JP2008267623A - Manufacturing method of heat exchanger, formation member and heat exchanger - Google Patents

Manufacturing method of heat exchanger, formation member and heat exchanger Download PDF

Info

Publication number
JP2008267623A
JP2008267623A JP2007107811A JP2007107811A JP2008267623A JP 2008267623 A JP2008267623 A JP 2008267623A JP 2007107811 A JP2007107811 A JP 2007107811A JP 2007107811 A JP2007107811 A JP 2007107811A JP 2008267623 A JP2008267623 A JP 2008267623A
Authority
JP
Japan
Prior art keywords
base member
groove
heat medium
shape
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007107811A
Other languages
Japanese (ja)
Inventor
Eitoku Saito
栄徳 斎藤
Takayuki Takeuchi
孝之 竹内
Kazuhiko Nogami
一彦 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkeikin Aluminum Core Technology Co Ltd
Original Assignee
Nikkeikin Aluminum Core Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkeikin Aluminum Core Technology Co Ltd filed Critical Nikkeikin Aluminum Core Technology Co Ltd
Priority to JP2007107811A priority Critical patent/JP2008267623A/en
Publication of JP2008267623A publication Critical patent/JP2008267623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily manufacture a heat exchanger of high thermal conductivity. <P>SOLUTION: In this manufacturing method of the heat exchanger 1 receiving heat medium tubes 10 for making a heat medium to heat or cool a thermal component circulate in a plate-shaped base member 20, formation members 21 are partially pressed to be elastically deformed, and inner surfaces of grooves 24 are pressed to surfaces of the heat medium tubes 10 when the heat medium tubes 10 are held and fixed by the plurality of formation members 21 having the grooves 24 for receiving the heat medium tubes 10 and constituting the base member 20 by being joined to each other from both side in the thickness direction of the base member 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱部品を加熱または冷却するための熱媒体を循環させる熱媒体管を板状のベース部材の内部に収容した熱交換器の製造方法、形材および熱交換器に関する。   The present invention relates to a method of manufacturing a heat exchanger, a profile, and a heat exchanger in which a heat medium pipe for circulating a heat medium for heating or cooling a heat component is accommodated in a plate-like base member.

例えば、コンピュータの中央演算装置等の熱部品を冷却するための熱交換器は、冷却水などの冷却用熱媒体を循環させる熱媒体管を板状のベース部材の内部に収容して構成されている。熱交換器の軽量化と熱伝導の安定性の観点より、ベース部材をアルミニウムなどの軽量の金属で構成し、熱媒体管を銅などの熱伝導性の高い金属で構成するものが多く利用されている。このような構成の場合、異種金属同士を接合するために、熱媒体管とベース部材をはんだ等で接合する方法や、ベース部材を溶かして熱媒体管を鋳込んで埋め込む等の方法が採用されていた。   For example, a heat exchanger for cooling thermal components such as a central processing unit of a computer is configured by housing a heat medium pipe for circulating a heat medium for cooling such as cooling water inside a plate-like base member. Yes. From the viewpoint of weight reduction of heat exchangers and stability of heat conduction, it is often used that the base member is made of a light metal such as aluminum and the heat medium pipe is made of a metal having high heat conductivity such as copper. ing. In the case of such a configuration, in order to join dissimilar metals, a method of joining the heat medium tube and the base member with solder or the like, a method of melting the base member and casting and embedding the heat medium tube are adopted. It was.

しかしながら、前記のような接合方法では、熱伝導の安定性が十分ではなかった。さらに、量産性が乏しく、熱交換器の小型化が困難であった。   However, the joining method as described above has not been sufficient in heat conduction stability. Furthermore, the mass productivity is poor and it is difficult to reduce the size of the heat exchanger.

そこで、熱伝導の安定性を高めるために、以前より種々のものが提案されており、例えば、特許文献1や特許文献2に示すようなものがあった。   In order to increase the stability of heat conduction, various types have been proposed in the past. For example, there are those shown in Patent Document 1 and Patent Document 2.

特許文献1のコールドプレート(熱交換器)は、ベース部の貫通穴に配管部を挿入した後に、配管部を拡管棒で拡管させて、ベース部に接合させるように構成されており、ベース部と配管部との接触面積が大きくなり、熱伝導性が高められている。   The cold plate (heat exchanger) of Patent Document 1 is configured such that after the piping portion is inserted into the through hole of the base portion, the piping portion is expanded with a tube expansion rod and joined to the base portion. The contact area between the pipe and the pipe is increased, and the thermal conductivity is enhanced.

特許文献2の液冷ヒートシンク(熱交換器)は、接合される2つの独立した押し出し材に、内部に複数の小突起を備えた溝を設け、押し出し材同士の接合時の圧力で、溝に挟まれた液冷流体輸送管の外周表面に前記小突起を押し付けて塑性変形させて接合面積を多くしている。   In the liquid-cooled heat sink (heat exchanger) of Patent Document 2, a groove having a plurality of small protrusions is provided in two independent extruded materials to be joined, and pressure is applied to the grooves by the pressure at the time of joining the extruded materials. The small protrusion is pressed against the outer peripheral surface of the sandwiched liquid-cooled fluid transport pipe to cause plastic deformation, thereby increasing the joining area.

特開2004−3725号公報JP 2004-3725 A 特開平9−271863号公報JP-A-9-271863

しかしながら、特許文献1の熱交換器では、ベース部に配管部を挿入する工程の事後工程として拡管工程を行わなければならないので、必要な加工工程が多くなってしまい、製造効率が悪く、製造コストの増加を招いてしまうといった問題があった。   However, in the heat exchanger of Patent Document 1, since the tube expansion process must be performed as a post process of the process of inserting the pipe section into the base section, the necessary processing steps are increased, the manufacturing efficiency is poor, and the manufacturing cost is reduced. There was a problem of inviting an increase.

また、特許文献2の液冷ヒートシンク(熱交換器)では、液冷流体輸送管と押し出し材との接合面積を多くでき熱伝導性が高まるものの、溝内部の小突起を塑性変形させるために大きな押圧力を必要とし、製造が困難であった。   Further, in the liquid-cooled heat sink (heat exchanger) of Patent Document 2, although the bonding area between the liquid-cooled fluid transport pipe and the extruded material can be increased and the thermal conductivity is increased, it is large in order to plastically deform small protrusions in the groove. A pressing force was required, and manufacturing was difficult.

そこで、本発明は前記の問題を解決するために案出されたものであって、熱伝導性が高い熱交換器の製造を容易に行うことができる熱交換器の製造方法、形材および熱交換器を提供することを課題とする。   Therefore, the present invention has been devised to solve the above-described problem, and a heat exchanger manufacturing method, a profile and a heat which can easily manufacture a heat exchanger having high thermal conductivity. It is an object to provide an exchanger.

前記課題を解決するための請求項1に係る発明は、熱部品を加熱または冷却するための熱媒体を循環させる熱媒体管を板状のベース部材の内部に収容した熱交換器の製造方法において、前記熱媒体管を収容するための溝を備えるとともに互いに接合されることで前記ベース部材を構成する複数の形材で、前記熱媒体管を前記ベース部材の厚さ方向両側から挟み込んで固定する際に、前記形材を部分的に押圧することで前記形材を塑性変形させて、前記溝の内表面を前記熱媒体管の表面に押圧させることを特徴とする熱交換器の製造方法である。   The invention according to claim 1 for solving the above-mentioned problem is a method of manufacturing a heat exchanger in which a heat medium pipe for circulating a heat medium for heating or cooling a heat component is accommodated in a plate-like base member. The heat medium pipe is sandwiched and fixed from both sides in the thickness direction of the base member with a plurality of members constituting the base member by being provided with a groove for accommodating the heat medium pipe and being joined to each other. In this case, in the method of manufacturing a heat exchanger, the shape is plastically deformed by partially pressing the shape, and the inner surface of the groove is pressed against the surface of the heat medium pipe. is there.

このような方法によれば、形材を部分的に押圧することで、小さい押圧力で形材が塑性変形して溝の内表面を熱媒体管の表面に押圧させることができ、形材と熱媒体管の接合面積が大きくなり熱伝導性を高めることが可能となる。また、形材を押圧するだけで、溝と熱媒体管の接合面積を大きくすることができ、従来のように熱媒体管を拡管するといった他の工程を行う必要はない。したがって、熱交換器の製造が容易になる。   According to such a method, by partially pressing the shape material, the shape material can be plastically deformed with a small pressing force, and the inner surface of the groove can be pressed against the surface of the heat medium tube. The joining area of the heat medium pipe is increased, and the thermal conductivity can be increased. Further, the bonding area between the groove and the heat medium pipe can be increased only by pressing the shape member, and there is no need to perform other steps such as expanding the heat medium pipe as in the prior art. Therefore, manufacture of a heat exchanger becomes easy.

請求項2に係る発明は、前記形材の、前記ベース部材の厚さ方向から見て前記溝が内側に位置する溝投影部分の外表面を部分的に押圧することで、前記熱媒体管を前記ベース部材の厚さ方向から押圧することを特徴とする請求項1に記載の熱交換器の製造方法である。   According to a second aspect of the present invention, the heat medium tube is formed by partially pressing an outer surface of a groove projection portion where the groove is located on the inner side when viewed from the thickness direction of the base member. 2. The heat exchanger manufacturing method according to claim 1, wherein pressing is performed from the thickness direction of the base member.

このような方法によれば、形材の溝投影部分が塑性変形して、熱媒体管のベース部材の厚さ方向両側で、熱媒体管と形材との接触面積を大きくすることができ、熱伝導性を高めることが可能となる。   According to such a method, the groove projection portion of the profile is plastically deformed, and the contact area between the heat medium tube and the profile can be increased on both sides in the thickness direction of the base member of the heat medium tube. It becomes possible to improve thermal conductivity.

請求項3に係る発明は、前記形材の、前記ベース部材の厚さ方向から見て前記溝が内側に位置する溝投影部分の両側に位置する中実部分の外表面を部分的に押圧することで、前記熱媒体管を前記ベース部材の厚さ方向に直交する幅方向から押圧することを特徴とする請求項1または請求項2に記載の熱交換器の製造方法である。   The invention according to claim 3 partially presses the outer surface of the solid portion located on both sides of the groove projection portion where the groove is located on the inner side when viewed from the thickness direction of the base member. Thus, the heat exchanger tube according to claim 1 or 2, wherein the heat medium pipe is pressed from a width direction orthogonal to a thickness direction of the base member.

このような方法によれば、形材の中実部分が溝に向かって斜めおよび側方向から塑性変形して、熱媒体管のベース部材の幅方向両側で、熱媒体管と形材との接触面積を大きくすることができ、熱伝導性を高めることが可能となる。   According to such a method, the solid part of the profile is plastically deformed obliquely and laterally toward the groove, and the heat medium tube and the profile are contacted on both sides in the width direction of the base member of the heat medium tube. The area can be increased and the thermal conductivity can be increased.

請求項4に係る発明は、前記形材の外表面の所定位置に突条を形成しておき、この突条を押圧することで、前記形材の外表面を部分的に押圧することを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱交換器の製造方法である。   The invention according to claim 4 is characterized in that a protrusion is formed at a predetermined position on the outer surface of the profile, and the outer surface of the profile is partially pressed by pressing the protrusion. It is a manufacturing method of the heat exchanger of any one of Claim 1 thru | or 3.

このような方法によれば、突条が形材の外表面から内側に押し込まれて、形材が塑性変形を起こし、熱媒体管と形材との接触面積を大きくすることができ、熱伝導性を高めることが可能となる。   According to such a method, the protrusion is pushed inward from the outer surface of the profile, the profile is plastically deformed, and the contact area between the heat medium pipe and the profile can be increased, and the heat conduction It becomes possible to improve the nature.

請求項5に係る発明は、前記形材の外表面の所定位置に棒状部材を配設しておき、この棒状部材を押圧することで、前記形材を部分的に押圧することを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱交換器の製造方法である。   The invention according to claim 5 is characterized in that a rod-shaped member is disposed at a predetermined position on the outer surface of the profile and the profile is partially pressed by pressing the rod-shaped member. It is a manufacturing method of the heat exchanger of any one of Claim 1 thru | or 3.

このような方法によれば、形材に突条を設けなくてよいので、形材の形状を複雑にすることなく、形材の外表面を部分的に押圧することができ、熱伝導性の高い熱交換器を容易に製造することが可能となる。   According to such a method, since it is not necessary to provide protrusions on the shape, the outer surface of the shape can be partially pressed without complicating the shape of the shape. A high heat exchanger can be easily manufactured.

請求項6に係る発明は、前記形材を押圧するプレス機のプレス面に突条を形成しておき、この突条で前記形材の外表面の所定位置を押圧することで、前記形材の外表面を部分的に押圧することを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱交換器の製造方法である。   According to a sixth aspect of the present invention, a protrusion is formed on a press surface of a press that presses the shape, and the predetermined shape on the outer surface of the shape is pressed with the protrusion, whereby the shape 4. The method of manufacturing a heat exchanger according to claim 1, wherein an outer surface of the heat exchanger is partially pressed. 5.

このような方法によれば、請求項5に係る発明と同様に、形材に突条を設けなくてよいので、形材の形状を複雑にすることなく、形材の外表面を部分的に押圧することができ、熱伝導の安定性を高めることが可能となる。   According to such a method, as in the invention according to claim 5, since it is not necessary to provide protrusions on the shape material, the outer surface of the shape material is partially applied without complicating the shape of the shape material. It is possible to increase the stability of heat conduction.

請求項7に係る発明は、前記形材を押圧する際に、前記形材を前記ベース部材の幅方向両側から拘束することを特徴とする請求項1乃至請求項6のいずれか1項に記載の熱交換器の製造方法である。   The invention according to claim 7 is characterized in that, when pressing the shape member, the shape member is restrained from both sides in the width direction of the base member. It is a manufacturing method of this heat exchanger.

このような方法によれば、形材を押圧する際に、形材がベース部材の幅方向に広がろうとする応力に対抗することができ、その応力を熱媒体管側への形材の塑性変形に利用できるので、熱媒体管と形材との接触面積を大きくすることができ、熱伝導性をさらに高めることが可能となる。   According to such a method, when the shape is pressed, it is possible to counter the stress that the shape tends to spread in the width direction of the base member, and the stress is applied to the heat medium tube side plasticity. Since it can utilize for a deformation | transformation, the contact area of a heat-medium pipe | tube and a shape member can be enlarged, and it becomes possible to further improve thermal conductivity.

請求項8に係る発明は、熱媒体を循環させる熱媒体管を挟み込んで複数接合されることで前記熱媒体管を内部に収容する板状のベース部材を構成する熱交換器用の形材において、前記ベース部材の内側となる内表面に、前記熱媒体管を収容するための溝が形成され、前記ベース部材の外側となる外表面に、突条が形成されていることを特徴とする形材である。   The invention according to claim 8 is a profile for a heat exchanger that constitutes a plate-like base member that accommodates the heat medium pipe therein by sandwiching a plurality of heat medium pipes that circulate the heat medium. A shape member in which a groove for accommodating the heat medium pipe is formed on an inner surface which is an inner side of the base member, and a protrusion is formed on an outer surface which is an outer side of the base member. It is.

このような構成によれば、複数の形材で熱媒体管を挟み込んで、形材を押圧するだけで、突条が形材の内部に押し込まれて塑性変形を起こす。これによって、溝の内面が熱媒体管に押圧することになり、形材と熱媒体管の接合面積が大きくなり熱伝導性を高めることが可能となる。   According to such a configuration, the ridge is pushed into the inside of the shape member and plastic deformation occurs only by sandwiching the heat medium tube between the plurality of shape members and pressing the shape member. As a result, the inner surface of the groove is pressed against the heat medium tube, and the bonding area between the shape member and the heat medium tube is increased, and the thermal conductivity can be increased.

請求項9に係る発明は、前記突条が、前記溝を前記外表面に投影したエリアである溝投影部分に位置するとともに前記溝の全長に亘って形成されていることを特徴とする請求項8に記載の形材である。   The invention according to claim 9 is characterized in that the protrusion is formed in a groove projection portion which is an area where the groove is projected onto the outer surface, and is formed over the entire length of the groove. 8. The shape material according to 8.

このような構成によれば、突条は、溝を外表面に投影したエリアである溝投影部分に位置するとともに前記溝の全長に亘って形成されているので、熱媒体管のベース部材の厚さ方向両側で、溝の全長に亘って熱媒体管が押圧されるので、形材と熱媒体管の接合面積を効率的に大きくすることができる。   According to such a configuration, since the protrusion is located in the groove projection portion which is an area where the groove is projected on the outer surface and is formed over the entire length of the groove, the thickness of the base member of the heat medium pipe is increased. Since the heat medium pipe is pressed over the entire length of the groove on both sides in the vertical direction, the joint area between the profile and the heat medium pipe can be efficiently increased.

請求項10に係る発明は、前記外表面の前記溝投影部分両側に位置する中実部分の外表面にも、突条が形成されていることを特徴とする請求項9に記載の形材である。   The invention according to claim 10 is the profile according to claim 9, characterized in that protrusions are also formed on the outer surface of the solid part located on both sides of the groove projection part of the outer surface. is there.

このような構成によれば、突条は、外表面の溝投影部分両側に位置する中実部分の外表面にも形成されているので、複数の形材で熱媒体管を挟み込んで、形材を押圧するだけで、突条が形材の内部に押し込まれて塑性変形を起こし、ベース部材の幅方向両側から熱媒体管が押圧されるので、形材と熱媒体管の接合面積がさらに大きくなり熱伝導性を大幅に高めることができる。   According to such a configuration, since the protrusion is also formed on the outer surface of the solid portion located on both sides of the groove projection portion of the outer surface, the heat medium tube is sandwiched between the plurality of shapes, Is pressed into the inside of the shape member to cause plastic deformation, and the heat medium tube is pressed from both sides in the width direction of the base member, so that the joint area between the shape member and the heat medium tube is further increased. Therefore, the thermal conductivity can be greatly increased.

請求項11に係る発明は、前記ベース部材の厚さ方向全体に亘る厚さ寸法を有する基部と、前記ベース部材の幅方向の少なくとも一方に延出して前記基部と一体的に形成され前記熱媒体管を把持する把持部とを備え、前記把持部は、前記基部の厚さ寸法の略半分の厚さ寸法を有し、前記基部の外表面から連続的に繋がる外表面と、前記熱媒体管を収容するための溝が形成された内表面と、を備えたことを特徴とする請求項8乃至請求項10のいずれか1項に記載の形材である。   According to an eleventh aspect of the present invention, there is provided a base portion having a thickness dimension over the entire thickness direction of the base member, and at least one of the base members extending in the width direction and integrally formed with the base portion. A gripping portion for gripping a tube, the gripping portion having a thickness dimension substantially half of the thickness dimension of the base portion, and an outer surface continuously connected from the outer surface of the base portion; and the heat medium tube The shape member according to any one of claims 8 to 10, further comprising an inner surface on which a groove for accommodating a groove is formed.

このような構成によれば、複数の形材を組み合わせたときに、隣り合う把持部同士をベース部材の厚さ方向に組み合わせることで、ベース部材の厚さを確保でき、製造が容易となる。   According to such a configuration, when a plurality of shapes are combined, the thickness of the base member can be secured by combining adjacent gripping portions in the thickness direction of the base member, which facilitates manufacture.

請求項12に係る発明は、前記把持部は、前記ベース部材の幅方向の両側の前記基部に形成されており、一方の把持部は、他方の把持部に対して前記ベース部材の厚さ方向の逆側に形成されていることを特徴とする請求項11に記載の形材である。   In the invention according to claim 12, the grip portion is formed on the base portion on both sides in the width direction of the base member, and one grip portion is in the thickness direction of the base member with respect to the other grip portion. The shape material according to claim 11, wherein the shape material is formed on the opposite side of the shape.

このような構成によれば、複数組み合わされる形材を同一形状とすることができるので、製造効率の向上を図ることができる。   According to such a configuration, a plurality of combined shape members can have the same shape, so that the manufacturing efficiency can be improved.

請求項13に係る発明は、前記把持部の前記内表面の先端部に、凸部が形成され、前記把持部の前記内表面の基端部に、前記凸部と同等の幅寸法を有するとともに、前記凸部の長さ寸法と同等の深さ寸法を有する凹部が形成されていることを特徴とする請求項11または請求項12に記載の形材である。   According to a thirteenth aspect of the present invention, a convex portion is formed at a distal end portion of the inner surface of the gripping portion, and a base end portion of the inner surface of the gripping portion has a width dimension equivalent to the convex portion. The shape member according to claim 11 or 12, wherein a concave portion having a depth dimension equivalent to a length dimension of the convex portion is formed.

このような構成によれば、複数の形材を組み合わせてベース部材の厚さ方向に押圧するときに、凸部が隣接する形材の凹部に挿入されて固定されるので、形材がベース部材の幅方向外側に広がろうとする応力に対抗することができる。   According to such a configuration, when a plurality of shapes are combined and pressed in the thickness direction of the base member, the convex portion is inserted and fixed in the concave portion of the adjacent shape member. It is possible to counter the stress of spreading outward in the width direction.

請求項14に係る発明は、前記凹部が、深さ方向の奥に向かうにつれて前記溝側に向かって湾曲するように形成されたことを特徴とする請求項13に記載の形材である。   The invention according to claim 14 is the profile according to claim 13, wherein the concave portion is formed so as to bend toward the groove side toward the back in the depth direction.

このような構成によれば、複数の形材を組み合わせたときに、凹部に挿入された凸部が断面鉤状に湾曲するので、隣接する形材の把持部同士が、ベース部材の厚さ方向に係止されることとなり、形材同士の接合強度が高められる。   According to such a configuration, when a plurality of shapes are combined, the convex portions inserted into the concave portions are curved in a cross-sectional shape, so that the grip portions of the adjacent shapes are in the thickness direction of the base member. The joint strength between the shape members is increased.

請求項15に係る発明は、前記外表面の、前記ベース部材の幅方向一端部に、断面鉤状の係止部が形成され、前記外表面の、前記ベース部材の幅方向他端部に、前記係止部と噛み合う形状の係止溝が形成されたことを特徴とする請求項8乃至請求項14のいずれか1項に記載の形材である。   In the invention according to claim 15, an engagement portion having a hook shape in cross section is formed at one end of the outer surface in the width direction of the base member, and at the other end of the outer surface in the width direction of the base member, The shape member according to any one of claims 8 to 14, wherein a locking groove having a shape that meshes with the locking portion is formed.

このような構成によれば、複数の形材を組み合わせてベース部材の厚さ方向に押圧するときに、係止部が隣接する形材の係止溝に係止されるので、形材がベース部材の幅方向外側に広がろうとする応力に対抗することができる。   According to such a configuration, when a plurality of profiles are combined and pressed in the thickness direction of the base member, the locking portion is locked in the locking groove of the adjacent profile, so that the profile is the base. It is possible to resist stress that tends to spread outward in the width direction of the member.

請求項16に係る発明は、熱部品を加熱または冷却するための熱媒体を循環させる熱媒体管を板状のベース部材の内部に収容した熱交換器において、前記熱媒体管を収容するための溝を備えるとともに互いに接合されることで前記ベース部材を構成する複数の形材で、前記熱媒体管が前記ベース部材の厚さ方向両側から挟み込まれており、前記熱媒体管は、前記形材を部分的に押圧することで形成された塑性変形部にて押圧されたことを特徴とする熱交換器である。   According to a sixteenth aspect of the present invention, in a heat exchanger in which a heat medium pipe for circulating a heat medium for heating or cooling a heat component is housed in a plate-like base member, the heat medium pipe is housed. The heat medium pipe is sandwiched from both sides in the thickness direction of the base member by a plurality of shapes constituting the base member by being provided with grooves and joined to each other, and the heat medium pipe is formed of the shape material It is the heat exchanger characterized by being pressed by the plastic deformation part formed by pressing partially.

このような構成によれば、塑性変形部が熱媒体管の表面を押圧するので、形材と熱媒体管の接合面積が大きくなり熱伝導の安定性を高めることが可能となる。また、形材を押圧するだけで、溝と熱媒体管の接合面積を大きくすることができ、従来のように熱媒体管を拡管するといった他の工程を行う必要はない。したがって、熱交換器を容易に製造することができる。   According to such a configuration, since the plastic deformation portion presses the surface of the heat medium pipe, the joint area between the shape member and the heat medium pipe is increased, and the stability of heat conduction can be improved. Further, the bonding area between the groove and the heat medium pipe can be increased only by pressing the shape member, and there is no need to perform other steps such as expanding the heat medium pipe as in the prior art. Therefore, a heat exchanger can be manufactured easily.

請求項17に係る発明は、前記塑性変形部が、前記形材の、前記ベース部材の厚さ方向から見て前記溝が内側に位置する溝投影部分の外表面を部分的に押圧することで前記熱媒体管の前記ベース部材の厚さ方向両側に形成されたことを特徴とする請求項16に記載の熱交換器である。   The invention according to claim 17 is that the plastic deformation portion partially presses the outer surface of the projected portion of the groove where the groove is located on the inner side when viewed from the thickness direction of the base member. The heat exchanger according to claim 16, wherein the heat exchanger tube is formed on both sides of the base member in the thickness direction of the heat medium pipe.

このような構成によれば、塑性変形部は、ベース部材の厚さ方向両側から熱媒体管を押圧することとなり、形材と熱媒体管の接合面積が大きくなり熱伝導性を高めることが可能となる。   According to such a configuration, the plastic deformation portion presses the heat medium tube from both sides in the thickness direction of the base member, so that the joining area between the shape member and the heat medium tube can be increased and the heat conductivity can be increased. It becomes.

請求項18に係る発明は、前記塑性変形部が、前記形材の、前記ベース部材の厚さ方向から見て前記溝が内側に位置する溝投影部分の両側に位置する中実部分の外表面を部分的に押圧することで前記熱媒体管の前記ベース部材の幅方向両側に形成されたことを特徴とする請求項16または請求項17に記載の熱交換器である。   According to an eighteenth aspect of the present invention, the plastic deformation portion is an outer surface of a solid portion located on both sides of a groove projection portion where the groove is located on the inner side when the shape member is viewed from the thickness direction of the base member. The heat exchanger according to claim 16 or 17, wherein the heat exchanger is formed on both sides in the width direction of the base member of the heat medium pipe by partially pressing the heat medium pipe.

このような構成によれば、塑性変形部は、ベース部材の厚さ方向両側から熱媒体管を押圧することとなり、形材と熱媒体管の接合面積が大きくなり熱伝導性を高めることが可能となる。   According to such a configuration, the plastic deformation portion presses the heat medium tube from both sides in the thickness direction of the base member, so that the joining area between the shape member and the heat medium tube can be increased and the heat conductivity can be increased. It becomes.

本発明によれば、熱伝導性が高い熱交換器の製造を容易に行うことができるといった優れた効果を発揮する。   According to the present invention, it is possible to easily produce a heat exchanger having high thermal conductivity.

次に、本発明を実施するための第一の最良の形態について、図面を適宜参照しながら詳細に説明する。なお、本実施形態では、コンピュータの中央演算装置等の熱部品を冷却するコールドプレート(熱交換器)を例に挙げて、熱交換器の製造方法および形材並びに熱交換器について説明する。   Next, a first best mode for carrying out the present invention will be described in detail with reference to the drawings as appropriate. In the present embodiment, a heat exchanger manufacturing method, a shape material, and a heat exchanger will be described using a cold plate (heat exchanger) that cools a thermal component such as a central processing unit of a computer as an example.

図1は本発明に係る形材を複数並列させた状態を示した側面図である。図2は本発明に係る熱交換器の製造方法を実施するための第一の最良の形態を示した断面図である。図3は本発明に係る形材同士を組み付けた状態を示した側面図である。図4は本発明に係る熱交換器を示した平面図である。図5は本発明に係る熱交換器を示した側面図である。   FIG. 1 is a side view showing a state in which a plurality of profiles according to the present invention are juxtaposed. FIG. 2 is a sectional view showing a first best mode for carrying out the method for manufacturing a heat exchanger according to the present invention. FIG. 3 is a side view showing a state in which the profiles according to the present invention are assembled. FIG. 4 is a plan view showing a heat exchanger according to the present invention. FIG. 5 is a side view showing a heat exchanger according to the present invention.

図4および図5に示すように、熱交換器1は、熱部品(図示せず)を加熱または冷却(本実施形態では冷却)するための熱媒体(例えば冷却水)を循環させる熱媒体管10を板状のベース部材20の内部に収容して構成されている。   As shown in FIGS. 4 and 5, the heat exchanger 1 includes a heat medium pipe that circulates a heat medium (for example, cooling water) for heating or cooling (in this embodiment, cooling) a heat component (not shown). 10 is accommodated in a plate-like base member 20.

熱媒体管10は、銅などの熱伝導性の高い金属で構成されている。熱媒体管10は、断面円形を呈しており、ベース部材20内に収容される伝熱部11と、平面視U字状に湾曲した折返し部12とで構成されている。折返し部12は複数個所に形成されており、熱媒体管10は全体で平面視S字状を複数連結した形状に蛇行した流路(循環路)を構成するようになっている。折返し部12は、ベース部材20から外部に露出されている。なお、本実施形態では、熱媒体の流路は、一本の熱媒体管10にて構成されているが、これに限定されるものではなく、流路の距離が長い場合等には、複数の熱媒体管で構成するようにしてもよい。   The heat medium pipe 10 is made of a metal having high thermal conductivity such as copper. The heat medium pipe 10 has a circular cross section, and includes a heat transfer portion 11 accommodated in the base member 20 and a folded portion 12 curved in a U shape in plan view. The folded portion 12 is formed at a plurality of locations, and the heat medium pipe 10 constitutes a flow path (circulation path) meandering into a shape in which a plurality of S-shapes in plan view are connected as a whole. The folded portion 12 is exposed to the outside from the base member 20. In the present embodiment, the flow path of the heat medium is configured by a single heat medium pipe 10, but is not limited to this, and when the distance of the flow path is long, a plurality of heat medium paths are provided. You may make it comprise with the heat-medium pipe | tube.

ベース部材20は、アルミニウム(純アルミニウム)やアルミニウム合金(Al−Mg系合金やAl−Mg−Si系合金等)などの軽量でかつ熱伝導性の高い金属で構成されている。ベース部材20は、板状に形成された部材であって、複数の形材21,21・・・で熱媒体管10をベース部材20の厚さ方向から挟み込むことで構成されている。   The base member 20 is made of a light metal having high thermal conductivity such as aluminum (pure aluminum) or an aluminum alloy (such as an Al—Mg alloy or an Al—Mg—Si alloy). The base member 20 is a member formed in a plate shape, and is configured by sandwiching the heat medium pipe 10 from the thickness direction of the base member 20 with a plurality of shape members 21, 21.

図1に示すように、形材21は、押出成形されたソリッド状の押出形材にて構成され、ベース部材20の厚さ方向全体に亘る厚さ寸法を有する基部22と、この基部22からベース部材20の幅方向(押出方向と直交する方向)の少なくとも一方に延出して基部22と一体的に形成され熱媒体管10を把持する把持部23とを備えている。把持部23は、基部22の厚さ寸法の略半分の厚さ寸法を有し、基部22の外表面22aから連続的に繋がる外表面23aと、熱媒体管10を収容するための溝24が形成された内表面23bとを備えて構成されている。把持部23の外表面23aと内表面23bは、互いに平行になるように構成されている。把持部23は、基部22の、ベース部材20の幅方向両側にそれぞれ形成されており、一方(図1中、右側)の把持部23は、他方(図1中、左側)の把持部23に対してベース部材20の厚さ方向(図1中、下側)の逆側(図1中、上側)に形成されている。すなわち、一方の把持部23は、基部22の図1中、上側から右側に延出して、他方の把持部23は、基部22の図1中、下側から左側に延出しており、形材21は、基部22の重心点を中心に点対称の形状を呈するようになっている。   As shown in FIG. 1, the profile 21 is constituted by a solid extruded profile that is extruded, and has a base portion 22 having a thickness dimension over the entire thickness direction of the base member 20, and the base portion 22. A grip portion 23 that extends in at least one of the width direction of the base member 20 (a direction orthogonal to the extrusion direction) and is integrally formed with the base portion 22 and grips the heat medium pipe 10 is provided. The grip portion 23 has a thickness dimension that is substantially half of the thickness dimension of the base portion 22, and includes an outer surface 23 a that is continuously connected to the outer surface 22 a of the base portion 22, and a groove 24 that accommodates the heat medium pipe 10. And an inner surface 23b formed. The outer surface 23a and the inner surface 23b of the grip part 23 are configured to be parallel to each other. The gripping portions 23 are formed on both sides of the base 22 in the width direction of the base member 20. One gripping portion 23 (right side in FIG. 1) is connected to the other gripping portion 23 (left side in FIG. 1). In contrast, the base member 20 is formed on the opposite side (upper side in FIG. 1) of the thickness direction (lower side in FIG. 1). That is, one gripping portion 23 extends from the upper side to the right side in FIG. 1 of the base portion 22, and the other gripping portion 23 extends from the lower side to the left side in FIG. 21 has a point-symmetric shape around the center of gravity of the base 22.

溝24は、把持部23の延出長の略中間部の内表面23bに形成されている。溝24は、熱媒体管10の外径と同等の内径を有する半円状の断面に形成されており、隣接する形材21の溝24と合わさって、熱媒体管10の全周を覆うように構成されている。   The groove 24 is formed in the inner surface 23 b of the substantially middle part of the extending length of the grip part 23. The groove 24 is formed in a semicircular cross section having an inner diameter equivalent to the outer diameter of the heat medium pipe 10, and covers the entire circumference of the heat medium pipe 10 together with the groove 24 of the adjacent shape member 21. It is configured.

把持部23の内表面23bの先端部には、ベース部材20の厚さ方向に突出する凸部25が形成され、内表面23bの基端部には、凸部25が挿入される凹部26が形成されている。凸部25および凹部26は、ともに形材21の押出方向に連続して形成されている。凹部26は、凸部25と同等の幅寸法を有するとともに、凸部25の突出長さ寸法と同等の深さ寸法を有しており、深さ方向の奥に向かうに連れて溝24側に向かって湾曲するように形成されている。形材21同士を接合する際には、凸部25は、隣り合う凹部26に押し込まれて挿入され、その凹部26に沿って湾曲するようになっている(図2および図3参照)。   A convex portion 25 protruding in the thickness direction of the base member 20 is formed at the distal end portion of the inner surface 23b of the grip portion 23, and a concave portion 26 into which the convex portion 25 is inserted is formed at the proximal end portion of the inner surface 23b. Is formed. Both the convex part 25 and the concave part 26 are continuously formed in the extrusion direction of the shape member 21. The concave portion 26 has a width dimension equivalent to that of the convex portion 25 and a depth dimension equivalent to the protruding length dimension of the convex portion 25, and is closer to the groove 24 side toward the back in the depth direction. It is formed so as to be curved toward. When joining the shape members 21, the convex portion 25 is inserted by being pushed into the adjacent concave portion 26 and is curved along the concave portion 26 (see FIGS. 2 and 3).

ベース部材20の外側となる外表面22a,23aには、複数の突条27,27・・・が形成されている。突条27は、ベース部材20の厚さ方向外側に突出して、形材21の押出方向に連続的に延びて形成されている。突条27は、溝24を外表面23aに投影したエリアである溝投影部分28に形成された第一突条27aと、溝投影部分28の両側に位置する中実部分29の外表面22a,23aに形成された第二突条27bとで構成されている。   A plurality of ridges 27, 27... Are formed on the outer surfaces 22a, 23a which are outside the base member 20. The protrusions 27 are formed to protrude outward in the thickness direction of the base member 20 and continuously extend in the extrusion direction of the profile 21. The ridge 27 includes a first ridge 27a formed on the groove projection portion 28 which is an area where the groove 24 is projected onto the outer surface 23a, and outer surfaces 22a of the solid portion 29 located on both sides of the groove projection portion 28. It is comprised with the 2nd protrusion 27b formed in 23a.

第一突条27aは、溝投影部分28の幅方向中央部、すなわち溝24の底部の投影位置に形成されており、溝24との距離が最も短くなる位置に配置されている。第一突条27aは、先端側が短辺となる台形の断面形状を呈しており、先端面が平面状に形成されている。第一突条27aは、溝24の全長に亘って溝24と平行に押出方向に沿って形成されている。形材21,21・・・の押圧時に、第一突条27aが押圧されて形材21の内側に押し込まれて、形材21がベース部材20の厚さ方向に沿って溝24側(内側)へと塑性変形を起こし、溝24の内周面が熱媒体管10をベース部材20の厚さ方向内側に押圧するようになっている。   The first protrusion 27a is formed at the projection position at the center in the width direction of the groove projection portion 28, that is, at the bottom of the groove 24, and is disposed at the position where the distance from the groove 24 is the shortest. The first protrusion 27a has a trapezoidal cross-sectional shape having a short side on the tip side, and the tip surface is formed in a flat shape. The first protrusion 27 a is formed along the extrusion direction in parallel with the groove 24 over the entire length of the groove 24. When the shape members 21, 21... Are pressed, the first protrusion 27a is pressed and pushed into the inside of the shape member 21, and the shape member 21 is located along the thickness direction of the base member 20 on the groove 24 side (inside ), And the inner peripheral surface of the groove 24 presses the heat medium pipe 10 inward in the thickness direction of the base member 20.

第二突条27bは、形材21,21・・を組み合わせた状態で隣り合う熱媒体管10,10間の中実部分29、すなわち溝24が形成されていない部分に、二列形成されている。形材21単体で見ると、把持部23の基端部の外表面23aに、一方の第二突条27bが形成されている。さらに、把持部23の先端部の外表面23aに、他方の第二突条27bの一部を構成する突条片27b’が形成されており、把持部23の先端部とは逆側の基部22の端部の外表面22aに、第二突条27bの一部を構成する突条片27b”が形成されている。これら突条片27b’,27b”は、形材21,21・・・の接合時に隣り合う突条片27b”,27b’と噛み合って一体化することで第二突条27bをそれぞれ構成することとなる。第二突条27bは、断面が幅広の台形上に幅狭の台形が形成された二段の台形形状を呈しており、先端面が平面状に形成されている。各第二突条27b,27bは、押出方向に沿って第一突条27aと平行に連続して形成されている。第二突条27bは、第一突条27aよりも突出長さ(高さ)が大きくなっている。   The second protrusions 27b are formed in two rows in the solid portion 29 between the adjacent heat medium pipes 10, 10 in a state where the shape members 21, 21,... Are combined, that is, in the portion where the groove 24 is not formed. Yes. When viewed as a single shape member 21, one second protrusion 27 b is formed on the outer surface 23 a of the base end portion of the grip portion 23. Further, on the outer surface 23 a of the distal end portion of the grip portion 23, a strip piece 27 b ′ constituting a part of the other second protrusion 27 b is formed, and the base portion on the opposite side to the distal end portion of the grip portion 23 is formed. 22 is formed on the outer surface 22a of the end portion 22 of the second protrusion 27b. The protrusions 27b ′ and 27b ″ are formed of the shape members 21, 21. The second protrusions 27b are configured by meshing with and integrated with the adjacent protrusions 27b ″ and 27b ′ at the time of joining. The second protrusions 27b are formed on a trapezoid having a wide cross section. It has a two-step trapezoidal shape with a narrow trapezoid, and the tip surface is formed in a flat shape, and each second protrusion 27b, 27b is parallel to the first protrusion 27a along the extrusion direction. The second protrusion 27b is longer than the first protrusion 27a by a protruding length (height). It is larger.

形材21,21・・・の押圧時には、第二突条27bが押圧されて形材21の中実部分29の内側に押し込まれる。そして、中実部分29の内部がベース部材20の幅方向に沿って押し出されて溝24側へと塑性変形を起こす。これによって、溝24の内周面が熱媒体管10をベース部材20の幅方向および斜め方向に押圧することとなる。   When the shape members 21, 21... Are pressed, the second protrusion 27b is pressed and pushed into the solid portion 29 of the shape member 21. And the inside of the solid part 29 is extruded along the width direction of the base member 20, and causes plastic deformation to the groove | channel 24 side. As a result, the inner peripheral surface of the groove 24 presses the heat medium pipe 10 in the width direction and the oblique direction of the base member 20.

形材21の外表面22a,23aの、ベース部材20の幅方向一端部には、断面鉤状の係止部31が形成され、一方、外表面22a,23aの、ベース部材20の幅方向他端部には、係止部31と噛み合う形状の係止溝32が形成されている。具体的には、係止部31は、把持部23先端の突条片27b’の先端に位置しており、内側(内表面23b側)に突出して形成されている。係止部31は先端が尖った断面V字状に形成されている。係止溝32は、形材21の基部22の端部の突条片27b”の先端に位置しており、外方に向かって開口して形成されている。係止溝32は、係止部31と噛み合うように断面V字状に形成されている。係止部31が係止溝32に噛み合うと、隣接する形材21同士が、ベース部材20の幅方向に係止されて離間するのを防止する。   The outer surface 22a, 23a of the profile 21 is formed with a hook portion 31 having a hook-like cross section at one end in the width direction of the base member 20, while the outer surface 22a, 23a of the base member 20 in the width direction, etc. A locking groove 32 having a shape that meshes with the locking portion 31 is formed at the end. Specifically, the locking portion 31 is positioned at the tip of the protruding piece 27b 'at the tip of the grip portion 23, and is formed so as to protrude inward (inner surface 23b side). The locking portion 31 is formed in a V-shaped cross section with a sharp tip. The locking groove 32 is located at the tip of the protruding piece 27b ″ at the end of the base portion 22 of the profile 21 and is formed to open outward. It is formed in a V-shaped cross section so as to mesh with the portion 31. When the latching portion 31 meshes with the latching groove 32, the adjacent shape members 21 are latched and separated in the width direction of the base member 20. To prevent.

ところで、ベース部材20の端部に位置する形材21aは、基部22のベース部材20の幅方向片側(図1中、右側)のみに把持部23が形成され、他端側(図1中、左側)は平面状に形成されている。なお、この形材21aに形成される把持部23は、他の把持部23と同様の構成である。   By the way, the shape member 21a located at the end of the base member 20 has a grip portion 23 formed only on one side (right side in FIG. 1) of the base member 20 in the base 22 and the other end side (in FIG. 1). The left side is formed in a planar shape. Note that the gripping portion 23 formed on the shape member 21 a has the same configuration as the other gripping portions 23.

次に、かかる熱交換器1を製造する製造方法を説明する。   Next, the manufacturing method which manufactures this heat exchanger 1 is demonstrated.

本発明に係る熱交換器1の製造方法は、前記したような熱媒体管10を収容するための溝24を備えるとともに互いに接合されることでベース部材20を構成する複数の形材21,21で、熱媒体管10をベース部材20の厚さ方向両側から挟み込んで固定する際に、形材21を部分的に押圧することで形材21の一部を塑性変形させて、溝24の内表面を熱媒体管10の表面に押圧させることを特徴とする。   The manufacturing method of the heat exchanger 1 according to the present invention includes a plurality of profiles 21 and 21 that constitute the base member 20 by being provided with the groove 24 for housing the heat medium pipe 10 as described above and being joined together. Thus, when the heat medium pipe 10 is sandwiched and fixed from both sides in the thickness direction of the base member 20, a part of the shape member 21 is plastically deformed by partially pressing the shape member 21, so that the inside of the groove 24. The surface is pressed against the surface of the heat medium pipe 10.

本実施形態では、前記構成の形材21を用いて熱交換器1を製造する製造方法であって、形材21の外表面22a,23aの所定位置に形成された突条27,27・・・をプレス機等で押圧することで、形材21を部分的に押圧するようになっている。   In this embodiment, it is a manufacturing method which manufactures the heat exchanger 1 using the profile 21 of the said structure, Comprising: The protrusion 27,27 ... formed in the predetermined position of the outer surfaces 22a and 23a of the profile 21 By pressing with a press or the like, the shape member 21 is partially pressed.

形材21を用いて熱交換器1を製造するに際しては、図1に示すように、まず、形材21の上向きに開口している溝24に熱媒体管10を嵌め込んで、その上方から、他の形材21の下向きに開口している溝24を被せるように、他の形材21を配置する。このとき、一の形材21の凸部25が、隣接する他の形材21の凹部26に位置するようになっている。   When the heat exchanger 1 is manufactured using the profile 21, as shown in FIG. 1, first, the heat medium pipe 10 is fitted into the groove 24 opened upward of the profile 21, and from above. The other shape member 21 is arranged so as to cover the groove 24 that opens downward to the other shape member 21. At this time, the convex part 25 of one shape member 21 is positioned in the concave part 26 of another adjacent shape member 21.

その後、図2に示すように、前記状態の形材21,21・・・と熱媒体管10,10・・・をプレス機のダイ41の上に載置して、パンチ43を下降させることで、形材21,21・・・を挟み込んで、ベース部材20の厚さ方向に押圧する。さらに、形材21を押圧する際に、形材21,21・・・のベース部材20の幅方向両側に枠材44を固定して配置し、形材21,21・・・をベース部材20の幅方向両側から拘束する。   After that, as shown in FIG. 2, the shape members 21, 21... And the heat medium tubes 10, 10... In the above state are placed on the die 41 of the press machine, and the punch 43 is lowered. Then, the shape members 21, 21... Are sandwiched and pressed in the thickness direction of the base member 20. Further, when pressing the shape member 21, the frame members 44 are fixedly arranged on both sides in the width direction of the base member 20 of the shape members 21, 21..., And the shape members 21, 21. Restrain from both sides in the width direction.

このとき、プレス機による形材21のベース部材20の厚さ方向の押圧により、まず、凸部25が隣接する形材21の凹部26に挿入される。これによって、隣接する形材21,21同士がベース部材20の幅方向に係止されることとなり、形材21,21同士がベース部材の幅方向外側に広がろうとする応力に対抗することができる。   At this time, the convex portion 25 is first inserted into the concave portion 26 of the adjacent shape member 21 by pressing the base member 20 of the shape member 21 in the thickness direction by the press machine. As a result, the adjacent shape members 21 and 21 are locked in the width direction of the base member 20, and the shape members 21 and 21 can counter the stress that tends to spread outward in the width direction of the base member. it can.

また、凹部26は、深さ方向の奥に向かうにつれて溝24側に向かって湾曲するように形成されているので、凸部25は、凹部26に沿って断面鉤状に湾曲する。したがって、隣接する形材21,21の把持部23,23同士がベース部材20の厚さ方向に係止されることとなり、形材21,21同士の接合強度が高められる。   Moreover, since the recessed part 26 is formed so that it may curve toward the groove | channel 24 side as it goes to the back of a depth direction, the convex part 25 curves in cross-section hook shape along the recessed part 26. FIG. Accordingly, the gripping portions 23, 23 of the adjacent shape members 21, 21 are locked in the thickness direction of the base member 20, and the bonding strength between the shape members 21, 21 is increased.

さらに、このとき、係止部31が隣接する形材21の係止溝32に噛み合って係止されるので、形材21がベース部材20の幅方向外側に広がろうとする応力に対抗することができるとともに、隣接する形材21,21同士の接合性を高めることもできる。   Further, at this time, the locking portion 31 is engaged with the locking groove 32 of the adjacent shape member 21 and locked, so that the shape member 21 resists the stress that the shape member 21 tends to spread outward in the width direction of the base member 20. It is possible to improve the bondability between the adjacent shape members 21 and 21.

凸部25が凹部26に挿入された状態(図3参照)の後も、さらにプレス機で形材21を押圧する。これによって、突条27が形材21の内側に押し込まれて(図5参照)、形材21の一部が塑性変形する。具体的には、第一突条27aは、押圧されて形材21の内側に押し込まれて、形材21がベース部材20の厚さ方向に沿って溝24側へと塑性変形を起こす。よって、溝24の周囲に塑性変形部33が形成され、溝24の内周面が熱媒体管10をベース部材20の厚さ方向に押圧する。また、第二突条27bは、押圧されて形材21の内側に押し込まれて、形材21の中実部分29がベース部材20の厚さ方向両側から押し込まれて、ベース部材20の幅方向に沿って溝24側へと塑性変形を起こす。よって、溝24の周囲に塑性変形部33が形成され、溝24の内周面が熱媒体管10をベース部材20の幅方向および斜め方向に押圧する。   Even after the convex portion 25 is inserted into the concave portion 26 (see FIG. 3), the shape member 21 is further pressed by a press. As a result, the protrusions 27 are pushed into the inside of the shape member 21 (see FIG. 5), and a part of the shape member 21 is plastically deformed. Specifically, the first protrusion 27 a is pressed and pushed into the inside of the shape member 21, and the shape member 21 causes plastic deformation along the thickness direction of the base member 20 toward the groove 24. Therefore, the plastic deformation portion 33 is formed around the groove 24, and the inner peripheral surface of the groove 24 presses the heat medium pipe 10 in the thickness direction of the base member 20. Further, the second protrusion 27 b is pressed and pushed into the inside of the shape member 21, and the solid portion 29 of the shape member 21 is pushed in from both sides in the thickness direction of the base member 20, so that the width direction of the base member 20 is increased. And plastic deformation is caused toward the groove 24 side. Therefore, the plastic deformation portion 33 is formed around the groove 24, and the inner peripheral surface of the groove 24 presses the heat medium pipe 10 in the width direction and the oblique direction of the base member 20.

以下に、「熱媒体管10の全周に亘って接触圧がかかっているか」および「熱媒体管10の全周に亘って、その外周面が溝24の内周面と密に接触しているか(隙間がつまっているか)」についての検討を説明する。この検討は解析を利用して行った。具体的には、初期条件として熱媒体管10と溝24の内周面が全周にわたって隙間(クリアランス)0.1mmがあるとした設定をした場合、突条27が潰れることによる熱媒体管10にかかる接触圧の分布と、熱媒体管10の外周面と溝24の接触状態を、解析により確認した。   In the following, “Is contact pressure applied over the entire circumference of the heat medium tube 10” and “Over the entire circumference of the heat medium tube 10, its outer peripheral surface is in close contact with the inner peripheral surface of the groove 24. Explain whether or not (the gap is clogged). This examination was performed using analysis. Specifically, when the initial condition is set such that the inner circumferential surface of the heat medium tube 10 and the groove 24 has a clearance (clearance) of 0.1 mm over the entire circumference, the heat medium tube 10 due to the ridge 27 being crushed. The distribution of the contact pressure applied to the heat medium pipe 10 and the contact state between the outer peripheral surface of the heat medium pipe 10 and the groove 24 were confirmed by analysis.

図6は、熱媒体管10の外周面と形材21の溝24からの接触圧を示した図である。図示するように、熱媒体管10には、その全周にわたって比較的均一に接触圧がかかることが示されている(その全周に亘って略67.5MPaから略90.0MPaの接触圧)。   FIG. 6 is a diagram showing the contact pressure from the outer peripheral surface of the heat medium pipe 10 and the groove 24 of the profile 21. As shown in the figure, it is shown that the contact pressure is applied to the heat medium pipe 10 relatively uniformly over the entire circumference (contact pressure of about 67.5 MPa to about 90.0 MPa over the entire circumference). .

図7は、熱媒体管10の外周面と形材21の溝24の内周面との接触状態を示した図である。接触状態は、密に接触する状態(Sliding)34a、殆んど接触する状態(NearContact)34b、離間状態(FarOpen)34cの三段階で示している。本実施形態では、以上のように形材21が塑性変形することによって、熱媒体管10の全周に亘って、その外周面が溝24の内周面と密に接触する状態34aとなっていることがわかる。なお、図示しないが、突起部位、形状等が不適切な場合には、同様の初期条件(隙間(クリアランス)0.1mm)における解析では、隙間が残留し、全周にわたって均一には接触圧がかからず、接触圧が0MPaの部位が存在し、離間状態(FarOpen)が存在する解析結果となる。   FIG. 7 is a view showing a contact state between the outer peripheral surface of the heat medium pipe 10 and the inner peripheral surface of the groove 24 of the profile 21. The contact state is shown in three stages: a close contact state (Sliding) 34a, a nearly contact state (NearContact) 34b, and a separated state (FarOpen) 34c. In the present embodiment, as the shape member 21 is plastically deformed as described above, the outer peripheral surface of the heat medium pipe 10 is in close contact with the inner peripheral surface of the groove 24 over the entire periphery of the heat transfer medium tube 10. I understand that. Although not shown in the figure, if the projection part, shape, etc. are inappropriate, in the analysis under the same initial conditions (clearance (clearance) 0.1 mm), the gap remains, and the contact pressure is uniformly distributed over the entire circumference. However, the analysis result shows that there is a part where the contact pressure is 0 MPa and a separated state (FarOpen) exists.

以上説明したように、本実施形態では、形材21を部分的に押圧することで、小さい押圧力で形材21が塑性変形して溝24の内表面を熱媒体管10の表面に押圧させることができ、形材21と熱媒体管10とが密に接触する。したがって、形材21と熱媒体管10との接合面積が大きくなり熱伝導性を高めることが可能となる。また、形材21を部分的に押圧するだけで、溝24と熱媒体管10の接合面積を大きくすることができ、特許文献1の技術のように熱媒体管を拡管するといった他の工程を行う必要はない。したがって、熱交換器1の製造が容易になり、製造コストの削減を達成できる。特に、本実施形態では、形材21の外周面に突条27を形成したことで、通常のプレス機で押圧するといった簡単な工程だけで、形材21を部分的に押圧することができ、形材21の一部を塑性変形させて、溝24と熱媒体管10の接合面積を大きくすることができるので、熱伝導性が高い熱交換器1の製造を容易に行うことができる。   As described above, in the present embodiment, by partially pressing the shape member 21, the shape member 21 is plastically deformed with a small pressing force, and the inner surface of the groove 24 is pressed against the surface of the heat medium tube 10. The shape member 21 and the heat medium pipe 10 are in intimate contact with each other. Therefore, the joint area between the shape member 21 and the heat medium pipe 10 is increased, and the thermal conductivity can be increased. Moreover, the joint area of the groove | channel 24 and the heat-medium pipe | tube 10 can be enlarged only by pressing the shape material 21 partially, and other processes, such as expanding a heat-medium pipe | tube like the technique of patent document 1, are carried out. There is no need to do it. Therefore, manufacture of the heat exchanger 1 becomes easy and reduction of manufacturing cost can be achieved. In particular, in this embodiment, by forming the protrusions 27 on the outer peripheral surface of the shape member 21, the shape member 21 can be partially pressed only by a simple process of pressing with a normal press machine, Since a part of the shape member 21 can be plastically deformed to increase the joint area between the groove 24 and the heat medium pipe 10, the heat exchanger 1 having high thermal conductivity can be easily manufactured.

また、本実施形態では、形材21をベース部材20の厚さ方向に押圧する際に、ベース部材20の幅方向両側から拘束するようにしているので、形材21がベース部材20の幅方向に広がろうとする応力に対抗することができ、ベース部材20の変形を防止できる。また、その応力を熱媒体管10側への形材の塑性変形に利用できるので、熱媒体管10と形材21との接触面積をより大きくすることができ、熱伝導性をさらに高めることが可能となる。   In the present embodiment, when the shape member 21 is pressed in the thickness direction of the base member 20, the shape member 21 is restrained from both sides in the width direction of the base member 20. Therefore, the base member 20 can be prevented from being deformed. Further, since the stress can be used for plastic deformation of the profile toward the heat medium tube 10, the contact area between the heat medium tube 10 and the profile 21 can be further increased, and the thermal conductivity can be further increased. It becomes possible.

さらに、本実施形態の形材21は、ベース部材20の幅方向両端部を除いて同じ形状のものを連結してベース部材20を構成することができるので、形材21を形成するための型の共通化を図ることができる。また、ベース部材20の幅方向両端部の形材21a,21a同士も同じ形状とすることができ、形材21aを形成するための型の共通化を図ることができる。   Furthermore, since the shape member 21 of this embodiment can comprise the base member 20 by connecting the same shape except for both ends in the width direction of the base member 20, a mold for forming the shape member 21 is used. Can be shared. Further, the shape members 21a and 21a at both ends in the width direction of the base member 20 can also have the same shape, so that the mold for forming the shape material 21a can be shared.

最終的にプレス加工が終了すると、形材21の各突条27は、プレス機で押圧されることで、形材21の外表面22a,23aに面一に押し込まれ、熱媒体管10の外表面は、平面状に形成される。したがって、熱交換器1と熱部材との接触性が高くなり、熱交換効率を高めることができる。なお、突条27が、形材21の外表面22a,23aに残留して、形材21が凸凹になったときは、その外表面22a,23aを、切削あるいは研磨などの加工によって、平面状に形成するようにしてもよい。   When the press work is finally finished, the protrusions 27 of the shape member 21 are pressed by the pressing machine so as to be flush with the outer surfaces 22a and 23a of the shape member 21, so that the outside of the heat medium pipe 10 is removed. The surface is formed in a planar shape. Therefore, the contact property between the heat exchanger 1 and the heat member is increased, and the heat exchange efficiency can be increased. When the protrusions 27 remain on the outer surfaces 22a and 23a of the profile 21 and the profile 21 becomes uneven, the outer surfaces 22a and 23a are flattened by machining such as cutting or polishing. You may make it form in.

本実施形態では、隣り合う熱媒体管10,10間の中実部分29に、二列の第二突条27b,27bが形成されているが、これに限られるものではない。例えば、隣り合う熱媒体管間の距離が短い場合には、第二突条は一列のみ設ければよい。また、隣り合う熱媒体管間の距離が長い場合は、各溝の位置から所定の距離の位置(塑性変形が溝に及ぶ距離)に、第二突条を一列ずつそれぞれ形成すればよい。   In the present embodiment, the two rows of the second protrusions 27b and 27b are formed in the solid portion 29 between the adjacent heat medium tubes 10 and 10, but the present invention is not limited to this. For example, when the distance between adjacent heat medium tubes is short, the second protrusions need only be provided in one row. If the distance between adjacent heat medium tubes is long, the second protrusions may be formed in a row at a predetermined distance from each groove position (a distance at which plastic deformation reaches the groove).

図8は、本発明に係る熱交換器の製造方法を実施するための第二の最良の形態を示した断面図である。図示するように、かかる熱交換器の製造方法は、形材21の外表面22a,23aの所定位置に棒状部材35を配設しておき、この棒状部材35を押圧することで、形材21を部分的に押圧することを特徴とする。棒状部材35は、形材21の溝24に平行に配置されている。棒状部材35は、突条27(図1参照)と同様に、溝24を外表面23aに投影したエリアである溝投影部分28と、溝投影部分28の両側に位置する中実部分29の外表面22a,23aに配置される。棒状部材35は、円面円形状のソリッド材にて構成されている。なお、棒状部材35の外形は断面円形状に限られるものではなく、断面角形状あるいは断面楕円形状であってもよく、また、ソリッド材でなはない中空状のホロー材であってもよい。なお、その他の構成については、図2に示す第一実施形態と同様であるので、同じ符号を付してその説明を省略する。   FIG. 8 is a sectional view showing a second best mode for carrying out the method for manufacturing a heat exchanger according to the present invention. As shown in the figure, in the method of manufacturing such a heat exchanger, a rod-shaped member 35 is disposed at a predetermined position on the outer surfaces 22a, 23a of the profile 21, and the profile 21 is pressed by pressing the rod-shaped member 35. Is partially pressed. The rod-shaped member 35 is arranged in parallel with the groove 24 of the profile 21. The rod-shaped member 35 is formed in the same manner as the protrusion 27 (see FIG. 1), except for the groove projection portion 28 which is an area where the groove 24 is projected on the outer surface 23a and the solid portion 29 located on both sides of the groove projection portion 28. Arranged on the surfaces 22a, 23a. The rod-shaped member 35 is configured by a circular circular solid material. The outer shape of the rod-shaped member 35 is not limited to a circular cross section, and may be a square cross section or an elliptical cross section, or a hollow hollow material that is not a solid material. Other configurations are the same as those of the first embodiment shown in FIG. 2, and thus the same reference numerals are given and description thereof is omitted.

このような方法によれば、形材21に突条27(図1参照)を設けなくてよいので、形材21の形状を複雑にすることなく、形材21の外表面22a,23aを部分的に押圧することができる。これによって、本実施形態においても、前記実施形態と同様に熱伝導性の高い熱交換器1を容易に製造することが可能となる。   According to such a method, since it is not necessary to provide the protrusions 27 (see FIG. 1) on the shape member 21, the outer surfaces 22a and 23a of the shape member 21 are partially formed without complicating the shape of the shape member 21. Can be pressed. Thereby, also in this embodiment, it becomes possible to manufacture easily the heat exchanger 1 with high heat conductivity similarly to the said embodiment.

なお、中実部分29に配置する棒状部材を、溝投影部分28に配置する棒状部材より太くするようにしてもよい。このようにすれば、溝24の近くでは棒状部材による形材21の変位量が小さく、溝24の遠くでは棒状部材による形材21の変位量が大きいので、熱媒体管10にかかる接触圧をその全周に亘って均一にすることができる。さらに、中実部分29に配置された棒状部材が、溝投影部分28に配置された棒状部材よりも先に形材21を押圧することになる。これによって、溝投影部分28に配置された棒状部材が形材21を押圧するときには、熱媒体管10は、中実部分29に配置された棒状部材によってベース部材20の幅方向両側から押圧された状態となっているので、その全周から同時に押圧されることとなり、溝24との接触性が高まる。   Note that the rod-shaped member disposed in the solid portion 29 may be thicker than the rod-shaped member disposed in the groove projection portion 28. In this way, the displacement of the profile 21 due to the rod-shaped member is small near the groove 24, and the displacement of the profile 21 due to the rod-shaped member is large near the groove 24. Therefore, the contact pressure applied to the heat medium pipe 10 is reduced. It can be made uniform over the entire circumference. Furthermore, the rod-shaped member disposed in the solid portion 29 presses the shape member 21 before the rod-shaped member disposed in the groove projection portion 28. As a result, when the rod-shaped member disposed in the groove projection portion 28 presses the shape member 21, the heat medium pipe 10 is pressed from both sides in the width direction of the base member 20 by the rod-shaped member disposed in the solid portion 29. Since it is in a state, it is pressed simultaneously from the entire circumference, and the contact with the groove 24 is enhanced.

図9は、本発明に係る熱交換器の製造方法を実施するための第三の最良の形態を示した断面図である。図示するように、かかる熱交換器の製造方法は、形材21を押圧するプレス機のパンチ43とダイ41のプレス面に突条36を形成しておき、この突条36で形材21の外表面22a,23aの所定位置を押圧することで、形材21の外表面22a,23aを部分的に押圧することを特徴とする。突条36は、断面半円形状に形成されており、半円の頂部で形材21の外表面22a,23aを押圧することになる。突条36は、断面半円形状に限られるものではなく、断面台形状や半楕円形状であってもよい。また、突条36は、棒状部材35(図8参照)や突条27(図1参照)と同様に、溝24を外表面23aに投影したエリアである溝投影部分28と、溝投影部分28の両側に位置する中実部分29の外表面22a,23aに配置される。   FIG. 9 is a cross-sectional view showing a third best mode for carrying out the method for manufacturing a heat exchanger according to the present invention. As shown in the drawing, in the method of manufacturing the heat exchanger, a protrusion 36 is formed on the press surface of a punch 43 and a die 41 of a press that presses the shape member 21, and the shape of the shape member 21 is formed by the protrusion 36. By pressing predetermined positions of the outer surfaces 22a and 23a, the outer surfaces 22a and 23a of the profile 21 are partially pressed. The protrusion 36 is formed in a semicircular cross section, and presses the outer surfaces 22a and 23a of the shape member 21 at the top of the semicircle. The protrusion 36 is not limited to a semicircular cross section, and may be a trapezoidal cross section or a semi-elliptical shape. Similarly to the rod-like member 35 (see FIG. 8) and the ridge 27 (see FIG. 1), the ridge 36 is a groove projection portion 28 that is an area where the groove 24 is projected onto the outer surface 23a, and a groove projection portion 28. Are disposed on the outer surfaces 22a and 23a of the solid portion 29 located on both sides of the solid portion 29.

このような方法によれば、形材21に突条を設けなくてよいので、形材21の形状を複雑にする必要がなく、さらに形材21に棒状部材を配置する工程も省略して、形材21の外表面22a,23aを部分的に押圧することができる。したがって、本実施形態においても、前記実施形態と同様に熱伝導性の高い熱交換器1を容易に製造することが可能となる。   According to such a method, since it is not necessary to provide a protrusion on the shape member 21, it is not necessary to complicate the shape of the shape member 21, and further, a step of arranging a rod-shaped member on the shape member 21 is omitted, The outer surfaces 22a and 23a of the profile 21 can be partially pressed. Therefore, also in the present embodiment, it is possible to easily manufacture the heat exchanger 1 having high thermal conductivity as in the above-described embodiment.

また、本実施形態においても、中実部分29に相当するプレス面の突条を、溝投影部分28に相当するプレス面の突条より大きくするようにしてもよい。このようにすれば、溝24の近くでは突条による形材21の変位量が小さく、溝24の遠くでは突条による形材21の変位量が大きいので、熱媒体管10にかかる接触圧をその全周に亘って均一にすることができる。さらに、中実部分29に相当する突条が、溝投影部分28に相当する突条よりも先に形材21を押圧することになる。これによって、溝投影部分28に相当する突条が形材21を押圧するときには、熱媒体管10は、中実部分29に相当する突条によってベース部材20の幅方向両側から押圧された状態となっているので、その全周から同時に押圧されることとなり、溝24との接触性が高まる。   Also in this embodiment, the protrusion on the press surface corresponding to the solid portion 29 may be made larger than the protrusion on the press surface corresponding to the groove projection portion 28. In this way, the displacement of the profile 21 due to the ridge is small near the groove 24, and the displacement of the profile 21 due to the ridge is large near the groove 24. Therefore, the contact pressure applied to the heat medium pipe 10 is reduced. It can be made uniform over the entire circumference. Further, the ridge corresponding to the solid portion 29 presses the shape member 21 before the ridge corresponding to the groove projection portion 28. Thus, when the protrusion corresponding to the groove projection portion 28 presses the shape member 21, the heat medium pipe 10 is pressed from both sides in the width direction of the base member 20 by the protrusion corresponding to the solid portion 29. Therefore, it will be pressed simultaneously from the whole periphery, and the contact property with the groove | channel 24 will improve.

図10は本発明に係る熱交換器の製造方法を実施するための第四の最良の形態を示した第一工程を示した側面図である。図11は本発明に係る熱交換器の製造方法を実施するための第四の最良の形態を示した第二工程を示した平面図および側面図である。図12は図10および図11に示した熱交換器の製造方法によって製造された熱交換器を示した(a)は平面図、(b)は側面図、(c)は拡大側面図である。   FIG. 10 is a side view showing a first step showing a fourth best mode for carrying out the method of manufacturing a heat exchanger according to the present invention. FIG. 11: is the top view and side view which showed the 2nd process which showed the 4th best form for implementing the manufacturing method of the heat exchanger which concerns on this invention. 12A and 12B show a heat exchanger manufactured by the method of manufacturing a heat exchanger shown in FIGS. 10 and 11, wherein FIG. 12A is a plan view, FIG. 12B is a side view, and FIG. 12C is an enlarged side view. .

まず、本実施形態で用いられる形材51の構成を説明する。図10に示すように、かかる熱交換器2の形材51は、上下方向(ベース部材50(図12参照)の厚さ方向)中間部で二分割されている。形材51は、アルミニウムやアルミニウム合金などのソリッド状の押出形材に構成されている。ベース部材50の外側となる形材51の外表面51aは、平面状に形成されている。ベース部材50の内側となる内表面51bには、熱媒体管10を収容するための溝24と、くさび部材52(図11参照)が収容されるくさび係止溝53とが形成されている。本実施形態では、溝24は、二列形成されている。くさび係止溝53は、熱媒体管10収容する二列の溝24の各側部に、溝24と平行にそれぞれ形成されている。くさび係止溝53は、溝24の外側(ベース部材50の幅方向両端側)にそれぞれ形成されている。くさび係止溝53は、開口部分53aよりも奥側の底部分53bが広がった断面台形状に形成されている。また、くさび係止溝53は、二列の溝24の間の中間部にも形成されている。形材51は、ベース部材50の幅方向中間部を中心として線対称の形状を呈しており、上下の形材51,51は、同じ形状となっている。   First, the configuration of the shape member 51 used in the present embodiment will be described. As shown in FIG. 10, the shape member 51 of the heat exchanger 2 is divided into two at the middle in the vertical direction (thickness direction of the base member 50 (see FIG. 12)). The profile 51 is configured as a solid extruded profile such as aluminum or aluminum alloy. The outer surface 51a of the profile 51 that is the outside of the base member 50 is formed in a planar shape. On the inner surface 51b which is the inner side of the base member 50, a groove 24 for accommodating the heat medium pipe 10 and a wedge locking groove 53 for accommodating the wedge member 52 (see FIG. 11) are formed. In this embodiment, the grooves 24 are formed in two rows. The wedge locking grooves 53 are formed in parallel to the grooves 24 on the respective side portions of the two rows of grooves 24 that accommodate the heat medium pipe 10. The wedge locking grooves 53 are formed outside the groove 24 (both ends in the width direction of the base member 50). The wedge locking groove 53 is formed in a trapezoidal cross section in which the bottom portion 53b on the back side of the opening portion 53a is widened. In addition, the wedge locking groove 53 is also formed in an intermediate portion between the two rows of grooves 24. The shape member 51 has a line-symmetric shape centering on the intermediate portion in the width direction of the base member 50, and the upper and lower shape members 51, 51 have the same shape.

図10および図11に示すように、熱媒体管10は、二列の伝熱部11と、これらを連結する一箇所の折返し部12とで構成されており、平面視U字状に形成されている。熱媒体管10は、その外径が、溝24の内径と同等あるいは僅かに大きくなるように構成されている。   As shown in FIGS. 10 and 11, the heat medium pipe 10 is composed of two rows of heat transfer portions 11 and one folded portion 12 that connects them, and is formed in a U shape in plan view. ing. The heat medium pipe 10 is configured such that its outer diameter is equal to or slightly larger than the inner diameter of the groove 24.

図11の(b)に示すように、くさび部材52は、略長方形の側面にV字状溝52aを形成してなるくびれ部52bを備えた断面形状を呈しており、上下の形材51,51のくさび係止溝53,53を合わせて構成されるくさび収容孔54(図10の(b)参照)に挿入されるようになっている。くさび部材52は、形材51と同様にアルミニウムやアルミニウム合金などの軽量の材質の押出形材にて構成されている。ベース部材50の幅方向に見て、くさび部材52は、その幅寸法が、くさび係止溝53の幅寸法よりも僅かに大きくなるように構成されており、くさび収容孔54にその長さ方向(形材51の押出方向)に沿って圧入されるようになっている。ベース部材50の厚さ方向に見て、くさび部材52は、その高さ寸法が、くさび収容孔54の高さよりも小さくなるように構成されており、くさび係止溝53の底部と、くさび部材52の端部との間に隙間が形成されるようになっている。   As shown in FIG. 11 (b), the wedge member 52 has a cross-sectional shape including a constricted portion 52b formed with a V-shaped groove 52a on a substantially rectangular side surface. 51 is inserted into a wedge receiving hole 54 (see FIG. 10B) configured by combining the wedge locking grooves 53, 53. The wedge member 52 is formed of an extruded shape made of a lightweight material such as aluminum or an aluminum alloy, like the shape material 51. The wedge member 52 is configured such that the width dimension of the wedge member 52 is slightly larger than the width dimension of the wedge locking groove 53 when viewed in the width direction of the base member 50. It is press-fitted along (the extrusion direction of the profile 51). When viewed in the thickness direction of the base member 50, the wedge member 52 is configured such that its height dimension is smaller than the height of the wedge accommodation hole 54, and the bottom of the wedge locking groove 53 and the wedge member A gap is formed between the end portion 52 and the end portion 52.

次に、前記構成の形材51を用いて熱交換器2(図12参照)を製造する製造方法を説明する。   Next, the manufacturing method which manufactures the heat exchanger 2 (refer FIG. 12) using the shape material 51 of the said structure is demonstrated.

かかる製造方法は、くさび部材52をくさび収容孔54に圧入することで、形材51のくさび係止溝53と溝24との間に位置する部位を部分的に押圧することで、形材51の一部を塑性変形させて、溝24の内表面を熱媒体管10の表面に押圧させることを特徴とする。   In such a manufacturing method, the wedge member 52 is press-fitted into the wedge accommodation hole 54, thereby partially pressing the portion located between the wedge locking groove 53 and the groove 24 of the shape member 51. A part of the groove 24 is plastically deformed, and the inner surface of the groove 24 is pressed against the surface of the heat medium pipe 10.

形材51を用いて熱交換器2を製造するに際しては、図10の(a)および(b)に示すように、まず、熱媒体管10を、一対の形材51,51で上下から挟み込む。このとき、熱媒体管10は、その外径が、溝24の内径と同等あるいは僅かに大きく形成されているので、図10の(b)に示すように、熱媒体管10は、その外周面の略全周に亘って溝24の内周面と接触する。また、このとき、形材51,51同士が合わさって、くさび係止溝53,53同士が上下方向に組み合わさることで、形材51の押出方向に延出するくさび収容孔54が形成される。   When manufacturing the heat exchanger 2 using the shape member 51, as shown in FIGS. 10A and 10B, first, the heat medium pipe 10 is sandwiched between the pair of shape members 51 and 51 from above and below. . At this time, since the outer diameter of the heat medium tube 10 is formed to be equal to or slightly larger than the inner diameter of the groove 24, the heat medium tube 10 has an outer peripheral surface as shown in FIG. Is in contact with the inner peripheral surface of the groove 24 over substantially the entire circumference. Further, at this time, the shape members 51 and 51 are combined with each other, and the wedge locking grooves 53 and 53 are combined in the vertical direction, whereby the wedge accommodation hole 54 extending in the extrusion direction of the shape material 51 is formed. .

その後、図11の(a)に示すように、圧入装置を用いて、くさび部材52を、形材51の押出方向からくさび収容孔54に圧入する。   Thereafter, as shown in FIG. 11A, the wedge member 52 is press-fitted into the wedge accommodation hole 54 from the extrusion direction of the profile 51 using a press-fitting device.

くさび部材52は、その幅寸法が、くさび係止溝53の幅寸法よりも僅かに大きくなるように構成されているので、くさび収容孔54にくさび部材52を圧入したときに、くさび部材52が、くさび係止溝53と溝24との間に位置する形材51を溝24側へと部分的に押圧して塑性変形することになる。このようにして構成された塑性変形部55によって、熱媒体管10が、ベース部材50の幅方向外側から押圧されることとなる。すなわち、本実施形態では、くさび部材52をくさび収容孔54に圧入することで、形材51を部分的に押圧し、小さい押圧力で形材51が塑性変形して溝24の内表面を熱媒体管10の表面に押圧させることができる。これによって、熱媒体管10は、形材51と密に接触し、形材51と熱媒体管10との接合面積が大きくなる。したがって、熱交換器2の熱伝導性を高めることが可能となる。   Since the wedge member 52 is configured such that the width dimension thereof is slightly larger than the width dimension of the wedge locking groove 53, when the wedge member 52 is press-fitted into the wedge accommodation hole 54, the wedge member 52 is The profile 51 positioned between the wedge locking groove 53 and the groove 24 is partially pressed toward the groove 24 to be plastically deformed. The heat medium pipe 10 is pressed from the outside in the width direction of the base member 50 by the plastic deformation portion 55 configured as described above. That is, in this embodiment, the wedge member 52 is press-fitted into the wedge accommodation hole 54 to partially press the profile 51, and the profile 51 is plastically deformed with a small pressing force, so that the inner surface of the groove 24 is heated. The surface of the medium tube 10 can be pressed. As a result, the heat medium tube 10 is in close contact with the shape member 51, and the joining area between the shape member 51 and the heat medium tube 10 is increased. Therefore, the heat conductivity of the heat exchanger 2 can be increased.

また、くさび部材52は、その側面にV字状溝52aを形成してなるくびれ部52bを備えた断面形状を呈しているので、くさび係止溝53の開口部分53aが、V字状溝52aに挿入されて、くびれ部52bに係止される。これによって、上下に隣接する形材51,51同士がベース部材50の厚さ方向に係止されることとなり、形材51,51同士の接合強度が高められる。さらに、くさび部材52は、ベース部材50の厚さ方向に見て、その高さ寸法が、くさび収容孔54の高さよりも小さくなるように構成されているので、くさび係止溝53の底部と、くさび部材52の端部との間に隙間が形成されるようになっている。これによって、くさび部材52をくさび収容孔54に圧入したときに、形材51,51は互いに内側に引き寄せられることとなり、熱媒体管10の上下部分において、溝24の底面による接触圧が高くなり、形材51と熱媒体管10との接合面積が大きくなる。したがって、形材51と熱媒体管10との熱伝導性がさらに高まることとなる。   Further, since the wedge member 52 has a cross-sectional shape including a constricted portion 52b formed with a V-shaped groove 52a on the side surface thereof, the opening 53a of the wedge locking groove 53 is formed into a V-shaped groove 52a. And is locked to the constricted portion 52b. Accordingly, the shape members 51 adjacent to each other in the vertical direction are locked in the thickness direction of the base member 50, and the bonding strength between the shape members 51, 51 is increased. Further, the wedge member 52 is configured such that the height dimension of the wedge member 52 is smaller than the height of the wedge accommodating hole 54 when viewed in the thickness direction of the base member 50. A gap is formed between the ends of the wedge member 52. As a result, when the wedge member 52 is press-fitted into the wedge accommodation hole 54, the profiles 51 and 51 are attracted to each other, and the contact pressure due to the bottom surface of the groove 24 is increased in the upper and lower portions of the heat transfer medium tube 10. In addition, the bonding area between the shape member 51 and the heat medium pipe 10 increases. Therefore, the thermal conductivity between the shape member 51 and the heat medium pipe 10 is further increased.

また、本実施形態の形材51は、ベース部材50の上下の形材51,51が同じ形状であるので、形材51を形成するための型は一種類でよく、生産効率が非常に高くなり、製造コストの低減が達成される。   Further, in the shape member 51 of this embodiment, since the upper and lower shape members 51, 51 of the base member 50 have the same shape, only one type may be used for forming the shape member 51, and the production efficiency is very high. Thus, a reduction in manufacturing cost is achieved.

なお、本実施形態では、くさび係止溝53は、溝24の一側面に形成されているが、溝24の両側面に形成するようにしてもよい。このようにすれば、熱媒体管10と溝24との接触圧をさらに高めることができ、形材51と熱媒体管10との接合面積が大きくなり熱伝導性をより高めることが可能となる。   In this embodiment, the wedge locking groove 53 is formed on one side surface of the groove 24, but may be formed on both side surfaces of the groove 24. In this way, the contact pressure between the heat medium pipe 10 and the groove 24 can be further increased, and the joining area between the shape member 51 and the heat medium pipe 10 can be increased and the thermal conductivity can be further increased. .

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されることなく、その趣旨を逸脱しない範囲で適宜に設計変更が可能である。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the spirit of the present invention.

本発明に係る形材を複数並列させた状態を示した側面図である。It is the side view which showed the state which arranged the shape material which concerns on this invention in parallel. 本発明に係る熱交換器の製造方法を実施するための第一の最良の形態を示した断面図である。It is sectional drawing which showed the 1st best form for implementing the manufacturing method of the heat exchanger which concerns on this invention. 本発明に係る形材同士を組み付けた状態を示した側面図である。It is the side view which showed the state which assembled | attached the shape materials which concern on this invention. 本発明に係る熱交換器を示した平面図である。It is the top view which showed the heat exchanger which concerns on this invention. 本発明に係る熱交換器を示した側面図である。It is the side view which showed the heat exchanger which concerns on this invention. 熱媒体管の外周面と形材の溝からの接触圧を示した図である。It is the figure which showed the contact pressure from the outer peripheral surface of a heat-medium pipe | tube, and the groove | channel of a profile. 熱媒体管の外周面と形材の溝の内周面の接触状態を示した図である。It is the figure which showed the contact state of the outer peripheral surface of a heat-medium pipe | tube, and the inner peripheral surface of the groove | channel of a profile. 本発明に係る熱交換器の製造方法を実施するための第二の最良の形態を示した断面図である。It is sectional drawing which showed the 2nd best form for implementing the manufacturing method of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の製造方法を実施するための第三の最良の形態を示した断面図である。It is sectional drawing which showed the 3rd best form for enforcing the manufacturing method of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の製造方法を実施するための第四の最良の形態を示した第一工程を示した(a)接合前の側面図、(b)は接合後の側面図である。(A) The side view before joining which showed the 1st process which showed the 4th best form for implementing the manufacturing method of the heat exchanger concerning the present invention, (b) is the side view after joining. . 本発明に係る熱交換器の製造方法を実施するための第四の最良の形態を示した第二工程を示した(a)は平面図、(b)は側面図である。(A) which showed the 2nd process which showed the 4th best form for implementing the manufacturing method of the heat exchanger which concerns on this invention, (a) is a top view, (b) is a side view. 図10および図11に示した熱交換器の製造方法によって製造された熱交換器を示した(a)は平面図、(b)は側面図、(c)は拡大側面図である。(A) which showed the heat exchanger manufactured by the manufacturing method of the heat exchanger shown in FIG.10 and FIG.11 is a top view, (b) is a side view, (c) is an enlarged side view.

符号の説明Explanation of symbols

1 熱交換器
2 熱交換器
10 熱媒体管
20 ベース部材
21 形材
22 基部
22a 外表面
23 把持部
23a 外表面
23b 内表面
24 溝
25 凸部
26 凹部
27 突条
28 溝投影部分
29 中実部分
31 係止部
32 係止溝
33 塑性変形部
35 棒状部材
36 突条
50 ベース部材
51 形材
55 塑性変形部
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Heat exchanger 10 Heat-medium pipe | tube 20 Base member 21 Shape 22 Base part 22a Outer surface 23 Grip part 23a Outer surface 23b Inner surface 24 Groove 25 Convex part 26 Concave part 27 Projection 28 Groove projection part 29 Solid part DESCRIPTION OF SYMBOLS 31 Locking part 32 Locking groove 33 Plastic deformation part 35 Bar-shaped member 36 Projection 50 Base member 51 Profile 55 Plastic deformation part

Claims (18)

熱部品を加熱または冷却するための熱媒体を循環させる熱媒体管を板状のベース部材の内部に収容した熱交換器の製造方法において、
前記熱媒体管を収容するための溝を備えるとともに互いに接合されることで前記ベース部材を構成する複数の形材で、前記熱媒体管を前記ベース部材の厚さ方向両側から挟み込んで固定する際に、前記形材を部分的に押圧することで前記形材を塑性変形させて、前記溝の内表面を前記熱媒体管の表面に押圧させる
ことを特徴とする熱交換器の製造方法。
In the method of manufacturing a heat exchanger in which a heat medium pipe for circulating a heat medium for heating or cooling a heat component is accommodated inside a plate-like base member,
When fixing the heat medium pipe by sandwiching the heat medium pipe from both sides in the thickness direction of the base member with a plurality of shapes constituting the base member by being provided with a groove for accommodating the heat medium pipe and being joined to each other Further, the shape material is plastically deformed by partially pressing the shape material, and the inner surface of the groove is pressed against the surface of the heat medium tube.
前記形材の、前記ベース部材の厚さ方向から見て前記溝が内側に位置する溝投影部分の外表面を部分的に押圧することで、前記熱媒体管を前記ベース部材の厚さ方向から押圧する
ことを特徴とする請求項1に記載の熱交換器の製造方法。
By partially pressing the outer surface of the projected portion of the groove where the groove is located on the inner side when viewed from the thickness direction of the base member, the heat medium pipe is removed from the thickness direction of the base member. The method for manufacturing a heat exchanger according to claim 1, wherein pressing is performed.
前記形材の、前記ベース部材の厚さ方向から見て前記溝が内側に位置する溝投影部分の両側に位置する中実部分の外表面を部分的に押圧することで、前記熱媒体管を前記ベース部材の厚さ方向に直交する幅方向から押圧する
ことを特徴とする請求項1または請求項2に記載の熱交換器の製造方法。
By partially pressing the outer surface of the solid portion located on both sides of the groove projection portion where the groove is located on the inner side when viewed from the thickness direction of the base member, the heat medium tube is formed. It presses from the width direction orthogonal to the thickness direction of the said base member. The manufacturing method of the heat exchanger of Claim 1 or Claim 2 characterized by the above-mentioned.
前記形材の外表面の所定位置に突条を形成しておき、この突条を押圧することで、前記形材の外表面を部分的に押圧する
ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱交換器の製造方法。
The protrusion is formed in a predetermined position on the outer surface of the shape member, and the outer surface of the shape member is partially pressed by pressing the protrusion. 4. The method for producing a heat exchanger according to any one of 3 above.
前記形材の外表面の所定位置に棒状部材を配設しておき、この棒状部材を押圧することで、前記形材を部分的に押圧する
ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱交換器の製造方法。
The rod-shaped member is arrange | positioned in the predetermined position of the outer surface of the said profile, and the said profile is partially pressed by pressing this rod-shaped member. The Claim 1 thru | or 3 characterized by the above-mentioned. The manufacturing method of the heat exchanger of any one of Claims 1.
前記形材を押圧するプレス機のプレス面に突条を形成しておき、この突条で前記形材の外表面の所定位置を押圧することで、前記形材の外表面を部分的に押圧する
ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱交換器の製造方法。
A protrusion is formed on the press surface of the press that presses the shape, and the outer surface of the shape is partially pressed by pressing a predetermined position on the outer surface of the shape with the protrusion. The method for manufacturing a heat exchanger according to any one of claims 1 to 3, wherein:
前記形材を押圧する際に、前記形材を前記ベース部材の幅方向両側から拘束する
ことを特徴とする請求項1乃至請求項6のいずれか1項に記載の熱交換器の製造方法。
The method for manufacturing a heat exchanger according to any one of claims 1 to 6, wherein the shape member is restrained from both sides in the width direction of the base member when the shape member is pressed.
熱媒体を循環させる熱媒体管を挟み込んで複数接合されることで前記熱媒体管を内部に収容する板状のベース部材を構成する熱交換器用の形材において、
前記ベース部材の内側となる内表面に、前記熱媒体管を収容するための溝が形成され、
前記ベース部材の外側となる外表面に、突条が形成されている
ことを特徴とする形材。
In the shape of the heat exchanger constituting the plate-like base member that accommodates the heat medium pipe inside by sandwiching a plurality of heat medium pipes that circulate the heat medium,
A groove for accommodating the heat medium pipe is formed on the inner surface of the base member,
A profile is characterized in that a protrusion is formed on the outer surface of the base member.
前記突条は、前記溝を前記外表面に投影したエリアである溝投影部分に位置するとともに前記溝の全長に亘って形成されている
ことを特徴とする請求項8に記載の形材。
The profile according to claim 8, wherein the protrusion is located in a groove projection portion which is an area where the groove is projected onto the outer surface and is formed over the entire length of the groove.
前記外表面の前記溝投影部分両側に位置する中実部分の外表面にも、突条が形成されている
ことを特徴とする請求項9に記載の形材。
The profile according to claim 9, wherein ridges are also formed on the outer surface of the solid portion located on both sides of the groove projection portion of the outer surface.
前記ベース部材の厚さ方向全体に亘る厚さ寸法を有する基部と、
前記ベース部材の幅方向の少なくとも一方に延出して前記基部と一体的に形成され前記熱媒体管を把持する把持部とを備え、
前記把持部は、前記基部の厚さ寸法の略半分の厚さ寸法を有し、前記基部の外表面から連続的に繋がる外表面と、前記熱媒体管を収容するための溝が形成された内表面と、を備えた
ことを特徴とする請求項8乃至請求項10のいずれか1項に記載の形材。
A base having a thickness dimension over the entire thickness direction of the base member;
A grip portion that extends in at least one of the width directions of the base member and is integrally formed with the base portion and grips the heat medium pipe;
The grip portion has a thickness dimension that is substantially half the thickness dimension of the base portion, and has an outer surface continuously connected from the outer surface of the base portion and a groove for accommodating the heat medium pipe. The shape member according to any one of claims 8 to 10, comprising an inner surface.
前記把持部は、前記ベース部材の幅方向の両側の前記基部に形成されており、
一方の把持部は、他方の把持部に対して前記ベース部材の厚さ方向の逆側に形成されている
ことを特徴とする請求項11に記載の形材。
The grip portion is formed on the base portion on both sides in the width direction of the base member,
The shape member according to claim 11, wherein one grip portion is formed on a side opposite to a thickness direction of the base member with respect to the other grip portion.
前記把持部の前記内表面の先端部に、凸部が形成され、
前記把持部の前記内表面の基端部に、前記凸部と同等の幅寸法を有するとともに、前記凸部の長さ寸法と同等の深さ寸法を有する凹部が形成されている
ことを特徴とする請求項11または請求項12に記載の形材。
A convex portion is formed at the tip of the inner surface of the grip portion,
The base end portion of the inner surface of the grip portion is formed with a concave portion having a width dimension equivalent to the convex portion and a depth dimension equivalent to the length dimension of the convex portion. The shape member according to claim 11 or 12.
前記凹部は、深さ方向の奥に向かうにつれて前記溝側に向かって湾曲するように形成された
ことを特徴とする請求項13に記載の形材。
The profile according to claim 13, wherein the concave portion is formed so as to bend toward the groove side toward the back in the depth direction.
前記外表面の、前記ベース部材の幅方向一端部に、断面鉤状の係止部が形成され、
前記外表面の、前記ベース部材の幅方向他端部に、前記係止部と噛み合う形状の係止溝が形成された
ことを特徴とする請求項8乃至請求項14のいずれか1項に記載の形材。
A locking portion having a bowl-shaped cross section is formed at one end of the outer surface in the width direction of the base member,
The locking groove of the shape which meshes with the said latching | locking part was formed in the width direction other end part of the said base member of the said outer surface. Any one of Claims 8 thru | or 14 characterized by the above-mentioned. Shape material.
熱部品を加熱または冷却するための熱媒体を循環させる熱媒体管を板状のベース部材の内部に収容した熱交換器において、
前記熱媒体管を収容するための溝を備えるとともに互いに接合されることで前記ベース部材を構成する複数の形材で、前記熱媒体管が前記ベース部材の厚さ方向両側から挟み込まれており、
前記熱媒体管は、前記形材を部分的に押圧することで形成された塑性変形部にて押圧された
ことを特徴とする熱交換器。
In a heat exchanger in which a heat medium pipe for circulating a heat medium for heating or cooling a heat component is accommodated in a plate-like base member,
With a plurality of shapes constituting the base member by being joined to each other with a groove for accommodating the heat medium tube, the heat medium tube is sandwiched from both sides in the thickness direction of the base member,
The heat exchanger tube, wherein the heat medium tube is pressed by a plastic deformation portion formed by partially pressing the shape member.
前記塑性変形部は、前記形材の、前記ベース部材の厚さ方向から見て前記溝が内側に位置する溝投影部分の外表面を部分的に押圧することで前記熱媒体管の前記ベース部材の厚さ方向両側に形成された
ことを特徴とする請求項16に記載の熱交換器。
The base member of the heat transfer medium tube is formed by partially pressing an outer surface of a groove projection portion where the groove is located on the inner side when viewed from the thickness direction of the base member. The heat exchanger according to claim 16, wherein the heat exchanger is formed on both sides in the thickness direction.
前記塑性変形部は、前記形材の、前記ベース部材の厚さ方向から見て前記溝が内側に位置する溝投影部分の両側に位置する中実部分の外表面を部分的に押圧することで前記熱媒体管の前記ベース部材の幅方向両側に形成された
ことを特徴とする請求項16または請求項17に記載の熱交換器。
The plastic deformation portion is formed by partially pressing the outer surface of the solid portion located on both sides of the groove projection portion where the groove is located on the inner side when viewed from the thickness direction of the base member. The heat exchanger according to claim 16 or 17, wherein the heat exchanger tube is formed on both sides of the base member in the width direction of the heat medium pipe.
JP2007107811A 2007-04-17 2007-04-17 Manufacturing method of heat exchanger, formation member and heat exchanger Pending JP2008267623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107811A JP2008267623A (en) 2007-04-17 2007-04-17 Manufacturing method of heat exchanger, formation member and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107811A JP2008267623A (en) 2007-04-17 2007-04-17 Manufacturing method of heat exchanger, formation member and heat exchanger

Publications (1)

Publication Number Publication Date
JP2008267623A true JP2008267623A (en) 2008-11-06

Family

ID=40047363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107811A Pending JP2008267623A (en) 2007-04-17 2007-04-17 Manufacturing method of heat exchanger, formation member and heat exchanger

Country Status (1)

Country Link
JP (1) JP2008267623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210337650A1 (en) * 2018-08-24 2021-10-28 Radialis Medical, Inc. Liquid cooling system for precise temperature control of radiation detector for positron emission mammography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210337650A1 (en) * 2018-08-24 2021-10-28 Radialis Medical, Inc. Liquid cooling system for precise temperature control of radiation detector for positron emission mammography

Similar Documents

Publication Publication Date Title
US8782892B2 (en) Heat transfer plate and method of manufacturing the same
WO2009104575A1 (en) Method of manufacturing a pipe coupling component, method of manufacturing a casing structural member, and pipe coupling structure for a hollow part
JP2008307552A (en) Method for manufacturing heat exchanger, and heat exchanger
JP5754431B2 (en) Heat sink manufacturing method and heat transfer plate manufacturing method
JP2007281504A (en) Heat sink and fin module
JP2002096132A (en) Device for manufacturing refrigerant tube for heat exchanger and manufacturing method therefor
JP5645852B2 (en) Pipe joint, heat exchanger, and heat exchanger manufacturing method
JP2009014270A (en) Heat exchanger and tube insertion hole forming method
TWI475183B (en) Heat sink structure and method of manufacturing same
JP2008267623A (en) Manufacturing method of heat exchanger, formation member and heat exchanger
JP5082610B2 (en) Heat exchanger manufacturing method and heat exchanger
JP2008224134A (en) Method of manufacturing pipe mounting part of heat exchanger, and pipe mounting part structure
JP5081757B2 (en) Heat transfer surface structure having flat coiled fin member and manufacturing method thereof
JP2003142863A (en) Heat sink and fin module
JP2004022830A (en) Heat sink
JP6444162B2 (en) Heat exchanger
CN110461130B (en) Mosaic type heat dissipation structure and manufacturing method thereof
JP5203031B2 (en) Heat transfer surface structure having flat coiled fin member and manufacturing method thereof
KR101100118B1 (en) Manifold for heat exchanger and method for manufacturing the same
JP2010117040A (en) Cooling member and manufacturing method therefor
JP2023111445A (en) heat sink
JP2017015352A (en) Heat exchanger
JP2015169390A (en) Heat pipe-fixing structure, and heat pipe-fixing method
JP2003031746A (en) Heat sink
JP2004125334A (en) Header plate for heat exchanger and its manufacturing method, and manufacturing method of heat exchanger