JP2008263571A - Local oscillation phase noise suppression transceiver - Google Patents

Local oscillation phase noise suppression transceiver Download PDF

Info

Publication number
JP2008263571A
JP2008263571A JP2007128611A JP2007128611A JP2008263571A JP 2008263571 A JP2008263571 A JP 2008263571A JP 2007128611 A JP2007128611 A JP 2007128611A JP 2007128611 A JP2007128611 A JP 2007128611A JP 2008263571 A JP2008263571 A JP 2008263571A
Authority
JP
Japan
Prior art keywords
phase noise
phase
signal
local oscillation
noise suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007128611A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
博 鈴木
Satoshi Suyama
聡 須山
Kazuhiko Fukawa
和彦 府川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2007128611A priority Critical patent/JP2008263571A/en
Publication of JP2008263571A publication Critical patent/JP2008263571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transceivers (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transceiver capable of accomplishing a modulation/demodulation scheme that is highly reliable even in an environment with much local oscillation phase noises. <P>SOLUTION: At least any one of either a local oscillation signal phase noise suppressor or a phase noise suppression demodulator is included and in the local oscillation signal phase noise suppressor, phase control is performed, by predicting phase noise, on a local oscillation signal containing phase noise outputted from a local oscillator. While using the phase noise suppressed local oscillation signal, a quadrature modulator performs quadrature modulation or a quadrature demodulator performs quadrature demodulation. Furthermore, in the phase noise suppression demodulator, for a baseband receiving signal of an OFDM signal temporally varied by phase noise and fading, a channel response containing phase noise is estimated by digital signal processing using a scattered pilot signal, and signal detection is performed by suppressing carrier interference that occurs in the OFDM signal, by predicting the temporal variation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,局部発振位相雑音を抑圧する送受信機に関するものである.  The present invention relates to a transceiver that suppresses local oscillation phase noise.

一般に,無線機器では情報を担うベースバンド信号を高周波である無線周波数バンドに変換する必要がある.そのため,無変調の高周波キャリア信号が必要である.このキャリア信号は局部発振器を用いて生成しているので局部発振信号と呼ばれている.ベースバンド信号と局部発振信号とを用いて直交変調器により得られる変調された信号のキャリア成分は正弦波であり,その周波数はキャリア周波数と呼ばれており,局部発振信号の周波数に等しい.キャリア成分の周波数と位相は局部発振信号に直接関係している.  In general, in wireless devices, it is necessary to convert the baseband signal carrying information into a radio frequency band that is a high frequency. Therefore, an unmodulated high frequency carrier signal is necessary. Since this carrier signal is generated using a local oscillator, it is called a local oscillation signal. The carrier component of the modulated signal obtained by the quadrature modulator using the baseband signal and the local oscillation signal is a sine wave, and its frequency is called the carrier frequency, which is equal to the frequency of the local oscillation signal. The frequency and phase of the carrier component are directly related to the local oscillation signal.

また,無線通信においては無線周波数帯域が逼迫しており,より高い周波数の周波数帯域を目指して伝送方式の研究開発が行われている.さらに,近年の微細加工技術の進展に伴って,CMOS−RF集積化による無線機器の小形化,低価格化が進んでいる.しかしながら,これらの高周波化やシリコンCMOSなどによる集積化によって,一般に局部発振器の位相雑音が増大し,変調された信号のキャリア位相変動が増大してしまうという問題がある.  In wireless communication, the radio frequency band is tight, and research and development of transmission methods are being conducted aiming at a higher frequency band. Furthermore, along with the recent progress of microfabrication technology, miniaturization and cost reduction of wireless devices by CMOS-RF integration are progressing. However, these high frequency integration and silicon CMOS integration generally increase the phase noise of the local oscillator and increase the carrier phase fluctuation of the modulated signal.

従来,局部発振位相雑音を抑圧するために,局部発振器のデバイスの改良が行われてきた.例えば,(i)発振器に用いる増幅器の利得が高いものを用いる,(ii)増幅器の雑音指数の小さいものを用いる,(iii)半導体材料を工夫する,(iv)集積プロセスの工夫をする,(v)バイポーラ等の雑音の小さい素子構造を採用する,(vi)共振回路のQが高いものを用いる,(vii)逓倍法を用いるなどが挙げられる.  Conventionally, local oscillator devices have been improved to suppress local oscillation phase noise. For example, (i) a high gain amplifier used in an oscillator is used, (ii) a low noise figure of the amplifier is used, (iii) a semiconductor material is devised, (iv) an integration process is devised ( v) Employing a low noise element structure such as bipolar, (vi) using a resonant circuit having a high Q, (vii) using a multiplication method, and the like.

ところで,無線通信においてマルチパスにより多数の遅延波が発生するフェージング環境においても,高信頼な高速信号伝送を実現する伝送方式としてOFDM(直交周波数分割多重)が注目されている.さらに,複数の送受信アンテナを利用して信号を空間分割多重する伝送方式であるMIMO(マルチインプット・マルチアウトプット)とOFDMとを組み合わせMIMO−OFDM方式がある.これらのOFDMに基づいた伝送方式では,IFFTによりマルチキャリア伝送が実現されており,受信機においてFFTにより復調処理を行う.  By the way, OFDM (Orthogonal Frequency Division Multiplexing) is attracting attention as a transmission method that realizes high-speed signal transmission with high reliability even in fading environments where multiple delay waves are generated by multipath in wireless communication. Furthermore, there is a MIMO-OFDM system that combines OFDM (multi-input / multi-output), which is a transmission system that spatially multiplexes signals using multiple transmitting and receiving antennas, and OFDM. In these transmission systems based on OFDM, multi-carrier transmission is realized by IFFT, and demodulation processing is performed by FFT at the receiver.

しかしながら,これらの伝送方式を局部発振器による位相雑音が大きい環境で利用すると,位相雑音によりFFT周期内において受信信号の位相変動が増大してしまうため,サブキャリア間でキャリア間干渉(ICI)が発生し,伝送特性が劣化する.このように,OFDMではマルチキャリア化により位相雑音の影響が顕著になるため,局部発振位相雑音を抑圧する技術が必要不可欠である.  However, if these transmission systems are used in an environment where the phase noise of the local oscillator is large, the phase fluctuation of the received signal increases within the FFT period due to the phase noise, causing intercarrier interference (ICI) between subcarriers. However, transmission characteristics deteriorate. As described above, in OFDM, the effect of phase noise becomes significant due to the multi-carrier, so a technique to suppress local oscillation phase noise is indispensable.

無線周波数の高周波化に伴い移動通信や無線LANにおいても4GHz以上のキャリア周波数へ高周波化の検討が進められている.さらに,近距離な超高速無線回線を実現するため,60GHz帯のミリ波周波数の検討も進められている.しかしながら,これらの高周波化に伴って,一般に局部発振器の位相雑音が増大し,変調された信号のキャリア位相変動が増大する.例えば,ミリ波帯で用いられる局部発振器の位相雑音スペクトル電力は,そのキャリア周波数からのオフセット周波数を100kHzとすると,60GHzのミリ波帯においては局部発振信号電力に対して,−70ないし−90dBc/Hz程度であり,そのスペクトルは1/fないし1/f特性を示している(fは周波数).また,近年のCMOS−RF集積化に伴ってその位相雑音は更に増加する傾向にある.Along with the increase in radio frequency, mobile communication and wireless LAN are also being studied to increase the carrier frequency to 4 GHz or higher. In addition, in order to realize a short-distance ultra-high-speed wireless link, studies on millimeter-wave frequencies in the 60 GHz band are also underway. However, with these higher frequencies, the phase noise of the local oscillator generally increases and the carrier phase fluctuation of the modulated signal increases. For example, the phase noise spectrum power of the local oscillator used in the millimeter wave band is −70 to −90 dBc / with respect to the local oscillation signal power in the millimeter wave band of 60 GHz, assuming that the offset frequency from the carrier frequency is 100 kHz. Its spectrum is about 1 Hz, and its spectrum shows 1 / f 2 to 1 / f characteristics (f is frequency). In addition, with the recent CMOS-RF integration, the phase noise tends to increase further.

このように位相雑音が増大すると,一般に受信側で信号判定に用いられる受信信号において位相変動が増大し,伝送特性が大幅に劣化する.特に,多値QAM等の高能率変調方式を実現する上で非常に問題となる.また,OFDMではマルチキャリア化によりシンボル長が相対的に長くなるため,位相雑音の影響が顕著になり,ICIが発生して伝送特性が著しく劣化する.さらに,MIMO−OFDMではその影響が非常に深刻な問題となる.  When the phase noise increases in this way, the phase fluctuation increases in the received signal that is generally used for signal determination on the receiving side, and the transmission characteristics deteriorate significantly. In particular, it becomes a serious problem in realizing high-efficiency modulation such as multi-level QAM. In OFDM, since the symbol length becomes relatively long due to the multi-carrier, the influence of phase noise becomes remarkable, ICI occurs and the transmission characteristics deteriorate significantly. In addition, the effect of MIMO-OFDM becomes a very serious problem.

本発明は,このような課題に鑑みてなされたものであり,局部発振信号に対して位相を制御することで局部発振信号における位相雑音成分を抑圧し,さらに,ベースバンド信号処理により受信信号における位相雑音成分を予測して抑圧することで,局部発振位相雑音が大きい環境においても高信頼な変復調方式を実現する局部発振位相雑音抑圧送受信機を提供することを目的とする.  The present invention has been made in view of such problems, and suppresses the phase noise component in the local oscillation signal by controlling the phase with respect to the local oscillation signal, and further, in the received signal by baseband signal processing. An object of the present invention is to provide a local oscillation phase noise suppression transmitter / receiver that realizes a highly reliable modulation / demodulation method even in an environment with large local oscillation phase noise by predicting and suppressing the phase noise component.

本発明の位相雑音抑圧送受信機は,送受信に用いる局部発振信号に対して位相を制御することで位相雑音抑圧を行う局部発振信号位相雑音抑圧器と,局部発振信号を用いてベースバンド信号に周波数変換したOFDM信号の受信信号に対して,位相雑音の時間変動によって発生するICIを抑圧して信号検出を行う位相雑音抑圧復調器との少なくともいずれか一方を有することにより上述目的は達成される.  The phase noise suppression transmitter / receiver according to the present invention includes a local oscillation signal phase noise suppressor that performs phase noise suppression by controlling the phase of a local oscillation signal used for transmission and reception, and a baseband signal using a local oscillation signal. The above object is achieved by including at least one of a phase noise suppression demodulator that suppresses the ICI generated by the temporal fluctuation of the phase noise for the received signal of the converted OFDM signal and performs signal detection.

また,本発明の上述目的は,局部発振信号位相雑音抑圧器が,局部発振信号の一定時間間隔におけるキャリア位相差分を検出する位相差分検出器と,検出されたキャリア位相差分系列を用いて局部発振信号のキャリア位相を予測する位相予測器と,予測されたキャリア位相により局部発振信号の予測されたキャリア位相を打ち消す制御を行う位相制御器とから構成されることにより,或いは,局部発振信号位相雑音抑圧器が,局部発振信号のキャリア位相を制御する位相制御器と,位相制御器出力の一定時間間隔におけるキャリア位相差分を検出する位相差分検出器と,検出されたキャリア位相差分系列を用いて次の時点のキャリア位相差分を予測するキャリア位相差分予測器と,予測されたキャリア位相差から局部発振信号のキャリア位相を予測するキャリア位相予測器とから構成され,上記位相制御器は,位相差分の積分値が0になるように位相を制御することにより,或いは,位相雑音抑圧復調器が,時間領域における受信信号をフーリエ変換し,周波数領域における受信信号に変換するFFT器と,周波数領域における受信信号に対して,スキャッタードパイロットパイロット信号を用いてチャネル推定し,その推定値を補間することで位相雑音を含んだチャネルの周波数応答を推定する位相雑音予測チャネル推定器と,周波数領域における受信信号と,推定された周波数応答とを用いて同期検波を行う同期検波器とを有することにより,或いは,位相雑音抑圧復調器において,上記同期検波器で検出した判定値を用いて,データが挿入されているサブキャリアにおいても上記位相雑音予測チャネル推定器により判定指向形チャネル推定を行い,位相雑音を含んだチャネルの周波数応答の推定精度を向上することにより,或いは,位相雑音抑圧復調器が,上記同期検波器で検出した軟判定値から誤り訂正復号を行い,符号化されたビットの対数尤度比を出力するMAP復号器と,MAP復号器で出力される対数尤度比を用いて,位相雑音を含んだチャネルのインパルス応答を推定する位相雑音予測ソフト判定指向形チャネル推定器と,その推定値と対数尤度比を用いて位相雑音により発生するICIを除去するICIレプリカ生成器と,受信信号からICIレプリカを除去した信号を最適合成すると共に,フーリエ変換を行う最適検出フィルタと,上記最適検出フィルタの出力信号を軟判定検出するMAP検出器とも有することにより一層効果的に達成される.  In addition, the above-described object of the present invention is that the local oscillation signal phase noise suppressor uses the phase difference detector that detects the carrier phase difference at a constant time interval of the local oscillation signal and the detected carrier phase difference series to locally oscillate. A phase predictor that predicts the carrier phase of the signal and a phase controller that performs control to cancel the predicted carrier phase of the local oscillation signal based on the predicted carrier phase; The suppressor includes a phase controller that controls the carrier phase of the local oscillation signal, a phase difference detector that detects a carrier phase difference at a constant time interval of the phase controller output, and a detected carrier phase difference sequence. A carrier phase difference predictor that predicts the carrier phase difference at the time of The phase controller controls the phase so that the integral value of the phase difference becomes zero, or the phase noise suppression demodulator receives the received signal in the time domain. An FFT unit that performs Fourier transform and converts the received signal in the frequency domain, and channel estimation is performed on the received signal in the frequency domain using a scattered pilot pilot signal, and phase noise is included by interpolating the estimated value. A phase noise prediction channel estimator that estimates the frequency response of the channel and a synchronous detector that performs synchronous detection using the received signal in the frequency domain and the estimated frequency response, or phase noise suppression In the demodulator, using the decision value detected by the synchronous detector, even in the subcarrier in which the data is inserted The decision-directed channel estimation is performed by the phase noise prediction channel estimator, and the estimation accuracy of the frequency response of the channel including the phase noise is improved, or the phase noise suppression demodulator is detected by the synchronous detector. MAP decoder that performs error correction decoding from soft decision value and outputs log-likelihood ratio of encoded bit, and uses log likelihood ratio output from MAP decoder, for channel including phase noise Phase noise prediction software decision-directed channel estimator for estimating impulse response, ICI replica generator for removing ICI generated by phase noise using the estimated value and log-likelihood ratio, and removing ICI replica from received signal An optimum detection filter for performing a Fourier transform, and a MAP detector for softly detecting the output signal of the optimum detection filter, It is achieved more effectively by having also.

本発明は,以下に記載されるような効果を奏する.
請求項1記載の発明である局部発振位相雑音抑圧送受信機によれば,局部発振信号に対して位相を制御することで局部発振信号における位相雑音成分を抑圧し,さらに,ベースバンド信号処理により受信信号における位相雑音成分を予測して抑圧することで,位相雑音を抑圧する高信頼な変復調方式を実現でき,局部発振位相雑音が比較的大きな環境においても1Hzあたりの情報量が多い多値変調及びMIMO−OFDMなどの伝送方式を用いることができる.
The present invention has the following effects.
According to the local oscillation phase noise suppression transceiver according to the first aspect of the invention, the phase noise component in the local oscillation signal is suppressed by controlling the phase of the local oscillation signal, and further received by baseband signal processing. By predicting and suppressing the phase noise component in the signal, it is possible to realize a highly reliable modulation / demodulation method that suppresses the phase noise. Even in an environment where the local oscillation phase noise is relatively large, multi-level modulation and a large amount of information per 1 Hz Transmission schemes such as MIMO-OFDM can be used.

以下,本発明を実施するための最良の形態について図面を参照して説明する.  The best mode for carrying out the present invention will be described below with reference to the drawings.

図1〜図5は発明を実施する形態の一例であって,図中の同一の名称を付した部分は同一物を表わしている.
まず,局部発振位相雑音抑圧送受信機に係る第1の発明を実施するための最良の形態について説明する.図1に局部発振位相雑音抑圧送受信機の機能構成を示す.送信ベースバンド信号処理回路4で生成されたベースバンド送信信号のI成分とQ成分は,直交変調器5により直交変調されることで無線周波数(RF)に変換されて,変調された信号として出力される.変調された信号は,送信RF回路6によりフィルタリング,電力増幅等が行われ,アンテナ共用器7を通過してアンテナ8から送信される.直交変調器5で変調に用いられるキャリア信号として,局部発振信号位相雑音抑圧器2により局部発振器1の局部発振信号から位相雑音が抑圧された局部発振信号と,その信号を90度位相器3により位相を90度回転した信号とを用いる.局部発振信号位相雑音抑圧器2については以降で詳述する.なお,図1ではベースバンド信号からRF信号に,或いは,RF信号からベースバンド信号に直接周波数変換を行う構成を示したが,IF信号に変換してから二段階により周波数変換を行う構成についても本発明は適用できる.また,IF信号に変換する処理を送信ベースバンド信号処理回路4で,IF信号から変換する処理を受信ベースバンド信号処理回路11でディジタル信号処理により実現する構成についても本発明は適用できる.
1 to 5 are examples of embodiments for carrying out the invention, and the parts with the same names in the figures represent the same items.
First, the best mode for carrying out the first invention related to the local oscillation phase noise suppression transceiver will be described. Figure 1 shows the functional configuration of the local oscillation phase noise suppression transceiver. The I component and the Q component of the baseband transmission signal generated by the transmission baseband signal processing circuit 4 are orthogonally modulated by the orthogonal modulator 5 to be converted into a radio frequency (RF) and output as a modulated signal. It is done. The modulated signal is subjected to filtering, power amplification and the like by the transmission RF circuit 6, and is transmitted from the antenna 8 through the antenna duplexer 7. As a carrier signal used for modulation by the quadrature modulator 5, a local oscillation signal in which phase noise is suppressed from a local oscillation signal of the local oscillator 1 by the local oscillation signal phase noise suppressor 2, and the signal by the 90 ° phase shifter 3. The signal with the phase rotated 90 degrees is used. The local oscillation signal phase noise suppressor 2 will be described in detail later. Although FIG. 1 shows a configuration in which frequency conversion is performed directly from a baseband signal to an RF signal, or from an RF signal to a baseband signal, a configuration in which frequency conversion is performed in two stages after conversion to an IF signal is also possible. The present invention is applicable. The present invention can also be applied to a configuration in which processing for conversion to IF signals is realized by digital signal processing in the transmission baseband signal processing circuit 4 and processing for conversion from IF signals is performed in the reception baseband signal processing circuit 11.

局部発振位相雑音抑圧送受信機における受信処理は,アンテナ8で受信されたRF受信信号はアンテナ共用器7により受信RF回路9に入力される.このようにアンテナ共用器7は,受信信号が送信回路側に漏れ込まないように,また,送信信号が受信回路側に漏れ込まないように設計される.なお,送信と受信を時間分割するTDD方式では,アンテナ共用器7はサキュレータにより実現され,周波数分割するFDD方式では,バンドパスフィルタにより実現される.受信RF回路9によりフィルタリング,電力増幅等が行われた受信RF信号は,直交復調器10によりベースバンド受信信号に変換された後,位相雑音抑圧復調器12を有する受信ベースバンド信号処理回路11により信号判定され,受信ビット系列が決定する.なお,送信処理と同様に,直交復調器10は,局部発振信号位相雑音抑圧器で生成された位相雑音が抑圧された局部発振信号と,その信号を90度位相器3により位相を90度回転した信号とを用いて,RFからベースバンドに受信信号を変換する.また,位相雑音抑圧復調器12は,ディジタル信号処理によりフェージングと位相雑音による受信信号の時間変動に追従し,位相雑音を抑圧して信号検出を行う.位相雑音抑圧復調器12については以降で詳述する.なお,位相雑音抑圧復調器12で行われないAGC,AFC,タイミング再生,フレーム同期等の信号検出に必要な処理は受信ベースバンド信号処理回路11において行われるとする.  In the reception processing in the local oscillation phase noise suppression transmitter / receiver, the RF reception signal received by the antenna 8 is input to the reception RF circuit 9 by the antenna duplexer 7. Thus, the antenna duplexer 7 is designed so that the reception signal does not leak into the transmission circuit side and the transmission signal does not leak into the reception circuit side. In the TDD scheme in which transmission and reception are time-divided, the antenna duplexer 7 is realized by a circulator, and in the FDD scheme in which frequency division is performed, it is realized by a band-pass filter. The received RF signal subjected to filtering, power amplification and the like by the reception RF circuit 9 is converted into a baseband reception signal by the quadrature demodulator 10 and then received by the reception baseband signal processing circuit 11 having the phase noise suppression demodulator 12. The signal is judged and the received bit sequence is determined. Similarly to the transmission processing, the quadrature demodulator 10 rotates the phase of the local oscillation signal, which is generated by the local oscillation signal phase noise suppressor, with the phase noise suppressed by 90 degrees and the phase shifter 3 by 90 degrees. The received signal is converted from RF to baseband. The phase noise suppression demodulator 12 follows the time variation of the received signal due to fading and phase noise by digital signal processing, and detects the signal by suppressing the phase noise. The phase noise suppression demodulator 12 will be described in detail later. It is assumed that processing necessary for signal detection, such as AGC, AFC, timing recovery, and frame synchronization, which is not performed by the phase noise suppression demodulator 12, is performed by the reception baseband signal processing circuit 11.

すなわち,本発明の局部発振位相雑音抑圧送受信機は,局部発振信号位相雑音抑圧器2と,位相雑音抑圧復調器12とにより,位相雑音を抑圧し,位相雑音に対して優れた耐性を持った送受信機を実現する.また,局部発振信号位相雑音抑圧器2と位相雑音抑圧復調器12の両方を用いなくても,少なくともいずれか一方により位相雑音を抑圧できる.  That is, the local oscillation phase noise suppression transmitter / receiver of the present invention suppresses the phase noise by the local oscillation signal phase noise suppressor 2 and the phase noise suppression demodulator 12, and has excellent resistance to the phase noise. Realize transceiver. Further, the phase noise can be suppressed by at least one of them without using both the local oscillation signal phase noise suppressor 2 and the phase noise suppression demodulator 12.

以上のことから,本発明を実施するための最良の形態によれば,局部発振器の局部発振信号に発生する位相雑音を,局部発振信号位相雑音抑圧器2により抑圧し,位相雑音が抑圧された局部発振信号により送受信処理を行うことができ,さらに,最終的に信号を検出する受信ベースバンド信号処理において,位相雑音抑圧復調器12により位相雑音を抑圧することで,位相雑音に対して優れた耐性を持った送受信機を実現することができる.  From the above, according to the best mode for carrying out the present invention, the phase noise generated in the local oscillation signal of the local oscillator is suppressed by the local oscillation signal phase noise suppressor 2, and the phase noise is suppressed. Transmission / reception processing can be performed using a local oscillation signal. Furthermore, in reception baseband signal processing for finally detecting a signal, the phase noise is suppressed by the phase noise suppression demodulator 12, which is excellent for phase noise. A transceiver with tolerance can be realized.

次に,局部発振位相雑音抑圧送受信機に係る第2と第3の発明を実施するための最良の形態について説明する.図2に局部発振位相雑音抑圧器の機能構成1を示す.局部発振信号入力端子13から局部発振信号c(t)が入力される.c(t)には位相雑音φ(t)があり
c(t)=cos[2πft+φ(t)] (1)
のように表される.ただし,fはキャリア周波数である.以下では説明を簡単にするためにc(t)の振幅は上式に示すように1とする.上式は余弦波であるが,正弦波でも当然以下の説明は成立する.また,振幅がリミッターで制限された矩形波のような波形でも,以下の記述は位相に関する作用が本質なので,同様に成立する.
Next, the best mode for carrying out the second and third aspects of the local oscillation phase noise suppression transceiver will be described. Figure 2 shows the functional configuration 1 of the local oscillation phase noise suppressor. A local oscillation signal c (t) is input from the local oscillation signal input terminal 13. c (t) has phase noise φ (t) c (t) = cos [2πf c t + φ (t)] (1)
It is expressed as Where f c is the carrier frequency. In the following, for simplicity of explanation, the amplitude of c (t) is set to 1 as shown in the above equation. The above equation is a cosine wave, but the following explanation is naturally valid for a sine wave. In addition, the following description holds true even for a waveform such as a rectangular wave whose amplitude is limited by a limiter, since the following description is essential for phase.

局部発振信号は位相差分検出器14に入力される.この検出器の構成には種々のものが考えられるが,遅延検波型の実現が最も容易である.すなわち
u(t)=2LPF[c(t)c(t−T)] (2)
のように,c(t)とこれを遅延時間Tだけ遅延させたc(t−T)との乗積をとり低周波成分を低域フィルタLPFで抽出する.このとき
u(t)=cos[2πf+φ(t)−φ(t−T)] (3)
となる.Tを調整して,2πf=π/2+nπとなるように設定する.nが0のときの遅延検波はクオドレチャ検波と呼ばれている.nが一般に整数のとき
u(t)=sin[φ(t)−φ(t−T)] (4)
となる.Tが小さければ,位相差分φ(t)−φ(t−T)が小さいので,さらに,φ(t)の微分係数φ′(t)を用いて以下のように近似でき,位相差分信号が得られる.
u(t)=φ(t)−φ(t−T)=Tφ′(t) (5)
これが位相差分検出器14の出力となる.
The local oscillation signal is input to the phase difference detector 14. Various configurations of this detector are conceivable, but the delay detection type is most easily realized. That is, u (t) = 2LPF [c (t) c (t−T d )] (2)
As shown, the product of c (t) and c (t−T d ) obtained by delaying this by the delay time T d is taken and the low frequency component is extracted by the low pass filter LPF. In this case u (t) = cos [2πf c T d + φ (t) -φ (t-T d)] (3)
It becomes. Adjust T d to set 2πf c T d = π / 2 + nπ. Delay detection when n is 0 is called quadrature detection. When n is generally an integer, u (t) = sin [φ (t) −φ (t−T d )] (4)
It becomes. If T d is small, the phase difference φ (t) −φ (t−T d ) is small, and can be approximated as follows using the differential coefficient φ ′ (t) of φ (t). A signal is obtained.
u (t) = φ (t) −φ (t−T d ) = T d φ ′ (t) (5)
This is the output of the phase difference detector 14.

位相差分検出器14の出力u(t)は,次に位相予測器15に入力される.積分の結果
ν(t)=T[φ(t)−φ(0)] (6)
となる.すなわち,積分出力は位相雑音成分に比例している.そこでv(t)を1/T倍して,位相制御器16によりc(t)の位相を制御すれば,位相雑音を抑圧することができる.以上の説明では単に積分によりφ(t)を導出したが,適当な時間間隔で位相差分信号をサンプリングして,その位相差分系列から,ディジタル信号処理による線形予測の方法を適用すれば,計算量を削減して予測をすることが可能である.位相制御器16には一般に位相変調で用いられる直交変調器を用いれば良い.そのとき,
cp(t)=cos[2πft+φ(t)−kν(t)] (7)
となる.ここで,kは予め設定された定数である.上式では,k=1/Tとすれば,位相雑音φ(t)を完全に削除することができる.kの値に誤差があると位相雑音を完全には打ち消すことができないが,大幅に抑圧できる.φ(0)は不確定誤差となるが,一定であり,信号伝送において特に問題にはならない.
The output u (t) of the phase difference detector 14 is then input to the phase predictor 15. Integration result ν (t) = T d [φ (t) −φ (0)] (6)
It becomes. In other words, the integral output is proportional to the phase noise component. Therefore, if v (t) is multiplied by 1 / Td and the phase of the c (t) is controlled by the phase controller 16, the phase noise can be suppressed. In the above description, φ (t) is simply derived by integration. However, if a phase difference signal is sampled at an appropriate time interval and a linear prediction method based on digital signal processing is applied from the phase difference sequence, the amount of calculation is increased. Can be predicted. As the phase controller 16, a quadrature modulator generally used for phase modulation may be used. then,
cp (t) = cos [2πf c t + φ (t) −kν (t)] (7)
It becomes. Here, k is a preset constant. In the above equation, if k = 1 / Td , the phase noise φ (t) can be completely eliminated. If there is an error in the value of k, the phase noise cannot be completely canceled, but it can be greatly suppressed. φ (0) is an indeterminate error, but it is constant and is not a problem in signal transmission.

上述の方法では位相雑音を抑圧する精度がkの設定の精度に依存していた.次に述べる図3の方法によれば,その抑圧精度を更に向上させることができる.図3に局部発振位相雑音抑圧器の機能構成2を示す.位相予測器15の出力がθ(t)であるとする.このとき位相制御器16の出力は
cp(t)=cos[2πft+φ(t)−θ(t)] (8)
となる.従って,位相差分検出器14の出力は
u(t)=φ(t)−θ(t)−φ(t−T)+θ(t−T)=T[φ′(t)−θ′(t)] (9)
となる.この位相差分を位相差分予測器15Aで積分すると
ν(t)=T[φ(t)−θ(t)]−T[φ(0)−θ(0)] (10)
となる.なお,v(0)=0である.v(t)は固定位相[φ(0)−θ(0)]を除けば,実際のキャリア位相φ(t)と予測されたキャリア位相θ(t)との差分に比例する.そこで,固定位相の直流成分を除いて変動分の誤差が0になるように位相制御器16を制御すれば,徐々に誤差が0に収束する.この場合,Tの正確な値に応じて位相制御器16を制御するわけではないので,機器の設計精度が緩和される.また,適当な時間間隔でサンプリングして,ディジタル信号処理を適用すれば,精度が高く,計算量の少ない制御が可能になる.
In the above method, the accuracy of suppressing the phase noise depends on the accuracy of setting k. According to the method of FIG. 3 described below, the suppression accuracy can be further improved. Figure 3 shows the functional configuration 2 of the local oscillation phase noise suppressor. Assume that the output of the phase predictor 15 is θ (t). At this time, the output of the phase controller 16 is cp (t) = cos [2πf c t + φ (t) −θ (t)] (8)
It becomes. Therefore, the output of the phase difference detector 14 is u (t) = φ (t) −θ (t) −φ (t−T d ) + θ (t−T d ) = T d [φ ′ (t) −θ '(T)] (9)
It becomes. When this phase difference is integrated by the phase difference predictor 15A, ν (t) = T d [φ (t) −θ (t)] − T d [φ (0) −θ (0)] (10)
It becomes. Note that v (0) = 0. v (t) is proportional to the difference between the actual carrier phase φ (t) and the predicted carrier phase θ (t), except for the fixed phase [φ (0) −θ (0)]. Therefore, if the phase controller 16 is controlled so that the error of the fluctuation becomes 0 except for the DC component of the fixed phase, the error gradually converges to 0. In this case, since the phase controller 16 is not controlled according to the exact value of Td , the design accuracy of the device is relaxed. In addition, if sampling is performed at an appropriate time interval and digital signal processing is applied, control with high accuracy and low computational complexity becomes possible.

また,図2と図3に示した局部発振位相雑音抑圧器2では,位相制御器16により局部発振信号の位相を制御しているが,図1のように局部発振器1の制御用入力電圧を制御することで局部発振信号の位相を制御しても良い.あるいは,送信ベースバンド信号処理回路4によって生成されたベースバンド送信信号の位相を,局部発振信号の位相雑音を抑圧するように制御しても良い.  Further, in the local oscillation phase noise suppressor 2 shown in FIGS. 2 and 3, the phase controller 16 controls the phase of the local oscillation signal, but the control input voltage of the local oscillator 1 is changed as shown in FIG. The phase of the local oscillation signal may be controlled by controlling. Alternatively, the phase of the baseband transmission signal generated by the transmission baseband signal processing circuit 4 may be controlled so as to suppress the phase noise of the local oscillation signal.

以上のことから,本発明を実施するための最良の形態によれば,局部発振器の局部発振信号に発生する位相雑音を予測し,その予測した位相雑音を抑圧するように局部発振信号の位相を制御することで位相雑音を抑圧できる.  From the above, according to the best mode for carrying out the present invention, the phase noise generated in the local oscillation signal of the local oscillator is predicted, and the phase of the local oscillation signal is adjusted so as to suppress the predicted phase noise. Control can suppress phase noise.

さらに,局部発振位相雑音抑圧送受信機に係る第4,第5,第6の発明を実施するための最良の形態について説明する.以降では,OFDMについてのみ説明を行うが,本発明はOFDMをベースとしたOFDMAやMC−CDMA等のマルチキャリア伝送方式,ガードインターバル(サイクリックプレフィックス)を用いる周波数領域等化を前提にするシングルキャリア伝送方式,及び,それらをMIMO化した伝送方式に対して適用することができる.ここでは,誤り訂正符号化されたデータ系列がOFDMにより送信されているとする.図4に位相雑音抑圧復調器の機能構成を示す.以下では,位相雑音抑圧復調器12を復調器12と呼ぶこととする.ベースバンド受信信号入力端子18から入力された受信信号は,受信ベースバンド信号処理回路11における復調器12等で処理されて受信ビット出力端子29から出力される.図4のように復調器は,受信信号入力端子18に接続されたGI除去器19と,同期検波ユニット23と,ターボICIキャンセルユニット32と,ユニット切り換えスイッチ24と,デインタリーバ25と,最大事後確率(MAP)復号器26と,対数尤度比(LLR)減算器30と,インリーバ31と,判定器27と,受信ビット出力端子29に接続されるCRC復号器28とから構成される.  Furthermore, the best mode for carrying out the fourth, fifth and sixth inventions related to the local oscillation phase noise suppression transceiver will be described. In the following, only OFDM will be described, but the present invention is based on OFDM based multi-carrier transmission schemes such as OFDMA and MC-CDMA, and single carrier assuming frequency domain equalization using a guard interval (cyclic prefix). It can be applied to transmission systems and transmission systems that have made them MIMO. Here, it is assumed that a data sequence encoded with error correction is transmitted by OFDM. Figure 4 shows the functional configuration of the phase noise suppression demodulator. Hereinafter, the phase noise suppression demodulator 12 is referred to as a demodulator 12. The reception signal input from the baseband reception signal input terminal 18 is processed by the demodulator 12 or the like in the reception baseband signal processing circuit 11 and output from the reception bit output terminal 29. As shown in FIG. 4, the demodulator includes a GI remover 19 connected to the reception signal input terminal 18, a synchronous detection unit 23, a turbo ICI cancellation unit 32, a unit changeover switch 24, a deinterleaver 25, and a maximum a posteriori. It consists of a probability (MAP) decoder 26, a log likelihood ratio (LLR) subtractor 30, an inleaver 31, a determiner 27, and a CRC decoder 28 connected to the received bit output terminal 29.

復調器12は,ユニット切り換えスイッチ24が同期検波ユニット23に接続され,同期検波ユニット23により初回の受信処理を行う.以降では,この処理を初回処理と呼ぶ.同期検波ユニット23はGI除去器19と,FFT器20と,位相雑音予測チャネル推定器21と,同期検波器22とから構成される.まず,同期検波ユニット23はGI除去器19により受信信号からGIに対応した部分を除去し,FFT器20により時間領域における受信信号から周波数領域,すなわち,各サブキャリアにおける受信信号に変換を行う.さらに,位相雑音予測チャネル推定器21は送受信機で既知なパイロット信号が挿入されたサブキャリアにおいて,その受信信号から位相雑音を含んだチャネルの周波数応答を推定する.同期検波器22は推定した周波数応答を用いて軟判定同期検波を行い,符号化されたビットのLLRを計算し,出力する.  In the demodulator 12, the unit changeover switch 24 is connected to the synchronous detection unit 23, and the synchronous detection unit 23 performs the first reception process. In the following, this process is called the initial process. The synchronous detection unit 23 includes a GI remover 19, an FFT unit 20, a phase noise prediction channel estimator 21, and a synchronous detector 22. First, the synchronous detection unit 23 removes the portion corresponding to the GI from the received signal by the GI remover 19, and converts the received signal in the time domain from the received signal in the time domain to the received signal in each subcarrier by the FFT unit 20. Further, the phase noise prediction channel estimator 21 estimates the frequency response of the channel including the phase noise from the received signal in the subcarrier in which the known pilot signal is inserted by the transceiver. The synchronous detector 22 performs soft decision synchronous detection using the estimated frequency response, calculates the LLR of the encoded bit, and outputs it.

同期検波器22から出力されたLLRは,デインタリーバ25によりデインタリーブされ,MAP復号器26により誤り訂正復号される.MAP復号器26は,デインタリーブされた符号化されたビットのLLRから,情報ビットのLLRと符号化されたビットのLLRを計算し,情報ビットのLLRを判定器27に,符号化されたビットのLLRをLLR減算器30に出力する.さらに,判定器27は情報ビットのLLRの正負より受信ビット系列を決定し,その系列はCRC復号器28により誤り検出に用いられる.判定誤りが検出されなかった際には,その受信ビット系列を受信ビット出力端子29から出力する.判定誤りが検出された際には,ユニット切り換えスイッチ24が切り換えられ,ターボICIキャンセルユニット32により同一の受信信号に対して受信処理が行われる.この処理を繰り返し処理と呼ぶ.繰り返し処理の詳細について後述する.  The LLR output from the synchronous detector 22 is deinterleaved by the deinterleaver 25 and error correction decoded by the MAP decoder 26. The MAP decoder 26 calculates the information bit LLR and the coded bit LLR from the deinterleaved coded bit LLR, and the information bit LLR is sent to the determiner 27. Are output to the LLR subtractor 30. Further, the determiner 27 determines the received bit sequence based on the sign of the LLR of the information bits, and the sequence is used by the CRC decoder 28 for error detection. When a determination error is not detected, the received bit sequence is output from the received bit output terminal 29. When a determination error is detected, the unit changeover switch 24 is switched, and the turbo ICI cancellation unit 32 performs reception processing on the same received signal. This process is called an iterative process. Details of the iterative process will be described later.

位相雑音予測チャネル推定器21では,図5に示す送受信機で既知なスキャッタードパイロット信号を用いて位相雑音を含んだチャネルの周波数応答を推定する.スキャッタードパイロット信号は,パケット全体に一定のサブキャリア間隔,シンボル間隔で離散的に挿入されている.第iシンボルの第mサブキャリアにおける受信信号Rim
im=Himim+(ICI成分)+Nim (11)
となる.ここで,Himは第iシンボルの第mサブキャリアにおけるチャネルの周波数応答,zimは変調信号,Nimは雑音である.また,CはFFT後の第iシンボルにおける位相雑音で,第iシンボルの第kサンプルにおける位相雑音φikを用いて

Figure 2008263571
となる.ただし,Nはサブキャリア数である.さらに,位相雑音φikがFFT周期内において変動するためにICIが発生する.位相雑音予測チャネル推定器21は,パイロット信号を用いてチャネル推定を行う.推定値をGimとすると,Gim
Figure 2008263571
となり,チャネルの周波数応答にFFT後の位相雑音を含んだ形で推定が行われる.スキャッタードパイロット信号を用いて推定されたGimを,パイロットサブキャリア間で時間方向に補間することで,位相雑音やフェージングによって発生する周波数応答の時間変動にも追従でき,また,データサブキャリアにおける位相雑音を含んだ周波数応答を予測することができる.さらに,周波数方向に離散的に挿入されているパイロットサブキャリア間で補間を行うことで,マルチパスによる周波数選択性フェージングにおける周波数応答を推定できる.The phase noise prediction channel estimator 21 estimates the frequency response of a channel including phase noise using a scattered pilot signal known by the transceiver shown in FIG. Scattered pilot signals are discretely inserted into the entire packet at regular subcarrier intervals and symbol intervals. The received signal R im in the m-th subcarrier of the i-th symbol is R im = H im C i z im + (ICI component) + N im (11)
It becomes. Here, H im is the frequency response of the channel in the m-th subcarrier of the i-th symbol, z im is the modulation signal, and N im is the noise. C i is the phase noise in the i-th symbol after FFT, and the phase noise φ ik in the k-th sample of the i-th symbol is used.
Figure 2008263571
It becomes. N is the number of subcarriers. Furthermore, ICI occurs because the phase noise φ ik fluctuates within the FFT period. The phase noise prediction channel estimator 21 performs channel estimation using the pilot signal. If the estimated value is G im , G im is
Figure 2008263571
Thus, estimation is performed in the form of including phase noise after FFT in the frequency response of the channel. By interpolating G im estimated using the scattered pilot signal in the time direction between the pilot subcarriers, it is possible to follow the time variation of the frequency response caused by phase noise and fading, and the data subcarrier. The frequency response including phase noise in can be predicted. Furthermore, by interpolating between pilot subcarriers inserted discretely in the frequency direction, the frequency response in frequency selective fading by multipath can be estimated.

推定精度を更に向上する方法として,Cの変動がほとんどない範囲のシンボル数において,最小2乗法により位相雑音を含んだチャネルのインパルス応答を推定し,その推定したインパルス応答をフーリエ変換して全サブキャリアにおける位相雑音を含んだ周波数応答を推定する方法がある.この手法は,最小2乗法に基づいた補間法の一種としても考えることができる.さらに,フェージング変動がほとんどない,すなわち,チャネルの周波数応答がほとんど時間変動しない場合には,位相雑音を予測することで推定精度を向上できる.具体的には,一次元ガウスプロセスによる雑音生成器の実数出力φ(t)を位相雑音複

Figure 2008263571
差分により雑音生成器の一次元ガウスプロセスの補正を行う.このようにすることで,FFT後の位相雑音Cを予測することができ,チャネルの周波数応答がほとんど時間変動しない場合には,Gimから抽出される周波数応答の推定値を単純平均化,或いは,指数重み付け平均化することで推定精度を向上できる.As a method for the estimation accuracy further improves, in number of symbols in the little range variation of C i, the least squares method by estimating the impulse response of the channel including the phase noise, and Fourier transform, and the estimated impulse response all There is a method for estimating the frequency response including phase noise in subcarriers. This method can also be considered as a kind of interpolation method based on the least squares method. Furthermore, when there is almost no fading fluctuation, that is, the frequency response of the channel hardly fluctuates with time, the estimation accuracy can be improved by predicting the phase noise. Specifically, the real number output φ (t) of the noise generator by the one-dimensional Gaussian process is converted to the phase noise complex.
Figure 2008263571
The difference is corrected for the one-dimensional Gaussian process of the noise generator. In this way, the phase noise C i after FFT can be predicted, and when the frequency response of the channel hardly fluctuates over time, the estimated value of the frequency response extracted from G im is simply averaged, Or, the estimation accuracy can be improved by exponential weighted averaging.

しかしながら,これらの方法により位相雑音を含んでのチャネル推定は行えても,(11)で示したようにICI成分は残留しているため,伝送特性は完全には改善せず,位相雑音の影響を受ける.ICIを発生させる時間変動が速い位相雑音を抑圧するためには,時間サンプル単位における位相雑音の変動を補償する必要がある.そのような時間変動への追従は繰り返し処理において行われる.  However, even if channel estimation including phase noise can be performed by these methods, since the ICI component remains as shown in (11), the transmission characteristics are not completely improved, and the influence of the phase noise Receive. In order to suppress phase noise with fast time variation that generates ICI, it is necessary to compensate for phase noise variation in time sample units. Such tracking of time variation is performed in an iterative process.

また,図4の位相雑音抑圧復調器の機能構成に示すように,第lシンボルにおいて,位相雑音予測チャネル推定器21で推定した周波数応答を用いて同期検波器22により軟判定同期検波を行い,その出力である符号化されたビットのLLRを位相雑音予測チャネル推定器21に入力する.位相雑音予測チャネル推定器21は,それを硬判定して生成したデータ信号の判定信号,あるいは,LLRから計算されたデータ信号の期待値を用いて,データ信号が挿入されているサブキャリアにおいても周波数応答を推定する.さらに,その周波数応答と,スキャッタードパイロット信号を用いて推定した周波数応答から,第(l+1)シンボルにおける周波数応答を予測し,その予測値により同期検波を行う.この処理をシンボル毎に逐次的に行うことで,数シンボル内で変動するゆっくりとした位相雑音やフェージングによる時間変動に対して追従できる.  In addition, as shown in the functional configuration of the phase noise suppression demodulator in FIG. 4, soft decision synchronous detection is performed by the synchronous detector 22 using the frequency response estimated by the phase noise prediction channel estimator 21 in the l-th symbol, The output LLR of the encoded bit is input to the phase noise prediction channel estimator 21. The phase noise prediction channel estimator 21 uses the data signal determination signal generated by hard determination of the phase noise prediction channel 21 or the expected value of the data signal calculated from the LLR, even in the subcarrier into which the data signal is inserted. Estimate the frequency response. Furthermore, the frequency response in the (l + 1) th symbol is predicted from the frequency response and the frequency response estimated using the scattered pilot signal, and synchronous detection is performed based on the predicted value. By performing this process sequentially for each symbol, it is possible to follow slow phase noise that fluctuates within several symbols and temporal variations due to fading.

ターボICIキャンセルユニット32を用いる繰り返し処理について説明する.繰り返し処理では,LLR減算器30によりMAP復号器26から出力された符号化されたビットのLLRから,MAP復号器26に入力された符号化されたビットのLLRを減算し,さらに,インタリーバ31によりインタリーブされたLLRがターボICIキャンセルユニット32に入力される.ターボICIキャンセルユニット32は,変調信号レプリカ生成器33と,位相雑音予測ソフト判定指向形チャネル推定器34と,ICIレプリカ生成器35と,減算器36と,最適検出フィルタ37と,MAP検出器38とから構成される.  An iterative process using the turbo ICI cancel unit 32 will be described. In the iterative process, the LLR of the encoded bit input to the MAP decoder 26 is subtracted from the LLR of the encoded bit output from the MAP decoder 26 by the LLR subtractor 30. The interleaved LLR is input to the turbo ICI cancel unit 32. The turbo ICI cancellation unit 32 includes a modulation signal replica generator 33, a phase noise prediction software decision-directed channel estimator 34, an ICI replica generator 35, a subtractor 36, an optimum detection filter 37, and a MAP detector 38. It consists of

まず,変調信号レプリカ生成器33はインタリーバ31から入力されたLLRからデータ信号における変調信号の期待値を計算し,ICIレプリカ生成器35および位相雑音予測ソフト判定指向形チャネル推定器34に出力する.次に,位相雑音予測ソフト判定指向形チャネル推定器34はその変調信号の期待値を用いて,位相雑音を含んだチャネルのインパルス応答を推定する.推定されたインパルス応答はICIレプリカ生成器35およびMAP検出器38に出力される.さらに,ICIレプリカ生成器35は,変調信号の期待値とインパルス応答を用いて,受信ICIレプリカを生成する.ただし,ICIレプリカ生成器35では,検出したいサブキャリア以外の変調信号の期待値を用いて受信ICIレプリカを生成する.減算器36により受信信号から受信ICIレプリカは減算され,検出したいサブキャリアの受信信号成分のみが求められ,その成分は最適検出フィルタ37により周波数領域への変換と等化が同時に行われ,検出信号が生成される.最後に,MAP検出器38は,検出したいサブキャリアの検出信号から符号化されたビットのLLRを計算する.ICIレプリカ生成器35,減算器36,最適検出フィルタ37,MAP検出器38で行われるこれらの一連の処理は,サブキャリア毎に行われ,同一OFDMシンボル内の全てのサブキャリアについて処理が終わると,次のOFDMシンボルにおいて処理が行われる.なお,これらの処理については非特許文献1に詳しく述べられている.
S.Suyama他,「A Scattered Pilot OFDM Receiver Employing Turbo ICI Cancellation in Fast Fading Environments」 IEICE Transactions on Communications,vol.E88−B,no.1,pp.115−121,2005年1月.
First, the modulation signal replica generator 33 calculates the expected value of the modulation signal in the data signal from the LLR input from the interleaver 31 and outputs it to the ICI replica generator 35 and the phase noise prediction software decision directed channel estimator 34. Next, the phase noise prediction software decision-directed channel estimator 34 estimates the impulse response of the channel including the phase noise using the expected value of the modulated signal. The estimated impulse response is output to the ICI replica generator 35 and the MAP detector 38. Further, the ICI replica generator 35 generates a received ICI replica using the expected value of the modulation signal and the impulse response. However, the ICI replica generator 35 generates a reception ICI replica using the expected value of the modulation signal other than the subcarrier to be detected. The received ICI replica is subtracted from the received signal by the subtractor 36, and only the received signal component of the subcarrier to be detected is obtained, and the component is simultaneously converted into the frequency domain and equalized by the optimum detection filter 37, and the detected signal Is generated. Finally, the MAP detector 38 calculates the LLR of the encoded bit from the detection signal of the subcarrier to be detected. The series of processing performed by the ICI replica generator 35, the subtractor 36, the optimum detection filter 37, and the MAP detector 38 is performed for each subcarrier, and when the processing is completed for all subcarriers in the same OFDM symbol. Then, processing is performed in the next OFDM symbol. These processes are described in detail in Non-Patent Document 1.
S. Suyama et al., “A Scattered Pilot OFDM Receiver Turbo ICI Cancellation in Fast Fading Environments”, IEICE Transactions on Communications, vol. E88-B, no. 1, pp. 115-121, January 2005.

位相雑音予測ソフト判定指向形チャネル推定器34は,変調信号の期待値とスキャッタードパイロット信号をIFFTして送信信号のレプリカを生成し,複数のタップで構成されるトランスバーサルフィルタに入力して,受信信号レプリカを生成する.第iシンボル,第kサンプルにおける受信信号rik

Figure 2008263571
と表せる.ここで,hd,ikは第iシンボル,第kサンプルにおける第dパスの複素振幅,sikは送信信号で
Figure 2008263571
化されたビットのLLRから生成した変調信号の期待値とスキャッタードパイロット信号を挿入することで生成される.さらに,第iシンボル,第kサンプルにおける各タップに
Figure 2008263571
となる.各タップにおける重み係数は,時間領域の受信信号と受信信号レプリカとの差の絶対値2乗値が最小なるように逐次的な最小2乗法により制御されて求められる.求められたタップ係数gd,ikは理想的に推定を行えた場合には
d,ik=hd,ikexp(jφik) (17)
となり,位相雑音を含んだチャネルのインパルス応答の推定値として考えることができる.時間領域の受信信号は各サンプルにおいて観測されるため,位相雑音予測ソフト判定指向形チャネル推定器34ではこのような手法によりタップ係数を求めることで,FFT区間内におけるより高速な時間変動に追従することが可能となる.位相雑音予測チャネル推定器21で用いる様々な位相雑音を含んだ周波数応答の推定精度向上手法は,位相雑音予測ソフト判定指向形チャネル推定器34においても同様に用いることができ,より高精度な推定を行うことができる.The phase noise prediction software decision-directed channel estimator 34 IFFTs the expected value of the modulation signal and the scattered pilot signal to generate a replica of the transmission signal, and inputs it to a transversal filter composed of a plurality of taps. Generate a received signal replica. The received signal r ik in the i-th symbol and the k-th sample is
Figure 2008263571
It can be expressed as Here , hd and ik are the i-th symbol, the complex amplitude of the d-th path in the k-th sample, and s ik is the transmission signal.
Figure 2008263571
It is generated by inserting the expected value of the modulation signal generated from the LLR of the converted bits and the scattered pilot signal. Furthermore, for each tap in the i-th symbol and k-th sample
Figure 2008263571
It becomes. The weighting coefficient at each tap is obtained by controlling by the sequential least square method so that the absolute value square value of the difference between the received signal in the time domain and the received signal replica is minimized. When the obtained tap coefficients g d, ik are ideally estimated, g d, ik = h d, ik exp (jφ ik ) (17)
Thus, it can be considered as an estimate of the impulse response of the channel including phase noise. Since the received signal in the time domain is observed at each sample, the phase noise prediction software decision-directed channel estimator 34 obtains the tap coefficient by such a method to follow faster time fluctuation in the FFT interval. It becomes possible. The estimation accuracy improvement method of the frequency response including various phase noises used in the phase noise prediction channel estimator 21 can be similarly used in the phase noise prediction software decision-directed channel estimator 34, and more accurate estimation is possible. It can be performed.

以上のことから,本発明を実施するための最良の形態によれば,スキャッタードパイロット信号や軟判定値を利用することで,位相雑音予測チャネル推定器21で位相雑音やフェージングによる時間変動に追従し,さらに,位相雑音予測ソフト判定指向形チャネル推定器34で,復号器の出力であるLLRを用いて,各サンプルでの時間変動に対して追従し,ICIレプリカ生成器35と,減算器36と,最適検出フィルタ37と,MAP検出器38とによりその変動を抑圧することで,位相雑音に対して優れた耐性を持つOFDM復調器を実現することができる.  From the above, according to the best mode for carrying out the present invention, by using a scattered pilot signal or a soft decision value, the phase noise predicting channel estimator 21 uses the phase noise or fading to cause time fluctuations. In addition, the phase noise prediction software decision-directed channel estimator 34 uses the LLR, which is the output of the decoder, to follow the time variation in each sample, and the ICI replica generator 35, subtractor 36, the optimum detection filter 37, and the MAP detector 38 suppress the fluctuations, thereby realizing an OFDM demodulator having excellent resistance to phase noise.

なお,上述した各発明を実施するための最良の形態に限らず,本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである.  It should be noted that the present invention is not limited to the best mode for carrying out the invention, and various other configurations can be adopted without departing from the gist of the invention.

本発明による局部発振位相雑音抑圧送受信機の機能構成を示すブロック図.The block diagram which shows the function structure of the local oscillation phase noise suppression transmitter / receiver by this invention. 本発明による局部発振信号位相雑音抑圧器の機能構成1を示すブロック図.The block diagram which shows the function structure 1 of the local oscillation signal phase noise suppressor by this invention. 本発明による局部発振信号位相雑音抑圧器の機能構成2を示すブロック図.The block diagram which shows the function structure 2 of the local oscillation signal phase noise suppressor by this invention. 本発明による位相雑音抑圧復調器の機能構成を示すブロック図.The block diagram which shows the function structure of the phase noise suppression demodulator by this invention. 本発明によるスキャッタードパイロットの機能構成を示すブロック図.The block diagram which shows the function structure of the scattered pilot by this invention.

符号の説明Explanation of symbols

1:局部発振器,2:局部発振信号位相雑音抑圧器,3:90度位相器.4:送信ベースバンド信号処理回路,5:直交変調器,6:送信RF回路,7:アンテナ共用器,8:アンテナ,9:受信RF回路,10:直交復調器,11:受信ベースバンド信号処理回路,12:位相雑音抑圧復調器,13:局部発振信号入力端子,14:位相差分検出器,15:位相予測器,15A:位相差分予測器,16:位相雑音制御器,17:位相雑音が抑圧された局部発振信号出力端子,18:ベースバンド受信信号入力端子,19:GI除去器,20:FFT器,21:位相雑音予測チャネル推定器,22:同期検波器,23:同期検波ユニット,24:ユニット切り換えスイッチ,25:デインタリーバ,26:MAP復号器,27:判定器,28:CRC復号器,29:受信ビット出力端子,30:LLR減算器,31:インタリーバ,32:ターボICIキャンセルユニット,33:変調信号レプリカ生成器,34:位相雑音予測ソフト判定指向形チャネル推定器,35:ICIレプリカ生成器,36:減算器,37:最適検出フィルタ,38:MAP検出器1: local oscillator, 2: local oscillation signal phase noise suppressor, 3: 90 degree phase shifter. 4: transmission baseband signal processing circuit, 5: quadrature modulator, 6: transmission RF circuit, 7: antenna duplexer, 8: antenna, 9: reception RF circuit, 10: quadrature demodulator, 11: reception baseband signal processing Circuit: 12: Phase noise suppression demodulator, 13: Local oscillation signal input terminal, 14: Phase difference detector, 15: Phase predictor, 15A: Phase difference predictor, 16: Phase noise controller, 17: Phase noise Suppressed local oscillation signal output terminal, 18: baseband received signal input terminal, 19: GI remover, 20: FFT unit, 21: phase noise prediction channel estimator, 22: synchronous detector, 23: synchronous detection unit, 24: Unit changeover switch, 25: Deinterleaver, 26: MAP decoder, 27: Determinator, 28: CRC decoder, 29: Received bit output terminal, 30: LLR subtractor, 31 Interleaver, 32: Turbo ICI cancellation unit, 33: Modulated signal replica generator, 34: Phase noise prediction soft decision directed channel estimator, 35: ICI replica generator, 36: Subtractor, 37: Optimal detection filter, 38: MAP detector

Claims (6)

送受信に用いる局部発振信号に対して位相を制御することで位相雑音抑圧を行う局部発振信号位相雑音抑圧器と,局部発振信号を用いてベースバンド信号に周波数変換したOFDM信号の受信信号に対して,位相雑音の時間変動によって発生するキャリア間干渉(ICI)を抑圧して信号検出を行う位相雑音抑圧復調器との少なくともいずれか一方を有することを特徴とする局部発振位相雑音抑圧送受信機.  For the local oscillation signal phase noise suppressor that performs phase noise suppression by controlling the phase of the local oscillation signal used for transmission and reception, and for the received signal of the OFDM signal that is converted to the baseband signal using the local oscillation signal A local oscillation phase noise suppression transceiver having at least one of a phase noise suppression demodulator that suppresses inter-carrier interference (ICI) generated by time fluctuation of phase noise and performs signal detection. 請求項1記載の局部発振信号位相雑音抑圧器が,局部発振信号の一定時間間隔におけるキャリア位相差分を検出する位相差分検出器と,検出されたキャリア位相差分系列を用いて局部発振信号のキャリア位相を予測する位相予測器と,予測されたキャリア位相により局部発振信号の予測されたキャリア位相を打ち消す制御を行う位相制御器とから構成されることを特徴とする局部発振位相雑音抑圧送受信機.  The local oscillation signal phase noise suppressor according to claim 1, wherein a phase difference detector that detects a carrier phase difference at a fixed time interval of the local oscillation signal, and a carrier phase of the local oscillation signal using the detected carrier phase difference series A local oscillation phase noise suppression transmitter / receiver comprising: a phase predictor that predicts the phase difference, and a phase controller that performs control to cancel the predicted carrier phase of the local oscillation signal according to the predicted carrier phase. 請求項1記載の局部発振信号位相雑音抑圧器が,局部発振信号のキャリア位相を制御する位相制御器と,位相制御器出力の一定時間間隔におけるキャリア位相差分を検出する位相差分検出器と,検出されたキャリア位相差分系列を用いて次の時点のキャリア位相差分を予測するキャリア位相差分予測器と,予測されたキャリア位相差から局部発振信号のキャリア位相を予測するキャリア位相予測器とから構成され,上記位相制御器は,位相差分の積分値が0になるように位相を制御することを特徴とする局部発振位相雑音抑圧送受信機.  A local oscillation signal phase noise suppressor according to claim 1, comprising: a phase controller that controls a carrier phase of the local oscillation signal; a phase difference detector that detects a carrier phase difference at a fixed time interval of the phase controller output; The carrier phase difference predictor that predicts the carrier phase difference at the next time point using the carrier phase difference sequence that has been generated, and the carrier phase predictor that predicts the carrier phase of the local oscillation signal from the predicted carrier phase difference. The phase controller controls the phase so that the integral value of the phase difference becomes zero. 請求項1記載の位相雑音抑圧復調器が,時間領域における受信信号をフーリエ変換し,周波数領域における受信信号に変換するFFT器と,周波数領域における受信信号に対して,スキャッタードパイロットパイロット信号を用いてチャネル推定し,その推定値を補間することで位相雑音を含んだチャネルの周波数応答を推定する位相雑音予測チャネル推定器と,周波数領域における受信信号と,推定された周波数応答とを用いて同期検波を行う同期検波器とを有することを特徴とする請求項1記載の局部発振位相雑音抑圧送受信機.  The phase noise suppression demodulator according to claim 1, wherein the received signal in the time domain is Fourier-transformed and converted into a received signal in the frequency domain, and a scattered pilot pilot signal is applied to the received signal in the frequency domain. Channel estimation using a phase noise prediction channel estimator that estimates the frequency response of the channel including phase noise by interpolating the estimated values, the received signal in the frequency domain, and the estimated frequency response. The local oscillation phase noise suppression transmitter / receiver according to claim 1, further comprising a synchronous detector that performs synchronous detection. 請求項4記載の位相雑音抑圧復調器において,上記同期検波器で検出した判定値を用いて,データが挿入されているサブキャリアにおいても上記位相雑音予測チャネル推定器により判定指向形チャネル推定を行い,位相雑音を含んだチャネルの周波数応答の推定精度を向上することを特徴とする請求項1記載の局部発振位相雑音抑圧送受信機.  5. The phase noise suppression demodulator according to claim 4, wherein a decision-directed channel estimation is performed by the phase noise prediction channel estimator on a subcarrier into which data is inserted, using the determination value detected by the synchronous detector. 2. The local oscillation phase noise suppression transceiver according to claim 1, wherein the estimation accuracy of the frequency response of the channel including phase noise is improved. 請求項4記載の位相雑音抑圧復調器が,上記同期検波器で検出した軟判定値から誤り訂正復号を行い,符号化されたビットの対数尤度比を出力する最大事後確率(MAP)復号器と,MAP復号器で出力される対数尤度比を用いて,位相雑音を含んだチャネルのインパルス応答を推定する位相雑音予測ソフト判定指向形チャネル推定器と,その推定値と対数尤度比を用いて位相雑音により発生するICIを除去するICIレプリカ生成器と,受信信号からICIレプリカを除去した信号を最適合成すると共に,フーリエ変換を行う最適検出フィルタと,上記最適検出フィルタの出力信号を軟判定検出するMAP検出器とも有することを特徴とする請求項1記載の局部発振位相雑音抑圧受信機.  5. A maximum posterior probability (MAP) decoder, wherein the phase noise suppression demodulator according to claim 4 performs error correction decoding from the soft decision value detected by the synchronous detector and outputs a log likelihood ratio of the encoded bits. And a phase noise prediction soft decision-directed channel estimator that estimates the impulse response of the channel including the phase noise using the log likelihood ratio output from the MAP decoder, and its estimated value and log likelihood ratio And an ICI replica generator for removing ICI generated by phase noise, an optimal synthesis of a signal obtained by removing the ICI replica from the received signal, an optimal detection filter for performing Fourier transform, and an output signal of the optimal detection filter The local oscillation phase noise suppression receiver according to claim 1, further comprising a MAP detector that performs determination and detection.
JP2007128611A 2007-04-12 2007-04-12 Local oscillation phase noise suppression transceiver Pending JP2008263571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128611A JP2008263571A (en) 2007-04-12 2007-04-12 Local oscillation phase noise suppression transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128611A JP2008263571A (en) 2007-04-12 2007-04-12 Local oscillation phase noise suppression transceiver

Publications (1)

Publication Number Publication Date
JP2008263571A true JP2008263571A (en) 2008-10-30

Family

ID=39985703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128611A Pending JP2008263571A (en) 2007-04-12 2007-04-12 Local oscillation phase noise suppression transceiver

Country Status (1)

Country Link
JP (1) JP2008263571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119070A (en) * 2008-11-11 2010-05-27 Tokyo Institute Of Technology Phase noise compensation receiver
CN114360559A (en) * 2021-12-17 2022-04-15 北京百度网讯科技有限公司 Speech synthesis method, speech synthesis device, electronic equipment and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119070A (en) * 2008-11-11 2010-05-27 Tokyo Institute Of Technology Phase noise compensation receiver
CN114360559A (en) * 2021-12-17 2022-04-15 北京百度网讯科技有限公司 Speech synthesis method, speech synthesis device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
US7457366B2 (en) System and method for adaptive phase compensation of OFDM signals
EP1872551B1 (en) Time domain windowing and inter-carrier interference cancellation
JP4958565B2 (en) Wireless communication device
US7844006B2 (en) Method of non-uniform doppler compensation for wideband orthogonal frequency division multiplexed signals
EP1478149B1 (en) Multicarrier receiver
US7733993B2 (en) Phase noise canceling OFDM receiver
US8085859B2 (en) Platform noise mitigation
US20070064824A1 (en) Hybrid domain block equalizer
KR101241824B1 (en) A receiver of communication system for orthogonal frequency division multiplexing and Method for mitigate a phase noise in thereof
WO2007088481A2 (en) Digital communications receiver
JP3715282B2 (en) OFDM receiver and OFDM signal correction method
WO2001020831A1 (en) Ofdm communication device and detecting method
JPH098765A (en) Frequency correcting device
KR20110030469A (en) Methods and an apparatus for estimating a residual frequency error in a communications system
JP2013192107A (en) Equalization device, receiving device and equalization method
CN114391244B (en) Method and decoder for suppressing phase noise in an OFDM signal
KR19980076494A (en) Frequency Error Corrector and Method in OFDM Transmission Signals
JP5246771B2 (en) Phase noise compensation receiver
JP2008263571A (en) Local oscillation phase noise suppression transceiver
JP2007104574A (en) Multicarrier wireless receiver and receiving method
JP2005286362A (en) Digital receiver
Assaf et al. Sample Clock Offset Compensation in the fifth-generation new radio Downlink
Ogundile et al. Improved reliability information for OFDM systems on time-varying frequency-selective fading channels
JP2012023670A (en) Receiver for ofdm transmission system
EP1958409A1 (en) Apparatus for estimating time and frequency offset using antenna diversity in ofdm communication system and method thereof