JP2008264975A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2008264975A
JP2008264975A JP2007114209A JP2007114209A JP2008264975A JP 2008264975 A JP2008264975 A JP 2008264975A JP 2007114209 A JP2007114209 A JP 2007114209A JP 2007114209 A JP2007114209 A JP 2007114209A JP 2008264975 A JP2008264975 A JP 2008264975A
Authority
JP
Japan
Prior art keywords
flank
coating
film
rake face
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007114209A
Other languages
Japanese (ja)
Other versions
JP5046726B2 (en
Inventor
Masato Matsuzawa
正人 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007114209A priority Critical patent/JP5046726B2/en
Publication of JP2008264975A publication Critical patent/JP2008264975A/en
Application granted granted Critical
Publication of JP5046726B2 publication Critical patent/JP5046726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool long in tool life span even under a cutting condition easy to cause welding and boundary damage by improving abrasion resistance by restraining the oxidization of a film on a rake face while restraining an abrupt defect on a flank. <P>SOLUTION: This surface-coated cutting tool coated with a film formed of a nitride or a carbide nitride including Ti and Al on the surface of a base body and with a crossing crest line of the rake face and the flank as its cutting blade can restrain the progress of welding and abrasion on the rake face and restrain the boundary damage to the flank as a proportion of Ti with respect to a total quantity of Ti and Al on the film is higher on the flank than on the rake face. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は基体の表面に被膜を成膜してなる表面被覆切削工具に関する。   The present invention relates to a surface-coated cutting tool formed by forming a film on the surface of a substrate.

現在、表面被覆切削工具では耐摩耗性や摺動性、耐欠損性が必要とされるため、WC基超硬合金やTiCN基サーメット等の硬質基体の表面に様々な被膜を成膜して表面被覆工具の耐摩耗性、耐欠損性を向上させる手法が使われている。   Currently, surface-coated cutting tools require wear resistance, slidability, and fracture resistance, so various coatings are formed on the surface of hard substrates such as WC-based cemented carbide and TiCN-based cermet. Techniques for improving the wear resistance and fracture resistance of coated tools are used.

かかる被膜として、TiCN層やTiAlN層が一般的に広く採用されているが、より高い耐摩耗性と耐欠損性の向上を目的として種々な被膜が開発されつつある。   As such a coating, a TiCN layer or a TiAlN layer is generally widely used, but various coatings are being developed for the purpose of improving higher wear resistance and fracture resistance.

例えば、特許文献1では、TiAl複合化合物層のエッジ部におけるTi/Al比をエッジ部以外の部位におけるTi/Al比よりも高くすることによって、耐摩耗性に優れた切削性能を示す切削工具となることが開示されている。また、特許文献2では、すくい面における被膜の膜厚を0.5〜2.0μm、逃げ面における皮膜の膜厚を1〜4μmと、すくい面における層厚よりも厚くするとともに、逃げ面における膜厚が切刃に向かって薄くなる構成とすることによって、被膜のチッピングを抑制できることが開示されている。
特開平8−263706号公報 特開2001−347403号公報
For example, in Patent Document 1, by making the Ti / Al ratio in the edge portion of the TiAl composite compound layer higher than the Ti / Al ratio in a portion other than the edge portion, a cutting tool exhibiting cutting performance with excellent wear resistance and Is disclosed. In Patent Document 2, the film thickness of the rake face is 0.5 to 2.0 μm, the film thickness of the flank face is 1 to 4 μm, and the flank face is thicker than the rake face. It is disclosed that chipping of the coating can be suppressed by adopting a configuration in which the film thickness becomes thinner toward the cutting edge.
JP-A-8-263706 JP 2001-347403 A

しかしながら、特許文献1のようにエッジ部とエッジ部以外の部位におけるTi/Al比を変える方法では、通常の一般的な切削条件においては耐摩耗性が向上するものの、切削条件によっては逃げ面における靭性が低下して逃げ面に突発的に境界損傷が発生することがあり、耐欠損性の向上が望まれていた。また、高速切削等の切削条件においてはすくい面にて切削された高温の切屑が接触しながら通過するためにすくい面における被膜の酸化が進行して、溶着や摩耗が激しくなることがあった。   However, in the method of changing the Ti / Al ratio in the portion other than the edge portion and the edge portion as in Patent Document 1, the wear resistance is improved under normal general cutting conditions, but depending on the cutting conditions, the flank surface is changed. Since the toughness is reduced and boundary damage may occur suddenly on the flank surface, improvement in fracture resistance has been desired. Also, under cutting conditions such as high-speed cutting, high-temperature chips cut on the rake face pass through in contact with each other, so that oxidation of the coating on the rake face proceeds, resulting in intense welding and wear.

また、特許文献2のように単純に逃げ面における層厚をすくい面における膜厚よりも厚くした構成では、断続加工やフライス加工のような加工条件においては逃げ面における耐欠損性が悪くて突発的な境界損傷が発生しやすくなり、工具寿命が安定しないという問題があった。   Further, in the configuration in which the thickness of the flank is simply made larger than the thickness of the rake face as in Patent Document 2, the breakage resistance on the flank is bad under processing conditions such as intermittent machining and milling. Boundary damage is likely to occur, and the tool life is not stable.

そこで、本発明は、逃げ面における突発欠損を抑制しつつ、すくい面での被膜の酸化を抑制して耐摩耗性を向上させて溶着や境界損傷が発生しやすい切削条件においても工具寿命が長い切削工具を提供することを目的とする。   Therefore, the present invention suppresses sudden defects on the flank face, suppresses oxidation of the coating on the rake face, improves wear resistance, and has a long tool life even under cutting conditions where welding and boundary damage are likely to occur. An object is to provide a cutting tool.

本発明の表面被覆工具は、基体の表面にTiとAlとを含む窒化物または炭窒化物からなる被膜が被覆され、すくい面と逃げ面との交差稜線部を切刃とする表面被覆切削工具であって、前記被膜におけるTiとAlとの総量に対するTiの比率が前記すくい面よりも前記逃げ面において高いことを特徴とする。   The surface-coated tool of the present invention is a surface-coated cutting tool in which the surface of a substrate is coated with a coating made of a nitride or carbonitride containing Ti and Al, and the cutting edge is the intersection ridgeline between the rake face and the flank face And the ratio of Ti with respect to the total amount of Ti and Al in the film is higher in the flank than in the rake face.

このとき、前記すくい面における前記被膜のTiとAlとの総量に対するTiの比率をTi、前記逃げ面における前記被膜のTiとAlとの総量に対するTiの比率をTiとしたとき、Ti/Tiが1.03〜1.5であることが望ましい。 At this time, when the ratio of Ti r of Ti to the total amount of Ti and Al of the coating on the rake face, the ratio of Ti to the total amount of Ti and Al of the coating on the flank face was Ti f, Ti f / Ti r it is desirable that 1.03 to 1.5.

また、上記構成において、前記逃げ面における前記被膜の膜厚が前記すくい面における前記被膜の膜厚よりも大きいことが望ましい。また、この構成において、前記逃げ面における前記被膜の膜厚が前記すくい面における前記被膜の膜厚に対して1.5倍以上であることが望ましい。   Moreover, in the said structure, it is desirable for the film thickness of the said film in the said flank to be larger than the film thickness of the said film in the said rake face. In this configuration, it is desirable that the thickness of the coating on the flank is 1.5 times or more than the thickness of the coating on the rake face.

本発明の表面被覆工具は、被膜におけるTiとAlとの総量に対するTiの比率が前記すくい面よりも前記逃げ面において高いことが大きな特徴であり、これによって、すくい面における被膜の耐酸化性が高くて、酸化による溶着や摩耗の進行を抑制できるとともに、逃げ面における被膜の耐欠損性が高くて突発的に発生する境界損傷を抑制することができる結果、溶着や欠損の発生しやすい切削条件においても長寿命な切削工具とするができる。   The surface-coated tool of the present invention is characterized by the fact that the ratio of Ti to the total amount of Ti and Al in the coating is higher in the flank than in the rake, thereby improving the oxidation resistance of the coating on the rake. It is high and can suppress the progress of welding and wear due to oxidation, and the damage resistance of the coating on the flank surface is high, so it can suppress the boundary damage that occurs suddenly, resulting in cutting conditions that are likely to cause welding and chipping. In this case, a long-life cutting tool can be obtained.

ここで、上記構成において、前記すくい面における前記被膜のTiとAlとの総量に対するTiの比率をTi、前記逃げ面における前記被膜のTiとAlとの総量に対するTiの比率をTiとしたとき、Ti/Tiが1.03〜1.5であることが、すくい面および逃げ面に求められる耐摩耗性および耐欠損性のバランスを最適化する点で望ましい。 Here, in the above configuration, the ratio of Ti to the total amount of Ti and Al of the coating on the rake face is Ti r , and the ratio of Ti to the total amount of Ti and Al of the coating on the flank is Ti f . When Ti f / Ti r is 1.03 to 1.5, it is desirable in terms of optimizing the balance between wear resistance and fracture resistance required for the rake face and flank face.

また、上記構成において、前記逃げ面における前記被膜の膜厚が前記すくい面における前記被膜の膜厚よりも大きいことが、逃げ面を耐欠損性が高い組成でありながら耐摩耗性に優れた構成とすることができる点で望ましい。さらに、この構成において、前記逃げ面における前記被膜の膜厚が前記すくい面における前記被膜の膜厚に対して1.5倍以上、特に1.5〜2であることが、すくい面における被膜の摩耗抑制と逃げ面における境界損傷の防止とのバランスの点で望ましい。   Further, in the above configuration, the film thickness of the coating on the flank is larger than the film thickness of the coating on the rake face, and the flank has a composition with high wear resistance while having a high fracture resistance composition. It is desirable in that it can be. Furthermore, in this configuration, the thickness of the coating on the rake face is 1.5 times or more, particularly 1.5 to 2 with respect to the thickness of the coating on the rake face. This is desirable in terms of a balance between wear suppression and prevention of boundary damage on the flank.

本発明の表面被覆切削工具(以下、単に工具と略す)は、基体の表面にTiとAlとを含む窒化物または炭窒化物からなる被膜が被覆され、すくい面と逃げ面との交差稜線部を切刃とする構成となっている。   The surface-coated cutting tool of the present invention (hereinafter simply abbreviated as “tool”) has a substrate surface coated with a coating made of a nitride or carbonitride containing Ti and Al, and a ridge line portion between a rake face and a flank face. Is configured to be a cutting blade.

そして、本発明によれば、前記被膜におけるTiとAlとの総量に対するTiの比率が前記すくい面よりも前記逃げ面において高いことが大きな特徴であり、これによって、すくい面における被膜の耐酸化性が高くて、酸化による溶着や摩耗の進行を抑制できるとともに、逃げ面における被膜の耐欠損性が高くて突発的に発生する境界損傷を抑制することができる結果、溶着や欠損の発生しやすい切削条件においても長寿命な切削工具とするができる。   And according to the present invention, the ratio of Ti to the total amount of Ti and Al in the coating is a major feature that the flank is higher than the rake surface, and thereby the oxidation resistance of the coating on the rake surface. As a result, it is possible to suppress the progress of welding and wear due to oxidation, and the damage resistance of the coating on the flank surface is high, so it is possible to suppress the boundary damage that occurs suddenly, resulting in cutting that tends to cause welding and defects. Even under conditions, a long-life cutting tool can be obtained.

ここで、上記構成において、前記逃げ面における前記被膜の膜厚が前記すくい面における前記被膜の膜厚よりも大きいことが望ましい。また、この構成において、前記逃げ面における前記被膜の膜厚が前記すくい面における前記被膜の膜厚に対して1.5倍以上であることが望ましい。   Here, in the above configuration, it is desirable that the film thickness of the coating on the flank is larger than the film thickness of the coating on the rake face. In this configuration, it is desirable that the thickness of the coating on the flank is 1.5 times or more than the thickness of the coating on the rake face.

また、被膜は、単純なTi1−aAlNにて構成されていても良いが、例えば、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0≦a<1、0<b≦1、0≦x≦1である。)にて構成されていてもよい。中でも、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0.4≦a≦0.65、0≦b≦0.3、0≦x≦1である。)からなることが耐酸化性、耐摩耗性および耐欠損性を高める点で望ましい。さらには、上記組成の中でも、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0.4≦a≦0.65、0≦b≦0.3、0≦x≦1である。)からなることが望ましく、この組成領域では、酸化開始温度が高くなって耐酸化性が高くて切削時の耐摩耗性が向上するとともに切刃先端に発生しやすいチッピングが抑制できて耐欠損性が高いものとなる。また、金属MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であるが、中でもNbまたはMoを含有することが耐摩耗性・耐酸化性に最も優れる点で望ましい。 The coating may be composed of simple Ti 1-a Al a N, for example, Ti 1-a-b Al a M b (C x N 1-x ) (where M is Ti 1 or more selected from Group 4, 5 and 6 elements of the periodic table, rare earth elements and Si, and 0 ≦ a <1, 0 <b ≦ 1, and 0 ≦ x ≦ 1. May be. Among them, Ti 1-a-b Al a M b (C x N 1-x ) (where M is one or more selected from Group 4, 5, 6 elements, rare earth elements and Si in the periodic table excluding Ti) Yes, 0.4 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1) is desirable from the viewpoint of improving oxidation resistance, wear resistance, and fracture resistance. Further, among the above composition, Ti 1-a-b- c-d Al a M b W c Si d (C x N 1-x) ( however, M is the periodic table excluding Ti 4, 5, 6 1 or more selected from group elements, rare earth elements and Si, and 0.4 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1). In the composition region, the oxidation start temperature is high, the oxidation resistance is high, the wear resistance at the time of cutting is improved, and the chipping that is likely to occur at the tip of the cutting edge can be suppressed, and the fracture resistance is high. Further, the metal M is at least one selected from Nb, Mo, Ta, Hf, and Y. Among them, the inclusion of Nb or Mo is desirable in terms of the most excellent wear resistance and oxidation resistance.

さらに、被膜の非金属成分であるC、Nは切削工具に必要な硬度および靭性に優れたものであり、被膜表面に発生するドロップレットの過剰な発生を抑制するために、x(C含有比率)の特に望ましい範囲は0≦x≦0.5である。なお、被膜の組成はエネルギー分散型X線分光(EDS)分析法またはX線光電子分光分析法(XPS)にて測定できる。   Furthermore, C and N, which are non-metallic components of the coating, are excellent in hardness and toughness required for the cutting tool. In order to suppress excessive generation of droplets generated on the coating surface, x (C content ratio) ) Is particularly desirable in the range 0 ≦ x ≦ 0.5. The composition of the coating can be measured by energy dispersive X-ray spectroscopy (EDS) analysis or X-ray photoelectron spectroscopy (XPS).

ここで、前記すくい面における前記被膜のTiとAlとの総量に対するTiの比率をTi、前記逃げ面における前記被膜のTiとAlとの総量に対するTiの比率をTiとしたとき、Ti/Tiが1.03〜1.5であることが、すくい面および逃げ面に求められる耐摩耗性および耐欠損性のバランスを最適化する点で望ましい。 Here, when the ratio of Ti r of Ti to the total amount of Ti and Al of the coating on the rake face, the ratio of Ti to the total amount of Ti and Al of the coating on the flank face was Ti f, Ti f / it Ti r is 1.03 to 1.5 is desirable in terms of optimizing the balance between the rake face and flank wear resistance and chipping resistance required.

なお、被膜中の各元素の含有比率は、透過型電子顕微鏡測定装置に備え付けられたエネルギー分散型X線分光(EDS)分析装置を用いて測定することができ、被膜中のTi含有比率は各元素のピーク強度の総和とTi元素のピーク強度との比率で算出される。ここで、エネルギー分散型X線分光(EDS)分析法におけるTiのLα線のピーク(エネルギー0.4keV付近)についてはN元素のKα線のピークと重なって正確な測定ができないために、N元素が含有される可能性がある場合にはこのピークは算出に用いるピークから外してTiのKα線のピーク(エネルギー4.5keV付近)を用いてTi、Tiとも算出し、その比Ti/Tiを求める。また、本発明によれば、Ti、Tiの測定に際してはそれぞれ被膜の任意5箇所以上の測定値に基づいてその平均値として求めるものとする。 In addition, the content ratio of each element in the film can be measured using an energy dispersive X-ray spectroscopy (EDS) analyzer provided in the transmission electron microscope measurement apparatus, and the Ti content ratio in the film is It is calculated by the ratio between the sum of the peak intensities of the elements and the peak intensity of the Ti elements. Here, the peak of the Lα ray of Ti (energy around 0.4 keV) in the energy dispersive X-ray spectroscopy (EDS) analysis method cannot be accurately measured because it overlaps with the Kα ray peak of the N element. In this case, the peak is removed from the peak used for calculation, and Ti r and Ti f are calculated using the peak of Ti Kα ray (energy around 4.5 keV), and the ratio Ti f / Ti r is obtained. Further, according to the present invention, when measuring Ti r and Ti f , the average value is obtained based on the measured values at five or more arbitrary positions on the coating film.

また、被膜は基体の表面に対して垂直に伸びる柱状結晶を主体とした組織からなるとともに、柱状結晶は、被膜全体のTi含有比率であるTi、Tiの平均値をTiとしたとき、比Ti/Tiが1.2〜5となるTi含有比率がTiの富Ti柱状結晶が分散していることが望ましく、これによって、被膜内に発生する内部応力を低減して工具の耐欠損性を改善することができる。 Further, the film is composed of a structure mainly composed of columnar crystals extending perpendicularly to the surface of the substrate, and the columnar crystals have a Ti content ratio of Ti r and Ti f of the entire film as Ti t. In addition, it is desirable that Ti-rich columnar crystals having a Ti content ratio of Ti a with a ratio Ti a / Ti t of 1.2 to 5 are dispersed, thereby reducing internal stress generated in the coating and reducing the tool. It is possible to improve the fracture resistance.

しかも、上記構成によって、被膜の内部に発生する残留応力を低減できて被膜の厚みを厚くしても自己破壊することなく安定した成膜が可能であるとともに、被膜の靭性が高くて耐欠損性が向上する。そのため、上記被膜は厚膜化しても被膜がチッピングしにくく、被膜の膜厚が0.5〜6μmであっても、被膜が剥離やチッピングすることを防止できて十分な耐摩耗性を維持することができる。   In addition, the above configuration can reduce the residual stress generated inside the film, and can stably form a film without self-destructing even if the film thickness is increased, and the film has high toughness and is fracture resistant. Will improve. Therefore, even if the film is thick, the film is difficult to chip, and even if the film thickness is 0.5 to 6 μm, the film can be prevented from peeling or chipping and maintain sufficient wear resistance. be able to.

また、被膜中の柱状結晶の平均結晶幅に対して富Ti柱状結晶の結晶幅が3倍以上であることが、被膜中の内部応力を効果的に低減することができる点で望ましい。特に、被膜中の内部応力を低減しつつ被膜の硬度を維持するためには、被膜中の柱状結晶の平均結晶幅に対して富Ti柱状結晶の結晶幅が5〜30倍の範囲であることが望ましい。また、この構成において、柱状結晶の平均結晶幅が0.02〜0.1μmであり、富Ti柱状結晶の平均結晶幅が0.1〜1μmであることが、被膜中の内部応力をさらに効果的に低減することができるとともに、被膜の硬度および耐酸化性を維持できる点で望ましい。なお、被膜中の柱状結晶の結晶幅は、柱状結晶をなす被膜の中間の厚さにあたる部分に引いた線Aにて測定する。被膜中の柱状結晶の平均結晶幅wは線Aの100nm以上の長さLを特定し、この長さLの線Aを横切る粒界の数を数えて、長さL/粒界の数によって算出することができる。富Ti柱状結晶の結晶幅については、同様の位置にて各富Ti柱状結晶の結晶幅wをそれぞれ測定する。また、本発明における柱状結晶とは基体表面と平行な方向の結晶幅に対して基体表面と垂直な方向の結晶長さが1.5倍以上長い結晶のことを指す。 In addition, it is desirable that the crystal width of the Ti-rich columnar crystal is three times or more than the average crystal width of the columnar crystal in the coating because the internal stress in the coating can be effectively reduced. In particular, in order to maintain the hardness of the film while reducing the internal stress in the film, the crystal width of the Ti-rich columnar crystal is in the range of 5 to 30 times the average crystal width of the columnar crystal in the film. Is desirable. Further, in this configuration, the average crystal width of the columnar crystals is 0.02 to 0.1 μm, and the average crystal width of the rich Ti columnar crystals is 0.1 to 1 μm, the internal stress in the coating is further effective. This is desirable in that it can be reduced and the hardness and oxidation resistance of the coating can be maintained. The crystal width of the columnar crystal in the film is measured by a line A drawn to a portion corresponding to the intermediate thickness of the film forming the columnar crystal. The average crystal width w t of the columnar crystals in the coating specifies a length L of 100 nm or more of the line A, the number of grain boundaries crossing the line A of this length L is counted, and the length L / number of grain boundaries Can be calculated. The crystal width wealth Ti columnar crystals, to measure each crystal width w a of each rich Ti columnar crystals in the same position. The columnar crystal in the present invention refers to a crystal whose crystal length in the direction perpendicular to the substrate surface is 1.5 times or more of the crystal width in the direction parallel to the substrate surface.

また、上記構成において、富Ti柱状結晶が平均0.5〜10μmの間隔で存在することが、被膜の高硬度を維持したまま被膜中の内部応力を効果的に低減することができる点で望ましい。   Further, in the above-described configuration, it is desirable that the Ti-rich columnar crystals exist at an average interval of 0.5 to 10 μm because the internal stress in the coating can be effectively reduced while maintaining the high hardness of the coating. .

また、基体としては、炭化タングステンや、炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの他、窒化ケイ素や、酸化アルミニウムを主成分とするセラミック、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相と、セラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。   In addition, as a substrate, tungsten carbide, a cemented carbide or cermet composed of a hard phase mainly composed of titanium carbonitride and a binder phase mainly composed of an iron group metal such as cobalt and nickel, silicon nitride, , Hard materials such as ceramics mainly composed of aluminum oxide, hard phases made of polycrystalline diamond or cubic boron nitride, and bonded phases such as ceramics and iron group metals under super high pressure, etc. Are preferably used.

(製造方法)
次に、本発明の表面被覆切削工具の製造方法について説明する。
(Production method)
Next, the manufacturing method of the surface coating cutting tool of this invention is demonstrated.

まず、工具形状の基体を従来公知の方法を用いて作製する。次に、基体の表面に、被膜を成膜する。被膜の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。成膜方法の一例についての詳細について説明すると、被膜をイオンプレーティング法で作製する場合には、金属チタン(Ti)、金属アルミニウム(Al)、金属M(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上)をそれぞれ独立に含有する金属ターゲットまたは複合化した合金ターゲットに用いる。   First, a tool-shaped substrate is produced using a conventionally known method. Next, a film is formed on the surface of the substrate. As a film forming method, a physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied. The details of an example of the film forming method will be described. When a film is formed by an ion plating method, metal titanium (Ti), metal aluminum (Al), metal M (where M is a periodic table excluding Ti). It is used for a metal target or a composite alloy target containing one or more selected from Group 4, 5, 6 elements, rare earth elements and Si) independently.

このとき、本発明によれば、上記金属または合金ターゲットとともに別途Tiの金属または化合物ターゲットを準備し、Tiターゲットはチャンバの上壁面位置に、それ以外の金属または合金ターゲットはチャンバの側壁面位置にセットし、後述の成膜条件にて成膜することによって、成膜された被膜の組成を本発明の構成とすることができる。   At this time, according to the present invention, a Ti metal or compound target is separately prepared together with the metal or alloy target, the Ti target is located at the upper wall surface position of the chamber, and the other metal or alloy target is located at the side wall surface position of the chamber. By setting the film and forming the film under the film forming conditions described later, the composition of the formed film can be made the structure of the present invention.

成膜条件としては、このターゲットを用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させる条件が好適に採用できる。このとき、窒素に対するアルゴンガス流量が1:9〜4:6の割合の窒素(N)ガスとアルゴン(Ar)ガスの混合ガスを用いて、イオンプレーティング法またはスパッタリング法によって被膜を成膜する。このとき、基体のセット位置は逃げ面がチャンバの側面とほぼ平行に、かつすくい面がチャンバの上面とほぼ平行な向きにセットする。 As the film forming conditions, using this target, the metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C) as a carbon source. Conditions for reacting with 2 H 2 ) gas can be suitably employed. At this time, a film is formed by an ion plating method or a sputtering method using a mixed gas of nitrogen (N 2 ) gas and argon (Ar) gas at a flow rate of argon gas to nitrogen of 1: 9 to 4: 6. To do. At this time, the base is set so that the flank face is substantially parallel to the side face of the chamber and the scoop face is substantially parallel to the upper face of the chamber.

なお、イオンプレーティング法やスパッタリング法で上記被膜を成膜する際には、被膜の結晶構造を考慮して高硬度な被膜を作製できるとともに基体との密着性を高めるために30〜200Vのバイアス電圧を印加することが好ましい。   When forming the above film by ion plating or sputtering, a high hardness film can be produced in consideration of the crystal structure of the film, and a bias of 30 to 200 V is used to improve adhesion to the substrate. It is preferable to apply a voltage.

平均粒径0.5μmの炭化タングステン(WC)粉末に対して、金属コバルト(Co)粉末を10質量%、炭化バナジウム(VC)粉末を0.2質量%、炭化クロム(Cr)粉末を0.8質量%の割合で添加、混合し、刃先交換式切削工具(CNMG0408)インサート形状に成型して焼成した。そして、研削工程を経た後、アルカリ、酸、蒸留水の順によって表面を洗浄してインサート基体を作製した。 10% by mass of metallic cobalt (Co) powder, 0.2% by mass of vanadium carbide (VC) powder, chromium carbide (Cr 3 C 2 ) powder with respect to tungsten carbide (WC) powder having an average particle size of 0.5 μm Was added and mixed at a ratio of 0.8 mass%, and was molded into an insert shape with a cutting edge exchangeable cutting tool (CNMG0408) and fired. After the grinding process, the surface was washed in the order of alkali, acid, and distilled water to produce an insert substrate.

そして、表1に示すターゲットを装着したアークイオンプレーティング装置内に上記基体をセットし基体を500℃に加熱して表1に示す被膜を成膜した。なお、メインターゲットはチャンバの側壁面に3個、サブターゲットはチャンバの上壁面に1個セットした。また、成膜条件は窒素ガスとアルゴンガスの混合ガスを総圧力4Paの雰囲気中、アーク電流150A、バイアス電圧50Vとした。

Figure 2008264975
Then, the substrate was set in an arc ion plating apparatus equipped with a target shown in Table 1, and the substrate was heated to 500 ° C. to form a film shown in Table 1. Three main targets were set on the side wall surface of the chamber, and one sub target was set on the upper wall surface of the chamber. The film forming conditions were a mixed gas of nitrogen gas and argon gas in an atmosphere having a total pressure of 4 Pa, an arc current of 150 A, and a bias voltage of 50 V.
Figure 2008264975

得られたインサートについて、キーエンス社製走査型電子顕微鏡(VE8800)を用いて倍率50000倍にて組織観察を行い、被膜を構成する結晶の形状や膜厚(t、t)を確認した。また、同装置に付随のEDAXアナライザ(AMETEK EDAX-VE9800)を用いて加速電圧15kVにてエネルギー分散型X線分光(EDS)分析法の一種であるZAF法により被膜の組成の定量分析を行い、すくい面と逃げ面それぞれについてTiとAlの比率であるTi/(Ti+Al)を算出した(Ti、Ti)。なお、この方法で測定できなかった元素については、PHI社製X線光電子分光分析装置(Quantum2000)を用い、X線源はモノクロAlK(200μm、35W、15kV)を測定領域約200μmに照射して測定を行った。結果は表2に示した。

Figure 2008264975
The resulting insert performs tissue observation at a magnification 50,000 fold with Keyence scanning electron microscope (VE8800), crystal shape and thickness of the film constituting the coating (t r, t f) was confirmed. In addition, using the EDAX analyzer (AMETEK EDAX-VE9800) attached to the same apparatus, the composition of the film is quantitatively analyzed by the ZAF method, which is a kind of energy dispersive X-ray spectroscopy (EDS) analysis method, at an acceleration voltage of 15 kV. Ti / (Ti + Al), which is the ratio of Ti and Al, was calculated for each of the rake face and the flank face (Ti r , Ti f ). For elements that could not be measured by this method, a PHI X-ray photoelectron spectrometer (Quantum2000) was used, and the X-ray source was irradiated with monochrome AlK (200 μm, 35 W, 15 kV) to a measurement region of about 200 μm. Measurements were made. The results are shown in Table 2.
Figure 2008264975

また、上記被膜を透過型電子顕微鏡(TEM)にて観察して組織状態を確認し、エネルギー分散分光(EDS)分析法によって被膜を構成する結晶の組成を定量して富Ti柱状結晶の有無を確認した。また、1μm×5μmの任意領域3箇所について富Ti柱状結晶の存在割合を平均間隔として算出した。結果は表3に記載した。   In addition, the above-mentioned film is observed with a transmission electron microscope (TEM) to confirm the state of the structure, and the composition of the crystals constituting the film is quantified by energy dispersive spectroscopy (EDS) analysis to determine the presence or absence of Ti-rich columnar crystals. confirmed. In addition, the existence ratio of Ti-rich columnar crystals was calculated as an average interval for three arbitrary regions of 1 μm × 5 μm. The results are shown in Table 3.

さらに、得られたインサートを用いて以下の切削条件にて切削試験を行った。結果は表3に記載した。   Furthermore, the cutting test was done on the following cutting conditions using the obtained insert. The results are shown in Table 3.

切削方法:肩削り(ミリング加工)
被削材 :SKD11
切削速度:150m/分
送り :0.12mm/刃
切り込み:横切り込み10mm、深さ切り込み3mm
切削状態:乾式
評価方法:10分間切削した時点で、逃げ面摩耗量と切刃におけるチッピング状態を測定。

Figure 2008264975
Cutting method: Shoulder (milling)
Work material: SKD11
Cutting speed: 150 m / minute feed: 0.12 mm / blade cutting: lateral cutting 10 mm, depth cutting 3 mm
Cutting state: Dry evaluation method: At the time of cutting for 10 minutes, the amount of flank wear and the chipping state at the cutting edge are measured.
Figure 2008264975

表1〜3より、TiとAlとの総量に対するTiの比率が前記すくい面よりも前記逃げ面において同じか低い試料No.11〜13では、いずれもチッピングや摩耗の進行が早く工具寿命が短かった。   From Tables 1 to 3, the sample No. 1 in which the ratio of Ti to the total amount of Ti and Al is the same or lower in the flank than in the rake face. In 11-13, chipping and wear progressed quickly and the tool life was short.

これに対し、TiとAlとの総量に対するTiの比率が前記すくい面よりも前記逃げ面において高い試料No.1〜10では、耐欠損性と耐摩耗性が良くて切削性能に優れたものであった。   On the other hand, the sample No. 1 in which the ratio of Ti to the total amount of Ti and Al is higher on the flank than on the rake face. In Nos. 1 to 10, the chipping resistance and wear resistance were good and the cutting performance was excellent.

Claims (4)

基体の表面にTiとAlとを含む窒化物または炭窒化物からなる被膜が被覆され、すくい面と逃げ面との交差稜線部を切刃とする表面被覆切削工具であって、前記被膜におけるTiとAlとの総量に対するTiの比率が前記すくい面よりも前記逃げ面において高いことを特徴とする表面被覆切削工具。 A surface-coated cutting tool in which a coating made of a nitride or carbonitride containing Ti and Al is coated on the surface of a substrate, and the cutting edge is an intersection ridge portion between a rake face and a flank face, A surface-coated cutting tool, wherein the ratio of Ti to the total amount of Al and Al is higher at the flank than at the rake face. 前記すくい面における前記被膜のTiとAlとの総量に対するTiの比率をTi、前記逃げ面における前記被膜のTiとAlとの総量に対するTiの比率をTiとしたとき、Ti/Tiが1.03〜1.5であることを特徴とする請求項1記載の表面被覆切削工具。 When the ratio of Ti Ti r with respect to the total amount of Ti and Al of the coating on the rake face, the ratio of Ti to the total amount of Ti and Al of the coating on the flank face was Ti f, Ti f / Ti r The surface-coated cutting tool according to claim 1, wherein is 1.03 to 1.5. 前記逃げ面における前記被膜の膜厚が前記すくい面における前記被膜の膜厚よりも大きいことを特徴とする請求項1記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1, wherein a film thickness of the coating on the flank is larger than a film thickness of the coating on the rake face. 前記逃げ面における前記被膜の膜厚が前記すくい面における前記被膜の膜厚に対して1.5倍以上であることを特徴とする請求項3記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 3, wherein the film thickness of the coating on the flank is 1.5 times or more than the film thickness of the coating on the rake face.
JP2007114209A 2007-04-24 2007-04-24 Surface coated cutting tool Active JP5046726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114209A JP5046726B2 (en) 2007-04-24 2007-04-24 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114209A JP5046726B2 (en) 2007-04-24 2007-04-24 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2008264975A true JP2008264975A (en) 2008-11-06
JP5046726B2 JP5046726B2 (en) 2012-10-10

Family

ID=40045199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114209A Active JP5046726B2 (en) 2007-04-24 2007-04-24 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5046726B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207920A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
WO2011118782A1 (en) * 2010-03-25 2011-09-29 京セラ株式会社 Cutting tool
WO2011122554A1 (en) 2010-03-29 2011-10-06 京セラ株式会社 Cutting tool
WO2011122553A1 (en) 2010-03-29 2011-10-06 京セラ株式会社 Cutting tool
WO2011149064A1 (en) 2010-05-27 2011-12-01 京セラ株式会社 Cutting tool
WO2012043459A1 (en) 2010-09-29 2012-04-05 京セラ株式会社 Cutting tool
WO2012144299A1 (en) * 2011-04-22 2012-10-26 京セラ株式会社 Cutting tool
JP2012240161A (en) * 2011-05-19 2012-12-10 Kyocera Corp Cutting tool
CN103648692A (en) * 2011-07-25 2014-03-19 京瓷株式会社 Cutting tool
JP2014069297A (en) * 2012-09-29 2014-04-21 Kyocera Corp Cutting tool
JP2014144506A (en) * 2013-01-29 2014-08-14 Kyocera Corp Cutting tool
WO2017022501A1 (en) * 2015-08-03 2017-02-09 株式会社タンガロイ Coated cutting tool
WO2017061325A1 (en) * 2015-10-07 2017-04-13 株式会社タンガロイ Coated cutting tool
EP3357614A4 (en) * 2016-01-13 2018-08-08 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for producing same
JPWO2021149636A1 (en) * 2020-01-20 2021-07-29
EP3769875A4 (en) * 2018-03-19 2021-11-24 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool
WO2023177050A1 (en) * 2022-03-14 2023-09-21 한국야금 주식회사 Hard film-coated cutting tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337705A (en) * 1992-06-11 1993-12-21 Sumitomo Electric Ind Ltd Coated cutting tip and manufacture thereof
JP2004122263A (en) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd Coated cutting tool for highly precise work

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337705A (en) * 1992-06-11 1993-12-21 Sumitomo Electric Ind Ltd Coated cutting tip and manufacture thereof
JP2004122263A (en) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd Coated cutting tool for highly precise work

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207920A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
EP2551043A1 (en) * 2010-03-25 2013-01-30 Kyocera Corporation Cutting tool
WO2011118782A1 (en) * 2010-03-25 2011-09-29 京セラ株式会社 Cutting tool
KR101635486B1 (en) * 2010-03-25 2016-07-01 쿄세라 코포레이션 Cutting tool
US8900336B2 (en) 2010-03-25 2014-12-02 Kyocera Corporation Cutting tool
JP5558558B2 (en) * 2010-03-25 2014-07-23 京セラ株式会社 Cutting tools
EP2551043A4 (en) * 2010-03-25 2013-09-25 Kyocera Corp Cutting tool
KR20130028080A (en) * 2010-03-25 2013-03-18 쿄세라 코포레이션 Cutting tool
CN102821896B (en) * 2010-03-29 2014-07-30 京瓷株式会社 Cutting tool
US8586214B2 (en) 2010-03-29 2013-11-19 Kyocera Corporation Cutting tool
CN102821897B (en) * 2010-03-29 2015-08-05 京瓷株式会社 Cutting element
CN102821897A (en) * 2010-03-29 2012-12-12 京瓷株式会社 Cutting tool
CN102821896A (en) * 2010-03-29 2012-12-12 京瓷株式会社 Cutting tool
KR20130006666A (en) 2010-03-29 2013-01-17 쿄세라 코포레이션 Cutting tool
KR20130006667A (en) 2010-03-29 2013-01-17 쿄세라 코포레이션 Cutting tool
KR101635488B1 (en) * 2010-03-29 2016-07-01 쿄세라 코포레이션 Cutting tool
WO2011122553A1 (en) 2010-03-29 2011-10-06 京セラ株式会社 Cutting tool
WO2011122554A1 (en) 2010-03-29 2011-10-06 京セラ株式会社 Cutting tool
JP4975193B2 (en) * 2010-03-29 2012-07-11 京セラ株式会社 Cutting tools
KR101635487B1 (en) * 2010-03-29 2016-07-01 쿄세라 코포레이션 Cutting tool
JP4975194B2 (en) * 2010-03-29 2012-07-11 京セラ株式会社 Cutting tools
US8623525B2 (en) 2010-03-29 2014-01-07 Kyocera Corporation Cutting tool
WO2011149064A1 (en) 2010-05-27 2011-12-01 京セラ株式会社 Cutting tool
CN102917822A (en) * 2010-05-27 2013-02-06 京瓷株式会社 Cutting tool
CN102917822B (en) * 2010-05-27 2015-09-23 京瓷株式会社 Cutting element
KR101685446B1 (en) * 2010-05-27 2016-12-12 쿄세라 코포레이션 Cutting tool
US8691366B2 (en) 2010-05-27 2014-04-08 Kyocera Corporation Cutting tool
KR20130098861A (en) 2010-05-27 2013-09-05 쿄세라 코포레이션 Cutting tool
JP5542925B2 (en) * 2010-05-27 2014-07-09 京セラ株式会社 Cutting tools
WO2012043459A1 (en) 2010-09-29 2012-04-05 京セラ株式会社 Cutting tool
KR101685450B1 (en) 2010-09-29 2016-12-12 쿄세라 코포레이션 Cutting tool
US8945251B2 (en) 2010-09-29 2015-02-03 Kyocera Corporation Cutting tool
JP5066301B2 (en) * 2010-09-29 2012-11-07 京セラ株式会社 Cutting tools
KR20130115225A (en) 2010-09-29 2013-10-21 쿄세라 코포레이션 Cutting tool
JP5153969B2 (en) * 2011-04-22 2013-02-27 京セラ株式会社 Cutting tools
CN103476527A (en) * 2011-04-22 2013-12-25 京瓷株式会社 Cutting tool
WO2012144299A1 (en) * 2011-04-22 2012-10-26 京セラ株式会社 Cutting tool
JP2012240161A (en) * 2011-05-19 2012-12-10 Kyocera Corp Cutting tool
EP2737967A4 (en) * 2011-07-25 2015-06-03 Kyocera Corp Cutting tool
CN103648692A (en) * 2011-07-25 2014-03-19 京瓷株式会社 Cutting tool
US9085032B2 (en) 2011-07-25 2015-07-21 Kyocera Corporation Cutting tool
JP2014069297A (en) * 2012-09-29 2014-04-21 Kyocera Corp Cutting tool
JP2014144506A (en) * 2013-01-29 2014-08-14 Kyocera Corp Cutting tool
US20180236563A1 (en) * 2015-08-03 2018-08-23 Tungaloy Corporation Coated cutting tool
WO2017022501A1 (en) * 2015-08-03 2017-02-09 株式会社タンガロイ Coated cutting tool
JPWO2017022501A1 (en) * 2015-08-03 2018-05-31 株式会社タンガロイ Coated cutting tool
US10596636B2 (en) 2015-08-03 2020-03-24 Tungaloy Corporation Coated cutting tool
EP3332899A4 (en) * 2015-08-03 2019-02-27 Tungaloy Corporation Coated cutting tool
WO2017061325A1 (en) * 2015-10-07 2017-04-13 株式会社タンガロイ Coated cutting tool
EP3360631A4 (en) * 2015-10-07 2019-03-20 Tungaloy Corporation Coated cutting tool
JPWO2017061325A1 (en) * 2015-10-07 2018-05-31 株式会社タンガロイ Coated cutting tool
US11084103B2 (en) 2015-10-07 2021-08-10 Tungaloy Corporation Coated cutting tool
EP3357614A4 (en) * 2016-01-13 2018-08-08 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for producing same
US10603726B2 (en) 2016-01-13 2020-03-31 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool and method for manufacturing the same
EP3769875A4 (en) * 2018-03-19 2021-11-24 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool
US11534836B2 (en) 2018-03-19 2022-12-27 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JPWO2021149636A1 (en) * 2020-01-20 2021-07-29
WO2021149636A1 (en) * 2020-01-20 2021-07-29 京セラ株式会社 Coated tool
CN114981029A (en) * 2020-01-20 2022-08-30 京瓷株式会社 Coated cutting tool
JP7370543B2 (en) 2020-01-20 2023-10-30 京セラ株式会社 coated tools
WO2023177050A1 (en) * 2022-03-14 2023-09-21 한국야금 주식회사 Hard film-coated cutting tool

Also Published As

Publication number Publication date
JP5046726B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5046726B2 (en) Surface coated cutting tool
JP5038303B2 (en) Surface coating tool and method for machining workpiece
JP4975194B2 (en) Cutting tools
JP5066301B2 (en) Cutting tools
JP4975193B2 (en) Cutting tools
JP5383019B2 (en) End mill
JPWO2010050374A1 (en) Surface coating tool
JP5883161B2 (en) Cutting tools
JP5127477B2 (en) Cutting tools
JP5558558B2 (en) Cutting tools
JP2024022661A (en) Cutting tool
JP7354933B2 (en) Cutting tools
JP5247377B2 (en) Cutting tools
JP2008155328A (en) Surface-coated tool
JP4942495B2 (en) Surface coating tool
JP2008155329A (en) Surface-coated tool
JP5153969B2 (en) Cutting tools
JP6794604B1 (en) Cutting tools
JP5922546B2 (en) Cutting tools
JP5495735B2 (en) Cutting tools
JPWO2020070967A1 (en) Surface coating cutting tool and its manufacturing method
JP6780222B1 (en) Cutting tools
JP6743350B2 (en) Cutting tools
JP2008156714A (en) Surface-coated tool
JP2014144506A (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150