JP2008263847A - Cell separation device and cell separation method - Google Patents

Cell separation device and cell separation method Download PDF

Info

Publication number
JP2008263847A
JP2008263847A JP2007110562A JP2007110562A JP2008263847A JP 2008263847 A JP2008263847 A JP 2008263847A JP 2007110562 A JP2007110562 A JP 2007110562A JP 2007110562 A JP2007110562 A JP 2007110562A JP 2008263847 A JP2008263847 A JP 2008263847A
Authority
JP
Japan
Prior art keywords
cell
electrode
cells
electric field
cell separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007110562A
Other languages
Japanese (ja)
Inventor
Masaru Hakoda
優 箱田
Yusuke Hirota
祐輔 廣田
Hiroki Hibino
浩樹 日比野
Hiroshi Fukuda
宏 福田
Yoshiaki Shiba
良昭 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Olympus Corp
Original Assignee
Gunma University NUC
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Olympus Corp filed Critical Gunma University NUC
Priority to JP2007110562A priority Critical patent/JP2008263847A/en
Publication of JP2008263847A publication Critical patent/JP2008263847A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell separation device and a cell separation method capable of efficiently separating multiple kinds of cells, using a simple constitution. <P>SOLUTION: Multiple kinds of cells are separated based on the difference of dielectrophoretic property taking advantage of the difference of dielectrophoretic property by the kind of cell. The cell separation device is provided with a vessel, to hold a cell suspension liquid, containing multiple kinds of cells having different dielectrophoretic properties, electrodes 4 placed in the vessel, and an electric field control part to apply voltage, in a manner of generating electric field intensity gradient surrounding the electrodes and collect either of kinds of cells to the electrode. A cell separation method is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、細胞分離装置および細胞分離方法に関するものである。   The present invention relates to a cell separation device and a cell separation method.

従来、電気泳動特性の差を利用して粒子を分離する技術が知られている(例えば、特許文献1〜4参照。)。
特許文献1に開示された技術は、平板電極からなる複数のトラップを流路中に配置して、ある細菌を特異的に吸着する抗体を被覆したビーズを電極に捕集させておき、そこに分析したい汚水を流通させて、誘電泳動特性により電極に近接する細菌をビーズに捕集させるものである
Conventionally, a technique for separating particles using a difference in electrophoretic characteristics is known (see, for example, Patent Documents 1 to 4).
In the technique disclosed in Patent Document 1, a plurality of traps made of flat plate electrodes are arranged in a flow path, and beads coated with an antibody that specifically adsorbs a certain bacterium are collected on the electrode. The sewage to be analyzed is circulated, and the bacteria close to the electrode are collected on the beads due to the dielectrophoretic characteristics.

特許文献2に開示された技術は、波状の電極を複数並べた流路を形成し、その電極の配列方向に複数種の粒子を流動させることにより、誘電泳動特性の差を利用して、粒子を分離するものである。
特許文献3に開示された技術は、超音波により粒子を移動させた後に、電界を加えて誘電泳動により分離するものである。
特許文献4に開示された技術は、2種類以上の周波数の電界を加えることで、粒子に複数の誘電泳動力が作用するようにして粒子を分離するものである。
The technique disclosed in Patent Document 2 uses a difference in dielectrophoretic characteristics by forming a flow path in which a plurality of wavy electrodes are arranged and flowing plural kinds of particles in the arrangement direction of the electrodes. Is to be separated.
The technique disclosed in Patent Document 3 is to separate particles by dielectrophoresis by applying an electric field after moving particles by ultrasonic waves.
The technique disclosed in Patent Document 4 separates particles by applying an electric field having two or more types of frequencies so that a plurality of dielectrophoretic forces act on the particles.

国際公開第1997/34689号パンフレットInternational Publication No. 1997/34689 Pamphlet 国際公開第2001/5512号パンフレットInternational Publication No. 2001/5512 Pamphlet 国際公開第2001/5513号パンフレットInternational Publication No. 2001/5513 Pamphlet 国際公開第2001/5514号パンフレットInternational Publication No. 2001/5514 Pamphlet

しかしながら、特許文献1の技術は、流路の下流に分析用のチャンバを用意しておき、予め、細菌を捕集していない誘電泳動特性を測定しておき、ある細菌が捕集されたビーズを電極から遊離させ、分析用チャンバまで流し込み、測定および捕集していないビーズとの特性の差を見ることで、細菌を定量するものであり、工程が複雑であるという不都合がある。   However, the technique of Patent Document 1 prepares a chamber for analysis downstream of a flow path, measures in advance the dielectrophoretic characteristics of not collecting bacteria, and beads in which certain bacteria are collected Is released from the electrode, poured into the analysis chamber, and the difference in properties from beads that have not been measured and collected is quantified to quantitate the bacteria, which has the disadvantage that the process is complicated.

また、特許文献2の技術は、電極の配列方向に流動する粒子を分離するために、波形の電極形状を採用する必要があり、装置が複雑で高価になるとともに、効率的に分離することができないという不都合がある。   Further, the technique of Patent Document 2 needs to adopt a corrugated electrode shape in order to separate particles flowing in the arrangement direction of the electrodes, and the apparatus is complicated and expensive, and can be separated efficiently. There is an inconvenience that it cannot be done.

また、特許文献3の技術は、超音波のような余分のエネルギを必要とするという不都合がある。
さらに、特許文献4の技術は、2種類の周波数の電界を加える点において、複雑であるという問題がある。
Moreover, the technique of patent document 3 has the inconvenience of requiring extra energy like an ultrasonic wave.
Furthermore, the technique of Patent Document 4 has a problem that it is complicated in that electric fields of two kinds of frequencies are applied.

本発明は上述した事情に鑑みてなされたものであって、簡易な構成で、複数種類の細胞を効率的に分離することができる細胞分離装置および分離方法を提供することを目的としている。   This invention is made | formed in view of the situation mentioned above, Comprising: It aims at providing the cell separation apparatus and separation method which can isolate | separate multiple types of cells efficiently with a simple structure.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、誘電泳動特性の異なる複数種の細胞を含む細胞浮遊液を貯留する容器と、該容器内に配置される電極と、該電極の周囲に電界強度の勾配を生じさせるように電圧を加える電界制御部とを備え、前記電極に、いずれかの細胞を捕集させる細胞分離装置を提供する。
In order to achieve the above object, the present invention provides the following means.
The present invention relates to a container for storing a cell suspension containing a plurality of types of cells having different dielectrophoretic characteristics, an electrode disposed in the container, and a voltage so as to generate a gradient of electric field strength around the electrode. And a cell separation device that collects any cell on the electrode.

発明者らは、細胞の種類に応じて誘電泳動特性が異なることを見いだし、その誘電泳動特性の差に基づいて複数種の細胞を分離する技術を考案した。本発明によれば、電界制御部の作動により細胞浮遊液を貯留した容器内に配置した電極の周囲に電界強度の勾配を生じさせることにより、誘電泳動特性の差に基づく電極への捕集され易さの相違により、特定の種類の細胞を特異的に捕集することが可能となる。   The inventors have found that the dielectrophoretic characteristics differ depending on the cell type, and have devised a technique for separating a plurality of types of cells based on the difference in the dielectrophoretic characteristics. According to the present invention, an electric field strength gradient is generated around the electrode disposed in the container storing the cell suspension by the operation of the electric field control unit, thereby collecting the electrode based on the difference in dielectrophoretic characteristics. Due to the difference in ease, specific types of cells can be specifically collected.

上記発明においては、前記電界制御部が、前記電極に加える電圧の周波数を調節することとしてもよい。
このようにすることで、例えば、生細胞と死細胞では、電圧の周波数変化により、誘電泳動特性が変化する。そこで、電界制御部が電極に加える電圧の周波数を変化させることにより、細胞の誘電泳動特性の差を大きくすることができ、より確実に細胞毎に分離することが可能となる。
In the above invention, the electric field control unit may adjust a frequency of a voltage applied to the electrode.
By doing so, for example, the dielectrophoretic characteristics change between the living cells and the dead cells due to the voltage frequency change. Therefore, by changing the frequency of the voltage applied to the electrodes by the electric field control unit, the difference in dielectrophoretic characteristics of the cells can be increased, and the cells can be more reliably separated.

また、上記発明においては、前記電界制御部が、前記細胞の種類毎に誘電泳動特性の符号を異ならせるような周波数を選択することとしてもよい。
発明者らは、細胞の種類に応じて異なる誘電泳動特性が、電界の周波数の変化に応じてその符号を異ならせるように変化させられることを見いだした。このように構成することで、誘電泳動特性の符号の相違により逆方向のクーロン力が発生するので、より容易に細胞毎に分離することが可能となる。
Moreover, in the said invention, the said electric field control part is good also as selecting the frequency which changes the code | symbol of a dielectrophoretic characteristic for every kind of said cell.
The inventors have found that different dielectrophoretic properties depending on the cell type can be changed to change its sign depending on the change in frequency of the electric field. With this configuration, the Coulomb force in the reverse direction is generated due to the difference in the sign of the dielectrophoretic characteristics, so that the cells can be more easily separated from each other.

また、上記発明においては、前記電界制御部が、前記細胞の種類毎の誘電泳動特性の差が大きくなるような周波数を選択することとしてもよい。
発明者らは、細胞の種類に応じて異なる誘電泳動特性が、電界の周波数の変化に応じてその差を大きくするように変化させられることを見いだした。このように構成することで、誘電泳動特性の差により電極に引きつけられるクーロン力が相違するので、その相違を利用して細胞毎に分離することが可能となる
Moreover, in the said invention, the said electric field control part is good also as selecting the frequency from which the difference of the dielectrophoretic characteristic for every kind of said cell becomes large.
The inventors have found that different dielectrophoretic properties depending on the cell type can be changed to increase the difference according to changes in the frequency of the electric field. With this configuration, since the Coulomb force attracted to the electrode is different due to the difference in dielectrophoretic characteristics, it becomes possible to separate cells by utilizing the difference.

また、上記発明においては、前記容器内の電極の周囲に発生する電界強度の勾配方向に、前記電極と前記細胞浮遊液とを相対的に移動させる相対移動発生部を備えることとしてもよい。
このようにすることで、相対移動発生部の作動により、クーロン力の大きな細胞は電極に吸着され、クーロン力の小さい細胞は、吸着することなく相対移動させられる。これにより、細胞を種類毎に容易に分離することができる。
Moreover, in the said invention, it is good also as providing the relative movement generation | occurrence | production part which moves the said electrode and the said cell suspension liquid relatively in the gradient direction of the electric field strength generate | occur | produced around the electrode in the said container.
By doing in this way, by the operation | movement of a relative movement generation | occurrence | production part, the cell with big Coulomb force is adsorb | sucked by an electrode, and the cell with small Coulomb force is moved relatively without adsorb | sucking. Thereby, a cell can be easily isolate | separated for every kind.

また、上記発明においては、前記相対移動発生部が、前記電界強度の勾配方向に前記細胞浮遊液を流動させることとしてもよい。
このようにすることで、電極を固定し、細胞浮遊液を流動させることで、細胞浮遊液と電極とを相対的に移動させ、クーロン力の相違に基づき、細胞を種類毎に分離することができる。
また、上記発明においては、前記複数種の細胞が、少なくとも生細胞と死細胞とを含むこととしてもよい。
In the above invention, the relative movement generator may cause the cell suspension to flow in the gradient direction of the electric field strength.
In this way, by fixing the electrode and flowing the cell suspension, the cell suspension and the electrode can be moved relative to each other, and the cells can be separated according to the type of Coulomb force. it can.
In the above invention, the plurality of types of cells may include at least living cells and dead cells.

また、本発明は、誘電泳動特性の異なる複数種の細胞を含む細胞浮遊液内に配置した電極に電圧を加えて、電界強度の勾配を生じさせ、前記電極にいずれかの細胞を捕集させる細胞分離方法を提供する。
本発明によれば、細胞浮遊液内に配置した電極の周囲に電界強度の勾配を生じさせることにより、誘電泳動特性の差に基づいて、電極への捕集され易さの相違により、特定の種類の細胞を特異的に捕集することが可能となる。
In addition, the present invention applies a voltage to an electrode disposed in a cell suspension containing a plurality of types of cells having different dielectrophoretic properties, thereby generating a gradient of electric field strength, and collecting any cell on the electrode. A cell separation method is provided.
According to the present invention, by generating a gradient of the electric field strength around the electrode disposed in the cell suspension, a specific difference is caused by the difference in the ease of being collected on the electrode based on the difference in the dielectrophoretic characteristics. It becomes possible to specifically collect various types of cells.

上記発明においては、前記電極に加える電圧の周波数を調節することとしてもよい。
また、上記発明においては、前記細胞の種類毎に誘電泳動特性の符号を異ならせるような周波数を選択することとしてもよい。
また、上記発明においては、前記細胞間の誘電泳動特性の差が大きくなるような周波数を選択することとしてもよい。
In the said invention, it is good also as adjusting the frequency of the voltage applied to the said electrode.
Moreover, in the said invention, it is good also as selecting the frequency which changes the code | symbol of a dielectrophoretic characteristic for every kind of said cell.
Moreover, in the said invention, it is good also as selecting the frequency from which the difference of the dielectrophoretic characteristic between the said cells becomes large.

また、上記発明においては、前記電極の周囲に発生する電界強度の勾配方向に、前記電極と前記細胞浮遊液とを相対的に移動させることとしてもよい。
また、上記発明においては、前記電界強度の勾配方向に前記細胞浮遊液を流動させることとしてもよい。
また、上記発明においては、前記複数種の細胞が、少なくとも生細胞と死細胞とを含むこととしてもよい。
Moreover, in the said invention, it is good also as moving the said electrode and the said cell suspension liquid relatively in the gradient direction of the electric field strength which generate | occur | produces around the said electrode.
Moreover, in the said invention, it is good also as making the said cell suspension liquid flow to the gradient direction of the said electric field strength.
In the above invention, the plurality of types of cells may include at least living cells and dead cells.

本発明によれば、簡易な構成で、複数種類の細胞を効率的に分離することができるという効果を奏する。   According to the present invention, there is an effect that a plurality of types of cells can be efficiently separated with a simple configuration.

本発明の一実施形態に係る細胞分離装置1および細胞分離方法について、図1〜図7を参照して以下に説明する。
本実施形態に係る細胞分離装置1は、図1に示されるように、複数種の細胞、例えば、生細胞の中に死細胞が混在した細胞浮遊液を貯留する細胞浮遊液容器2と、該細胞浮遊液容器2に貯留された細胞浮遊液を流動させる処理槽(容器)3と、該処理槽3内に配置された電極4と、該処理槽3内において細胞浮遊液を流動させるポンプ(相対移動発生部)5と、分離された細胞を回収する2つの回収容器6,7と、細胞を含まない媒体物質を供給する媒体物質供給部8とを備えている。
A cell separation device 1 and a cell separation method according to an embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the cell separation device 1 according to the present embodiment includes a cell suspension container 2 that stores a plurality of types of cells, for example, a cell suspension in which dead cells are mixed in living cells, A treatment tank (container) 3 for flowing the cell suspension stored in the cell suspension container 2, an electrode 4 disposed in the treatment tank 3, and a pump for flowing the cell suspension in the treatment tank 3 ( (Relative movement generating unit) 5, two collection containers 6 and 7 for collecting the separated cells, and a medium substance supply unit 8 for supplying a medium substance not containing cells.

前記電極4は、図2に示されるように、複数の直棒状電極部を平行に間隔をあけて配列してなる2つの櫛歯状電極4A,4Bを、各櫛歯状電極の直棒状電極部4a,4bが交互に配置されるように配置することにより構成されている。2つの櫛歯状電極4A,4B間には交流電源9が接続され、該交流電源9には、その周波数を調節する制御部10が接続されている。   As shown in FIG. 2, the electrode 4 includes two comb-like electrodes 4A and 4B formed by arranging a plurality of straight rod-like electrode portions at intervals in parallel. It is comprised by arrange | positioning so that the parts 4a and 4b may be arrange | positioned alternately. An AC power supply 9 is connected between the two comb-like electrodes 4A and 4B, and a control unit 10 for adjusting the frequency is connected to the AC power supply 9.

電極4は、細胞浮遊液の流動方向に直交する方向に直棒状電極部4a,4bを配列するように処理槽3内に配置されている。これにより、直棒状電極部4a,4bの周囲には図3に示されるような電界強度の勾配が形成されるようになっている。図3は電界強度を等高線により示しており、電界強度は、直棒状電極部4a,4bに近いほど強く、離れる程弱くなっている。。   The electrode 4 is disposed in the treatment tank 3 so that the straight rod-like electrode portions 4a and 4b are arranged in a direction orthogonal to the flow direction of the cell suspension. As a result, a gradient of the electric field strength as shown in FIG. 3 is formed around the straight rod-like electrode portions 4a and 4b. FIG. 3 shows the electric field strength with contour lines. The electric field strength is stronger as it is closer to the straight rod-like electrode portions 4a and 4b, and is weaker as it is farther away. .

前記ポンプ5は、細胞浮遊液容器2内に貯留された細胞浮遊液を処理槽3内に供給し、処理槽3内において流動させるようになっている。流動方向は、櫛歯状電極4A,4Bを構成する各直棒状電極部4a,4bの配列方向に直交する方向(矢印Aの方向)である。   The pump 5 supplies the cell suspension stored in the cell suspension container 2 to the processing tank 3 and causes the cell suspension to flow in the processing tank 3. The flow direction is a direction (direction of arrow A) perpendicular to the arrangement direction of the straight rod-like electrode portions 4a and 4b constituting the comb-like electrodes 4A and 4B.

一方の回収容器6は、前記櫛歯状電極4A,4Bに対して、細胞浮遊液の流動方向の下流側において処理槽3に接続されている。また、他方の回収容器7は上流側に接続されている。
前記媒体物質供給部8は、図1に示されるように、処理槽3内に供給する媒体物質を貯留する媒体物質容器8aと、媒体物質を供給するポンプ8bとを備え、処理槽3内において細胞浮遊液の流動方向Aとは逆方向(矢印Bの方向)に流動させるようになっている。
One collection container 6 is connected to the treatment tank 3 on the downstream side in the flow direction of the cell suspension with respect to the comb-like electrodes 4A and 4B. The other collection container 7 is connected to the upstream side.
As shown in FIG. 1, the medium substance supply unit 8 includes a medium substance container 8 a for storing a medium substance to be supplied into the processing tank 3 and a pump 8 b for supplying the medium substance. It is made to flow in the direction opposite to the flow direction A of the cell suspension (direction of arrow B).

このように構成された本実施形態に係る細胞分離装置1を用いた細胞分離方法について、以下に説明する。
ここで、生細胞と死細胞の誘電泳動特性について説明する。ここでは、マウスハイブリドーマ3−2H3細胞を例示して説明する。
A cell separation method using the cell separation device 1 according to the present embodiment configured as described above will be described below.
Here, the dielectrophoretic characteristics of live cells and dead cells will be described. Here, mouse hybridoma 3-2H3 cells will be exemplified and described.

図4は、生細胞と死細胞の誘電泳動特性の周波数変化を示している。この図4によれば、電極に加える交流電圧の周波数が10Hz以下の領域においては、生細胞と死細胞とはほぼ同等の誘電泳動特性を有している。 FIG. 4 shows frequency changes in the dielectrophoretic characteristics of live cells and dead cells. According to FIG. 4, in the region where the frequency of the alternating voltage applied to the electrode is 10 5 Hz or less, the living cells and the dead cells have substantially the same dielectrophoretic characteristics.

しかしながら、交流電圧の周波数が10Hzを越えると、死細胞の誘電泳動特性は急激に低下し、交流電圧の周波数が10Hz近辺でほぼゼロとなるのに対し、生細胞の誘電泳動特性は、交流電圧の周波数が10Hz近辺までほぼ一定である。さらに、死細胞の誘電泳動特性は交流電圧の周波数が10Hzを越えるとさらに低下して負の値となるのに対し、生細胞の誘電泳動特性は、交流電圧の周波数が10Hzを越えると、低下するものの正の値に維持される。 However, when the frequency of the alternating voltage exceeds 10 5 Hz, the dielectrophoretic characteristics of dead cells rapidly decline, and the frequency of the alternating voltage becomes almost zero near 10 7 Hz, whereas the dielectrophoretic characteristics of living cells. The frequency of the AC voltage is substantially constant up to around 10 7 Hz. Furthermore, the dielectrophoretic properties of dead cells are further reduced to a negative value when the frequency of the AC voltage exceeds 10 7 Hz, whereas the dielectrophoretic properties of living cells are such that the frequency of the AC voltage is 10 7 Hz. Beyond that, it will decrease but remain positive.

本実施形態に係る細胞分離装置1を用いてマウスハイブイドーマ3−2H3細胞の生細胞と死細胞とを分離するには、生細胞と死細胞とを含む細胞浮遊液を細胞浮遊液容器2に貯留しておく、そして、制御部10の作動により、電極4には、例えば、周波数10Hz程度の交流電圧を加える。 In order to separate the living cells and dead cells of mouse hybridoma 3-2H3 cells using the cell separation device 1 according to the present embodiment, the cell suspension containing the living cells and the dead cells is used as the cell suspension container 2. Then, by the operation of the control unit 10, for example, an AC voltage having a frequency of about 10 7 Hz is applied to the electrode 4.

次いで、ポンプ5を作動させて、生細胞および死細胞を含む細胞浮遊液を貯留する細胞浮遊液容器2から、細胞浮遊液を処理槽3内に供給する。処理槽3内に供給された細胞浮遊液は、ポンプ5の駆動力により、電極4を構成する直棒状電極部4a,4bの配列方向に直交する方向Aに流動させられる。   Next, the pump 5 is operated to supply the cell suspension into the treatment tank 3 from the cell suspension container 2 that stores the cell suspension including live cells and dead cells. The cell suspension supplied into the treatment tank 3 is caused to flow in a direction A orthogonal to the arrangement direction of the straight rod-like electrode portions 4 a and 4 b constituting the electrode 4 by the driving force of the pump 5.

この場合において、電極4には周波数10Hz程度の交流電圧が加えられているので、各直棒状電極部4a,4bの周囲には、半径方向外方に向かって低くなる電界強度の勾配が形成されている。すなわち、直棒状電極部4a,4bの配列方向に直交する方向に流動する細胞浮遊液は、電界強度の勾配に沿う方向に流動させられることになる。 In this case, since an AC voltage having a frequency of about 10 7 Hz is applied to the electrode 4, there is a gradient of electric field strength that decreases outward in the radial direction around each of the straight rod-like electrode portions 4a and 4b. Is formed. That is, the cell suspension that flows in the direction orthogonal to the arrangement direction of the straight rod-like electrode portions 4a and 4b is caused to flow in a direction along the gradient of the electric field strength.

そして、生細胞Xはこの周波数10Hzの交流電圧が加えられた状態では、正の誘電泳動特性を有しているので、電界強度が強くなる方向、すなわち、各直棒状電極部4a,4bに向かって吸引されるクーロン力を受ける。一方、死細胞Yの誘電泳動特性は、ほぼゼロであるので、電界強度の影響を受けることなく流動させられる。 The live cell X has positive dielectrophoretic characteristics when an AC voltage having a frequency of 10 7 Hz is applied. Therefore, the direction in which the electric field strength increases, that is, the straight rod-like electrode portions 4a and 4b. Receives Coulomb force sucked toward On the other hand, since the dielectrophoretic characteristics of the dead cell Y are almost zero, it is allowed to flow without being affected by the electric field strength.

その結果、死細胞Yは直棒状電極部4a,4b間を通り抜けて流動し、生細胞Xは、各直棒状電極部4a,4bに吸着される。
したがって、死細胞Yは、直棒状電極部4a,4bに吸着されることなく、下流側に流れ、処理槽3の下流側に接続されている回収容器6に回収される。
As a result, the dead cell Y flows between the straight rod-shaped electrode portions 4a and 4b, and the living cell X is adsorbed by the respective straight rod-shaped electrode portions 4a and 4b.
Therefore, the dead cell Y flows downstream and is collected in the collection container 6 connected to the downstream side of the processing tank 3 without being adsorbed by the straight rod-like electrode portions 4 a and 4 b.

一方、生細胞Xは直棒状電極部4a,4bに吸着されて残るので、死細胞Yを回収容器6に回収した後に、媒体物質供給部8を作動させて、媒体物質を処理槽3の下流側から供給するとともに、制御部10が電極4に加えていた電圧を停止する。これにより、直棒状電極部4a,4bに吸着されていた生細胞が直棒状電極部4a,4bから剥離され、媒体物質の流れに従って、処理槽3の上流側に接続されている回収容器7に回収される。これにより、生細胞Xと死細胞Yとを容易に分離することができる。   On the other hand, since the living cells X remain adsorbed by the straight electrode portions 4 a and 4 b, after collecting the dead cells Y in the collection container 6, the medium material supply unit 8 is operated to move the medium material downstream of the treatment tank 3. While being supplied from the side, the voltage applied to the electrode 4 by the control unit 10 is stopped. As a result, the living cells adsorbed on the straight rod-like electrode portions 4a and 4b are peeled off from the straight rod-like electrode portions 4a and 4b, and are collected in the collection container 7 connected to the upstream side of the processing tank 3 according to the flow of the medium substance. To be recovered. Thereby, the living cell X and the dead cell Y can be easily separated.

なお、本実施形態においては、交流電圧の周波数を10Hzに設定して、死細胞Yの誘電泳動特性をほぼゼロに設定したが、これに代えて、交流電圧の周波数を10Hzより大きく設定してもよい。このようにすることで、死細胞Yの誘電泳動特性を負の値に設定することができる。 In this embodiment, the frequency of the AC voltage is set to 10 7 Hz and the dielectrophoretic characteristics of the dead cell Y are set to almost zero. Instead, the frequency of the AC voltage is set to 10 7 Hz. You may set large. In this way, the dielectrophoretic characteristics of the dead cell Y can be set to a negative value.

すなわち、交流電圧の周波数を10Hzより大きく設定して、細胞浮遊液を流動させると、生細胞Xは、上記と同様にして直棒状電極部4a,4bに吸着されるが、死細胞Yについては、直棒状電極部4a,4bから離れる方向に反発するクーロン力が発生する。これにより、死細胞Yは、直棒状電極部4a,4bに吸着せずに上流側に浮遊状態に維持されるので、生細胞Xを吸着した後に、媒体物質供給部8から処理槽3の下流側に媒体物質を供給することによって、死細胞Yを上流側の回収容器7に回収することができる。死細胞Yの回収後に、制御部10が直棒状電極部4a,4bに加えていた電圧を停止するとともに、媒体物質を処理槽3の上流側から供給することにより、死細胞Yから分離された生細胞Xを下流側の回収容器6に回収することができる。 That is, when the frequency of the AC voltage is set to be larger than 10 7 Hz and the cell suspension is flowed, the living cells X are adsorbed to the straight rod-like electrode portions 4a and 4b in the same manner as described above, but the dead cells Y As for, a Coulomb force repelling in a direction away from the straight rod-like electrode portions 4a and 4b is generated. Thereby, the dead cell Y is maintained in a floating state upstream without being adsorbed to the straight electrode portions 4a and 4b. Therefore, after adsorbing the live cell X, the dead cell Y is downstream of the processing tank 3 from the medium substance supply unit 8. By supplying the medium material to the side, the dead cell Y can be collected in the collection container 7 on the upstream side. After collecting the dead cells Y, the control unit 10 stopped the voltage applied to the straight rod-like electrode portions 4a and 4b, and was separated from the dead cells Y by supplying the medium substance from the upstream side of the treatment tank 3. Live cells X can be collected in the collection container 6 on the downstream side.

また、交流電圧の周波数を10Hz程度に設定することにしてもよい。このように設定すると、生細胞Xも死細胞Yもいずれも正の誘電泳動特性を有するが、その誘電泳動特性の値に差が発生する。
生細胞Xおよび死細胞Yのいずれも正の誘電泳動特性を有しているので、直棒状電極部4a,4bに吸着するクーロン力が発生する。そして、誘電泳動特性の大きさに差があるので、発生するクーロン力にも差が生ずる。
Further, the frequency of the AC voltage may be set to about 10 6 Hz. With this setting, both the living cells X and the dead cells Y have positive dielectrophoretic characteristics, but a difference occurs in the values of the dielectrophoretic characteristics.
Since both the living cell X and the dead cell Y have positive dielectrophoretic characteristics, a Coulomb force that is adsorbed to the straight rod-like electrode portions 4a and 4b is generated. And since there is a difference in the magnitude of the dielectrophoretic characteristics, a difference also occurs in the generated Coulomb force.

この場合には、直棒状電極部4a,4bに対する細胞浮遊液の流速を調節することにより、クーロン力の小さい死細胞Yについては、直棒状電極部4a,4bから引きはがして下流に押し流し、クーロン力の大きい生細胞Xについては、直棒状電極部4a,4bに吸着状態に維持されるようにする。このようにすることで、生細胞Xを直棒状電極部4a,4bに吸着状態に捕集し、死細胞Yについては下流側の回収容器6により回収することができる。そして、死細胞Yの回収後に、媒体物質を処理槽3下流側から流入させ、直棒状電極部4a,4bに加えていた電圧を停止することにより、吸着していた生細胞Xを解放して、上流側の回収容器7に回収させることができる。   In this case, by adjusting the flow rate of the cell suspension with respect to the straight rod-shaped electrode portions 4a and 4b, dead cells Y having a small Coulomb force are peeled off from the straight rod-shaped electrode portions 4a and 4b and washed downstream. The living cells X having a large force are maintained in the adsorbed state by the straight rod-like electrode portions 4a and 4b. By doing in this way, the living cell X can be collected by adsorption | suction to the straight rod-shaped electrode parts 4a and 4b, and the dead cell Y can be collect | recovered with the collection container 6 of the downstream. And after collection | recovery of the dead cell Y, let the medium substance flow in from the processing tank 3 downstream, and the living cell X which adsorb | sucked is released by stopping the voltage applied to the straight rod-shaped electrode parts 4a and 4b. And can be collected in the upstream collection container 7.

また、図4に示される生細胞Xと死細胞Yの誘電泳動特性では、両方の誘電泳動特性が負になるような交流電圧の周波数は存在しないが、仮にそのように調節できる細胞の分離を行う場合には、より誘電泳動特性の絶対値の大きな細胞には、より大きなクーロン力の反発力が発生する。したがって、細胞浮遊液の流速を調節して、より反発力の小さい細胞について直棒状電極部4a,4b間を通過させて下流側で回収し、その後、直棒状電極部4a,4bを通過できずに残った細胞を上流側の回収容器7に回収することにすればよい。   In addition, in the dielectrophoretic characteristics of the live cell X and the dead cell Y shown in FIG. 4, there is no frequency of AC voltage that makes both the dielectrophoretic characteristics negative. When performed, a repulsive force of a larger Coulomb force is generated in a cell having a larger absolute value of dielectrophoretic characteristics. Therefore, by adjusting the flow rate of the cell suspension, cells having a smaller repulsive force are allowed to pass between the straight rod-like electrode portions 4a and 4b and collected downstream, and thereafter cannot pass through the straight rod-like electrode portions 4a and 4b. What is necessary is just to collect | recover the cells which remain | survived in the collection container 7 of an upstream.

また、本実施形態においては、マウスハイブリドーマ3−2H3細胞の生細胞と死細胞を分離する場合について説明したが、これに限定されるものではなく、他の任意の細胞の生細胞と死細胞との分離に適用することにしてもよい。また、図5に示されるように、複数種の細胞毎に、誘電泳動特性の周波数変化が相違することを利用して、分離することにしてもよい。   Moreover, in this embodiment, although the case where the living cell and dead cell of mouse hybridoma 3-2H3 cell were isolate | separated was demonstrated, it is not limited to this, The living cell and dead cell of other arbitrary cells It may be applied to the separation. In addition, as shown in FIG. 5, separation may be performed by using the fact that the frequency change of the dielectrophoretic characteristics is different for each of a plurality of types of cells.

図6は、3−2H3細胞とHeLa細胞とを分離する場合であって、周波数300〜1000Hz、電圧15Vpp、細胞浮遊液の流量2mL/min、媒体物質8.5重量%スクロース+0.3重量%グルコース溶液、温度25℃の場合の電極における生細胞保持率%を示している。生細胞保持率は電極を通過した細胞浮遊液の細胞濃度W、電極を通過しなかった細胞浮遊液の細胞濃度Wとして、
/(W+W
により算出した。
FIG. 6 shows a case where 3-2H3 cells and HeLa cells are separated, and the frequency is 300 to 1000 Hz, the voltage is 15 Vpp, the flow rate of the cell suspension is 2 mL / min, the medium substance is 8.5 wt% sucrose + 0.3 wt%. The viable cell retention rate in the electrode in the case of a glucose solution and a temperature of 25 ° C. is shown. The viable cell retention rate is the cell concentration W A of the cell suspension that has passed through the electrode, and the cell concentration W B of the cell suspension that has not passed through the electrode,
W B / (W A + W B )
Calculated by

図7は、3−2H3細胞とMDCK細胞とを分離する場合であって、周波数1〜110kHz、電圧30Vpp、細胞浮遊液の流量2mL/min、媒体物質8.5重量%スクロース+0.3重量%グルコース溶液、温度25℃の場合の電極における生細胞保持率%を示している。   FIG. 7 shows a case where 3-2H3 cells and MDCK cells are separated, and the frequency is 1-110 kHz, the voltage is 30 Vpp, the flow rate of the cell suspension is 2 mL / min, the medium substance is 8.5 wt% sucrose + 0.3 wt%. The viable cell retention rate in the electrode in the case of a glucose solution and a temperature of 25 ° C. is shown.

これらの図によれば、電極に加える交流電圧の周波数変化によって、生細胞保持率が細胞毎に異なる態様で変化し、周波数によっては、生細胞保持率が大きく異なる場合があることがわかる。すなわち、そのような生細胞保持率の差の大きな周波数の交流電圧を加えることにより、細胞を種類毎に容易に分離することができる。   According to these figures, it can be seen that the viable cell retention rate varies in a different manner for each cell depending on the frequency change of the AC voltage applied to the electrode, and the viable cell retention rate may vary greatly depending on the frequency. That is, by applying an AC voltage having such a large frequency difference in viable cell retention, cells can be easily separated for each type.

なお、本実施形態においては、電極4として櫛歯状電極4A,4Bを組み合わせて構成したものを採用したがこれに限定されるものではない。
また、電極4に吸着されない負の強い誘電泳動特性を有する細胞について、処理槽3の下流側から供給した媒体物質によって上流側の回収容器7に回収することとしたが、これに代えて、電極4に通電したままで、処理槽3の上流側から媒体物質を供給し、上流側の回収容器7に回収することにしてもよい。
In the present embodiment, the electrode 4 is configured by combining the comb-like electrodes 4A and 4B. However, the present invention is not limited to this.
In addition, cells having strong negative dielectrophoretic properties that are not adsorbed by the electrode 4 are collected in the upstream collection container 7 by the medium substance supplied from the downstream side of the processing tank 3. The medium substance may be supplied from the upstream side of the processing tank 3 while being energized in the tank 4 and recovered in the upstream collection container 7.

本発明の一実施形態に係る細胞分離装置を示す模式的な全体構成図である。It is a typical whole lineblock diagram showing the cell separation device concerning one embodiment of the present invention. 図1の細胞分離装置に用いられる電極の一例を示す図である。It is a figure which shows an example of the electrode used for the cell separation apparatus of FIG. 図2の電極を構成する直棒状電極部の周囲に生ずる電界強度を等高線で示す図である。It is a figure which shows the electric field strength which arises around the straight rod-shaped electrode part which comprises the electrode of FIG. 2 with a contour line. 図1の細胞分離装置により分離する3−2H3細胞の生細胞と死細胞の誘電泳動特性の周波数変化を示すグラフである。It is a graph which shows the frequency change of the dielectrophoretic characteristic of the living cell of 3-2H3 cell isolate | separated with the cell separation apparatus of FIG. 1, and a dead cell. 細胞の種類による誘電泳動特性の相違を示す図である。It is a figure which shows the difference in the dielectrophoretic characteristic by the kind of cell. HeLa細胞と3−2H3細胞の生細胞保持率の周波数変化を示すグラフである。It is a graph which shows the frequency change of the living cell retention rate of a HeLa cell and 3-2H3 cell. MDCK細胞と3−2H3細胞の生細胞保持率の周波数変化を示すグラフである。It is a graph which shows the frequency change of the living cell retention rate of MDCK cell and 3-2H3 cell.

符号の説明Explanation of symbols

X 生細胞(細胞)
Y 死細胞(細胞)
1 細胞分離装置
3 処理槽(容器)
4 電極
4a,4b 直棒状電極部(電極)
5 ポンプ(相対移動発生部)
10 制御部(電界制御部)
X Live cells (cells)
Y Dead cell (cell)
1 Cell separator 3 Treatment tank (container)
4 Electrode 4a, 4b Straight bar electrode part (electrode)
5 Pump (relative movement generator)
10 Control unit (electric field control unit)

Claims (14)

誘電泳動特性の異なる複数種の細胞を含む細胞浮遊液を貯留する容器と、
該容器内に配置される電極と、
該電極の周囲に電界強度の勾配を生じさせるように電圧を加える電界制御部とを備え、
前記電極に、いずれかの細胞を捕集させる細胞分離装置。
A container for storing a cell suspension containing a plurality of types of cells having different dielectrophoretic properties;
An electrode disposed in the container;
An electric field control unit for applying a voltage so as to generate a gradient of electric field strength around the electrode,
A cell separation device for collecting any cell on the electrode.
前記電界制御部が、前記電極に加える電圧の周波数を調節する請求項1に記載の細胞分離装置。   The cell separation device according to claim 1, wherein the electric field control unit adjusts a frequency of a voltage applied to the electrode. 前記電界制御部が、前記細胞の種類毎に誘電泳動特性の符号を異ならせるような周波数を選択する請求項2に記載の細胞分離装置。   The cell separation apparatus according to claim 2, wherein the electric field control unit selects a frequency that varies a sign of dielectrophoretic characteristics for each type of cell. 前記電界制御部が、前記細胞の種類毎の誘電泳動特性の差が大きくなるような周波数を選択する請求項2に記載の細胞分離装置。   The cell separation device according to claim 2, wherein the electric field control unit selects a frequency at which a difference in dielectrophoretic characteristics for each cell type is large. 前記容器内の電極の周囲に発生する電界強度の勾配方向に、前記電極と前記細胞浮遊液とを相対的に移動させる相対移動発生部を備える請求項1から請求項4のいずれかに記載の細胞分離装置。   The relative movement generation | occurrence | production part which moves the said electrode and the said cell suspension liquid relatively in the gradient direction of the electric field strength generate | occur | produced around the electrode in the said container is given in any one of Claims 1-4. Cell separation device. 前記相対移動発生部が、前記電界強度の勾配方向に前記細胞浮遊液を流動させる請求項5に記載の細胞分離装置。   The cell separation device according to claim 5, wherein the relative movement generation unit causes the cell suspension to flow in a gradient direction of the electric field intensity. 前記複数種の細胞が、少なくとも生細胞と死細胞とを含む請求項1から請求項6のいずれかに記載の細胞分離装置。   The cell separation device according to any one of claims 1 to 6, wherein the plurality of types of cells include at least living cells and dead cells. 誘電泳動特性の異なる複数種の細胞を含む細胞浮遊液内に配置した電極に電圧を加えて、電界強度の勾配を生じさせ、前記電極にいずれかの細胞を捕集させる細胞分離方法。   A cell separation method in which a voltage is applied to an electrode arranged in a cell suspension containing a plurality of types of cells having different dielectrophoretic characteristics to generate a gradient of electric field strength, and any cell is collected on the electrode. 前記電極に加える電圧の周波数を調節する請求項8に記載の細胞分離方法。   The cell separation method according to claim 8, wherein a frequency of a voltage applied to the electrode is adjusted. 前記細胞の種類毎に誘電泳動特性の符号を異ならせるような周波数を選択する請求項9に記載の細胞分離方法。   The cell separation method according to claim 9, wherein a frequency is selected so that a sign of dielectrophoretic characteristics differs for each cell type. 前記細胞間の誘電泳動特性の差が大きくなるような周波数を選択する請求項9に記載の細胞分離方法。   The cell separation method according to claim 9, wherein a frequency is selected such that a difference in dielectrophoretic characteristics between the cells is large. 前記電極の周囲に発生する電界強度の勾配方向に、前記電極と前記細胞浮遊液とを相対的に移動させる請求項8から請求項11のいずれかに記載の細胞分離方法。   The cell separation method according to any one of claims 8 to 11, wherein the electrode and the cell suspension are relatively moved in a gradient direction of an electric field intensity generated around the electrode. 前記電界強度の勾配方向に前記細胞浮遊液を流動させる請求項12に記載の細胞分離方法。   The cell separation method according to claim 12, wherein the cell suspension is flowed in a gradient direction of the electric field strength. 前記複数種の細胞が、少なくとも生細胞と死細胞とを含む請求項8から請求項13のいずれかに記載の細胞分離方法。   The cell separation method according to any one of claims 8 to 13, wherein the plurality of types of cells include at least living cells and dead cells.
JP2007110562A 2007-04-19 2007-04-19 Cell separation device and cell separation method Pending JP2008263847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110562A JP2008263847A (en) 2007-04-19 2007-04-19 Cell separation device and cell separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110562A JP2008263847A (en) 2007-04-19 2007-04-19 Cell separation device and cell separation method

Publications (1)

Publication Number Publication Date
JP2008263847A true JP2008263847A (en) 2008-11-06

Family

ID=40044261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110562A Pending JP2008263847A (en) 2007-04-19 2007-04-19 Cell separation device and cell separation method

Country Status (1)

Country Link
JP (1) JP2008263847A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018497A1 (en) * 2011-07-29 2013-02-07 シャープ株式会社 Collector, separation method, and display method
WO2019239780A1 (en) * 2018-06-15 2019-12-19 富士フイルム株式会社 Cell culture method, cell culture device, and method for producing product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505545A (en) * 1996-01-31 2000-05-09 ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Separation method and apparatus using dielectrophoresis and field flow fractionation
JP2005224171A (en) * 2004-02-12 2005-08-25 Masaru Hakoda Method for analyzing dielectrophoretic activity and system therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505545A (en) * 1996-01-31 2000-05-09 ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Separation method and apparatus using dielectrophoresis and field flow fractionation
JP2005224171A (en) * 2004-02-12 2005-08-25 Masaru Hakoda Method for analyzing dielectrophoretic activity and system therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018497A1 (en) * 2011-07-29 2013-02-07 シャープ株式会社 Collector, separation method, and display method
JP2013027366A (en) * 2011-07-29 2013-02-07 Sharp Corp Collection device, separation method, and display method
WO2019239780A1 (en) * 2018-06-15 2019-12-19 富士フイルム株式会社 Cell culture method, cell culture device, and method for producing product

Similar Documents

Publication Publication Date Title
KR100624460B1 (en) A microfluidic device comprising a membrane formed with nano to micro sized pores and method for separating a polarizable material using the same
US20060201868A1 (en) Methods and devices for high-throughput dielectrophoretic concentration
Zhang et al. Interlaced CNT electrodes for bacterial fouling reduction of microfiltration membranes
Du et al. Intensification of cross-flow membrane filtration using dielectrophoresis with a novel electrode configuration
JP2011516867A5 (en)
WO2012048230A2 (en) Dielectrophoresis devices and methods therefor
US6761811B2 (en) Multi-stage separations based on dielectrophoresis
KR20150143734A (en) System and method for unipolar separation of emulsions and other mixtures
US20020139675A1 (en) Three dimensional separation trap based on dielectrophoresis
Wakizaka et al. Effect of electrode geometry on dielectrophoretic separation of cells
WO2014189959A1 (en) Systems and methods for separating metallic and nonmetallic particles in a mixed-particle suspension
WO2017141685A1 (en) Separation device
Watarai Continuous separation principles using external microaction forces
Alnaimat et al. Electromagnetic separation of heat stable salt from gas sweetening amine
JP7382072B2 (en) Deionization devices and methods for at least partially deionizing feed solutions containing dissolved electrolytes, and apparatus using such devices.
JP2008263847A (en) Cell separation device and cell separation method
US20140251813A1 (en) Bipolar electrode sample preparation devices
Molla et al. Prevention of colloidal membrane fouling employing dielectrophoretic forces on a parallel electrode array
JP5047034B2 (en) Particle separation method and separation apparatus
JP2009291097A (en) Cell culture apparatus
Liu et al. Dielectrophoresis-Based Universal Membrane Antifouling Strategy toward Colloidal Foulants
JP2011131187A (en) Separation method of electric neutral material, and separator of electric neutral material
WO2015089290A1 (en) Microscale-based device for purifying fluid and method of use
WO2007101042B1 (en) Isotopes separation and purification
JP3811404B2 (en) Dielectrophoresis filter device and method for removing suspended fine particles by dielectrophoresis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A521 Written amendment

Effective date: 20100419

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A02