JP2008270019A - Fuel cell and jointed body for fuel cell - Google Patents

Fuel cell and jointed body for fuel cell Download PDF

Info

Publication number
JP2008270019A
JP2008270019A JP2007113061A JP2007113061A JP2008270019A JP 2008270019 A JP2008270019 A JP 2008270019A JP 2007113061 A JP2007113061 A JP 2007113061A JP 2007113061 A JP2007113061 A JP 2007113061A JP 2008270019 A JP2008270019 A JP 2008270019A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
electrolyte
catalyst layer
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007113061A
Other languages
Japanese (ja)
Inventor
Tatsuya Kawahara
竜也 川原
Masanori Aitake
将典 相武
Takeshi Sha
剛 謝
Nobuyasu Suzuki
伸康 鈴木
Yosuke Furuike
陽祐 古池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2007113061A priority Critical patent/JP2008270019A/en
Publication of JP2008270019A publication Critical patent/JP2008270019A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell and a jointed body for a fuel cell in which a reaction efficiency of a catalyst in a catalyst layer and a drainage property can be improved. <P>SOLUTION: In the jointed body for a fuel cell in which catalyst layers are formed facing each other with an electrolyte membrane pinched in-between and a fuel cell containing the jointed body for a fuel cell, at least one of the catalyst layers has a dry mass of the electrolyte almost the same as that of a catalyst carrier carrying the catalyst, and an ion exchange group density of the electrolyte on a side of the electrolyte membrane is higher as compared with a reaction raw material supplying side and as a result, a reaction efficiency of the catalyst in the catalyst layer and a drainage property can be improved and a fuel cell of a high efficiency can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池及び燃料電池用接合体に関する。   The present invention relates to a fuel cell and a fuel cell assembly.

環境問題や資源問題への対策の一つとして、酸素や空気等の酸化性ガスと、水素やメタン等の還元性ガス(燃料ガス)あるいはメタノール等の液体燃料等とを原料として電気化学反応により化学エネルギーを電気エネルギーに変換して発電する燃料電池が注目されている。燃料電池は、電解質膜の一方の面に燃料極(アノード触媒層)と、もう一方の面に空気極(カソード触媒層)とを電解質膜を挟んで対向するように設け、電解質膜を挟持した各触媒層の外側に拡散層をさらに設け、これらを原料供給用の通路を設けたセパレータで挟んで電池が構成され、各触媒層に水素、酸素等の原料を供給して発電する。   As one of the countermeasures for environmental problems and resource problems, an electrochemical reaction using an oxidizing gas such as oxygen or air and a reducing gas such as hydrogen or methane (fuel gas) or a liquid fuel such as methanol as raw materials Fuel cells that generate electricity by converting chemical energy into electrical energy have attracted attention. In the fuel cell, a fuel electrode (anode catalyst layer) is provided on one surface of the electrolyte membrane and an air electrode (cathode catalyst layer) is provided on the other surface so as to face each other with the electrolyte membrane interposed therebetween, and the electrolyte membrane is sandwiched between them. A diffusion layer is further provided on the outside of each catalyst layer, and these are sandwiched between separators provided with raw material supply passages. A battery is configured, and power is generated by supplying raw materials such as hydrogen and oxygen to each catalyst layer.

燃料電池の発電時には、燃料極に供給する原料を水素ガス、空気極に供給する原料を空気とした場合、燃料極において、水素ガスから水素イオンと電子とが発生する。電子は外部端子から外部回路を通じて空気極に到達する。空気極において、供給される空気中の酸素と、電解質膜を通過した水素イオンと、外部回路を通じて空気極に到達した電子により、水が生成する。このように燃料極及び空気極において化学反応が起こり、電荷が発生して電池として機能することになる。この燃料電池は、発電に使用される原料のガスや液体燃料が豊富に存在すること、また、その発電原理より排出される物質が水であること等より、クリーンなエネルギー源として様々な検討がされている。   At the time of power generation of the fuel cell, when hydrogen gas is used as the raw material supplied to the fuel electrode and air is used as the raw material supplied to the air electrode, hydrogen ions and electrons are generated from the hydrogen gas at the fuel electrode. The electrons reach the air electrode from the external terminal through the external circuit. In the air electrode, water is generated by oxygen in the supplied air, hydrogen ions that have passed through the electrolyte membrane, and electrons that have reached the air electrode through an external circuit. Thus, a chemical reaction occurs in the fuel electrode and the air electrode, and electric charges are generated to function as a battery. This fuel cell has been studied in various ways as a clean energy source due to the abundance of raw material gas and liquid fuel used for power generation and the fact that the substance discharged from the power generation principle is water. Has been.

燃料電池の触媒層は、通常、白金(Pt)等の触媒を触媒担体であるカーボンに担持した触媒粒子担持カーボン等の触媒担持粒子と、固体高分子電解質等の電解質とを含んで構成される。イオン伝導性の電解質は、触媒層中の三相界面を増やすために添加されている。   The catalyst layer of a fuel cell usually includes catalyst-carrying particles such as catalyst particle-carrying carbon in which a catalyst such as platinum (Pt) is carried on carbon as a catalyst carrier, and an electrolyte such as a solid polymer electrolyte. . An ion conductive electrolyte is added to increase the three-phase interface in the catalyst layer.

このような燃料電池において、触媒層中の触媒粒子表面を部分的に覆っている電解質のプロトン導電率は元々低く、かつ伝導経路の断面積が小さいため、ガス供給側から輸送されてくる反応ガスの供給速度に比べて、触媒層の中では電解質膜からのプロトン伝導、あるいは電解質膜へのプロトン伝導が反応の律速となってしまう。したがって、電極反応は電解質膜付近、すなわち触媒層と電解質膜との界面付近に集中してしまう。一方、電解質の添加量(触媒に対する比率)が多すぎると、触媒層全体の電子伝導性ネットワークを形成する触媒粒子の直接接触が困難となるだけではなく、触媒層の厚みが厚くなる上、触媒粒子表面が厚い電解質皮膜で覆われてしまい、反応ガスの触媒粒子への供給が少なくなったり、生成水の排出が悪くなったりしてしまう。その結果、触媒の利用率の低下につながるだけでなく、反応熱及び反応中間生成物である過酸化水素も電解質膜との界面付近に集中してしまうため、MEAの劣化促進をもたらしてしまう。   In such a fuel cell, since the proton conductivity of the electrolyte partially covering the catalyst particle surface in the catalyst layer is originally low and the cross-sectional area of the conduction path is small, the reaction gas transported from the gas supply side In the catalyst layer, proton conduction from the electrolyte membrane or proton conduction to the electrolyte membrane becomes the rate-limiting reaction in the catalyst layer. Therefore, the electrode reaction is concentrated near the electrolyte membrane, that is, near the interface between the catalyst layer and the electrolyte membrane. On the other hand, if the amount of electrolyte added (ratio to the catalyst) is too large, not only direct contact of the catalyst particles forming the electron conductive network of the entire catalyst layer becomes difficult, but the catalyst layer becomes thick and the catalyst becomes thicker. The particle surface is covered with a thick electrolyte film, and the supply of the reaction gas to the catalyst particles is reduced, or the discharge of generated water is deteriorated. As a result, not only the utilization rate of the catalyst is lowered, but also the heat of reaction and hydrogen peroxide as a reaction intermediate product are concentrated in the vicinity of the interface with the electrolyte membrane, leading to the accelerated deterioration of MEA.

例えば特許文献1には、プロトン伝導性高分子電解質膜、ならびに電解質膜を挟む一対の触媒層および一対のガス拡散層を配してなる高分子電解質膜・電極接合体であって、触媒層が、触媒およびプロトン交換基を含み、一対の触媒層の少なくとも一方において、触媒の重量に対するプロトン交換基の重量比が空間的分布を有し、その比が高分子電解質膜に近いほど大きい高分子電解質膜・電極接合体が記載されている。   For example, Patent Document 1 discloses a polymer electrolyte membrane / electrode assembly in which a proton conductive polymer electrolyte membrane, a pair of catalyst layers sandwiching the electrolyte membrane, and a pair of gas diffusion layers are arranged. A polymer electrolyte containing a catalyst and a proton exchange group, wherein the weight ratio of the proton exchange group to the weight of the catalyst has a spatial distribution in at least one of the pair of catalyst layers, and the ratio is larger as the ratio is closer to the polymer electrolyte membrane A membrane-electrode assembly is described.

また、特許文献2には、プロトン伝導性電解質膜と、電解質膜の両面に接触する一対の触媒層と、各々の触媒層に接触する一対のガス拡散層とを備え、触媒層は少なくとも高分子電解質と導電性を有する触媒担持体に担持された触媒とを具備する燃料電池用電解質膜電極接合体であって、触媒層において、触媒層の密度がプロトン伝導性電解質膜側からガス拡散層側にかけて減少し、かつ高分子電解質の重量と触媒の重量との重量比が前記触媒層のプロトン伝導性電解質膜側からガス拡散層側にかけてほぼ一定である燃料電池用電解質膜電極接合体が記載されている。   Patent Document 2 includes a proton-conducting electrolyte membrane, a pair of catalyst layers in contact with both surfaces of the electrolyte membrane, and a pair of gas diffusion layers in contact with each catalyst layer, and the catalyst layer is at least a polymer. An electrolyte membrane electrode assembly for a fuel cell comprising an electrolyte and a catalyst supported on a conductive catalyst carrier, wherein the catalyst layer has a density of the catalyst layer from the proton conductive electrolyte membrane side to the gas diffusion layer side. An electrolyte membrane electrode assembly for a fuel cell is described in which the weight ratio between the weight of the polymer electrolyte and the weight of the catalyst is substantially constant from the proton conductive electrolyte membrane side to the gas diffusion layer side of the catalyst layer. ing.

また、特許文献3には、高分子電解質を挟んで一対の電極を有し更にその外側に電子伝導体を有する水素−酸素型燃料電池において、一対の電極の少なくとも一方に電解質側の撥水性が強く電子伝導体側の撥水性が弱くなるように勾配をもたせた燃料電池が記載されている。   Patent Document 3 discloses that in a hydrogen-oxygen fuel cell having a pair of electrodes sandwiching a polymer electrolyte and further having an electron conductor on the outside, at least one of the pair of electrodes has water repellency on the electrolyte side. A fuel cell is described that has a strong gradient so that the water repellency on the electron conductor side is weakened.

また、特許文献4には、水素イオン伝導性高分子電解質膜及び高分子電解質膜を挟む一対の電極を具備し、電極は高分子電解質膜に接触する触媒層を具備し、触媒層は水素イオン伝導性高分子電解質及び触媒金属を含み、触媒金属近傍のイオン伝導性基の密度が電極全体の平均密度に対して大きい高分子電解質型燃料電池が記載されている。   Patent Document 4 includes a hydrogen ion conductive polymer electrolyte membrane and a pair of electrodes sandwiching the polymer electrolyte membrane, the electrodes include a catalyst layer in contact with the polymer electrolyte membrane, and the catalyst layer includes hydrogen ions. A polymer electrolyte fuel cell is described that includes a conductive polymer electrolyte and a catalyst metal, and the density of ion conductive groups in the vicinity of the catalyst metal is larger than the average density of the entire electrode.

特開2005−235461号公報JP 2005-235461 A 特開2005−56583号公報JP 2005-56583 A 特開平5−251086号公報JP-A-5-251086 特開2006−164535号公報JP 2006-164535 A

このように、通常は、触媒層に電解質を中に同じ電解質を均一的に、あるいは電解質膜側の電解質の重量比率を高める構成にしている。しかし、特許文献1〜4の方法では、電解質膜側で電解質の量が多いため、反応ガスの透過性が悪くなる、生成水の排出が妨げられるという問題があった。   As described above, the catalyst layer is usually configured so that the electrolyte is uniformly contained in the same electrolyte, or the weight ratio of the electrolyte on the electrolyte membrane side is increased. However, in the methods of Patent Documents 1 to 4, there is a problem that the amount of the electrolyte is large on the electrolyte membrane side, so that the permeability of the reaction gas is deteriorated and the discharge of generated water is hindered.

本発明は、触媒層中の触媒の反応効率及び排水性を向上することができる燃料電池及び燃料電池用接合体である。   The present invention is a fuel cell and a fuel cell assembly capable of improving the reaction efficiency and drainage of a catalyst in a catalyst layer.

本発明は、電解質膜を挟んで対向するように触媒層として触媒と電解質とを含むカソード触媒層及びアノード触媒層が形成された燃料電池用接合体を含む燃料電池であって、前記触媒層のうち少なくとも一方において、前記触媒を担持する触媒担体の質量に対する前記電解質の乾燥質量が略均一であり、かつ反応原料供給側に比べて前記電解質膜側の前記電解質のイオン交換基密度が高い。   The present invention is a fuel cell including a fuel cell assembly in which a cathode catalyst layer including a catalyst and an electrolyte as a catalyst layer and an anode catalyst layer are formed so as to face each other with an electrolyte membrane interposed therebetween. In at least one of them, the dry mass of the electrolyte with respect to the mass of the catalyst carrier supporting the catalyst is substantially uniform, and the ion exchange group density of the electrolyte on the electrolyte membrane side is higher than that on the reaction raw material supply side.

また、前記燃料電池において、前記少なくとも一方の触媒層は、前記電解質膜に近いほど高いイオン交換基密度を有することが好ましい。   In the fuel cell, it is preferable that the at least one catalyst layer has a higher ion exchange group density as it is closer to the electrolyte membrane.

また、前記燃料電池において、前記少なくとも一方の触媒層は、前記電解質膜に近いほど高い解離定数を有することが好ましい。   In the fuel cell, it is preferable that the at least one catalyst layer has a higher dissociation constant as it is closer to the electrolyte membrane.

また、本発明は、電解質膜を挟んで対向するように触媒層として触媒と電解質とを含むカソード触媒層及びアノード触媒層が形成された燃料電池用接合体であって、前記触媒層のうち少なくとも一方において、前記触媒を担持する触媒担体の質量に対する前記電解質の乾燥質量が略均一であり、かつ反応原料供給側に比べて前記電解質膜側の前記電解質のイオン交換基密度が高い。   The present invention also provides a fuel cell assembly in which a cathode catalyst layer and an anode catalyst layer including a catalyst and an electrolyte are formed as catalyst layers so as to face each other with an electrolyte membrane interposed therebetween, and at least of the catalyst layers. On the other hand, the dry mass of the electrolyte with respect to the mass of the catalyst carrier carrying the catalyst is substantially uniform, and the ion exchange group density of the electrolyte on the electrolyte membrane side is higher than that on the reaction raw material supply side.

また、前記燃料電池用接合体において、前記少なくとも一方の触媒層は、前記電解質膜に近いほど高いイオン交換基密度を有することが好ましい。   In the fuel cell assembly, it is preferable that the at least one catalyst layer has a higher ion exchange group density as it is closer to the electrolyte membrane.

また、前記燃料電池用接合体において、前記少なくとも一方の触媒層は、前記電解質膜に近いほど高い解離定数を有することが好ましい。   In the fuel cell assembly, it is preferable that the at least one catalyst layer has a higher dissociation constant as it is closer to the electrolyte membrane.

本発明では、電解質膜を挟んで対向するように触媒層が形成された燃料電池用接合体及びそのような燃料電池用接合体を含む燃料電池において、触媒層のうち少なくとも一方において、触媒を担持する触媒担体の質量に対する電解質の乾燥質量が略均一であり、かつ反応原料供給側に比べて電解質膜側の電解質のイオン交換基密度が高いことにより、触媒層中の触媒の反応効率及び排水性を向上することができ、高効率の燃料電池を得ることができる。   In the present invention, in a fuel cell assembly in which a catalyst layer is formed so as to face each other with an electrolyte membrane interposed therebetween, and in a fuel cell including such a fuel cell assembly, at least one of the catalyst layers carries a catalyst. The dry mass of the electrolyte with respect to the mass of the catalyst carrier to be performed is substantially uniform, and the ion exchange group density of the electrolyte on the electrolyte membrane side is higher than that on the reaction raw material supply side, so that the reaction efficiency and drainage of the catalyst in the catalyst layer And a highly efficient fuel cell can be obtained.

本発明の実施の形態について以下説明する。   Embodiments of the present invention will be described below.

<燃料電池用接合体及び燃料電池>
本実施形態に係る燃料電池用接合体及び燃料電池について説明する。本実施形態に係る燃料電池用接合体は、燃料極(アノード触媒層)と、電解質層と、空気極(カソード触媒層)とを有する。また、本実施形態に係る燃料電池は、この燃料電池用接合体を有する。
<Fuel cell assembly and fuel cell>
A fuel cell assembly and a fuel cell according to this embodiment will be described. The fuel cell assembly according to the present embodiment includes a fuel electrode (anode catalyst layer), an electrolyte layer, and an air electrode (cathode catalyst layer). Further, the fuel cell according to the present embodiment includes the fuel cell assembly.

図1に、本実施形態に係る燃料電池の構成の一例の概略断面図を示す。燃料電池1は、電解質膜10と、燃料極(アノード触媒層)12と、空気極(カソード触媒層)14と、拡散層16と、セパレータ18とにより構成される。   FIG. 1 shows a schematic cross-sectional view of an example of the configuration of the fuel cell according to the present embodiment. The fuel cell 1 includes an electrolyte membrane 10, a fuel electrode (anode catalyst layer) 12, an air electrode (cathode catalyst layer) 14, a diffusion layer 16, and a separator 18.

図1に示すように、燃料電池1は、電解質膜10の一方の表面に燃料極12が、もう一方の表面に空気極14が電解質膜10を挟んでそれぞれ対向するように形成された燃料電池用接合体である膜電極複合体20(MEA:Membrane Electrode Assembly)と、膜電極複合体20を挟んで両面に設けられた拡散層16と、拡散層16の両外側を挟持するセパレータ18とを備える。セパレータ18には、燃料極12及び空気極14にそれぞれ水素ガス、空気等の原料を供給するための原料供給路22,24が設けられている。   As shown in FIG. 1, a fuel cell 1 is a fuel cell in which a fuel electrode 12 is formed on one surface of an electrolyte membrane 10 and an air electrode 14 is formed on the other surface so as to face each other with the electrolyte membrane 10 interposed therebetween. Membrane electrode assembly 20 (MEA), a diffusion layer 16 provided on both sides of the membrane electrode assembly 20, and a separator 18 that sandwiches both outer sides of the diffusion layer 16. Prepare. The separator 18 is provided with raw material supply paths 22 and 24 for supplying raw materials such as hydrogen gas and air to the fuel electrode 12 and the air electrode 14, respectively.

燃料電池1において、例えば、燃料極12に供給する原料を水素ガス、空気極14に供給する原料を空気として運転した場合、燃料極12において、
2H → 4H+4e
で示される反応式(水素酸化反応)を経て、水素ガス(H)から水素イオン(H)と電子(e)とが発生する。電子(e)は拡散層16から外部回路を通り、拡散層16から空気極14に到達する。空気極14において、供給される空気中の酸素(O)と、電解質膜10を通過した水素イオン(H)と、外部回路を通じて空気極14に到達した電子(e)により、
4H+O+4e → 2H
で示される反応式(酸素還元反応)を経て、水が生成する。このように燃料極12及び空気極14において化学反応が起こり、電荷が発生して電池として機能することになる。そして、一連の反応において排出される成分は水であるので、クリーンな電池が構成されることになる。
In the fuel cell 1, for example, when the raw material supplied to the fuel electrode 12 is operated as hydrogen gas and the raw material supplied to the air electrode 14 is operated as air,
2H 2 → 4H + + 4e
Through the reaction formula (hydrogen oxidation reaction) shown in FIG. 2 , hydrogen ions (H + ) and electrons (e ) are generated from hydrogen gas (H 2 ). The electrons (e ) pass through the external circuit from the diffusion layer 16 and reach the air electrode 14 from the diffusion layer 16. In the air electrode 14, oxygen (O 2 ) in the supplied air, hydrogen ions (H + ) that have passed through the electrolyte membrane 10, and electrons (e ) that have reached the air electrode 14 through an external circuit,
4H + + O 2 + 4e → 2H 2 O
Water is produced through the reaction formula (oxygen reduction reaction) shown in FIG. In this way, a chemical reaction occurs in the fuel electrode 12 and the air electrode 14, and charges are generated to function as a battery. And since the component discharged | emitted in a series of reaction is water, a clean battery is comprised.

本実施形態において、燃料極(アノード触媒層)12及び空気極(カソード触媒層)14は、それぞれ触媒を触媒担体であるカーボンに担持した触媒粒子担持カーボン等の触媒担持粒子及び電解質を含有する触媒層である。そして、空気極14において、反応原料供給側、すなわち拡散層16側に比べて電解質膜10側の電解質のイオン交換基密度が高い。また、空気極14において、触媒を担持する触媒担体の質量に対する電解質の乾燥質量が略均一である。本構成により、電解質膜10側のイオン伝導性が高くなり、反応場は空気極14中に略均一に分布する。よって、空気極14のイオン伝導律速を緩和し、拡散層16側の触媒を反応に寄与させることができ、さらに空気極14全体の反応原料及び生成水等の水の輸送を確保することができる。また、反応熱及び反応中間生成物である過酸化水素の生成を電解質膜10と空気極14との界面付近に集中させにくく、MEAの劣化を抑制することができる。したがって、燃料電池性能の低下を抑制し、高効率の燃料電池を得ることができる。   In the present embodiment, the fuel electrode (anode catalyst layer) 12 and the air electrode (cathode catalyst layer) 14 each contain catalyst-supported particles such as catalyst-particle-supported carbon and an electrolyte in which the catalyst is supported on carbon as a catalyst support. Is a layer. In the air electrode 14, the ion exchange group density of the electrolyte on the electrolyte membrane 10 side is higher than that on the reaction raw material supply side, that is, the diffusion layer 16 side. In the air electrode 14, the dry mass of the electrolyte with respect to the mass of the catalyst carrier that supports the catalyst is substantially uniform. With this configuration, the ion conductivity on the electrolyte membrane 10 side is increased, and the reaction field is distributed substantially uniformly in the air electrode 14. Therefore, the ion conduction rate-determining rate of the air electrode 14 can be relaxed, the catalyst on the diffusion layer 16 side can contribute to the reaction, and the transport of water such as the reaction raw material and generated water of the entire air electrode 14 can be ensured. . In addition, it is difficult to concentrate the reaction heat and the generation of hydrogen peroxide, which is a reaction intermediate product, near the interface between the electrolyte membrane 10 and the air electrode 14, and the deterioration of MEA can be suppressed. Accordingly, it is possible to obtain a highly efficient fuel cell while suppressing a decrease in fuel cell performance.

触媒層に含まれる触媒担持粒子としては、白金(Pt)等を担持したカーボン、白金(Pt)等をルテニウム(Ru)等の他の金属と共に担持したカーボン、PtFe・PtCo等を用いることができる。   As the catalyst-carrying particles contained in the catalyst layer, carbon carrying platinum (Pt) or the like, carbon carrying platinum (Pt) or the like together with another metal such as ruthenium (Ru), PtFe · PtCo, or the like can be used. .

触媒層に含まれる電解質としては、固体高分子電解質等が挙げられる。固体高分子電解質としては、プロトン(H)等のイオン伝導性の高い材料であれば特に制限はなく、例えば、パーフルオロスルホン酸系等の固体高分子電解質が用いられる。具体的には、ジャパンゴアテックス(株)のゴアセレクト(Goreselect、登録商標)、デュポン社(Du Pont社)のナフィオン(Nafion、登録商標)、旭化成(株)のアシプレックス(Aciplex、登録商標)、旭硝子(株)のフレミオン(Flemion、登録商標)等のパーフルオロスルホン酸系固体高分子電解質を使用することができる。 Examples of the electrolyte contained in the catalyst layer include a solid polymer electrolyte. The solid polymer electrolyte is not particularly limited as long as it is a material having high ion conductivity such as proton (H + ). For example, a perfluorosulfonic acid-based solid polymer electrolyte is used. Specifically, Goreselect (registered trademark) of Japan Gore-Tex Corporation, Nafion (registered trademark) of Du Pont (Du Pont), Aciplex (registered trademark) of Asahi Kasei Co., Ltd. Perfluorosulfonic acid solid polymer electrolytes such as Flemion (registered trademark) of Asahi Glass Co., Ltd. can be used.

本実施形態において、燃料極12及び空気極14のうち少なくとも一方において、触媒を担持する触媒担体の質量に対する電解質の乾燥質量が略均一であり、かつ反応原料供給側に比べて電解質膜10側の電解質のイオン交換基密度が高ければよいが、電極反応の効率を高める点、発電中に過酸化水素が主に発生するのはカソード側である点等から、カソード側(空気極14)において、本構成を備えることが好ましい。また、より電極反応の効率を高めるためには、アノード側(燃料極12)及びカソード側(空気極14)の両方において、本構成を備えることが好ましい。   In the present embodiment, in at least one of the fuel electrode 12 and the air electrode 14, the dry mass of the electrolyte with respect to the mass of the catalyst carrier supporting the catalyst is substantially uniform, and the electrolyte membrane 10 side is closer to the reaction raw material supply side. It is sufficient that the ion exchange group density of the electrolyte is high. From the viewpoint of increasing the efficiency of the electrode reaction, hydrogen peroxide is mainly generated during power generation on the cathode side, etc., on the cathode side (air electrode 14), It is preferable to have this configuration. In order to further increase the efficiency of the electrode reaction, it is preferable to provide this configuration on both the anode side (fuel electrode 12) and the cathode side (air electrode 14).

また、燃料極12及び空気極14のうち少なくとも一方において、触媒を担持する触媒担体の質量に対する電解質の乾燥質量が略均一であり、かつ電解質膜10に近いほどイオン交換基密度が高いことが好ましく、カソード側(空気極14)において、本構成を備えることが好ましい。   Further, in at least one of the fuel electrode 12 and the air electrode 14, it is preferable that the dry mass of the electrolyte with respect to the mass of the catalyst carrier supporting the catalyst is substantially uniform and the ion exchange group density is higher as the electrolyte membrane 10 is closer. It is preferable to provide this configuration on the cathode side (air electrode 14).

ここで、触媒層において含まれる、触媒を担持する触媒担体の質量に対する電解質の乾燥質量が略均一とは、実質的に生成水等の水の排出を妨げない範囲で均一であればよいが、例えば、触媒層において、固体高分子電解質の乾燥質量/カーボンの質量(N/C)の比率が±0.05の範囲内にあることをいう。   Here, the dry mass of the electrolyte with respect to the mass of the catalyst carrier supporting the catalyst contained in the catalyst layer is substantially uniform as long as it is substantially uniform within a range that does not hinder the discharge of water such as generated water, For example, in the catalyst layer, the ratio of dry weight of solid polymer electrolyte / weight of carbon (N / C) is within a range of ± 0.05.

触媒層中の電解質の含有量は、触媒層中のカーボンの量に対して、50重量%〜400重量%の範囲が好ましい。電解質の含有量が、触媒層のカーボンの量に対して50重量%未満であると、触媒層中の三相界面が減少して反応効率が低下することがあり、400重量%を超えると、反応原料の透過性が悪くなり、また生成水の排出が妨げられやすくなる。   The content of the electrolyte in the catalyst layer is preferably in the range of 50 wt% to 400 wt% with respect to the amount of carbon in the catalyst layer. When the electrolyte content is less than 50% by weight with respect to the amount of carbon in the catalyst layer, the three-phase interface in the catalyst layer may decrease and the reaction efficiency may decrease. When the content exceeds 400% by weight, The permeability of the reaction raw materials is deteriorated, and the discharge of the produced water is likely to be hindered.

また、反応原料供給側、すなわち拡散層16側に比べて電解質膜10側の電解質のイオン交換基密度を高くするためには、例えば、電解質膜10側の空気極14中にイオン交換基密度(イオン伝導率)の高い電解質を配置して、拡散層16側の空気極14中にそれより低いイオン交換基密度を有する電解質を配置すればよい。2層以上の層構成にして段階的にイオン交換基密度を変化させても良いし、1層構成で連続的にイオン交換基密度を変化させても良い。3層以上の層構成にして段階的にイオン交換基密度を変化させると、イオン交換基密度の変化の勾配が大きくなり、より反応効率が高まる効果を発揮するので好ましい。   In order to increase the ion exchange group density of the electrolyte on the electrolyte membrane 10 side compared to the reaction raw material supply side, that is, the diffusion layer 16 side, for example, the ion exchange group density (in the air electrode 14 on the electrolyte membrane 10 side) An electrolyte having a high ion conductivity may be disposed, and an electrolyte having a lower ion exchange group density may be disposed in the air electrode 14 on the diffusion layer 16 side. The ion exchange group density may be changed stepwise in a layer configuration of two or more layers, or the ion exchange group density may be changed continuously in a single layer configuration. It is preferable to change the ion exchange group density in a stepwise manner with three or more layers because the gradient of the change in ion exchange group density is increased and the effect of increasing the reaction efficiency is exhibited.

用いる電解質のイオン交換基密度は、スルホン酸基等の当量重量EW(g/eq)を指標として表される。ここで、当量重量EWとは、電解質のイオン交換基1当量あたりの電解質の乾燥質量のことである。電解質膜10側の電解質のEWは、反応原料供給側の電解質のEWよりも低ければよいが、反応原料供給側の電解質のEWと、電解質膜10側の電解質のEWとの差が100〜500の範囲であることが好ましい。   The ion exchange group density of the electrolyte to be used is expressed using an equivalent weight EW (g / eq) of a sulfonic acid group or the like as an index. Here, the equivalent weight EW is the dry mass of the electrolyte per equivalent of the ion exchange group of the electrolyte. The EW of the electrolyte on the electrolyte membrane 10 side should be lower than the EW of the electrolyte on the reaction raw material supply side, but the difference between the EW of the electrolyte on the reaction raw material supply side and the EW of the electrolyte on the electrolyte membrane 10 side is 100 to 500. It is preferable that it is the range of these.

また、燃料極12及び空気極14のうち少なくとも一方において、電解質膜10側に近いほど高い解離定数を有することが好ましく、カソード側(空気極14)において、本構成を備えることが好ましい。これにより、電解質膜10側に近いほどイオン導電性をより高めることができ、触媒層のイオン伝導律速をより緩和し、反応原料供給側の触媒を反応により寄与させることができる。   Further, it is preferable that at least one of the fuel electrode 12 and the air electrode 14 has a higher dissociation constant as it is closer to the electrolyte membrane 10 side, and it is preferable that this configuration is provided on the cathode side (air electrode 14). As a result, the closer to the electrolyte membrane 10 side, the more the ionic conductivity can be increased, the ionic conduction rate limiting of the catalyst layer can be further relaxed, and the catalyst on the reaction raw material supply side can be contributed by the reaction.

高い解離定数を有する電解質としては、スルホン酸系、イミド系(例えば、パーフルオロスルホンイミド系、CF−(CF−SO−N(H)−SO−(CF−CF)等の固体高分子電解質が挙げられ、低い解離定数を有する電解質としては、カルボン酸系、リン酸系等の固体高分子電解質が挙げられる。 The electrolyte having high dissociation constant, sulfonic acid, imide-based (e.g., perfluorosulfonic imide, CF 3 - (CF 2) n -SO 2 -N (H) -SO 2 - (CF 2) m - Examples thereof include solid polymer electrolytes such as CF 3 ), and examples of the electrolyte having a low dissociation constant include carboxylic acid-based and phosphoric acid-based solid polymer electrolytes.

燃料極12及び空気極14の膜厚は例えば、1μm〜100μm、好ましくは1μm〜20μmの範囲である。   The film thicknesses of the fuel electrode 12 and the air electrode 14 are, for example, in the range of 1 μm to 100 μm, preferably 1 μm to 20 μm.

電解質膜10としては、プロトン(H)等のイオン伝導性の高い材料であれば特に制限はなく、パーフルオロスルホン酸系や炭化水素系等の固体高分子電解質膜が用いられる。具体的には、ジャパンゴアテックス(株)のゴアセレクト(Goreselect、登録商標)、デュポン社(Du Pont社)のナフィオン(Nafion、登録商標)、旭化成(株)のアシプレックス(Aciplex、登録商標)、旭硝子(株)のフレミオン(Flemion、登録商標)等のパーフルオロスルホン酸系固体高分子電解質膜を使用することができる。電解質膜10の膜厚は例えば、10μm〜200μm、好ましくは20μm〜50μmの範囲である。 The electrolyte membrane 10 is not particularly limited as long as it is a material having high ion conductivity such as proton (H + ), and a perfluorosulfonic acid-based or hydrocarbon-based solid polymer electrolyte membrane is used. Specifically, Goreselect (registered trademark) of Japan Gore-Tex Corporation, Nafion (registered trademark) of Du Pont (Du Pont), Aciplex (registered trademark) of Asahi Kasei Co., Ltd. Perfluorosulfonic acid solid polymer electrolyte membranes such as Flemion (registered trademark) of Asahi Glass Co., Ltd. can be used. The thickness of the electrolyte membrane 10 is, for example, in the range of 10 μm to 200 μm, preferably 20 μm to 50 μm.

また、電解質膜10には、必要に応じて補強膜として、ポリテトラフルオロエチレン(PTFE)、超高分子量ポリエチレン、ポリイミド等の、好ましくはポリテトラフルオロエチレン(PTFE)の延伸多孔質膜を設けてもよい。この場合、溶液キャスト法等の方法により補強膜の表裏面に電解質膜10を形成する。補強膜の表裏面に電解質膜10が形成された3層構造であってもよいが、5層構造、あるいはそれ以上の層構造であってもよい。補強膜の膜厚は通常、5μm〜100μmである。   The electrolyte membrane 10 is provided with a stretched porous membrane of polytetrafluoroethylene (PTFE), ultrahigh molecular weight polyethylene, polyimide, or the like, preferably a polytetrafluoroethylene (PTFE), as a reinforcing membrane, if necessary. Also good. In this case, the electrolyte membrane 10 is formed on the front and back surfaces of the reinforcing membrane by a method such as a solution casting method. A three-layer structure in which the electrolyte membrane 10 is formed on the front and back surfaces of the reinforcing film may be used, but a five-layer structure or a layer structure having more than that may also be used. The film thickness of the reinforcing film is usually 5 μm to 100 μm.

拡散層16としては、導電性が高く、燃料及び空気等の原料の拡散性が高い材料であれば特に制限はないが、多孔質導電体材料であることが好ましい。導電性の高い材料としては、例えば、金属板、金属フィルム、導電性高分子、カーボン材料等が挙げられ、カーボンクロス、カーボンペーパ、ガラス状カーボン等のカーボン材料が好ましく、カーボンクロス、カーボンペーパ等の多孔質カーボン材料であることがより好ましい。拡散層16の膜厚は例えば、50μm〜1000μm、好ましくは150μm〜600μmの範囲である。   The diffusion layer 16 is not particularly limited as long as it is a material having high conductivity and high diffusibility of raw materials such as fuel and air, but is preferably a porous conductor material. Examples of the highly conductive material include a metal plate, a metal film, a conductive polymer, a carbon material, and the like, and carbon materials such as carbon cloth, carbon paper, and glassy carbon are preferable, and carbon cloth, carbon paper, and the like. The porous carbon material is more preferable. The film thickness of the diffusion layer 16 is, for example, in the range of 50 μm to 1000 μm, preferably 150 μm to 600 μm.

また、拡散層16は、拡散層16の撥水性の向上のために、ポリテトラフルオロエチレン(PTFE)等の撥水性樹脂と、電子伝導性を有する、例えばカーボンブラック等との混合溶液である撥水ペーストにより撥水処理がされてもよい。   Further, the diffusion layer 16 is a mixed solution of a water repellent resin such as polytetrafluoroethylene (PTFE) and an electron conductive material such as carbon black in order to improve the water repellency of the diffusion layer 16. Water repellent treatment may be performed with a water paste.

セパレータ18は、耐食処理が施された金属板または焼成カーボン等のカーボン系材料等で構成される。セパレータ18には、燃料極12及び空気極14にそれぞれ水素ガス、空気等の原料を供給するための原料供給路22,24が設けられている。   The separator 18 is made of a corrosion-resistant metal plate or a carbon-based material such as baked carbon. The separator 18 is provided with raw material supply paths 22 and 24 for supplying raw materials such as hydrogen gas and air to the fuel electrode 12 and the air electrode 14, respectively.

このようにして製造された燃料電池1において、燃料極12側の拡散層16と空気極14側の拡散層16とを外部回路に電気的に接続し、燃料極12及び空気極14にそれぞれ反応ガス等の原料を供給して運転すれば、電池として機能させることができる。   In the fuel cell 1 manufactured as described above, the diffusion layer 16 on the fuel electrode 12 side and the diffusion layer 16 on the air electrode 14 side are electrically connected to an external circuit, and react with the fuel electrode 12 and the air electrode 14 respectively. If it operates by supplying raw materials such as gas, it can function as a battery.

燃料極12側に供給する原料としては、水素やメタン等の還元性ガス(燃料ガス)あるいはメタノール等の液体燃料等が挙げられる。空気極14側に供給する原料としては、酸素や空気等の酸化性ガス等が挙げられる。   Examples of the raw material supplied to the fuel electrode 12 include reducing gas (fuel gas) such as hydrogen and methane, or liquid fuel such as methanol. Examples of the raw material supplied to the air electrode 14 include oxidizing gases such as oxygen and air.

<燃料電池用接合体及び燃料電池の製造方法>
本実施形態に係る燃料電池用接合体、燃料電池は、例えば、電解質膜の少なくとも一方の面に触媒と第1電解質とを含有する第1触媒層を形成する第1触媒層形成工程と、第1触媒層の表面に触媒と第1電解質よりもイオン交換基密度が低い第2電解質とを含む第2触媒層を形成する第2触媒層形成工程と、を含む方法により製造される。
<Fuel cell assembly and fuel cell manufacturing method>
The fuel cell assembly and fuel cell according to the present embodiment include, for example, a first catalyst layer forming step of forming a first catalyst layer containing a catalyst and a first electrolyte on at least one surface of an electrolyte membrane; And a second catalyst layer forming step of forming a second catalyst layer including a catalyst and a second electrolyte having a lower ion exchange group density than the first electrolyte on the surface of the first catalyst layer.

触媒層の形成は、例えば、フィルム上に形成した触媒層を転写する転写法、スプレーによりスラリーを吹き付けて湿式塗布するスプレー法等の公知の方法を用いて行うことができる。   The formation of the catalyst layer can be performed using a known method such as a transfer method for transferring the catalyst layer formed on the film, or a spray method in which slurry is sprayed by a spray and wet coating is performed.

カソード触媒層の形成後あるいはカソード触媒層の形成に先立って、もう一方の面にアノード触媒層を形成し、以降、公知の方法に従い、拡散層及びセパレータを形成し、両側の拡散層を外部回路に電気的に接続し、セルを形成する。   After the formation of the cathode catalyst layer or prior to the formation of the cathode catalyst layer, an anode catalyst layer is formed on the other surface. Thereafter, a diffusion layer and a separator are formed according to a known method, and both diffusion layers are connected to an external circuit. Are electrically connected to form a cell.

本実施形態に係る燃料電池としては、図1のような平板状に限らず、チューブ状等であってもよい。また、本実施形態に係る燃料電池は、1つの燃料電池(単セル)を複数個集合させて、直列に接続することにより、必要とする電流、電圧を得ることができる。また、1つの燃料電池(単セル)を複数個集合させて、並列に接続してもよい。   The fuel cell according to the present embodiment is not limited to a flat plate shape as shown in FIG. The fuel cell according to the present embodiment can obtain necessary current and voltage by collecting a plurality of fuel cells (single cells) and connecting them in series. A plurality of fuel cells (single cells) may be assembled and connected in parallel.

本実施形態に係る燃料電池は、例えば、携帯電話、携帯用パソコン等のモバイル機器用小型電源、自動車用電源、家庭用電源等として用いることができる。   The fuel cell according to the present embodiment can be used as, for example, a small power source for mobile devices such as a mobile phone and a portable personal computer, an automobile power source, a household power source, and the like.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1)
<セルの作製>
電解質膜としてナフィオン(Nafion、登録商標、デュポン社(Du Pont社)製)を使用し、電解質膜の一方の面にカソード触媒層として、触媒である白金を触媒担体であるカーボンに担持した白金担持カーボン(白金担持カーボンのうち65質量%が白金であり、35質量%がカーボン)と固体高分子電解質(ナフィオン(登録商標)、EW=700)を混合した層(触媒量:0.6mg/cm、固体高分子電解質の乾燥質量/カーボンの質量(N/C)=0.75)を形成し、その上にさらに、白金担持カーボンと固体高分子電解質(ナフィオン(登録商標)、EW=1000)を混合した層(触媒量:1.0mg/cm、固体高分子電解質の乾燥質量/カーボンの質量(N/C)=0.75)を形成した。次に、電解質膜のもう一方の面にアノード触媒層として、触媒である白金/ルテニウムを触媒担体であるカーボンに担持した白金/ルテニウム合金担持カーボン(白金/ルテニウム合金担持カーボンのうち57質量%が白金/ルテニウムであり、43質量%がカーボン)と固体高分子電解質(ナフィオン(登録商標)、EW=1000)を混合した層(触媒量:0.4mg/cm、固体高分子電解質の乾燥質量/カーボンの質量(N/C)=1.0)を形成した。
Example 1
<Production of cell>
Platinum support using Nafion (registered trademark, manufactured by Du Pont) as an electrolyte membrane, and supporting platinum as a catalyst on carbon as a catalyst carrier as a cathode catalyst layer on one side of the electrolyte membrane A layer (catalyst amount: 0.6 mg / cm) in which carbon (65% by mass of platinum-supported carbon is platinum and 35% by mass is carbon) and a solid polymer electrolyte (Nafion (registered trademark), EW = 700) are mixed. 2 , dry mass of solid polymer electrolyte / mass of carbon (N / C) = 0.75), and further, platinum-supported carbon and solid polymer electrolyte (Nafion (registered trademark), EW = 1000) ) (Amount of catalyst: 1.0 mg / cm 2 , dry weight of solid polymer electrolyte / weight of carbon (N / C) = 0.75). Next, as an anode catalyst layer on the other surface of the electrolyte membrane, platinum / ruthenium alloy-supported carbon in which platinum / ruthenium as a catalyst is supported on carbon as a catalyst carrier (57% by mass of platinum / ruthenium alloy-supported carbon is A layer in which platinum / ruthenium and 43% by mass of carbon) and a solid polymer electrolyte (Nafion (registered trademark), EW = 1000) are mixed (amount of catalyst: 0.4 mg / cm 2 , dry mass of the solid polymer electrolyte) / Mass of carbon (N / C) = 1.0).

EPMA(Electron Probe Micro−Analysis)の方法によりカソード触媒層を分析したところ、触媒を担持する触媒担体の質量に対する電解質の乾燥質量が略均一であり、かつ反応原料供給側に比べて電解質膜側の電解質のイオン交換基密度が高いことがわかった。   When the cathode catalyst layer was analyzed by the method of EPMA (Electron Probe Micro-Analysis), the dry mass of the electrolyte with respect to the mass of the catalyst carrier carrying the catalyst was substantially uniform, and the electrolyte membrane side compared to the reaction raw material supply side. It was found that the ion exchange group density of the electrolyte was high.

各触媒層上に、PTFEを含浸させ、撥水処理を行った厚さ100μmのカーボンペーパを用い、拡散層を形成した。これをカーボン系材料で構成したセパレータで挟持し、単セルを作製した。   A diffusion layer was formed on each catalyst layer using carbon paper having a thickness of 100 μm impregnated with PTFE and subjected to a water repellent treatment. This was sandwiched between separators made of a carbon-based material to produce a single cell.

<電池性能評価>
電流密度i=0.4A/cm、燃料利用率Uf=70%、空気利用率Uox=50%、10ppmCOSR模擬ガス、フル加湿の条件下でセル電圧を測定した。結果を表1に示す。
<Battery performance evaluation>
The cell voltage was measured under the conditions of current density i = 0.4 A / cm 2 , fuel utilization rate Uf = 70%, air utilization rate Uox = 50%, 10 ppm COSR simulated gas, full humidification. The results are shown in Table 1.

(実施例2)
カソード触媒層として、白金担持カーボンと固体高分子電解質(ナフィオン(登録商標)、EW=700)を混合した層(触媒量:0.6mg/cm、N/C=0.75)を形成し、その上にさらに、白金担持カーボンと固体高分子電解質(ナフィオン(登録商標)、EW=1000)を混合した層(触媒量:1.0mg/cm、N/C=0.70)を形成した以外は、実施例1と同様にして単セルを作製し、評価を行った。結果を表1に示す。
(Example 2)
As a cathode catalyst layer, a layer (catalyst amount: 0.6 mg / cm 2 , N / C = 0.75) in which platinum-supported carbon and a solid polymer electrolyte (Nafion (registered trademark), EW = 700) are mixed is formed. Further, a layer (catalyst amount: 1.0 mg / cm 2 , N / C = 0.70) in which platinum-supported carbon and a solid polymer electrolyte (Nafion (registered trademark), EW = 1000) are mixed is formed thereon. A single cell was prepared and evaluated in the same manner as in Example 1 except that. The results are shown in Table 1.

(比較例1)
カソード触媒層として、白金担持カーボンと固体高分子電解質(ナフィオン(登録商標)、EW=1000)を混合した層(触媒量:1.6mg/cm、N/C=0.75)を形成した以外は、実施例1と同様にして単セルを作製し、評価を行った。結果を表1に示す。比較例1のセル電圧を基準電圧とした。
(Comparative Example 1)
As a cathode catalyst layer, a layer (catalyst amount: 1.6 mg / cm 2 , N / C = 0.75) in which platinum-supported carbon and a solid polymer electrolyte (Nafion (registered trademark), EW = 1000) were mixed was formed. A single cell was produced and evaluated in the same manner as in Example 1 except for the above. The results are shown in Table 1. The cell voltage of Comparative Example 1 was used as a reference voltage.

(比較例2)
カソード触媒層として、白金担持カーボンと固体高分子電解質(ナフィオン(登録商標)、EW=1000)を混合した層(触媒量:0.6mg/cm、N/C=1.0)を形成し、その上にさらに、白金担持カーボンと固体高分子電解質(ナフィオン(登録商標)、EW=1000)を混合した層(触媒量:1.0mg/cm、N/C=0.75)を形成した以外は、実施例1と同様にして単セルを作製し、評価を行った。結果を表1に示す。
(Comparative Example 2)
As a cathode catalyst layer, a layer (catalyst amount: 0.6 mg / cm 2 , N / C = 1.0) in which platinum-supported carbon and a solid polymer electrolyte (Nafion (registered trademark), EW = 1000) are mixed is formed. Further, a layer (catalyst amount: 1.0 mg / cm 2 , N / C = 0.75) in which platinum-supported carbon and a solid polymer electrolyte (Nafion (registered trademark), EW = 1000) are mixed is formed thereon. A single cell was prepared and evaluated in the same manner as in Example 1 except that. The results are shown in Table 1.

(比較例3)
カソード触媒層として、白金担持カーボンと固体高分子電解質(ナフィオン(登録商標)、EW=700)を混合した層(触媒量:1.6mg/cm、N/C=0.75)を形成した以外は、実施例1と同様にして単セルを作製し、評価を行った。結果を表1に示す。
(Comparative Example 3)
As a cathode catalyst layer, a layer (catalyst amount: 1.6 mg / cm 2 , N / C = 0.75) in which platinum-supported carbon and a solid polymer electrolyte (Nafion (registered trademark), EW = 700) were mixed was formed. A single cell was produced and evaluated in the same manner as in Example 1 except for the above. The results are shown in Table 1.

Figure 2008270019
Figure 2008270019

このように、実施例1,2のセルのセル電圧は比較例1のセルに比べて、約+30mVであり、高効率の燃料電池セルを得ることができた。このことは、実施例1,2のセルにおいて、触媒層中の触媒の反応効率及び排水性を向上することができたことを示す。また、比較例2のセルは、カソード触媒層において電解質膜側の電解質量が多いため、反応原料の拡散性が低下し、実施例1,2のセルのセル電圧に比べて低くなっている。比較例3のセルは、カソード触媒層全体のイオン交換密度が高くなっているため、実施例1,2のセルのセル電圧に比べて低くなっている。   Thus, the cell voltage of the cells of Examples 1 and 2 was about +30 mV compared to the cell of Comparative Example 1, and a highly efficient fuel cell could be obtained. This indicates that in the cells of Examples 1 and 2, the reaction efficiency and drainage of the catalyst in the catalyst layer could be improved. Moreover, since the cell of the comparative example 2 has much electrolytic mass by the side of the electrolyte membrane in a cathode catalyst layer, the diffusibility of a reaction raw material falls and it is low compared with the cell voltage of the cell of Example 1,2. In the cell of Comparative Example 3, since the ion exchange density of the entire cathode catalyst layer is high, the cell voltage of the cells of Examples 1 and 2 is low.

本発明の実施形態に係る燃料電池の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the fuel cell which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 燃料電池、10 電解質膜、12 燃料極(アノード触媒層)、14 空気極(カソード触媒層)、16 拡散層、18 セパレータ、20 膜電極複合体(MEA)、22,24 原料供給路。   DESCRIPTION OF SYMBOLS 1 Fuel cell, 10 Electrolyte membrane, 12 Fuel electrode (anode catalyst layer), 14 Air electrode (cathode catalyst layer), 16 Diffusion layer, 18 Separator, 20 Membrane electrode composite (MEA), 22, 24 Raw material supply path.

Claims (6)

電解質膜を挟んで対向するように触媒層として触媒と電解質とを含むカソード触媒層及びアノード触媒層が形成された燃料電池用接合体を含む燃料電池であって、
前記触媒層のうち少なくとも一方において、前記触媒を担持する触媒担体の質量に対する前記電解質の乾燥質量が略均一であり、かつ反応原料供給側に比べて前記電解質膜側の前記電解質のイオン交換基密度が高いことを特徴とする燃料電池。
A fuel cell comprising a fuel cell assembly in which a cathode catalyst layer containing a catalyst and an electrolyte as a catalyst layer and an anode catalyst layer are formed so as to face each other with an electrolyte membrane interposed therebetween,
In at least one of the catalyst layers, the dry mass of the electrolyte with respect to the mass of the catalyst carrier supporting the catalyst is substantially uniform, and the ion exchange group density of the electrolyte on the electrolyte membrane side compared to the reaction raw material supply side A fuel cell characterized by having a high value.
請求項1に記載の燃料電池であって、
前記少なくとも一方の触媒層は、前記電解質膜に近いほど高いイオン交換基密度を有することを特徴とする燃料電池。
The fuel cell according to claim 1,
The fuel cell according to claim 1, wherein the at least one catalyst layer has a higher ion exchange group density as it is closer to the electrolyte membrane.
請求項1または2に記載の燃料電池であって、
前記少なくとも一方の触媒層は、前記電解質膜に近いほど高い解離定数を有することを特徴とする燃料電池。
The fuel cell according to claim 1 or 2,
The fuel cell according to claim 1, wherein the at least one catalyst layer has a higher dissociation constant as it is closer to the electrolyte membrane.
電解質膜を挟んで対向するように触媒層として触媒と電解質とを含むカソード触媒層及びアノード触媒層が形成された燃料電池用接合体であって、
前記触媒層のうち少なくとも一方において、前記触媒を担持する触媒担体の質量に対する前記電解質の乾燥質量が略均一であり、かつ反応原料供給側に比べて前記電解質膜側の前記電解質のイオン交換基密度が高いことを特徴とする燃料電池用接合体。
A fuel cell assembly in which a cathode catalyst layer and an anode catalyst layer including a catalyst and an electrolyte are formed as a catalyst layer so as to face each other with an electrolyte membrane interposed therebetween,
In at least one of the catalyst layers, the dry mass of the electrolyte with respect to the mass of the catalyst carrier supporting the catalyst is substantially uniform, and the ion exchange group density of the electrolyte on the electrolyte membrane side compared to the reaction raw material supply side A fuel cell assembly characterized by having a high value.
請求項4に記載の燃料電池用接合体であって、
前記少なくとも一方の触媒層は、前記電解質膜に近いほど高いイオン交換基密度を有することを特徴とする燃料電池用接合体。
The fuel cell assembly according to claim 4,
The at least one catalyst layer has a higher ion exchange group density as it is closer to the electrolyte membrane.
請求項4または5に記載の燃料電池用接合体であって、
前記少なくとも一方の触媒層は、前記電解質膜に近いほど高い解離定数を有することを特徴とする燃料電池用接合体。
A fuel cell assembly according to claim 4 or 5, wherein
The assembly for a fuel cell, wherein the at least one catalyst layer has a higher dissociation constant as it is closer to the electrolyte membrane.
JP2007113061A 2007-04-23 2007-04-23 Fuel cell and jointed body for fuel cell Pending JP2008270019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113061A JP2008270019A (en) 2007-04-23 2007-04-23 Fuel cell and jointed body for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113061A JP2008270019A (en) 2007-04-23 2007-04-23 Fuel cell and jointed body for fuel cell

Publications (1)

Publication Number Publication Date
JP2008270019A true JP2008270019A (en) 2008-11-06

Family

ID=40049255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113061A Pending JP2008270019A (en) 2007-04-23 2007-04-23 Fuel cell and jointed body for fuel cell

Country Status (1)

Country Link
JP (1) JP2008270019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007518A1 (en) * 2009-07-14 2011-01-20 パナソニック株式会社 Membrane-electrode assembly, solid polymer fuel cell, and fuel cell power generation system
JP2017212176A (en) * 2016-05-27 2017-11-30 日清紡ホールディングス株式会社 Battery cathode, battery cathode catalyst layer composition, and battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007518A1 (en) * 2009-07-14 2011-01-20 パナソニック株式会社 Membrane-electrode assembly, solid polymer fuel cell, and fuel cell power generation system
JP2017212176A (en) * 2016-05-27 2017-11-30 日清紡ホールディングス株式会社 Battery cathode, battery cathode catalyst layer composition, and battery
WO2017203980A1 (en) * 2016-05-27 2017-11-30 日清紡ホールディングス株式会社 Battery cathode, composition for battery cathode catalytic layer, and battery
US11177484B2 (en) 2016-05-27 2021-11-16 Nisshinbo Holdings Inc. Battery cathode, composition for battery cathode catalytic layer, and battery

Similar Documents

Publication Publication Date Title
US7803490B2 (en) Direct methanol fuel cell
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
US20070202388A1 (en) Membrane Electrode Unit
KR20040099149A (en) Fuel Cell
JP5260009B2 (en) Membrane electrode assembly and fuel cell
JP4190478B2 (en) Polymer electrolyte fuel cell
JP2009199988A (en) Anode electrode for direct methanol fuel cell and direct methanol type fuel cell using the same
JP2004079420A (en) Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
JP2010536152A (en) Supported catalyst layer for direct oxidation fuel cell
JP2004186049A (en) Electrode structure for solid polymer fuel cell and its manufacturing method
KR101515905B1 (en) Membrane electrode assembly and fuel cell
JP2007234589A (en) Direct oxidation fuel cell and method for operating direct oxidation fuel cell system
JP2011171301A (en) Direct oxidation fuel cell
JP5481297B2 (en) Membrane electrode assembly and fuel cell
JP4180556B2 (en) Polymer electrolyte fuel cell
JP7359077B2 (en) Laminate for fuel cells
JP2008270019A (en) Fuel cell and jointed body for fuel cell
JP5298303B2 (en) Membrane electrode assembly and fuel cell
JP4111077B2 (en) Solid polymer electrolyte fuel cell
JP2007073337A (en) Film/electrode assembly for direct methanol type fuel cell, and direct methanol type fuel cell using the same
US20120189933A1 (en) Anode catalyst layers for direct oxidation fuel cells
JP7272319B2 (en) Laminates for fuel cells
EP2253039B1 (en) Low-porosity anode diffusion media for direct oxidation fuel cells
JP2011181374A (en) Membrane-electrode assembly for solid polymer fuel cell and solid polymer fuel cell
JP2010073419A (en) Electrolyte membrane-electrode assembly for fuel cell