JP2008266766A - Method for producing sheet-form electrolytic copper from halide solution - Google Patents

Method for producing sheet-form electrolytic copper from halide solution Download PDF

Info

Publication number
JP2008266766A
JP2008266766A JP2007195192A JP2007195192A JP2008266766A JP 2008266766 A JP2008266766 A JP 2008266766A JP 2007195192 A JP2007195192 A JP 2007195192A JP 2007195192 A JP2007195192 A JP 2007195192A JP 2008266766 A JP2008266766 A JP 2008266766A
Authority
JP
Japan
Prior art keywords
copper
cathode
halogen
plate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007195192A
Other languages
Japanese (ja)
Inventor
Hiroo Tsuchiya
弘雄 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2007195192A priority Critical patent/JP2008266766A/en
Publication of JP2008266766A publication Critical patent/JP2008266766A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that there is a need for forcibly stirring an electrolyte in the vicinity of a cathode in order to obtain dense electrodeposition copper in a method for electrowinning copper from halide electrolyte added with polyethylene glycol as a smoothing additive to a halide leachate of copper sulfide ore. <P>SOLUTION: A shielding plate 6, which is opened with a window 6b of a size smaller than the cathode 2, is installed in the vicinity of the cathode 2 and the dense sheet-form electrolytic copper is produced without forcibly stirring the electrolyte. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電解採取による金属銅製造に関するものであり、より詳しく述べるならばハロゲン系溶液から緻密な組織を有する板状電気銅を製造する方法に関するものである。  The present invention relates to the production of metallic copper by electrowinning. More specifically, the present invention relates to a method for producing plate-like electrolytic copper having a dense structure from a halogen-based solution.

SX−EW法に代表される銅電解採取法は金属銅の製造方法として広く実用化されている。現在使われている方法は、主に酸化鉱を対象として硫酸を使って原料銅鉱石から銅を浸出し溶媒抽出や浄液工程を経て精製・濃縮した硫酸系銅電解液から金属銅を製造するものである。これに対して、塩化物などのハロゲン系溶液を用いて銅を浸出した液から銅を電解採取する技術が検討されてきた。(特許第2857930号:特許文献1)  The copper electrowinning method represented by the SX-EW method has been widely put into practical use as a method for producing metallic copper. The currently used method is to produce metallic copper from sulfuric acid-based copper electrolyte that has been refined and purified through solvent extraction and liquid purification processes by leaching copper from raw copper ore using sulfuric acid mainly for oxide ores. Is. On the other hand, a technique for electrolytically collecting copper from a solution obtained by leaching copper using a halogen-based solution such as chloride has been studied. (Patent No. 2857930: Patent Document 1)

ハロゲン系溶液を用いる浸出法の長所としては、(1)アノード酸化で生じる単体塩素や臭素またはその化合物の強い酸化性を利用して反応性の低い硫化鉱等を分解し、鉱石に含まれる金や銀も浸出できること、(2)高濃度のハロゲン塩類を含む液中で銅が一価の状態で安定に溶存するために一価銅イオンとして電解するために、硫酸浴での二価電解に比べ半分の電気量で金属銅が製造できること、(3)イオンの伝導性・交換電流密度が高く高電流密度でも大幅には電流効率が低下しないため生産性が高いこと、などが挙げられる。
特許第2857930号 オーストラリア特許出願200502863号
Advantages of the leaching method using a halogen-based solution are as follows: (1) Decomposing low-reactivity sulfide ore using the strong oxidizability of elemental chlorine, bromine or its compounds produced by anodic oxidation, and gold contained in the ore (2) In order to conduct electrolysis as monovalent copper ions in order to stably dissolve copper in a monovalent state in a liquid containing a high concentration of halogen salts, it is possible to conduct divalent electrolysis in a sulfuric acid bath. The metal copper can be produced with half the amount of electricity, and (3) the ion conductivity and exchange current density are high, and the current efficiency is not significantly reduced even at high current densities, so the productivity is high.
Japanese Patent No. 2857930 Australian Patent Application 200502863

しかし、ハロゲン系溶液からの電解採取では、電着する金属銅がデンドライト状粉末ないしは凝集粗粒となる。このため、硫酸浴から製造される電気銅が板状の電着カソードのまま取り出し販売できるのに対し、電解槽からの銅の取り出し・洗浄・製品鋳造などのハンドリングに手間がかかる。また。洗浄を重ねても銅粉末は酸化しやすいため、製品の品位低下の要因となる。  However, in electrowinning from a halogen-based solution, the metal copper to be electrodeposited becomes dendritic powder or aggregated coarse particles. For this reason, while electrolytic copper produced from a sulfuric acid bath can be taken out and sold as a plate-like electrodeposition cathode, it takes time to handle copper removal from an electrolytic cell, washing, product casting, and the like. Also. Even after repeated cleaning, the copper powder easily oxidizes, which causes a reduction in product quality.

このような問題を解決するため、塩化浴の一価銅電解で平滑な電着物を得る条件が実験室レベルで検討されてきた。しかし、ハロゲン系溶液では、硫酸浴に比べて突起状・デンドライト状電着をする傾向が強く、硫酸浴で電着物の緻密化・平滑化に効果のある添加剤、例えばニカワ(ゼラチン)を用いる場合でも数g/L近くの高濃度で添加した上で電流密度を低く抑えて操業する必要があり、長時間にわたって緻密で平滑な電着銅を製造する実用的な条件は知られていなかった。また、既存の方法ではいずれの場合も、緻密な電着を得るためにカソライトを窒素やアルゴンなどの不活性ガスで激しく撹拌する、あるいはカソードを振動・揺動させて電極近傍の液を動かすなど、液を強制的に機械撹拌してイオンの供給を促す必要があった。このため、実用化するには複雑な機構を有する電解装置を必要とするものであった。  In order to solve such a problem, conditions for obtaining a smooth electrodeposition by monovalent copper electrolysis in a chloride bath have been studied at the laboratory level. However, halogen-based solutions are more prone to electrodeposition and dendritic electrodeposition than sulfuric acid baths, and additives that are effective in densifying and smoothing electrodeposits in sulfuric acid baths, such as glue (gelatin), are used. Even in this case, it is necessary to operate at a high concentration near several g / L and then keep the current density low, and practical conditions for producing dense and smooth electrodeposited copper for a long time have not been known. . In any case, the existing methods, in any case, vigorously agitate the catholyte with an inert gas such as nitrogen or argon, or move the liquid near the electrode by vibrating or oscillating the cathode. It was necessary to forcibly mechanically stir the liquid and promote the supply of ions. For this reason, an electrolyzer having a complicated mechanism is required for practical use.

特許文献2:本出願人のオーストラリア特許出願第200502863は、平滑化剤としてポリエチレングリコール添加剤を含み、且つカソード近傍でハロゲン化物電解質を撹拌しつつハロゲン化銅からの金属銅の電解採取を行うことにより緻密な板状電気銅を製造することを開示している。ポリエチレングリコール添加剤は他の添加剤よりもデンドライト状電着物の形成を抑制しかつ銅電着物を緻密化する効果が大きい。この特許文献2では次のように述べられている。「緻密な電着銅を製造するためにはカソード液は、例えば撹拌板により撹拌されなければならない。撹拌を行なわないと、カソード液に濃度勾配が形成され、添加剤の効果、すなわち電気銅の緻密化及び平滑化が著しく損なわれる。添加剤の効果はポリエチレングリコールが電気銅の表面に強く凝着することによる。」  Patent Document 2: Applicant's Australian Patent Application No. 200502863 includes a polyethylene glycol additive as a smoothing agent, and performs electrowinning of metallic copper from copper halide while stirring the halide electrolyte near the cathode. Manufacturing a dense plate-like electrolytic copper. The polyethylene glycol additive has a greater effect of suppressing the formation of dendritic electrodeposits and densifying the copper electrodeposit than other additives. This patent document 2 states as follows. “In order to produce dense electrodeposited copper, the catholyte has to be stirred, for example by means of a stir plate. Without stirring, a concentration gradient is formed in the catholyte and the effect of the additive, ie the electrolytic copper Densification and smoothing are significantly impaired. The effect of the additive is due to the strong adhesion of polyethylene glycol to the surface of electrolytic copper. "

本発明は、ハロゲン系銅電解液からの銅電解採取において、一価電解の利点を生かす一方、電解槽からの取り出しや製品洗浄などのハンドリング性に優れた緻密な板状の電気銅を、実用的な電流密度で製造可能とする技術を提案するものである。特に、本発明は特許文献2で提案された電解液撹拌の必要性をなくして、しかも緻密な板状電気銅を製造する方法を提案するものである。  The present invention makes practical use of dense plate-shaped electrolytic copper with excellent handling properties such as removal from the electrolytic cell and product washing while taking advantage of monovalent electrolysis in copper electrowinning from halogen-based copper electrolyte. We propose a technology that makes it possible to manufacture at a reasonable current density. In particular, the present invention proposes a method for producing a dense plate-like copper without the necessity of the electrolytic solution stirring proposed in Patent Document 2.

本発明者は、各種の有機添加剤のうちでデンドライト成長を抑制し電着銅の組織を緻密化する上で特異的に効果を有するポリエチレングリコール(PEG)を添加したハロゲン系溶液からの銅の電解採取は、カソード端部での電流集中による影響が大きく、これを緩和するために窓を開けた遮蔽板が有効であることを見出し、本発明に至った。
すなわち、本発明は、
(1)銅硫化鉱のハロゲン系浸出液に平滑化添加剤としてポリエチレングリコールを添加したハロゲン系銅電解液から銅をカソードに電着する銅の電解採取方法において、カソードの近傍にカソードに対して一回り小さい窓を開けた遮蔽板を設置して、遮蔽板の窓以外の部分を前記カソードの端部に対向させ、電解液の強制撹拌を併用せずに、緻密な板状電気銅を製造することを特徴とするハロゲン系溶液からの板状電気銅の製造方法、
(2)電解採取後の電解後液により銅硫化鉱を浸出することを特徴とする(1)項記載のハロゲン系溶液からの板状電気銅の製造方法、
(3)ハロゲン系銅電解液が、支持塩として3mol/L以上のアルカリ金属の塩化物、臭化物及びこれらの混合物の少なくとも1種を含む液に、銅の塩化物及び臭化物の少なくも1種を溶解した溶液であることを特徴とする(1)又は(2)項記載のハロゲン系溶液からの板状電気銅の製造方法、
(4)ハロゲン系銅電解液中のポリエチレングリコールの濃度が、10〜100mg/L,好ましくは20mg/Lから40mg/Lであることを特徴とする(1)から(3)項までの何れか1項記載のハロゲン系溶液からの板状電気銅の製造方法、
(5)カソード上の電流密度を125A/m以下として電解採取することを特徴とする(1)から(4)項までの何れか1項記載のハロゲン系溶液からの板状電気銅の製造方法、
(6)カソードと当該遮蔽板との間隔(X)は、カソードが遮蔽板の周縁板部と対向する幅(Y)の1/2より大きい、X>Y/2ことを特徴とする(1)から(5)項までの何れか1項記載のハロゲン系溶液からの板状電気銅の製造方法、
である。
The inventor of the present invention, among various organic additives, suppresses dendrite growth and densifies the structure of the electrodeposited copper, and the copper from the halogen-based solution to which polyethylene glycol (PEG) having a specific effect is added. Electrolytic extraction has a great influence due to current concentration at the cathode end, and has found that a shielding plate having a window is effective to alleviate this, leading to the present invention.
That is, the present invention
(1) In a copper electrowinning method in which copper is electrodeposited on a cathode from a halogen-based copper electrolyte obtained by adding polyethylene glycol as a smoothing additive to a halogen-based leachate of copper sulfide ore, the copper is collected near the cathode in the vicinity of the cathode. Install a shielding plate with a small window around it, make the other part of the shielding plate face the end of the cathode, and manufacture dense plate-like copper without using forced stirring of the electrolyte A method for producing plate-like electrolytic copper from a halogen-based solution,
(2) A method for producing plate-like electrolytic copper from a halogen-based solution according to (1), wherein copper sulfide ore is leached with a post-electrolysis solution after electrowinning,
(3) The halogen-based copper electrolyte contains at least one of copper chloride and bromide in a liquid containing at least one of alkali metal chloride, bromide and a mixture thereof at 3 mol / L or more as a supporting salt. A method for producing plate-like electrolytic copper from a halogen-based solution according to (1) or (2), wherein the solution is a dissolved solution,
(4) The concentration of polyethylene glycol in the halogen-based copper electrolyte is 10 to 100 mg / L, preferably 20 mg / L to 40 mg / L, any one of (1) to (3) A method for producing plate-like electrolytic copper from the halogen-based solution according to claim 1,
(5) Production of plate-like electrolytic copper from a halogen-based solution according to any one of (1) to (4), characterized in that the current density on the cathode is electrolytically collected at 125 A / m 2 or less. Method,
(6) The interval (X) between the cathode and the shielding plate is characterized by X> Y / 2, which is greater than ½ of the width (Y) at which the cathode faces the peripheral plate portion of the shielding plate (1). ) To (5), the method for producing plate-like electrolytic copper from the halogen-based solution according to any one of items 1 to 3,
It is.

本発明により達成される効果は次のとおりである。
(1)窓を開けた遮蔽板を使用すると、電流は窓のみから流れるために、カソード端部での電流集中が抑制される。このために、銅硫化鉱のハロゲン系銅電解液を機械的手段、ガス吹込みなどにより強制撹拌をする必要がなくなり、この結果、設備コスト及び操業コストが低くなる。
(2)平滑化剤としてポリエチレングリコールを添加することにより、ハロゲン系銅電解溶液から緻密な組織を有する電着銅を製造できるため、電解槽からの製品取り出しが容易である。また、電着物の洗浄性に優れ、表面汚染・酸化の問題もないため、製品品位が改善する。
The effects achieved by the present invention are as follows.
(1) When a shielding plate having a window is used, since current flows only from the window, current concentration at the cathode end is suppressed. For this reason, it is not necessary to forcibly stir the halogen-based copper electrolyte of copper sulfide ore by mechanical means, gas blowing or the like, and as a result, the equipment cost and the operation cost are lowered.
(2) By adding polyethylene glycol as a smoothing agent, it is possible to produce electrodeposited copper having a dense structure from a halogen-based copper electrolytic solution, so that the product can be easily taken out from the electrolytic cell. In addition, it is excellent in electrodeposit cleanability and has no problems of surface contamination or oxidation, improving product quality.

本発明は、銅を溶解したハロゲン系溶液に、平滑化添加剤としてポリエチレングリコールを添加して行う銅の電解採取法一般に適用することができる。但し、高能率操業を安定して行い、かつ良好な品質の電着銅を製造するためには次のような操業法が必要となる。
先ず、ハロゲン系銅電解液では、塩基性塩や一価銅ハロゲン化物の沈殿生成を防ぐためのpH条件は、pH1〜3の酸性条件であり、かつ一価銅をハロゲン錯イオンとして安定に溶解し、高能率操業を行なうためには、塩化ナトリウムなどのハロゲン化アルカリを支持塩として高濃度に溶解した液であることが好ましい。銅錯イオンが安定で十分に高い溶解度を持つには支持塩濃度は少なくとも3mol/L以上であることが好ましく、特に好ましくは4mol/L以上で飽和溶解度未満の濃度である。
The present invention can be generally applied to a copper electrowinning method in which polyethylene glycol is added as a smoothing additive to a halogen-based solution in which copper is dissolved. However, the following operation method is required in order to perform high-efficiency operation stably and to produce electrodeposited copper of good quality.
First, in the halogen-based copper electrolyte, the pH conditions for preventing precipitation of basic salts and monovalent copper halides are acidic conditions of pH 1 to 3, and monovalent copper is stably dissolved as a halogen complex ion. In order to perform high-efficiency operation, a liquid in which an alkali halide such as sodium chloride is dissolved as a supporting salt at a high concentration is preferable. In order for the copper complex ions to be stable and have sufficiently high solubility, the concentration of the supporting salt is preferably at least 3 mol / L or more, particularly preferably 4 mol / L or more and less than the saturation solubility.

本発明の実施方法の一例を図1に示す。
ハロゲン系銅電解液からの電解採取には、アノード室10とカソード室11とを濾布4などの隔膜で隔離した装置1を用いた隔膜電解法を用いることが好ましい。カソード室11には鉱石浸出により得た高Cu濃度の液を供給し、一価銅イオンを還元してカソード2に金属銅5を析出させる。
An example of the implementation method of the present invention is shown in FIG.
For electrowinning from the halogen-based copper electrolyte, it is preferable to use a diaphragm electrolysis method using the apparatus 1 in which the anode chamber 10 and the cathode chamber 11 are separated by a diaphragm such as a filter cloth 4. A high Cu concentration liquid obtained by ore leaching is supplied to the cathode chamber 11 to reduce the monovalent copper ions and deposit the metallic copper 5 on the cathode 2.

鉱石浸出後の液には空気酸化や反応不足のため若干の二価銅が含まれており、電解時にカソード電流の無駄を生みカソード・アノード反応のバランスを崩す。このため浸出液は還元用の槽で金属銅を用いてあらかじめ二価銅を還元して一価にした後、電解液としてカソード室11に供給することが好ましい。  The liquid after the ore leaching contains some divalent copper due to air oxidation and lack of reaction, which wastes cathode current during electrolysis and breaks the balance of cathode-anode reaction. For this reason, the leaching solution is preferably supplied to the cathode chamber 11 as an electrolytic solution after reducing bivalent copper to be monovalent in advance by using metallic copper in a reduction tank.

本発明においては、ハロゲン系銅電解液に所定量のポリエチレングリコールを添加して電解採取を行う。
添加剤のポリエチレングリコールは事前に給液(浸出液)に混合しておくか、カソード室11内に供給して給液およびカソライトと混合する。
In the present invention, a predetermined amount of polyethylene glycol is added to the halogen-based copper electrolyte to perform electrowinning.
The additive polyethylene glycol is mixed with the supply liquid (leachate) in advance, or supplied into the cathode chamber 11 and mixed with the supply liquid and catholyte.

添加剤のポリエチレングリコールには、重合度として好ましくは平均分子量600から4,000、より好ましくは1,000から2,000の範囲の製品を用いる。分子量600未満の低分子量の製品は電着緻密化効果が弱く実用性は乏しく、一方分子量4,000を超える製品では電着物はおおむね緻密なもののカソード周囲の電流集中部で突起や凹凸が成長しやすい傾向があり、24時間以上の長時間の連続操業に使用するには適していない。
添加剤の濃度は、電解条件(カソード電流密度)やカソード室内部の液撹拌状態により適切な値が異なる。ところで機械撹拌によりカソード近傍のカソライトを強く流動させカソード表面への添加剤供給を促せば、2から10mg/Lの添加剤濃度でも緻密で平滑な電着をするが、液の強制撹拌を行わずに、硫酸浴銅電解と同様に浸出液を電解槽に供給するだけで、電解採取時のカソード近傍液の銅濃度低下による液の自然対流の作用で混合するだけの場合には、添加剤濃度を10から100mg/L、好ましくは20から40mg/Lの範囲に増やす必要がある。
For the additive polyethylene glycol, a product having an average molecular weight of 600 to 4,000, more preferably 1,000 to 2,000 is used as the degree of polymerization. Low molecular weight products with a molecular weight of less than 600 have a weak electrodeposition densification effect and poor practicality. On the other hand, products with a molecular weight of more than 4,000 have dense electrodeposits, but protrusions and irregularities grow in the current concentration area around the cathode. It tends to be easy and is not suitable for use in continuous operation for a long time of 24 hours or more.
The concentration of the additive varies depending on the electrolysis conditions (cathode current density) and the liquid stirring state in the cathode chamber. By the way, if the catholyte in the vicinity of the cathode is made to flow strongly by mechanical stirring and the supply of the additive to the cathode surface is promoted, even if the additive concentration is 2 to 10 mg / L, the electrodeposition is dense and smooth, but the liquid is not forcedly stirred. In addition, if the leachate is simply supplied to the electrolytic cell as in the case of sulfuric acid bath copper electrolysis, and only mixed by the action of natural convection of the liquid due to the decrease in copper concentration in the vicinity of the cathode during electrowinning, the additive concentration should be reduced. It should be increased to a range of 10 to 100 mg / L, preferably 20 to 40 mg / L.

添加剤濃度がこの範囲より低い場合には、電着組織の緻密化・平滑化効果を十分に達成するためには、電流密度を非常に低いレベルに下げる必要がある。ある程度の電流密度において、添加剤濃度が低いと、部分的に突起が集中成長してショートを起こす問題を生じる。添加剤濃度はさらに増やすことも可能であるが、大きな改善効果は得られない。また、電解採取後の液(銅濃度の低下したアノライト)を浸出工程に戻す際、系内に余分な未分解の添加剤を持ち込む問題が生じる。実用的には、後述の電流密度の範囲で操業する場合、前記のとおり10〜100mg/L,特に20から40mg/Lの範囲で十分な効果が得られる。  When the additive concentration is lower than this range, it is necessary to lower the current density to a very low level in order to sufficiently achieve the effect of densification / smoothing of the electrodeposited structure. When the additive concentration is low at a certain current density, there is a problem in that protrusions are partially concentrated and short-circuited. The additive concentration can be further increased, but a large improvement effect cannot be obtained. Further, when returning the liquid after electrolytic collection (anolyte having a reduced copper concentration) to the leaching process, there arises a problem of bringing in excess undecomposed additive into the system. Practically, when operating in the current density range described later, sufficient effects are obtained in the range of 10 to 100 mg / L, particularly 20 to 40 mg / L as described above.

カソード上の電流密度分布は、銅の緻密電着に影響を与える。ポリエチレングリコールを添加したハロゲン系銅電解液では、電流密度がある上限を超えるとカソード面の何れかの部分に局部的に電着が集中して、突起が急激に成長しカソードとアノードないしは隔膜との間でショートする問題を生じる。
液を機械撹拌する場合には、電流密度250A/mでも緻密電着するが、本発明の目的とする、強制撹拌無しの場合には、操業電流密度を125A/m以下にとどめるのが好ましい。下限は、特に限定されないが、高いほど能率上好ましい。150A/m以上ではカソライトの循環撹拌など、給液よりもさらに強力な液の流動・混合を促す方法を併用しないと電着銅に生じた部分的な凹凸から突起が異常成長することを防ぐのは困難である。
The current density distribution on the cathode affects the dense electrodeposition of copper. In halogen-based copper electrolyte added with polyethylene glycol, when the current density exceeds a certain upper limit, electrodeposition concentrates locally on any part of the cathode surface, and protrusions grow rapidly, causing the cathode and anode or diaphragm to Cause a short circuit between the two.
When the liquid is mechanically agitated, it is densely electrodeposited even at a current density of 250 A / m 2. However, in the case of no forced agitation, which is the object of the present invention, the operating current density should be kept below 125 A / m 2. preferable. The lower limit is not particularly limited, but the higher the lower the better. At 150 A / m 2 or more, abnormal growth of projections from partial irregularities generated in electrodeposited copper is prevented unless a method that promotes the flow and mixing of liquids stronger than the liquid supply, such as circulating stirring of catholyte, is used. It is difficult.

カソードの端部は電流が集中して実効電流速度が高くなるので、カソード全体の平均電流密度が低くても突起を生じやすい。この対策として、カソードとアノード室隔膜との間にカソードに対し一回り小さな窓を開けた遮蔽板を設け、周縁板部をカソードの端部と対向させることにより端部への電流集中を緩和する。
一般に、カソード母板は形状が正方形もしくは矩形であり、また幅が500〜1000mm、高さが500〜1000mmである。したがってカソードの端部は上記正方形もしくは矩形に沿って延びており、突起が成長し易い領域であり、電流密度に依存するが一般に10〜15mmである。端部領域を除くカソード表面を以下「主要部」という。
遮蔽板6(図2)の窓6bは主要部と実質的に同じ方法を有しており、したがって、板部6aは端部と実質的に同じ方法を有しており、電気的絶縁性・液体非透過性材料よりなる。
Since the current concentrates at the end of the cathode and the effective current speed increases, protrusions are likely to occur even if the average current density of the entire cathode is low. As a countermeasure, a shield plate with a small window is provided between the cathode and the anode chamber diaphragm, and the peripheral plate portion is opposed to the end portion of the cathode to alleviate current concentration at the end portion. .
In general, the cathode base plate has a square or rectangular shape, a width of 500 to 1000 mm, and a height of 500 to 1000 mm. Therefore, the end of the cathode extends along the square or rectangle, and is an area where protrusions are likely to grow, and is generally 10 to 15 mm depending on the current density. The cathode surface excluding the end region is hereinafter referred to as “main part”.
The window 6b of the shielding plate 6 (FIG. 2) has substantially the same method as the main portion, and therefore the plate portion 6a has substantially the same method as the end portion. Made of liquid impermeable material.

遮蔽板6(図1,2)の設置位置はカソード2と窓(6b,図2)の大きさにあわせて窓6bが主要部に対向し、周縁の板部がカソードの端部と対向するようにする。カソード2上に銅が析出して距離が縮まるためカソード引上げ作業を妨げないだけの距離をとる必要がある。カソードを7〜10日に一回の頻度で引き上げる場合、電着銅は表面の凹凸も含めると10〜15mmの厚みで母板に析出するので、少なくともこの電着量に応じて間隔を空ける。  The installation position of the shielding plate 6 (FIGS. 1 and 2) is such that the window 6b faces the main part according to the size of the cathode 2 and the window (6b, FIG. 2), and the peripheral plate part faces the end of the cathode. Like that. Since copper is deposited on the cathode 2 to reduce the distance, it is necessary to set a distance that does not hinder the cathode pulling operation. When the cathode is pulled up once every 7 to 10 days, the electrodeposited copper is deposited on the base plate with a thickness of 10 to 15 mm including the unevenness of the surface, so that an interval is provided at least according to the amount of electrodeposition.

上述の範囲の電流密度の下での電解中に金属銅5(図1)が成長する結果、金属銅5と遮蔽板6の窓の間隔が減少する。このような状況では窓からの通電が変化して、突起の形成あるいは異常通電が起こる問題がある。突起の形成などを防止するためには、電解開始時における遮蔽板6とカソードの間隔を考慮して窓6b(図2)の方法を定めることが好ましい。
遮蔽板6とカソード2の位置関係を示す図3において、Xは遮蔽板6とカソード2の間隔であり、Yは遮蔽板6の陰になるカソード2の端部2aの幅を示す。電解中には、銅はカソード上で成長し、かつ突起がカソード端部で発生し易い。好ましくは、間隔Xは間隔Yの半分より大、すなわちX>Y/2とすると、上記した突起の形成などを避けることができる。但し、電流集中緩和のためには極力カソード2に近接して設置するのが好ましいので、最も好ましい遮蔽板の配置は、XがY/2より僅かに大きい配置である。
遮蔽板を設置する替わりにアノード室との間の隔膜(濾布)をつけた隔壁の窓の大きさを絞ることで同様の効果を得ることができるが、この場合はカソードと隔膜との距離を極端に縮める必要があり、引上げ作業中に強度の小さな隔膜(濾布)を破損するおそれがある。
As a result of the growth of the metallic copper 5 (FIG. 1) during electrolysis under a current density in the above range, the spacing between the metallic copper 5 and the shielding plate 6 window is reduced. In such a situation, there is a problem in that energization from the window changes to cause formation of protrusions or abnormal energization. In order to prevent the formation of protrusions and the like, it is preferable to determine the method of the window 6b (FIG. 2) in consideration of the distance between the shielding plate 6 and the cathode at the start of electrolysis.
In FIG. 3 showing the positional relationship between the shielding plate 6 and the cathode 2, X is the distance between the shielding plate 6 and the cathode 2, and Y is the width of the end 2 a of the cathode 2 that is behind the shielding plate 6. During electrolysis, copper grows on the cathode and protrusions are likely to occur at the cathode end. Preferably, when the interval X is larger than half of the interval Y, that is, when X> Y / 2, the formation of the projections described above can be avoided. However, since it is preferable to install the shield plate as close to the cathode 2 as possible in order to alleviate the current concentration, the most preferable arrangement of the shielding plate is an arrangement where X is slightly larger than Y / 2.
The same effect can be obtained by reducing the size of the partition wall window with a diaphragm (filter cloth) between the anode chamber instead of installing a shielding plate. In this case, the distance between the cathode and the diaphragm is the same. Needs to be extremely reduced, and there is a risk of damaging the low strength diaphragm (filter cloth) during the pulling operation.

カソードには、ハロゲン系銅電解液に対して十分な耐食性を有する素材、具体的にはチタンを用いて、電解採取終了後に電着銅を剥離して製品とする。あるいは、硫酸浴での電気銅製造と同様にカソードに銅の母板を使い電着した銅とともに、鋳造して製品とする方法も利用できる。電着物の外観や組織は電着開始初期を除いて下地素材の影響はほとんど受けない。  For the cathode, a material having sufficient corrosion resistance with respect to the halogen-based copper electrolyte, specifically titanium, is used, and the electrodeposited copper is peeled off after the completion of electrolytic collection to obtain a product. Alternatively, a method of casting into a product together with copper electrodeposited using a copper base plate as a cathode can be used as in the case of electrolytic copper production in a sulfuric acid bath. The appearance and structure of the electrodeposit are hardly affected by the base material except at the beginning of electrodeposition.

本発明の一実施態様、即ち段落番号0002(2)項で述べた方法では、Cu濃度が低下したカソライトは濾布4を通ってアノード室10に送られアノード酸化により酸化浸出力のあるアノライトとなって浸出工程に繰り返すことができる。即ち、電解採取後に銅濃度が低下したカソライトは、隔膜を通り抜けてアノード室内でアノード酸化により銅が二価に酸化しかつ液に酸化性の塩素・臭素が溶解したアノライト(電解後液)となる。このアノライトはその酸化能力が強いため、銅硫化鉱を分解し、通常の湿式法では浸出の困難な金も溶解することができる。液に溶解した金は、例えば特許文献1に示すように活性炭と接触させて吸着させるか、あるいは、ジブチルカルビトールなどの金を抽出する抽出剤で液から分離・回収することができる。  In one embodiment of the present invention, that is, the method described in paragraph 0002 (2), catholyte having a reduced Cu concentration is sent to the anode chamber 10 through the filter cloth 4 and anolyte having an oxidation immersion power by anodic oxidation. Can be repeated in the leaching process. That is, the catholyte whose copper concentration has decreased after electrolytic collection passes through the diaphragm and becomes an anolyte (post-electrolysis solution) in which copper is divalently oxidized by anodic oxidation in the anode chamber and oxidative chlorine and bromine are dissolved in the solution. . Since this anolyte has a strong oxidizing ability, it can decompose copper sulfide ore and dissolve gold which is difficult to be leached by a normal wet method. The gold dissolved in the liquid can be adsorbed by contacting with activated carbon, for example, as shown in Patent Document 1, or can be separated and recovered from the liquid with an extractant that extracts gold such as dibutyl carbitol.

上記アノライトにはカソライトに添加したポリエチレングリコールの一部が未分解のまま残る。この未分解の残存添加剤は、そのままでは前記の金の浸出および回収の過程で、鉱石からの金浸出を妨害し、あるいは活性炭や抽出剤に優先して吸着して金回収率を低下させる懸念がある。しかし、銅湿式製錬プロセスでアノライトを硫化鉱系の銅鉱石からの銅浸出に繰り返し利用する段落番号0002(2)項で述べた方法の場合、この未分解の残存添加剤は、イオウ濃度が鉱石中よりも高まり、イオウを主成分とするに至った銅鉱石浸出残渣に優先的に吸着して液からほとんどが除かれるため、アノライトを鉱石浸出に繰返し、使用しても液の中に蓄積することなく、金の浸出・回収にも支障はない。  In the anolyte, a part of the polyethylene glycol added to the catholyte remains undecomposed. This undecomposed residual additive may interfere with gold leaching from the ore in the process of gold leaching and recovery as it is, or may be adsorbed in preference to activated carbon or extractant to reduce the gold recovery rate. There is. However, in the method described in paragraph 0002 (2) where anolite is repeatedly used for copper leaching from sulfide ore-type copper ore in the copper hydrometallurgical process, this undecomposed residual additive has a sulfur concentration of Since it is preferentially adsorbed on the copper ore leaching residue, which is higher than in the ore, and is mostly removed from the liquid by preferential adsorption, the anolyte accumulates in the liquid even after repeated ore leaching. There is no problem in leaching and collecting gold.

以上述べたように、本発明により、ハロゲン系銅溶液から、一価電解による電力節減の利点を生かしながら、緻密で洗浄の容易なハンドリング性に優れた板状の電着銅を製造することができる。以下、本発明の実施例及び比較例を説明する。  As described above, according to the present invention, it is possible to produce a plate-shaped electrodeposited copper excellent in handling characteristics that is easy to clean and easy to clean while taking advantage of power saving by monovalent electrolysis from a halogen-based copper solution. it can. Examples of the present invention and comparative examples will be described below.

硫化物系銅鉱石を、ハロゲン化アルカリの濃度約4mol/Lの塩化銅溶液で浸出して銅濃度が75g/Lの塩化第一銅溶液を得た。この溶液に、ハロゲン化アルカリを含む液を加えて希釈して銅濃度25g/Lとし、pH1〜1.5に調節した。この溶液に、添加剤としてポリエチレングリコール(平均分子量1,000.濃度10mg/L)を加えて、表1に組成(g/L)を示したハロゲン系銅電解液を得た。この電解液を、耐酸テトロン(株式会社帝人の商品名)製濾布の隔膜をつけた図4に示した構造の電解槽に入れ50〜55℃で保温した。  The sulfide-type copper ore was leached with a copper chloride solution having an alkali halide concentration of about 4 mol / L to obtain a cuprous chloride solution having a copper concentration of 75 g / L. To this solution, a solution containing an alkali halide was added and diluted to a copper concentration of 25 g / L and adjusted to pH 1 to 1.5. To this solution, polyethylene glycol (average molecular weight 1,000. Concentration 10 mg / L) was added as an additive to obtain a halogenated copper electrolyte having the composition (g / L) shown in Table 1. This electrolytic solution was put in an electrolytic cell having a structure shown in FIG. 4 with a filter cloth diaphragm made of acid-resistant Tetron (trade name of Teijin Ltd.) and kept at 50 to 55 ° C.

この電解槽のカソード室11(図4)にチタン板カソード2(有効面100mm角、片面はマスキングしてアノード対向面だけ使用)を、アノード室10(カソード室11の片側に配置)に不溶性アノード3(チタン板にイリジウム化合物を焼付け塗布したもの、有効面100mm角)を入れた。カソード室11内のカソード2の両側にカソード面から10mm離して80mm角の窓をくり抜いた遮蔽板6をカソードと2中心をあわせて設置した。  The cathode chamber 11 (FIG. 4) of this electrolytic cell is equipped with a titanium plate cathode 2 (effective surface 100 mm square, one side is masked and only the anode facing surface is used), and the anode chamber 10 (arranged on one side of the cathode chamber 11) is an insoluble anode. 3 (a titanium plate baked and coated with an iridium compound, effective surface 100 mm square). On both sides of the cathode 2 in the cathode chamber 11, a shielding plate 6, which is 10 mm away from the cathode surface and hollowed out an 80 mm square window, was placed in alignment with the cathode and the center.

追加給液用の銅浸出液にポリエチレングリコール(平均分子量1000)を10mg/Lの濃度で添加した。電極間に1.23A(遮蔽板窓部分相当面積に対する電流密度150A/m、カソード上全体平均123A/m)の電流を流す一方、カソード室11に前記の添加剤を含む銅浸出液を連続補給してカソライトの銅濃度を25−28g/Lに保った。合計88h通電した結果、図5に示すように細かいコブ状の凹凸があるが、緻密な金属銅が全カソード面に電着した。Polyethylene glycol (average molecular weight 1000) was added to the copper leachate for additional supply at a concentration of 10 mg / L. While a current of 1.23 A (current density of 150 A / m 2 with respect to the area corresponding to the shielding plate window portion, overall average of 123 A / m 2 on the cathode) flows between the electrodes, a copper leaching solution containing the above additive is continuously supplied to the cathode chamber 11. The copper concentration of the catholyte was kept at 25-28 g / L by replenishment. As a result of energization for a total of 88 hours, fine metallic copper was electrodeposited on all the cathode surfaces, although there were fine bump-shaped irregularities as shown in FIG.

Figure 2008266766
Figure 2008266766

(比較例1)・・・従来技術及び添加剤の効果の説明
実施例1で用いたのと同じ装置を使って、同様の組成の銅浸出液にハロゲン化アルカリを添加した液に、添加剤(ポリエチレングリコール)を加えずに電流値1.5A(カソード電着面平均電流密度150A/m)で24h通電した。電着銅は図6(a),(b),(c)に示すように細かいデンドライトが密集した状態であり、カソード引上げ時に電極から容易に脱落した。電流をさらに1A(平均電流密度100A/m)に減らすと図7(a),(b)に示すように電着銅はやや密になり、より長時間の電着(44h)が可能となったが,デンドライトの集合体のままであることは同じであった。このように添加剤無しでは、電流密度を下げかつ遮蔽板を使用しても緻密な電着は得られない。
(Comparative Example 1) ... Description of Effects of Conventional Technology and Additives Using the same apparatus as used in Example 1, an additive ( (Polyethylene glycol) was not added, and current was applied for 24 hours at a current value of 1.5 A (cathode electrodeposition surface average current density of 150 A / m 2 ). As shown in FIGS. 6A, 6B, and 6C, the electrodeposited copper is in a state in which fine dendrites are densely gathered and easily fall off from the electrode when the cathode is pulled up. When the current is further reduced to 1 A (average current density 100 A / m 2 ), the electrodeposited copper becomes somewhat dense as shown in FIGS. 7A and 7B, and longer electrodeposition (44 h) is possible. However, it was the same that it was a dendrite aggregate. Thus, without an additive, dense electrodeposition cannot be obtained even if the current density is lowered and a shielding plate is used.

(比較例2)・・・遮蔽板の効果
実施例1で用いたのと同じ電解槽を用い、かつ添加剤も加えた同じ組成の銅電解液と銅浸出液を用いて、遮蔽板を設置せずに電流値1.5A(150A/m)で24h電解した。電着銅は図8(a),(b)に示すように、カソードの中央は緻密であったが、端部(幅約10mm)から突起が多発し、その一部が急激に成長してアノード室との隔膜まで伸びショートを起こした。遮蔽板を用いないと、電流の集中する端部での突起・異常電着発生の問題がある。
(Comparative example 2) Effect of shielding plate Use the same electrolytic cell as used in Example 1 and install a shielding plate using copper electrolyte and copper leachate of the same composition with additives added The electrolysis was performed for 24 hours at a current value of 1.5 A (150 A / m 2 ). As shown in FIGS. 8 (a) and 8 (b), the electrodeposited copper was dense in the center of the cathode. However, many protrusions occurred from the end (about 10 mm in width), and some of them grew rapidly. It extended to the diaphragm with the anode chamber and caused a short circuit. If a shielding plate is not used, there is a problem of occurrence of protrusions and abnormal electrodeposition at the end where current is concentrated.

・・・より大型の電解槽による安定電着可能な電流密度と添加剤濃度の説明
図1に示すように、カソード室11を二つのアノード室10が挟む構造の隔膜電解槽と大型の電極を用いて、実施例1と同様に緻密・板状電着する条件を検証した。
カソード室11にチタン板カソード3(有効面300mm角)を、アノード室10(カソード室を両側から挟む位置に配置)に不溶性アノード2(有効面270mm角)を入れた。カソード室11内のカソード2の両側にカソード面から18mm離して270mm角の窓をくり抜いた遮蔽板6をカソードと中心をあわせて設置した。
... Explanation of current density and additive concentration capable of stable electrodeposition using a larger electrolytic cell As shown in FIG. 1, a diaphragm electrolytic cell having a structure in which a cathode chamber 11 is sandwiched between two anode chambers 10 and a large electrode Using this, the conditions for dense and plate electrodeposition were verified in the same manner as in Example 1.
A titanium plate cathode 3 (effective surface 300 mm square) was placed in the cathode chamber 11, and an insoluble anode 2 (effective surface 270 mm square) was placed in the anode chamber 10 (positioned so as to sandwich the cathode chamber from both sides). A shielding plate 6 in which a 270 mm square window was cut out at a distance of 18 mm from the cathode surface was installed on both sides of the cathode 2 in the cathode chamber 11 so that the cathode and the center were aligned.

16〜24A(遮蔽板窓部分相当面積に対する電流密度100〜150A/m)の電流を流した。カソード室11の電解液および連続補給する給液に10ないし40mg/Lまで濃度を変えて添加剤を加え電着状態を表2に示した。添加剤濃度20〜40mg/L,電流密度100〜125A/mでは、突起発生無しに緻密な板状の銅が電着した。一例を図9(a),(b)に示す。表面にコブ状の凹凸があるもののカソードに密着した板状電着銅が得られ組織も緻密だった。また剥離時にも全体が一枚にまとまって剥がすことができた。A current of 16 to 24 A (current density of 100 to 150 A / m 2 with respect to the area corresponding to the shielding plate window portion) was passed. Table 2 shows the electrodeposition state in which the additive was added to the electrolyte solution in the cathode chamber 11 and the supply solution to be continuously replenished at concentrations ranging from 10 to 40 mg / L. At an additive concentration of 20 to 40 mg / L and a current density of 100 to 125 A / m 2 , dense plate-like copper was electrodeposited without generation of protrusions. An example is shown in FIGS. 9 (a) and 9 (b). Although the surface had bumpy irregularities, plate-like electrodeposited copper closely adhered to the cathode was obtained, and the structure was dense. Moreover, the whole could be united and peeled off at the time of peeling.

(比較例3)・・・長時間電解に適する電流密度の試験
実施例2において、電流密度150A/mではカソード中央部でも凹凸が短時間で顕著となり電着状態も不安定であった。図10(a),(b),(c)に示すように24h以内に表面に突起状の電着を生じて隔膜との間で突起によるショートが多発した。
(Comparative Example 3).. Test Example of current density suitable for prolonged electrolysis 2, unevenness in current density 150A / m 2 at the cathode center portion was unstable also remarkable as it electrodeposition state in a short time. As shown in FIGS. 10 (a), 10 (b), and 10 (c), protrusion-like electrodeposition occurred on the surface within 24 hours, and shorts due to protrusions occurred frequently with the diaphragm.

Figure 2008266766
Figure 2008266766

(比較例4) 実施例2で使用した添加剤を加える前の銅浸出液を、メッキ評価用のハルセルに入れて銅をカソードとして1h通電し、場所により電流密度の異なる電着サンプルを作った。電流密度100〜300Aでの初期電着状態を走査電子顕微鏡で観察したところ、図11の(1)に示すとおり、粒状で凹凸の激しい成長をしていた。(Comparative example 4) The copper leaching solution before adding the additive used in Example 2 was put in a hull cell for plating evaluation and energized for 1 h using copper as a cathode, and electrodeposition samples having different current densities were produced depending on the location. When the initial electrodeposition state at a current density of 100 to 300 A was observed with a scanning electron microscope, as shown in FIG.

比較例3の浸出液に添加剤(PEG)10mg/Lを加えて同様の試験をすると、図11の(2)に示すとおり、粒のつぶれた凹凸が細かい緻密な電着をした。  When a similar test was performed by adding 10 mg / L of the additive (PEG) to the leachate of Comparative Example 3, as shown in (2) of FIG. 11, the crushed irregularities were finely electrodeposited.

(参考例1)・・・電解後アノライトに残存する添加剤の挙動
次に、実施例2で得られた電解後のアノライトに銅粉を加えて加熱し酸化剤を分解して銅粉を溶かし電解前の浸出液と同じ銅濃度(75g/L)に戻した還元液で同様の試験を行ったところ、図9の(3)に示すように、添加剤を加えた液と類似した電着をした。このように電解後にアノライトには添加剤が分解せずに残っていて電着に影響が認められた。
(Reference Example 1) ... Behavior of additives remaining in anolyte after electrolysis Next, copper powder is added to the anolyte obtained after electrolysis in Example 2 and heated to decompose the oxidant to dissolve the copper powder. When a similar test was performed with a reducing solution returned to the same copper concentration (75 g / L) as the leaching solution before electrolysis, as shown in (3) of FIG. did. Thus, after electrolysis, the additive remained in the anolyte without being decomposed, and the influence on electrodeposition was recognized.

参考例1と同じ電解後のアノライトに銅鉱石の浸出工程で得られた銅浸出後の残渣(Cu0.7%,S26%,他FeOOHなど)を100g/Lのパルプ濃度で加えて金浸出工程と同様に60℃で加熱した。この液を比較例3と同様に銅粉を加えて処理し還元した液で同様の試験を行ったところ、図11の(4)に示すように、電着状態は添加剤を加える前と同様に粗大な粒が多発する状態となり、添加剤の影響は消失した。
このように、添加剤の残存する電解後のアノライトを使っても、イオウを含む銅鉱石浸出残渣を浸出する段階で添加剤は残渣に吸着され、液から除かれる。
Gold leaching step by adding copper leaching residue (Cu 0.7%, S26%, other FeOOH, etc.) obtained in the copper ore leaching step to the same electrolyzed anolite as in Reference Example 1 at a pulp concentration of 100 g / L And heated at 60 ° C. When this liquid was treated in the same manner as in Comparative Example 3 with a copper powder added thereto and treated and reduced, the same test was performed. As shown in FIG. Coarse grains were frequently generated, and the effect of the additive disappeared.
As described above, even when the anolyte after electrolysis in which the additive remains is used, the additive is adsorbed by the residue and removed from the liquid at the stage of leaching the copper ore leaching residue containing sulfur.

・・・添加剤の残存する電解後のアノライトのAu浸出能力
添加剤を含まないハロゲン系溶液(ハロゲン化アルカリの濃度約4mol/L、浸出前で塩化第二銅0.4mol/Lを含む浸出用溶液)で硫化銅精鉱から銅を浸出した後の残渣(実施例3で用いたもの、Au35g/t。Cu0.7%,S26%,他FeOOHなど)を用いて、添加剤を含まない浸出液から粉状電着させて得た電解後のアノライトと、実施例2で得られた添加剤を含有するアノライトのそれぞれを使って、残渣に残る金の浸出能力を比較した。
... Au leaching ability of anolyte after electrolysis with residual additive Additive-free halogen-based solution (concentration of alkali halide about 4 mol / L, leaching containing cupric chloride 0.4 mol / L before leaching) Solution) and the residue after leaching copper from the copper sulfide concentrate (the one used in Example 3, Au 35 g / t, Cu 0.7%, S 26%, other FeOOH, etc.) and no additives. The anolyte after electrolysis obtained by electrodeposition of powder from the leachate and the anolyte containing the additive obtained in Example 2 were used to compare the leaching ability of gold remaining in the residue.

それぞれの液0.5Lに、100g/Lのパルプ濃度で残渣を加えて60℃、6h撹拌した後、さらに温度を85℃に上げてスラリーに空気を0.6L/minの速さで吹き込みながら6h撹拌した。浸出残渣中のAu品位はともに金浸出処理前より低下し表3に示すようにともに20g/tとなり成績に差は無かった。  After adding a residue at a pulp concentration of 100 g / L to 0.5 L of each liquid and stirring at 60 ° C. for 6 hours, the temperature was further raised to 85 ° C. and air was blown into the slurry at a speed of 0.6 L / min. Stir for 6 h. Both Au grades in the leaching residue were lower than before the gold leaching treatment, and both were 20 g / t as shown in Table 3, and there was no difference in results.

Figure 2008266766
Figure 2008266766

本発明における電解実施方法の一例である。It is an example of the electrolysis implementation method in this invention. 遮蔽板の模式図である。It is a schematic diagram of a shielding board. 遮蔽板とカソードの間隔を説明する模式図である。It is a schematic diagram explaining the space | interval of a shielding board and a cathode. 実施例1における電解試験槽の構造である。2 shows the structure of an electrolytic test tank in Example 1. 実施例1における電着状態を示す写真である。2 is a photograph showing an electrodeposition state in Example 1. FIG. 比較例1における電着状態を示す写真である。図中(a)は電着金属外観、(b)は電着金属をカソードから剥がしている状態、(c)は電着金属のデンドライト構造を示す。6 is a photograph showing an electrodeposition state in Comparative Example 1. In the figure, (a) shows the appearance of the electrodeposited metal, (b) shows the electrodeposited metal peeled from the cathode, and (c) shows the dendrite structure of the electrodeposited metal. 比較例1における電着状態を示す写真である。図中(a)は電着金属外観、(b)は電着金属のデンドライト構造を示す。6 is a photograph showing an electrodeposition state in Comparative Example 1. In the figure, (a) shows the appearance of the electrodeposited metal, and (b) shows the dendrite structure of the electrodeposited metal. 比較例2における電着状態を示す写真である。図中(a)は、電着金属外観、(b)は電解槽の平面写真である。6 is a photograph showing an electrodeposition state in Comparative Example 2. In the figure, (a) is an electrodeposited metal appearance, and (b) is a plan view of the electrolytic cell. 実施例2における電着状態を示す写真である。図中(a)は、電着金属外観、(b)は電着金属をカソードから剥がしている状態を示す写真である。6 is a photograph showing an electrodeposition state in Example 2. In the figure, (a) is an appearance of the electrodeposited metal, and (b) is a photograph showing a state in which the electrodeposited metal is peeled off from the cathode. 比較例3における電着状態を示す写真である。図中(a)は電着金属外観,(b)は電解槽平面図、(c)は突起が形成されたカソードを示す。It is a photograph which shows the electrodeposition state in the comparative example 3. In the figure, (a) shows the appearance of the electrodeposited metal, (b) is a plan view of the electrolytic cell, and (c) shows the cathode on which the protrusions are formed. 実施例4における電着状態を示す写真である。It is a photograph which shows the electrodeposition state in Example 4. FIG.

符号の説明Explanation of symbols

2−カソード
3−アノード
4−隔膜
5−金属銅
6−遮蔽板
2-cathode 3-anode 4-membrane 5-metal copper 6-shield

Claims (6)

銅硫化鉱のハロゲン系浸出液に平滑化添加剤としてポリエチレングリコールを添加したハロゲン系電解液から銅をカソードに電着する銅の電解採取方法において、前記カソードの近傍にカソードに対して一回り小さい窓を開けた遮蔽板を設置して、前記遮蔽板の前記窓以外の周縁板部を前記カソードの端部に対向させ、電解液の強制撹拌を併用せずに、緻密な板状電気銅を製造することを特徴とするハロゲン系溶液からの板状電気銅の製造方法。  In a copper electrowinning method in which copper is electrodeposited on a cathode from a halogen-based electrolyte obtained by adding polyethylene glycol as a smoothing additive to a halogen-based leachate of copper sulfide ore, a window that is slightly smaller than the cathode in the vicinity of the cathode. A dense plate-shaped electrolytic copper is manufactured without using a forced agitation of the electrolyte solution by installing a shielding plate with an opening, with the peripheral plate portion other than the window of the shielding plate facing the end portion of the cathode. A method for producing plate-like electrolytic copper from a halogen-based solution. 前記電解採取後の電解後液により銅硫化鉱を浸出することを特徴とする請求項1記載のハロゲン系溶液からの板状電気銅の製造方法。  The method for producing plate-like electrolytic copper from a halogen-based solution according to claim 1, wherein copper sulfide ore is leached with a post-electrolysis solution after the electrowinning. 前記ハロゲン系銅電解液が、支持塩として3mol/L以上のアルカリ金属の塩化物、臭化物及びこれらの混合物の少なくとも1種を含む液に、銅の塩化物及び臭化物の少なくも1種を溶解した溶液であることを特徴とする請求項1又は2記載のハロゲン系溶液からの板状電気銅の製造方法。  At least one of copper chloride and bromide was dissolved in a solution containing at least one of alkali metal chloride, bromide and a mixture thereof of 3 mol / L or more as a supporting salt. The method for producing plate-like electrolytic copper from a halogen-based solution according to claim 1 or 2, wherein the solution is a solution. 前記ハロゲン系銅電解液中のポリエチレングリコールの濃度が10mg/Lから100mg/Lであることを特徴とする請求項1から3までの何れか1項記載のハロゲン系溶液からの板状電気銅の製造方法。  The concentration of polyethylene glycol in the halogen-based copper electrolyte is 10 mg / L to 100 mg / L, and the plate-like electrolytic copper from the halogen-based solution according to any one of claims 1 to 3 Production method. カソード上の電流密度を125A/m以下として電解採取することを特徴とする請求項1から4までの何れか1項記載のハロゲン系溶液からの板状電気銅の製造方法。The method for producing plate-like electrolytic copper from a halogen-based solution according to any one of claims 1 to 4, wherein the current is collected on the cathode at a current density of 125 A / m 2 or less. カソードと遮蔽板との間隔(X)は、カソードが遮蔽板の周縁板部と対向する幅(Y)の1/2より大きい、X>Y/2ことを特徴とする請求項1から5までの何れか1項記載のハロゲン系溶液からの板状電気銅の製造方法。  6. The distance (X) between the cathode and the shielding plate is greater than ½ of the width (Y) of the cathode facing the peripheral plate portion of the shielding plate, and X> Y / 2. A method for producing plate-like electrolytic copper from the halogen-based solution according to any one of the above.
JP2007195192A 2006-12-26 2007-06-29 Method for producing sheet-form electrolytic copper from halide solution Pending JP2008266766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195192A JP2008266766A (en) 2006-12-26 2007-06-29 Method for producing sheet-form electrolytic copper from halide solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006349103 2006-12-26
JP2007086765 2007-03-29
JP2007195192A JP2008266766A (en) 2006-12-26 2007-06-29 Method for producing sheet-form electrolytic copper from halide solution

Publications (1)

Publication Number Publication Date
JP2008266766A true JP2008266766A (en) 2008-11-06

Family

ID=40046639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195192A Pending JP2008266766A (en) 2006-12-26 2007-06-29 Method for producing sheet-form electrolytic copper from halide solution

Country Status (1)

Country Link
JP (1) JP2008266766A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials
JP2017048438A (en) * 2015-09-04 2017-03-09 国立大学法人秋田大学 Copper electrolytic refining device and electrolytic refining method
CN110592654A (en) * 2019-09-03 2019-12-20 昆山东威科技股份有限公司 Electrolytic reaction control structure and electrolytic device using same
JP2020045543A (en) * 2018-09-21 2020-03-26 国立大学法人千葉大学 Recovery method of copper from chalcopyrite and solvent system for recovery method
WO2024020642A1 (en) * 2022-07-28 2024-02-01 Loop Hydrometallurgy Pty Ltd An electrowinning cell and a cathode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984918A (en) * 1972-07-19 1974-08-15
JPS5330406A (en) * 1976-09-02 1978-03-22 Asahi Glass Co Ltd Depositing method for metal from solution of metal salt by electrolysis
JPH03294493A (en) * 1990-04-13 1991-12-25 Sumitomo Metal Mining Co Ltd Electroplating device and plating method for conductive thin film with the same utilized therefor
JP2005232594A (en) * 2004-01-19 2005-09-02 Sumitomo Metal Mining Co Ltd Method of reducing cupric chloride ion
JP2006097128A (en) * 2004-09-06 2006-04-13 Nippon Mining & Metals Co Ltd Method for producing sheet-form electrolytic copper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984918A (en) * 1972-07-19 1974-08-15
JPS5330406A (en) * 1976-09-02 1978-03-22 Asahi Glass Co Ltd Depositing method for metal from solution of metal salt by electrolysis
JPH03294493A (en) * 1990-04-13 1991-12-25 Sumitomo Metal Mining Co Ltd Electroplating device and plating method for conductive thin film with the same utilized therefor
JP2005232594A (en) * 2004-01-19 2005-09-02 Sumitomo Metal Mining Co Ltd Method of reducing cupric chloride ion
JP2006097128A (en) * 2004-09-06 2006-04-13 Nippon Mining & Metals Co Ltd Method for producing sheet-form electrolytic copper

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials
JP2017048438A (en) * 2015-09-04 2017-03-09 国立大学法人秋田大学 Copper electrolytic refining device and electrolytic refining method
JP2020045543A (en) * 2018-09-21 2020-03-26 国立大学法人千葉大学 Recovery method of copper from chalcopyrite and solvent system for recovery method
JP7194975B2 (en) 2018-09-21 2022-12-23 国立大学法人千葉大学 Method for recovering copper from chalcopyrite and solvent system used for the method
CN110592654A (en) * 2019-09-03 2019-12-20 昆山东威科技股份有限公司 Electrolytic reaction control structure and electrolytic device using same
WO2024020642A1 (en) * 2022-07-28 2024-02-01 Loop Hydrometallurgy Pty Ltd An electrowinning cell and a cathode

Similar Documents

Publication Publication Date Title
Cocchiara et al. Dismantling and electrochemical copper recovery from Waste Printed Circuit Boards in H2SO4–CuSO4–NaCl solutions
JP4551994B2 (en) Method for recovering tin, tin alloy or lead alloy from printed circuit board
USRE30005E (en) Method for the electrolytic recovery of metal employing improved electrolyte convection
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
US4282082A (en) Slurry electrowinning apparatus
JP2008266766A (en) Method for producing sheet-form electrolytic copper from halide solution
CN109652828B (en) Tin plating-stripping system for PCB and application method
JPS61223140A (en) Recovery of copper from arsenic and antimony-containing solution
CA2592199C (en) Method for producing sheet-form electrolytic copper from halide solution
WO1990015171A1 (en) Process for electroplating metals
JPH10140257A (en) Wet refining method of nickel by chlorine leaching electrolytic extracting method
US4164456A (en) Electrolytic process
JP2009203487A (en) Metal electrowinning method by diaphragm electrolysis
AU2005202863B2 (en) Method for producing sheet-form electrolytic copper
KR102237348B1 (en) Recovery method of copper and precious metal by electrolysis of crude copper containing precious metal using copper chloride solution
US2385269A (en) Process of electrolytically extracting metal
JP4831408B2 (en) Method for producing plate-like electrolytic copper
JP2006097128A (en) Method for producing sheet-form electrolytic copper
JP2012092447A (en) Electrolytic extracting method of cobalt
JP2006274293A (en) Method for producing sheet-form electrolytic copper
JPH02254188A (en) Method for electrolyzing copper chloride solution
JP2570076B2 (en) Manufacturing method of high purity nickel
JP6453743B2 (en) Method for electrolytic purification of lead using sulfamic acid bath
US10106904B2 (en) Method for electrolytically refining lead in sulfamate bath
RU2237750C1 (en) Method for electrolytic refining of copper and nickel from copper/nickel alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605