forming the conductive polymer layer, a dopant may be added to either one or both. As the dopant, aryl sulfonate ions, aryl phosphate ions, and the like can be used. Specifically, it is preferable to add the sodium salt of these ions and other alkali salts to the above solution.

加えて、上記実施例では、モノマー溶液浸漬後に多孔質体を放置する湿度雰囲気温度を25℃とした例について記載したが、これに限られるものではない。すなわち、この湿度雰囲気温度は、溶媒が蒸発するのに要する時間を考量して決定すればよい(例えば、20〜40℃でもよい)。   In addition, in the said Example, although the humidity atmosphere temperature which leaves a porous body after immersion in a monomer solution was described as 25 degreeC, it described, It is not restricted to this. That is, the humidity atmosphere temperature may be determined taking into consideration the time required for the solvent to evaporate (for example, 20 to 40 ° C. may be used).

その他、本明細書に添付の特許請求の範囲内での種々の設計変更および修正を加え得ることは勿論である。   It goes without saying that various design changes and modifications can be made within the scope of the claims attached to this specification.

本発明では、量産工程に適した2液法を用いて多孔質体深部の導電性高分子の形成量を増加させることができ、以って多孔質体への導電性高分子収率が高くなるゆえ、タンタルまたはニオブ等の弁作用金属を利用した固体電解コンデンサの製造方法として有用である。   In the present invention, the formation amount of the conductive polymer in the deep part of the porous body can be increased by using a two-liquid method suitable for the mass production process, so that the yield of the conductive polymer in the porous body is high. Therefore, it is useful as a method for producing a solid electrolytic capacitor using a valve metal such as tantalum or niobium.

本発明の実施例1に係る製造方法を適用してなる固体電解コンデンサの断面構造を模式的に示す図である。It is a figure which shows typically the cross-sectional structure of the solid electrolytic capacitor formed by applying the manufacturing method which concerns on Example 1 of this invention. 本発明の実施例1に係る固体電解コンデンサの製造方法における導電性高分子層形成工程を示すフローチャートである。It is a flowchart which shows the conductive polymer layer formation process in the manufacturing method of the solid electrolytic capacitor which concerns on Example 1 of this invention. 実施例1〜3に係る固体電解コンデンサにおいて、モノマーに浸漬・放置した後の多孔質体へのモノマー付着状態を模式的に示しており、(A)はコンデンサ素子の全体断面図、(B)は(A)のX部拡大断面図である。In the solid electrolytic capacitor which concerns on Examples 1-3, the monomer adhesion state to the porous body after being immersed in a monomer and leaving it to stand is shown typically, (A) is whole sectional drawing of a capacitor | condenser element, (B) FIG. 4 is an enlarged cross-sectional view of a portion X in (A). 比較例に係る固体電解コンデンサにおいて、モノマーに浸漬・放置した後の多孔質体へのモノマー付着状態を模式的に示しており、(A)はコンデンサ素子の全体断面図、(B)は(A)のY部拡大断面図である。In the solid electrolytic capacitor which concerns on a comparative example, the monomer adhesion state to the porous body after being immersed in a monomer and leaving it to stand is shown typically, (A) is a whole sectional view of a capacitor element, (B) is (A FIG.

符号の説明Explanation of symbols

1 多孔質焼結体
2 陽極導出線
3 陽極酸化皮膜層
4 固体電解質層
5 カーボン層
6 陰極銀層
7 導電性接着剤
8 陰極端子
9 陽極端子
10 外装樹脂
11 モノマー
DESCRIPTION OF SYMBOLS 1 Porous sintered body 2 Anode lead-out line 3 Anodized film layer 4 Solid electrolyte layer 5 Carbon layer 6 Cathode silver layer 7 Conductive adhesive 8 Cathode terminal 9 Anode terminal 10 Exterior resin 11 Monomer

Claims (1)

弁作用金属粉末を加圧成形、焼結した後、陽極酸化皮膜層を形成してなる多孔質体をモノマー溶液、酸化剤溶液に順次浸漬し、導電性高分子層を形成する固体電解コンデンサの製造方法において、
上記導電性高分子層の形成時には、上記モノマー溶液に上記多孔質体を浸漬した後に70〜100%RHの湿度雰囲気中で放置後、上記酸化剤溶液に浸漬させ、上記導電性高分子層を形成させる工程が含まれることを特徴とする固体電解コンデンサの製造方法。
A solid electrolytic capacitor in which a porous body formed by pressure forming and sintering a valve action metal powder and then forming an anodized film layer is sequentially immersed in a monomer solution and an oxidant solution to form a conductive polymer layer. In the manufacturing method,
At the time of forming the conductive polymer layer, the porous body is immersed in the monomer solution, left in a humidity atmosphere of 70 to 100% RH, and then immersed in the oxidant solution. The manufacturing method of the solid electrolytic capacitor characterized by including the process to form.
JP2007111950A 2007-04-20 2007-04-20 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4891140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111950A JP4891140B2 (en) 2007-04-20 2007-04-20 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111950A JP4891140B2 (en) 2007-04-20 2007-04-20 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2008270552A true JP2008270552A (en) 2008-11-06
JP4891140B2 JP4891140B2 (en) 2012-03-07

Family

ID=40049658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111950A Expired - Fee Related JP4891140B2 (en) 2007-04-20 2007-04-20 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4891140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129339A (en) * 2010-12-15 2012-07-05 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor and solid electrolytic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064761A (en) * 1996-08-22 1998-03-06 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
WO2001075917A1 (en) * 2000-03-31 2001-10-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
JP2004128033A (en) * 2002-09-30 2004-04-22 Nippon Chemicon Corp Method of manufacturing solid state electrolytic capacitor
JP2005109248A (en) * 2003-09-30 2005-04-21 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064761A (en) * 1996-08-22 1998-03-06 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
WO2001075917A1 (en) * 2000-03-31 2001-10-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
JP2004128033A (en) * 2002-09-30 2004-04-22 Nippon Chemicon Corp Method of manufacturing solid state electrolytic capacitor
JP2005109248A (en) * 2003-09-30 2005-04-21 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129339A (en) * 2010-12-15 2012-07-05 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor and solid electrolytic capacitor

Also Published As

Publication number Publication date
JP4891140B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP2009267385A (en) Method of manufacturing solid-state electrolytic capacitor
JP2011181611A (en) Solid electrolytic capacitor and manufacturing method of the same
JP2003059763A (en) Method of manufacturing solid electrolytic capacitor
JP2010034384A (en) Method of manufacturing solid-state electrolytic capacitor
US8513123B2 (en) Method of manufacturing solid electrolytic capacitor
JP3228323B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP5502562B2 (en) Manufacturing method of solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008258526A (en) Solid-state electrolytic capacitor, and manufacturing method therefor
JPWO2011013375A1 (en) Manufacturing method of solid electrolytic capacitor
JP4926131B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2007173454A (en) Solid electrolytic capacitor
JP2008311639A (en) Solid electrolytic capacitor and method of manufacturing the same
JP5262238B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008277344A (en) Method for manufacturing solid-state electrolytic capacitor
JP2007103406A (en) Manufacturing method of solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JP2005011925A (en) Solid electrolytic capacitor and its manufacturing process
JP2007048947A (en) Solid electrolytic capacitor and manufacturing method thereof
JP4258619B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008226971A (en) Manufacturing method for solid electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4891140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees