JP2008264678A - Deactivation method of protozoan in circulation purifying type water tank - Google Patents

Deactivation method of protozoan in circulation purifying type water tank Download PDF

Info

Publication number
JP2008264678A
JP2008264678A JP2007110824A JP2007110824A JP2008264678A JP 2008264678 A JP2008264678 A JP 2008264678A JP 2007110824 A JP2007110824 A JP 2007110824A JP 2007110824 A JP2007110824 A JP 2007110824A JP 2008264678 A JP2008264678 A JP 2008264678A
Authority
JP
Japan
Prior art keywords
monochloramine
chlorine
water tank
protozoan
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007110824A
Other languages
Japanese (ja)
Other versions
JP4906572B2 (en
Inventor
Hideyuki Seki
秀行 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUEI KISO KK
MERUSU GIKEN KK
PURESON CORP
TAKKU CONSULTANT KK
Original Assignee
HOKUEI KISO KK
MERUSU GIKEN KK
PURESON CORP
TAKKU CONSULTANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUEI KISO KK, MERUSU GIKEN KK, PURESON CORP, TAKKU CONSULTANT KK filed Critical HOKUEI KISO KK
Priority to JP2007110824A priority Critical patent/JP4906572B2/en
Publication of JP2008264678A publication Critical patent/JP2008264678A/en
Application granted granted Critical
Publication of JP4906572B2 publication Critical patent/JP4906572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the propagation of Legionella bacteria by preventing a protozoan such as an ameba or the like from becoming the host of Legionella bacteria. <P>SOLUTION: An ammonia nitrogen-containing chemical agent and an available chlorine-containing chlorine agent for producing monochloramine are added to a liquid to be treated in a circulation purifying type water tank in a time zone other than the utilization time zone of the circulation purifying type water tank to produce monochloramine with concentration enough to accelerate the conversion of the protozoan to a cyst form. In the utilization time zone of the circulation purifying type water tank, only the available chlorine-containing chlorine agent is supplied to decompose monochloramine to make free chlorine remain and thereby to achieve sterilization and the deactivation of a virus simultaneously with the deactivation of the protozoan. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アメーバ等の原生動物がレジオネラ属菌の宿主となることを阻止することによってレジオネラ菌の増殖を抑えることを可能にした循環式用水槽の原生動物不活性化方法に関する。   The present invention relates to a method for inactivating a protozoan in a circulating water tank that makes it possible to suppress the growth of Legionella by preventing a protozoan such as an amoeba from becoming a host for Legionella spp.

従来のレジオネラ症対策は、例えばレジオネラ肺炎がエアロゾルの吸入によって起きるものとし、レジオネラ属菌を対象とした塩素、オゾン、二酸化塩素等の薬剤、紫外線や光触媒等による殺菌法を実施するものであった。また、細菌検査によってレジオネラ属菌が検出された場合は、前記薬剤の他に過酸化水素等の酸化剤を用いて、例えば0.2%のような高濃度の薬剤による循環流路の消毒もなされてきた。   For example, Legionella pneumonia is caused by inhalation of aerosol, and Legionella pneumonia has been sterilized by drugs such as chlorine, ozone and chlorine dioxide, Legionella spp. . In addition, when Legionella spp. Are detected by a bacterial test, an oxidant such as hydrogen peroxide is used in addition to the drug, and the circulation channel is also disinfected by a high concentration drug such as 0.2%. Has been made.

ところで、温泉等に設けられている風呂、スポーツや宿泊等の事業目的で設置されている入浴施設ならびに公衆浴場等の用水槽内でレジオネラ属菌が増殖し、行政指導による検査の実施が近年急速に進んだため、レジオネラ属菌が頻繁に検出されるようになった。とくに、家庭用の循環式24時間風呂、特養ホーム循環風呂、温泉や冷却塔水ではその陽性率が50%を超えて高い。   By the way, Legionella spp. Have grown in baths provided for hot springs, bathing facilities installed for business purposes such as sports and lodging, and public baths. As a result, the Legionella spp. Were frequently detected. In particular, the positive rate of household circulating 24-hour bath, special home circulating bath, hot spring and cooling tower water is over 50%.

レジオネラ属菌は、ごくありふれた環境、例えば河川の泥中、小川や湖沼等水温が50℃以下のところに原生動物に寄生する形で生存している。しかし、宿主の密度との関係から、自然環境中の生存密度はそれほど高くはない。ところが、前記の人工的環境のもとでは異常に増殖し、とくに気泡を発生する浴槽やシャワー等で用水の飛沫が発生しやすい施設において、利用者がこれを吸入するとレジオネラ肺炎を発症する確率が高くなる。レジオネラ症の事故は、例外なく建築物内や露天風呂など人工的環境のもとで発生している。   Legionella spp. Live in a common environment, such as in the mud of rivers, in the form of parasitizing protozoa at temperatures of 50 ° C or less, such as streams and lakes. However, the survival density in the natural environment is not so high due to the density of the host. However, there is a probability of developing Legionella pneumonia if the user inhales it in a facility that proliferates abnormally under the artificial environment described above, and that is likely to generate splashes of water, particularly in a bathtub or shower that generates bubbles. Get higher. Legionellosis accidents occur without exception in man-made environments such as buildings and open-air baths.

レジオネラ属菌が増殖して概ね千個を超えて肺に吸入されたとき、免疫力が低下している人は肺炎を引き起こすとされている。しかし、飛沫水滴の水分が気化して菌の塊がエアロゾルになるとしても、用水の水滴―つに千個のレジオネラ属菌が常時含まれるほど、水滴中の菌が均一に高濃度分散している可能性は低い。すなわち、水滴となる前の用水中でもレジオネラ属菌は偏在していることが発明者の永年の研究で判明した。   When Legionella spp. Grows and is inhaled to the lungs in excess of a thousand, it is said that people with reduced immunity cause pneumonia. However, even if the water droplets evaporate and the bacterial mass becomes an aerosol, the water droplets in the water supply always contain 1,000 Legionella spp. It is unlikely that That is, it has been found by the inventors' long-standing research that Legionella spp. Are ubiquitous in the water before it becomes water droplets.

菌数偏在の具体的形態は、アメーバ等の原生動物の細胞内に寄生し増殖しているもので、顕微鏡像としてすでに観察されている。従来の技術は、各種の細菌が水中に形成する生物膜(バイオフィルム)内でレジオネラ属菌も増殖するという前提に立っていた。すなわち、循環浄化によってこの生物膜はろ過装置内に抑留されているものとみなし、浄化後の用水には比較的均一にレジオネラ属菌が増殖、分散していると解釈してきた。しかし、本願発明者の研究によれば、この認識は誤りで、レジオネラ属菌は特定の生体細胞のなかでしか増殖しない。レジオネラ属菌は宿主単位の塊で偏在している。   A specific form of the ubiquitous number of bacteria is one that is parasitic and proliferating in cells of protozoa such as amoeba, and has already been observed as a microscopic image. The conventional technology is based on the premise that Legionella spp. Also grow in biofilms (biofilms) formed by various bacteria in water. In other words, this biofilm is considered to be retained in the filtration device by circulation purification, and it has been interpreted that Legionella bacteria grow and disperse relatively uniformly in the purified water. However, according to the study of the present inventor, this recognition is incorrect, and Legionella bacteria grow only in specific living cells. Legionella is ubiquitous in a mass of host units.

すなわち、本願発明者の研究によって、まず、レジオネラ属菌がアメーバ細胞の食胞内でのみ増殖するという機構と、つぎに水分が気化したエアロゾルの粒子一つ一つには死骸となったアメーバの原形質膜に包まれた菌の塊が存在し、肺胞に到達して原形質膜を破って出てきたレジオネラ属菌が個々に新たな宿主を探して寄生する活動を始めることで肺炎を発症するという機構との二つの機構が解明された。   That is, according to the study of the present inventor, firstly, the mechanism that Legionella spp. Grows only in the phagosome of amoeba cells, and then each of the aerosol particles in which water is vaporized is a dead body. There is a mass of bacteria wrapped in the plasma membrane, Legionella spp. That breaks out of the plasma membrane after reaching the alveoli and begins to parasitize by searching for new hosts individually. Two mechanisms have been elucidated, the mechanism of onset.

本発明は、以上の解明事実に基づき、レジオネラ属菌の増殖を直接的に抑止しなくても宿主の増殖を抑制して足りることに着目してなされたもので、アメーバ等の原生動物がレジオネラ属菌の宿主となることを阻止することによってレジオネラ菌の増殖を抑えることを可能にする循環式用水槽の原生動物不活性化方法を提供することを目的とする。   Based on the above elucidated facts, the present invention has been made with a focus on suppressing host growth without directly suppressing the growth of Legionella spp., And protozoa such as amoeba are known to be Legionella. An object of the present invention is to provide a method for inactivating a protozoan in a circulating water tank that makes it possible to suppress the growth of Legionella by preventing it from becoming a host of the genus fungus.

上述の課題を解決するための手段として、第1の手段は、
循環浄化式用水槽の被処理液体に、該循環式用水槽の利用時間帯から外れた時間帯では、モノクロラミンを生成するためのアンモニア性窒素含有薬剤と有効塩素含有塩素剤とを供給して原生動物のシスト化を促進するに足る濃度のモノクロラミンを生成させ、前記循環式用水槽の利用時間帯には有効塩素含有塩素剤のみを供給してモノクロラミンを分解し遊離塩素を残留させることによって、原生動物不活性化と同時に殺菌とウイルス不活性化を図ることを特徴とする循環式用水槽の原生動物不活性化方法である。
第2の手段は、
前記モノクロラミン生成における濃度が0.4〜2.0mg/Lであり、前記遊離残留塩素濃度が0.2mg/L以上であることを特徴とする第1の手段にかかる循環式用水槽の原生動物不活性化方法である。
As means for solving the above-mentioned problem, the first means is:
Supplying the liquid to be treated in the circulation purification tank to the ammonia nitrogen-containing agent and the effective chlorine-containing chlorine agent for generating monochloramine in a time zone that is out of the use time zone of the circulation tank. Producing monochloramine at a concentration sufficient to promote cyst formation of protozoa, and supplying only effective chlorine-containing chlorinating agent to decompose monochloramine to leave free chlorine during the usage time of the circulating water tank Is a protozoan inactivation method for circulating water tanks characterized in that sterilization and virus inactivation are achieved simultaneously with inactivation of protozoa.
The second means is
The concentration of the monochloramine production is 0.4 to 2.0 mg / L, and the concentration of free residual chlorine is 0.2 mg / L or more. Animal inactivation method.

上述の手段によれば、前記循環式用水槽内において、レジオネラ属菌の宿主となるアメーバ等の原生動物の増殖を有効に阻止することができる。レジオネラ属菌の宿主となるアメーバ等の原生動物の増殖が阻止されれば、必然的にレジオネラ属菌の増殖を直接的に抑止しなくてもレジオネラ菌の増殖を抑えられることになる。   According to the above-mentioned means, it is possible to effectively prevent the growth of protozoa such as amoeba which is a host of Legionella spp. In the circulating water tank. If the growth of protozoa such as amoeba, which is the host of Legionella, is inhibited, the growth of Legionella is inevitably suppressed without directly inhibiting the growth of Legionella.

図1は第1の実施の形態にかかる循環浄化式用水槽の原生動物不活性化方法を実施するための装置の構成を示す図である。以下、図1を参照にしながら本発明の第1の実施の形態にかかる循環浄化式用水槽の原生動物不活性化方法を説明する。この実施の形態は、循環浄化式用水槽として、温泉浴槽を用いる場合の例である。   FIG. 1 is a diagram showing a configuration of an apparatus for carrying out a protozoan inactivation method for a circulation purification type water tank according to a first embodiment. Hereinafter, the protozoan inactivation method for the circulation purification type water tank according to the first embodiment of the present invention will be described with reference to FIG. This embodiment is an example in the case of using a hot spring bathtub as a circulation purification type water tank.

図1において、符号1は源泉槽であり、源泉ポンプ1aによって源泉源から汲まれた源泉が一時滞留される。この源泉槽1に一時滞留された源泉は、給泉ポンプ2によって、入浴施設が保有する複数の浴槽3に導入される。浴槽3の温泉は、ろ過装置4によって循環浄化される。すなわち、循環ポンプ5によって浴槽3の底部から温泉の一部が吸引され、切り替えバルブ4aを通じてろ過装置4に送られ、ろ過されたあと、切り替えバルブ4aを通じて浴槽3に戻されるようになっている。なお、ろ過装置4から浴槽3に戻される途中で、次亜塩素酸ナトリウム(NaOCl)を、薬注ポンプ7によって薬液タンク70から適宜加えることができるようになっている。また、ろ過が所定時間行われた場合、切り替えバルブ4aが切り替えられて、ろ過装置4に逆流が加えられてろ過装置の洗浄が行われ、洗浄に使われた温泉は排水設備4bに捨てられる。   In FIG. 1, reference numeral 1 denotes a source tank, and the source pumped from the source source by the source pump 1a is temporarily retained. The hot springs temporarily retained in the hot spring tank 1 are introduced by a hot spring pump 2 into a plurality of bathtubs 3 owned by the bathing facility. The hot spring in the bathtub 3 is circulated and purified by the filtration device 4. That is, a part of the hot spring is sucked from the bottom of the bathtub 3 by the circulation pump 5, sent to the filtration device 4 through the switching valve 4a, filtered, and then returned to the bathtub 3 through the switching valve 4a. In addition, sodium hypochlorite (NaOCl) can be appropriately added from the chemical tank 70 by the chemical injection pump 7 in the middle of returning from the filtration device 4 to the bathtub 3. Moreover, when filtration is performed for the predetermined time, the switching valve 4a is switched, a backflow is added to the filtration apparatus 4, a filtration apparatus is wash | cleaned, and the hot spring used for washing | cleaning is thrown away to the drainage equipment 4b.

ここで、この実施の形態では、源泉槽1内の源泉に、アンモニア水又はアンモニウム塩水(NH−N)を注入する薬注ポンプ6aと、次亜塩素酸ナトリウム(NaOCl)を注入する薬注ポンプ6bとが設けられている。また、これら薬注ポンプ6a,6bは、ウイクリータイマー等のタイマー8によってそれぞれ駆動時間が制御されるようになっている。すなわち、タイマー8によって設定された時間だけ、薬注ポンプ6a及び/又は6bが
稼動し、それぞれ薬液タンク60a,60bから薬液を源泉槽1内の源泉に注入するようになっている。薬液タンク6aには、10%の塩化アンモニウム液が、薬液タンク6bには、12%次亜塩素酸ナトリウム液が、それぞれを貯留されるようになっている。
Here, in this embodiment, a chemical injection pump 6a for injecting ammonia water or ammonium salt water (NH 3 -N) into a source in the source tank 1 and a chemical injection for injecting sodium hypochlorite (NaOCl). A pump 6b is provided. These medicinal pumps 6a and 6b are controlled in driving time by a timer 8 such as a weekly timer. That is, the chemical injection pumps 6a and / or 6b are operated for the time set by the timer 8, and the chemical solution is injected from the chemical solution tanks 60a and 60b into the source in the source tank 1, respectively. A 10% ammonium chloride solution is stored in the chemical solution tank 6a, and a 12% sodium hypochlorite solution is stored in the chemical solution tank 6b.

以上の装置において、この実施の形態では、浴槽3が利用されない時間帯である夜間の所定の時間帯に、薬注ポンプ6a及び6bの両方を所定時間、例えば、30分ないし1時間だけ駆動して、源泉槽1内にアンモニア水又はアンモニウム塩水(NH−N)並びに次亜塩素酸ナトリウム(NaOCl)を注入し、源泉槽1内の源泉中に、目標とする0.4〜2.0mg/Lのモノクロラミンが生成されるようにする。こうして処理された源泉は、給泉ポンプ2によって入浴施設が保有する複数の浴槽3に給泉される。 In the above apparatus, in this embodiment, both the drug injection pumps 6a and 6b are driven for a predetermined time, for example, 30 minutes to 1 hour, in a predetermined time zone at night when the bathtub 3 is not used. Then, ammonia water or ammonium salt water (NH 3 -N) and sodium hypochlorite (NaOCl) are injected into the source bath 1, and 0.4 to 2.0 mg as a target in the source spring in the source bath 1. / L monochromamine is generated. The hot springs thus processed are supplied by the hot spring pump 2 to a plurality of bathtubs 3 held by the bathing facility.

給泉途中の源泉には、薬注ポンプ7によって次亜塩素酸ナトリウム液が供給された後に浴槽3に送られる。したがって、モノクロラミンが残留する源泉に次亜塩素酸ナトリウムが追加される形になって、モノクロラミンの塩素化が進行する。この浴槽3の温泉水は、ろ過装置4と循環ポンプ5とによって循環浄化されるが、この過程でモノクロラミンはダイクロラミンを経て分解する。そこで、目標とする0.2mg/L以上の遊離残留塩素濃度になったら薬注ポンプ7を停止する。   A sodium hypochlorite solution is supplied to the source spring in the middle of the hot spring supply by the chemical injection pump 7 and then sent to the bathtub 3. Therefore, sodium hypochlorite is added to the source where monochloramine remains, and chlorination of monochloramine proceeds. The hot spring water in the bathtub 3 is circulated and purified by the filtering device 4 and the circulation pump 5, and in this process, monochloramine is decomposed through dichroamine. Therefore, the drug injection pump 7 is stopped when the target free residual chlorine concentration is 0.2 mg / L or more.

この間、ろ過装置4内に抑留された濁質の隙間や原生動物および細菌類が形成した生物膜など固形物の内部ではクロラミンの不均化分解が起きて、遊離塩素を再生し、より内部まで浸透する。この作用により、栄養体として活動していたアメーバなど原生動物は食餌活動を停止し休眠の形態であるシストヘと移行する。勿論、シストになっているアメーバや細菌の細胞内部まで浸透した次亜塩素酸はデオキシリボ核酸(DNA)の塩基と反応して遺伝子機能を奪ってしまう。   During this time, chloramine disproportionate decomposition occurs inside solid materials such as turbid gaps retained in the filtration device 4 and biofilms formed by protozoa and bacteria, regenerating free chlorine, and further to the inside To penetrate. By this action, protozoa such as amoeba, which were active as nutrients, cease their feeding activities and move to cysts, which are a dormant form. Of course, hypochlorous acid that penetrates into the cells of cystic amoeba and bacteria reacts with the base of deoxyribonucleic acid (DNA) to deprive the gene function.

以下、上記実施の形態によって示された発明について、その原理的考え方を含めてより詳細に説明する。この発明は、レジオネラ属菌の増殖は原則的に生物の細胞内、より厳密にいえばさらに内部に形成された食胞内においてのみ可能である、という知見に基づいている。きわめて限定された条件の低栄養培地においても増殖は可能で、この方法を用いてレジオネラ属菌の検査が行われている。しかし、このような例外的環境条件は、自然界にほとんど存在しない。また、生物膜は原生動物や細菌の死骸によっても形成され、生物膜のすべてが生体ではない。したがって、通常の自然環境では、寄生菌の性質を持たない細菌類がレジオネラ属菌に優先して増殖する条件になっている。レジオネラ属菌が特異的かつ爆発的に増殖する環境は、宿主であるアメーバ等原生動物が特異的に増殖する人為的につくられた環境であり、自然環境とはいえない。本発明は、この人工的環境におけるアメーバ等の異常な増殖を抑えようとするもので、レジオネラ属菌の細胞構造を直接的に完全破壊する強力な殺菌操作を狙いとしていない。   Hereinafter, the invention shown by the above embodiment will be described in more detail, including the principle concept. This invention is based on the finding that the growth of Legionella is possible only in the cells of an organism, more strictly in the phagosome formed inside. Growth is possible even in a low nutrient medium under extremely limited conditions, and Legionella spp. Are tested using this method. However, such exceptional environmental conditions rarely exist in nature. Biofilms are also formed by protozoa and bacterial carcasses, and all biofilms are not living organisms. Therefore, in a normal natural environment, bacteria that do not have the nature of parasitic bacteria are in a condition to proliferate in preference to Legionella spp. The environment in which Legionella spp. Grows specifically and explosively is an artificially created environment in which protozoa such as amoeba as a host propagate specifically, and cannot be said to be a natural environment. The present invention is intended to suppress abnormal growth of amoeba and the like in this artificial environment, and does not aim at a powerful sterilization operation that directly and completely destroys the cell structure of Legionella spp.

上記実施の形態によれば、利用から外れた時間帯に用水槽内にモノクロラミンを0.4〜1.0mg/Lの濃度で生成させると、数時間でレジオネラ属菌を99%(2log〉減少させることができた。この結果は、レジオネラ属菌の構造破壊によるものではなく、宿主であるアメーバが増殖できなかったためである。宿主の原形質膜から離脱して外に出たレジオネラ属菌の寿命はそれほど長いものではない。生物膜内に存在することで延命の効果があっても、いずれは自然死する。このレジオネラ属菌が新たな宿主をみつけ、原生動物の食餌活動に伴って細胞内に入ることができなければ、殺菌剤がなくてもレジオネラ属菌数は自然に減少する。   According to the above embodiment, when monochloramine is produced at a concentration of 0.4 to 1.0 mg / L in the irrigation tank in a time zone out of use, 99% (2 log) of Legionella spp. This result was not due to the structural disruption of Legionella spp., But because the host amoeba could not grow, Legionella spp. The lifespan of this species is not so long, even if it exists in the biofilm, even if it has the effect of prolonging its life, eventually it will die naturally. If it cannot enter the cell, the number of Legionella spp.

例えば図1の循環ポンプ5によってろ過装置4に入った循環用水(温泉水)中にアメーバが生き残っていたとしても、モノクロラミンの効能によってアメーバは栄養体の段階からシストの段階へと変態している。シストになったアメーバは食餌活動を停止するので、レジオネラ属に感染する確率はゼロに近くなる。被酸化性物質との反応性に劣るモノクロラミンは、ろ過機内抑留物質の内部まで深く浸透し、結果として「アメーバの増殖に適しない環境条件」という信号をシストに対してもたらす。したがって、このシストがたとえろ過装置4内に抑留されたとしても、脱シストして栄養体として復活する覚醒を起こすこ
とはない。
For example, even if the amoeba survives in the circulating water (hot spring water) that has entered the filtration device 4 by the circulation pump 5 in FIG. 1, the amoeba transforms from the nutrient stage to the cyst stage due to the effect of monochloramine. Yes. Since the amoeba that became a cyst stops its feeding activity, the probability of being infected with Legionella is close to zero. Monochloramine, which is inferior in reactivity with the oxidizable substance, penetrates deeply into the inside of the filter retaining substance, resulting in a signal to the cyst that “environmental conditions not suitable for amoeba growth”. Therefore, even if this cyst is detained in the filtration device 4, it does not cause awakening that is desiccated and restored as a nutrient.

一方、モノクロラミンは図3の反応式のように通常ダイ(またはジ)クロラミンと平衡関係にあり、逆解離もする。また、pH依存性の高いダイクロラミンが図4の反応式で分解することも周知事実である。濁質や生物膜の内部に深く浸透したモノクロラミンの一部が平衡によってダイクロラミンになり前式の分解をすると、次亜塩素酸(HOCl)を再生する。遊離塩素の一形態である次亜塩素酸はモノクロラミンより細胞膜内に透過しやすいため、より強い殺菌力を発揮する。すなわち、固形物の表面や隙間における化学物質は局所的に起きる図3の解離平衡反応や図4の分解反応などによって遊離塩素濃度の勾配を生じる。このため、測定された用水中の均一濃度(C)と殺菌所要時間(T)との乗数であるCT値(殺菌力や不活性化力の指標)からの推定とは異なった殺菌力をもたらすことがある。   On the other hand, monochloramine is normally in equilibrium with di (or di) chloramine as shown in the reaction formula of FIG. 3, and also reversely dissociates. It is also a well-known fact that dichroamine, which is highly pH-dependent, decomposes according to the reaction formula of FIG. When a portion of monochloramine that has penetrated deeply into the turbidity or biofilm becomes dichlorochlorin due to equilibrium and decomposes in the previous formula, hypochlorous acid (HOCl) is regenerated. Hypochlorous acid, which is a form of free chlorine, is easier to permeate into the cell membrane than monochloramine, and thus exerts stronger bactericidal power. That is, the chemical substance on the surface of the solid or in the gaps causes a gradient of free chlorine concentration by the dissociation equilibrium reaction shown in FIG. 3 or the decomposition reaction shown in FIG. For this reason, sterilization power different from the estimation from the CT value (an index of sterilization power or inactivation power) which is a multiplier of the measured uniform concentration (C) in the water and sterilization time (T) is brought about. Sometimes.

次亜塩素数とモノクロラミンの各CT値(C:mg/L、T:min.)は、腸内細菌に対しそれぞれ0.2と50、アメーバのシストに対し、それぞれ100と200が提示されている。腸内細菌に対し、モノクロラミンのCT値は次亜塩素酸の250倍になる。すなわち、それだけ弱い殺菌力しか持たない。ところが、アメーバシストに対しては2倍のCT値でしかない。この事実は、遊離塩素の濃度勾配以外の因子では説明不可能である。またこの事実は、モノクロラミンによるアメーバシストの不活性化がシストの構造破壊に伴うものではなく、シストの外形を残した内部核染色体の遺伝子変性によってもたらされていることを示唆している。本発明は、一度増殖して濁質または生物膜から離脱してきたレジオネラ属菌を完全に殺す意図を持たない。宿主となるアメーバをシストの形態のままに維持して、レジオネラ属菌など寄生菌の感染を予防すれば足りると考えたことに本発明の主眼がある。   Hypochlorine count and monochloramine CT values (C: mg / L, T: min.) Are 0.2 and 50, respectively, for enteric bacteria and 100 and 200, respectively, for amoeba cysts. ing. For enterobacteria, the CT value of monochloramine is 250 times that of hypochlorous acid. That is, it has only a weak sterilizing power. However, the CT value is only twice that of an amoebasist. This fact cannot be explained by factors other than the concentration gradient of free chlorine. This fact also suggests that the inactivation of amoebacysts by monochloramine is not accompanied by structural destruction of the cysts, but is caused by genetic modification of the internal nuclear chromosomes that leave the cyst's outline. The present invention is not intended to completely kill Legionella spp. Once grown and removed from the turbidity or biofilm. The main point of the present invention is that it is sufficient to maintain the host amoeba in the form of cysts to prevent infection by parasitic bacteria such as Legionella.

したがって、モノクロラミンが分解消滅した状態が一週間程度継続しなければ、アメーバの脱シストが起こらないため、モノクロラミン処理により一度減少したレジオネラ属菌が再び増殖することはない。宿主となるアメーバ等の原生動物が増殖しないからである。新しい環境条件のもとで培地に接種された原生動物が増殖するのは、接種から5日目以降であることがすでに報告されている。また、同じ条件でレジオネラ属菌が有意で増殖するのは接種から8日目以降であることも報告され、いずれも周知事実である。   Accordingly, if the monochloramine is not decomposed and extinguished for about one week, the amoeba desist does not occur. Therefore, Legionella bacteria once reduced by the monochloramine treatment do not grow again. This is because protozoa such as amoeba as a host do not multiply. It has already been reported that protozoa inoculated into the medium under new environmental conditions grow after the fifth day after inoculation. Moreover, it is also reported that Legionella spp. Significantly grows under the same conditions after the 8th day after inoculation, both of which are well-known facts.

本発明における用水槽は、通常毎日利用される。日曜・祭日など施設が閉館されたり休業になる場合でも、一週間を超える利用停止はほとんどない。したがって、アメーバのシストがたとえ水槽内や循環流路内に滞留していても、モノクロラミン処理と遊離塩素処理を繰り返すことで覚醒する間がなく、シストの形態のままで維持することができる。さらに、シスト内に浸透したモノクロラミンまたは再生した次亜塩素酸によって染色体の遺伝子変性も大いに期待できるから、レジオネラ属菌が感染して増殖することは起きえない。   The water tank in the present invention is usually used every day. Even if facilities are closed or closed on Sundays and holidays, there is almost no suspension of use for more than a week. Therefore, even if the amoeba cyst stays in the water tank or the circulation channel, it can be maintained in the cyst form without being awakened by repeating the monochloramine treatment and the free chlorine treatment. Furthermore, since the gene degeneration of the chromosome can be greatly expected by monochloramine or regenerated hypochlorous acid that has penetrated into the cyst, Legionella spp. Cannot infect and proliferate.

図1の浴槽3のように、大気解放になっている用水槽では、レジオネラ属菌に限らず、外部からさまざまな病原体や落下細菌類が持ち込まれる可能性がある。したがって、この可能性が増大する時間帯においてはモノクロラミンより強い殺菌力を持つ遊離塩素で対処した方がより合理的で、宿主と寄生菌の双方を不活性化できるから対策はより万全となる。用水槽の利用時間帯に図1の薬注ポンプ7、あるいは、後述する図2の薬注ポンプ6bを単独で駆動することによって、次亜塩素酸ナトリウム液を循環浄化流路に注入すると、モノクロラミンの塩素化が進んで、窒素など無害物質となって分解する。この分解は、注入塩素量、pHおよび水温に依存する。後述する図2の実施例では1時間以内にモノクロラミンの分解が完了し、遊離残留塩素を検出できるようになった。したがって、細菌類だけでなくウイルスの不活性化も短時間でなされることになる。   In the water tank that is open to the atmosphere as in the bathtub 3 in FIG. 1, various pathogens and falling bacteria may be brought in from the outside as well as Legionella spp. Therefore, it is more reasonable to deal with free chlorine, which has a stronger bactericidal power than monochloramine, in the time zone when this possibility increases, and measures can be more thorough because both the host and the parasitic bacteria can be inactivated. . When the sodium hypochlorite solution is injected into the circulation purification channel by independently driving the chemical injection pump 7 of FIG. 1 or the chemical injection pump 6b of FIG. As chlorination of lamin progresses, it decomposes into harmless substances such as nitrogen. This decomposition depends on the amount of chlorine injected, pH and water temperature. In the example of FIG. 2 described later, the decomposition of monochloramine was completed within 1 hour, and free residual chlorine could be detected. Therefore, inactivation of not only bacteria but also viruses is performed in a short time.

図1に示される第1の実施の形態において、泉質が、「単純泉」で、源泉温度が28〜29℃の温泉である場合には、モノクロラミン処理時の同濃度0.4〜0.6mg/Lのとき遊離残留塩素濃度は0.0mg/Lであった。用水槽使用時の遊離残留塩素維持濃度0.2〜0.4mg/Lの条件で毎日処理したところ、レジオネラ属菌の検査結果は冬季、春季いずれでもつねに陰性であった。   In the first embodiment shown in FIG. 1, when the spring quality is “simple spring” and the hot spring has a source temperature of 28 to 29 ° C., the same concentration at the time of monochloramine treatment is 0.4 to 0. At 6 mg / L, the free residual chlorine concentration was 0.0 mg / L. When processed daily under the condition of free residual chlorine maintenance concentration of 0.2 to 0.4 mg / L when using the water tank, the test result of Legionella was always negative in both winter and spring.

図2は第2の実施の形態にかかる循環浄化式用水槽の原生動物不活性化方法を実施するための装置の構成を示す図である。以下、図2を参照にしながら本発明の第2の実施の形態にかかる循環浄化式用水槽の原生動物不活性化方法を説明する。第1の実施の形態では、源泉槽1から浴槽3に源泉を供給する例を掲げたが、この実施の形態は、スパ施設等において、図示しない貯湯槽で加温された水道水を混合水栓によって適温に調節して浴槽3に給水している例である。浴槽3に給水された浴槽水は、第1の実施の形態と同様にろ過装置4と循環ポンプ5とで循環浄化されるようになっている。   FIG. 2 is a diagram showing a configuration of an apparatus for carrying out the protozoan inactivation method of the circulation purification type water tank according to the second embodiment. Hereinafter, a protozoan inactivation method for a circulation purification type water tank according to a second embodiment of the present invention will be described with reference to FIG. In the first embodiment, an example in which the source spring is supplied from the source bath 1 to the bathtub 3 has been described. However, in this embodiment, tap water heated in a hot water storage tank (not shown) is mixed water in a spa facility or the like. In this example, water is supplied to the bathtub 3 after being adjusted to an appropriate temperature by a stopper. The bathtub water supplied to the bathtub 3 is circulated and purified by the filtration device 4 and the circulation pump 5 as in the first embodiment.

また、第1の実施の形態では、薬注ポンプ6a及び薬注ポンプ6bによって、源泉槽1内の源泉に、アンモニア水又はアンモニウム塩水(NH−N)及び次亜塩素酸ナトリウム(NaOCl)を注入するようにしているが、この実施の形態では、これらをろ過装置4から浴槽3に給水する途中で注入するようにしている。これら薬注ポンプ6a,6bがタイマー8によってそれぞれ駆動時間が制御できるようになっている点は第1の実施の形態と同じである。また、ろ過装置4から浴槽3に給水する途中で浴槽水を加熱するヒータが設けられている。 In the first embodiment, the chemical feed pump 6a and chemical feeding, chemical dosing pump 6b, the source of the source tank 1, ammonia water or ammonium salt (NH 3 -N) and sodium hypochlorite (NaOCl) In this embodiment, these are injected while water is supplied from the filtration device 4 to the bathtub 3. These medicinal pumps 6a and 6b are the same as in the first embodiment in that the driving time can be controlled by the timer 8, respectively. Moreover, the heater which heats bathtub water in the middle of supplying water to the bathtub 3 from the filtration apparatus 4 is provided.

薬注ポンプ6a、6bおよびそれぞれの薬液種は、第1の実施の形態と同じである。異なるのは、薬注ポンプ6aと6bのそれぞれを駆動する時間が独立して設定される点である。夜間などモノクロラミン処理を実施する時間帯では、6aと6bの薬注ポンプ双方を駆動し、浴槽水中にモノクロラミンを生成させる。通常の駆動時間は1時間以内である。モノクロラミンの分解速度は遊離塩素のそれよりもはるかに遅いので、翌朝まで0.4mg/L以上の濃度を維持できる。第1の実施の形態と同様に、入浴予定時刻あるいはこれより若干早めの時刻に今度は薬注ポンプ6bのみをタイマ8で駆動する。こうすることで、モノクロラミンが残留する浴槽水に次亜塩素酸ナトリウムが追加される形になって、モノクロラミンの塩素化が進行する。   The medicinal pumps 6a and 6b and the respective chemical liquid types are the same as those in the first embodiment. The difference is that the time for driving each of the medicine pumps 6a and 6b is set independently. In the time zone in which the monochloramine treatment is performed such as at night, both the 6a and 6b chemical injection pumps are driven to produce monochloramine in the bath water. Normal driving time is within one hour. Since the monochloramine degradation rate is much slower than that of free chlorine, it is possible to maintain a concentration of 0.4 mg / L or more until the next morning. Similar to the first embodiment, only the drug injection pump 6b is driven by the timer 8 at the scheduled bathing time or a time slightly earlier than this. By doing so, sodium hypochlorite is added to the bath water in which monochloramine remains, and chlorination of monochloramine proceeds.

塩素剤注入の停止操作および遊離塩素残留や再生に伴う浸透の効果は前実施例とまったく同じである。なお、図3に、局所的に起きるモノクロラミンの平衡反応式を示し、図4に、ダイクロラミンが分解する際の遊離塩素再生の反応式を示す。これらの反応式は、本願発明者の永年の研究によって解明されたものである。   The operation of stopping the injection of chlorine agent and the effect of permeation accompanying free chlorine residue and regeneration are exactly the same as in the previous example. FIG. 3 shows the equilibrium reaction formula of monochloramine that occurs locally, and FIG. 4 shows the reaction formula of free chlorine regeneration when dichlorochlorin decomposes. These reaction formulas have been elucidated by years of research by the present inventors.

また、水道水を原水としたこの第2の実施の形態では、毎日加温して36〜38℃に維持しているが、モノクロラミン処理時の同濃度0.5〜1.0mg/Lのとき遊離残留塩素濃度は0.0mg/Lであった。遊離塩素処理時に遊離残留塩素が検出されるまでの復帰時間として毎回30〜45分を要した。そして、用水槽使用時の遊離残留塩素維持濃度0.6〜1.0mg/Lとしたとき、レジオネラ属菌の検査結果は季節を問わずつねに陰性であった。   Moreover, in this 2nd Embodiment which used tap water as raw | natural water, it heats every day and it maintains at 36-38 degreeC, but 0.5-1.0 mg / L of the same density | concentration at the time of a monochloramine treatment Sometimes the free residual chlorine concentration was 0.0 mg / L. It took 30 to 45 minutes each time to recover until free residual chlorine was detected during the free chlorine treatment. And when the free residual chlorine maintenance density | concentration at the time of water tank use was set to 0.6-1.0 mg / L, the test result of Legionella genus bacteria was negative regardless of the season.

以上説明した第1の実施の形態及び第2の実施の形態におけるレジオネラ属菌陰性の結果は、宿主である原生動物の遺伝子がたとえ完全破壊されていなくても、シストが覚醒して脱シストを起こすことは完全に阻止されていることを立証するものである。したがって、レジオネラ属菌感染が起きえないからには増殖も起きえず、完全な原生動物不活性化がなされたことになる。なお、粉末状の塩化アンモニウムを、水溶液にして定量ポンプ注入することなく浴槽に直接添加する方法でもモノクロラミン処理を実施したが、問題点を指
摘されるような支障は生じなかった。
The negative results of Legionella in the first embodiment and the second embodiment described above show that even if the host protozoan gene is not completely disrupted, the cyst awakens and decystes. It is proved that waking is completely prevented. Therefore, since no Legionella infection can occur, proliferation cannot occur and complete protozoan inactivation has been achieved. The monochloramine treatment was also carried out by a method in which powdered ammonium chloride was added as an aqueous solution and directly added to the bathtub without injecting a metering pump, but there was no problem that indicated a problem.

水道における浄水場のような一過式かつ密閉系配水の処理では、異なった化学物質による消毒法を併用する実施例はあっても、交互に実施するという発想は生まれなかった。液性が異なる用水が数珠つなぎに配水されることになるからである。本発明は、循環浄化式用水に関して、病原体の種類によって増殖の機構が著しく異なる点に着目し、その大きさだけでなく種類も異なる複数種の病原体に対して広く不活性化力を発揮する方法を提供するものである。特に、循環処理流路の一部が大気開放になっている浴槽などでは、異なった化学物質による不活性化(消毒)法を交互に実施する本発明の効果は抜群である。   In the case of a temporary and closed water distribution treatment such as a water purification plant in waterworks, there was an example of using a disinfecting method with different chemical substances in combination, but the idea of carrying out alternately was not born. This is because irrigation water having different liquidity is distributed in a rosary connection. The present invention pays attention to the point that the mechanism of growth differs markedly depending on the type of pathogen with respect to the circulation purification type water, and a method of exerting a wide range of inactivation power not only on the size but also on multiple types of pathogens of different types Is to provide. In particular, in a bathtub or the like in which a part of the circulation treatment flow path is open to the atmosphere, the effect of the present invention of alternately performing inactivation (disinfection) methods with different chemical substances is outstanding.

しかも、終始モノクロラミンのみで処理する方法は結合塩素消毒法として知られ、遊離塩素消毒法とともに周知の殺菌法である。適正な濃度に管理さえすれば、処理用水は残留薬剤や副生成物が持つ毒性を心配することなくそのまま使用できる点が他法とは異なる長所である。亜塩素酸の副生が問題となる二酸化塩素処理、処理後の残留が認められていないオゾンや過酸化水素処理と比較して、処理濃度も低く実施も容易である。   Moreover, the method of treating with monochloramine only throughout is known as the combined chlorine disinfection method and is a well-known disinfection method together with the free chlorine disinfection method. As long as it is controlled to an appropriate concentration, the treatment water can be used as it is without worrying about the toxicity of residual chemicals and by-products. Compared with the chlorine dioxide treatment in which by-product of chlorous acid is a problem and the ozone or hydrogen peroxide treatment in which no residual after treatment is recognized, the treatment concentration is low and the implementation is easy.

従来法のように、一度増殖したレジオネラ属菌を完全破壊(溶菌)状態にする殺菌を狙うと、より耐性の弱い他の細菌類も一括して殺菌することになるから高濃度の処理を必要とする。栄養体段階の原生動物がシスト化することを促すために要するモノクロラミン濃度はlmg/L前後で足り、それぞれ単独で実施されてきた遊離あるいは結合塩素消毒における濃度領域を外れるものではない。固形物内部に浸透した結合塩素が分解することによって、局所的に再生する次亜塩素酸の強い殺菌力が微生物の遺伝子に対して働くから、用水を循環させたままの処理が可能で副生成物の再処理や用水の廃棄を必要としない。用水の全換水も原則的に不要で、省資源・省エネルギー化を達成できる。   Aiming for sterilization of Legionella spp. Once grown to complete destruction (lysis) as in the conventional method, other weakly resistant bacteria are also sterilized at a time, requiring high concentration treatment. And The monochloramine concentration required to promote the protozoa in the vegetative stage to cyst is sufficient to be around 1 mg / L, and does not deviate from the concentration range in free or combined chlorine disinfection that has been carried out independently. Decomposition of bound chlorine that has penetrated inside the solid material causes the strong bactericidal power of hypochlorous acid, which is locally regenerated, to act on the genes of microorganisms. There is no need for reprocessing or disposal of water. In principle, there is no need for total water exchange, and resource and energy savings can be achieved.

本発明は、公衆浴場や福利厚生施設等における源泉槽、貯湯槽及び入浴槽並びに水冷式空調施設における貯水槽などに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a source bath, a hot water tank and a bathtub in a public bath or a welfare facility, and a water tank in a water-cooled air conditioning facility.

本発明の温泉浴槽に適用した第1の実施の形態にかかる原生動物不活性化方法を実施するための装置の構成を示す図である。It is a figure which shows the structure of the apparatus for enforcing the protozoan inactivation method concerning 1st Embodiment applied to the hot spring bathtub of this invention. 本発明のスパ施設における浴槽に適用した第2の実施の形態にかかる原生動物不活性化方法を実施する装置の構成を示す図である。It is a figure which shows the structure of the apparatus which enforces the protozoan inactivation method concerning 2nd Embodiment applied to the bathtub in the spa facility of this invention. 局所的に起きるモノクロラミンの解離平衡反応式を示す図である。It is a figure which shows the dissociation equilibrium reaction formula of the monochloramine which occurs locally. ダイクロラミンが分解する際の遊離塩素再生の反応式を示す図である。It is a figure which shows the reaction formula of free chlorine reproduction | regeneration when a dichroamine decomposes | disassembles.

符号の説明Explanation of symbols

1…源泉槽
2…給泉ポンプ
3…浴槽
4…ろ過装置
5…循環ポンプ
6a…薬注ポンプ(アンモニア水またはアンモニウム塩水)
6b…薬注ポンプ(次亜塩素酸ナトリウム液)
7…薬注ポンプ(次亜塩素酸ナトリウム液)
8…タイマ
9…ヒータ
DESCRIPTION OF SYMBOLS 1 ... Source tank 2 ... Spring pump 3 ... Bathtub 4 ... Filtration apparatus 5 ... Circulation pump 6a ... Chemical injection pump (ammonia water or ammonium salt water)
6b ... Chemical injection pump (sodium hypochlorite solution)
7 ... Chemical injection pump (sodium hypochlorite solution)
8 ... Timer 9 ... Heater

Claims (2)

循環浄化式用水槽の被処理液体に、該循環式用水槽の利用時間帯から外れた時間帯では、モノクロラミンを生成するためのアンモニア性窒素含有薬剤と有効塩素含有塩素剤とを供給して原生動物のシスト化を促進するに足る濃度のモノクロラミンを生成させ、前記循環式用水槽の利用時間帯には有効塩素含有塩素剤のみを供給してモノクロラミンを分解し遊離塩素を残留させることによって、原生動物不活性化と同時に殺菌とウイルス不活性化を図ることを特徴とする循環式用水槽の原生動物不活性化方法。   Supplying the liquid to be treated in the circulation purification tank to the ammonia nitrogen-containing agent and the effective chlorine-containing chlorine agent for generating monochloramine in a time zone that is out of the use time zone of the circulation tank. Producing monochloramine at a concentration sufficient to promote cyst formation of protozoa, and supplying only effective chlorine-containing chlorinating agent to decompose monochloramine to leave free chlorine during the usage time of the circulating water tank To inactivate the protozoa and simultaneously inactivate the virus and inactivate the virus. 前記モノクロラミン生成における濃度が0.4〜2.0mg/Lであり、前記遊離残留塩素濃度が0.2mg/L以上であることを特徴とする請求項1に記載の循環式用水槽の原生動物不活性化方法。   The concentration of the monochloramine production is 0.4 to 2.0 mg / L, and the free residual chlorine concentration is 0.2 mg / L or more. Animal inactivation method.
JP2007110824A 2007-04-19 2007-04-19 Method of inactivating Legionella spp. In circulating water tank Active JP4906572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110824A JP4906572B2 (en) 2007-04-19 2007-04-19 Method of inactivating Legionella spp. In circulating water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110824A JP4906572B2 (en) 2007-04-19 2007-04-19 Method of inactivating Legionella spp. In circulating water tank

Publications (2)

Publication Number Publication Date
JP2008264678A true JP2008264678A (en) 2008-11-06
JP4906572B2 JP4906572B2 (en) 2012-03-28

Family

ID=40044945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110824A Active JP4906572B2 (en) 2007-04-19 2007-04-19 Method of inactivating Legionella spp. In circulating water tank

Country Status (1)

Country Link
JP (1) JP4906572B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20090205A1 (en) * 2009-02-17 2010-08-18 Sanipur S R L METHOD FOR DISINFECTION OF SANITARY HOT WATER
JP2012045492A (en) * 2010-08-27 2012-03-08 Tac Tatemono Kanri Kk Regeneration method of pool stored water
JP2013086077A (en) * 2011-10-21 2013-05-13 Pureson Corp Method for dissolving copper compound, water treating method and water treating agent
JP2013202484A (en) * 2012-03-28 2013-10-07 Aquas Corp Treatment method of open circulating cooling water system
JP2014534954A (en) * 2011-09-30 2014-12-25 ナルコ カンパニー Method for on-site production of chloramine and use thereof
EP2944615A1 (en) * 2014-05-16 2015-11-18 Sanipur S.R.L. Sanitary warm water system and method for the disinfection of sanitary warm water
JP2018016550A (en) * 2016-07-25 2018-02-01 株式会社ピュアソン Method for removing colored mold
WO2020044584A1 (en) 2018-08-29 2020-03-05 株式会社日吉 Disinfectant for legionella bacteria, water treatment method, bathwater additive, and additive for air-conditioning cooling tower water
JP2021526450A (en) * 2018-06-13 2021-10-07 エー.ワイ. ラボラトリーズ リミテッド Systems and methods for monitoring process water treated with biocides using oxygen sensors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028981A (en) * 1996-07-18 1998-02-03 Japan Organo Co Ltd Chlorine disinfection system
JP2004066221A (en) * 2000-11-10 2004-03-04 Hoei Shokai:Kk Treatment device and treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028981A (en) * 1996-07-18 1998-02-03 Japan Organo Co Ltd Chlorine disinfection system
JP2004066221A (en) * 2000-11-10 2004-03-04 Hoei Shokai:Kk Treatment device and treatment method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218687A1 (en) * 2009-02-17 2010-08-18 Sanipur S.R.L. Method and apparatus for disinfecting hot water
ITMI20090205A1 (en) * 2009-02-17 2010-08-18 Sanipur S R L METHOD FOR DISINFECTION OF SANITARY HOT WATER
US8444860B2 (en) 2009-02-17 2013-05-21 Sanipur S.R.L. Method and apparatus for disinfecting hot water
JP2012045492A (en) * 2010-08-27 2012-03-08 Tac Tatemono Kanri Kk Regeneration method of pool stored water
JP2014534954A (en) * 2011-09-30 2014-12-25 ナルコ カンパニー Method for on-site production of chloramine and use thereof
CN107125261A (en) * 2011-09-30 2017-09-05 纳尔科公司 Scene produces method of chloramines and application thereof
JP2013086077A (en) * 2011-10-21 2013-05-13 Pureson Corp Method for dissolving copper compound, water treating method and water treating agent
JP2013202484A (en) * 2012-03-28 2013-10-07 Aquas Corp Treatment method of open circulating cooling water system
EP2944615A1 (en) * 2014-05-16 2015-11-18 Sanipur S.R.L. Sanitary warm water system and method for the disinfection of sanitary warm water
US9896360B2 (en) 2014-05-16 2018-02-20 Sanipur S.R.L. Hot sanitary water system and method for disinfection of hot water
JP2018016550A (en) * 2016-07-25 2018-02-01 株式会社ピュアソン Method for removing colored mold
JP2021526450A (en) * 2018-06-13 2021-10-07 エー.ワイ. ラボラトリーズ リミテッド Systems and methods for monitoring process water treated with biocides using oxygen sensors
JP7350784B2 (en) 2018-06-13 2023-09-26 エー.ワイ. ラボラトリーズ リミテッド System and method for monitoring process water treated with biocide using oxygen sensors
WO2020044584A1 (en) 2018-08-29 2020-03-05 株式会社日吉 Disinfectant for legionella bacteria, water treatment method, bathwater additive, and additive for air-conditioning cooling tower water
US11753318B2 (en) 2018-08-29 2023-09-12 Hiyoshi Corporation Disinfectant against Legionella, method for treating water, additive for bathtub water, and additive for air-conditioning cooling tower water

Also Published As

Publication number Publication date
JP4906572B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4906572B2 (en) Method of inactivating Legionella spp. In circulating water tank
Kasai et al. Disinfection of water for aquaculture
CN101746857A (en) Method and equipment of electrochemical disinfection for water
O’Donnell et al. A centralised, automated dental hospital water quality and biofilm management system using neutral Ecasol™ maintains dental unit waterline output at better than potable quality: A 2-year longitudinal study
CN109133324A (en) A kind of drinking water treatment equipment and method
JP3918133B2 (en) Water purification method and purification device
KR200353265Y1 (en) Drinking water purifier with disinfection system
KR101249733B1 (en) Sea water supplying appratus for fishery farming and sea water supplying method
CN107804946B (en) The technique for handling nitrosamines disinfection by-products in drinking water
KR20100019843A (en) Method and apparatus for cleaning water
JP3650309B2 (en) Water purification system
CN206266303U (en) Urban sewage reutilization pathogenic microorganism control device
JP2001232395A (en) Method and device for circulating/sterilizing hot water
JP2006280212A (en) Method for treating water used in fishery system
CN217265253U (en) Secondary water supply disinfection device for canteen
Sharma et al. Water: Disinfection & Microbiological Analysis
RU2182125C1 (en) Combined method of water disinfection
JPH07155770A (en) Infection preventing method, device therefor and production of sterilized drinking water and sterilized air-conditioning cooling water utilizing the device
KR200286670Y1 (en) The apparatus for disinfect with ozone-water a water purifier
US20210169053A1 (en) Method for Neutralizing and Removing Ammonia from an Aqueous Solution
JPH10314748A (en) Sterilization apparatus
Feng et al. A Brief Talk of the Disinfection Process for Reclaimed Water
JP3083416U (en) Electrochemical sterilizer
Vestergård Establishing and maintaining specific pathogen free (SPF) conditions in aqueous solutions using ozone
JP2002355674A (en) Apparatus and method for producing drinking water

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4906572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250