JP2008261009A - Thick steel plate having reduced material anisotropy and excellent haz toughness and low temperature base metal toughness - Google Patents

Thick steel plate having reduced material anisotropy and excellent haz toughness and low temperature base metal toughness Download PDF

Info

Publication number
JP2008261009A
JP2008261009A JP2007104668A JP2007104668A JP2008261009A JP 2008261009 A JP2008261009 A JP 2008261009A JP 2007104668 A JP2007104668 A JP 2007104668A JP 2007104668 A JP2007104668 A JP 2007104668A JP 2008261009 A JP2008261009 A JP 2008261009A
Authority
JP
Japan
Prior art keywords
less
steel plate
toughness
value
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007104668A
Other languages
Japanese (ja)
Other versions
JP4964007B2 (en
Inventor
Hiroyuki Takaoka
宏行 高岡
Yoshiomi Okazaki
喜臣 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007104668A priority Critical patent/JP4964007B2/en
Priority to CN2008100918179A priority patent/CN101285159B/en
Priority to KR1020080032412A priority patent/KR100954042B1/en
Publication of JP2008261009A publication Critical patent/JP2008261009A/en
Application granted granted Critical
Publication of JP4964007B2 publication Critical patent/JP4964007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick steel plate having reduced material anisotropy and excellent HAZ toughness and low temperature base metal toughness. <P>SOLUTION: The thick steel plate has a composition comprising 0.030 to 0.10% C, ≤1.0% Si, 0.8 to 2.0% Mn, ≤0.03% P, ≤0.01% S, 0.01 to 0.10% Al, ≤0.035% Nb, 0.015 to 0.03% Ti, 0.0010 to 0.0035% B and 0.0050 to 0.01% N, and in which the average circle equivalent diameter of old austenitic grains is ≤100 μm, also, the flattening ratio (major axis/minor axis) thereof is ≤2.5, and further, inequality; 1.5≤[Ti]/[N]≤4 and inequality; 40≤X value≤160 are satisfied: wherein, X value=500[C]+32[Si]+8[Mn]-9[Nb]+14[Cu]+17[Ni]-5[Cr]-25[Mo]-34[V]. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば船舶および海洋構造物などの溶接構造物に適用される厚鋼板に関し、材質異方性が少なく、超大入熱溶接した後の熱影響部(Heat Affected Zone、HAZ)の靭性に優れると共に、低温母材靭性にも優れた厚鋼板に関する。   The present invention relates to a thick steel plate applied to, for example, a welded structure such as a ship and an offshore structure. The material has little material anisotropy, and the toughness of a heat affected zone (Heat Affected Zone, HAZ) after super-high heat input welding. The present invention relates to a thick steel plate that is excellent in low temperature base metal toughness.

近年、例えばコンテナ船等の大型化が進められ、板厚が60mm以上の厚鋼板が用いられることがある。このような厚鋼板を効率良く溶接するために、入熱量が40kJ/mm以上である超大入熱溶接を行ってもHAZ靭性に優れていることが求められる。また当然のことながら、低温母材靭性に優れていることも重要である。   In recent years, for example, a container ship or the like has been increased in size, and a thick steel plate having a thickness of 60 mm or more may be used. In order to efficiently weld such a thick steel plate, it is required to have excellent HAZ toughness even if super-high heat input welding with a heat input of 40 kJ / mm or more is performed. Of course, it is also important that the low-temperature base metal toughness is excellent.

しかし超大入熱溶接を行うと、HAZが高温のオーステナイト領域まで加熱されてから徐冷されるため、その組織が粗大化し、HAZ靭性が著しく劣化するという問題があった。そのため従来では、溶接入熱量の制限を余儀なくされていた。   However, when super-high heat input welding is performed, since the HAZ is heated to a high temperature austenite region and then gradually cooled, the structure becomes coarse and the HAZ toughness deteriorates significantly. For this reason, conventionally, the welding heat input has to be limited.

このような超大入熱溶接で良好なHAZ靭性を達成するために、例えば特許文献1は、低C化、低P化に加えてNbとBの添加バランスを調節している。また特許文献2では、溶接用鋼中に存在するTiN系介在物の中に積極的にNbを含有させて、粗大フェライトの生成を抑制している。しかしこれら特許文献1〜2では、TiNが不足しているか、又はTiNが足りている場合にはそのTiNが粗大化しており、さらなるHAZ靭性の改善余地があった。また低温母材靭性についても考慮されていなかった。   In order to achieve good HAZ toughness by such super-high heat input welding, for example, Patent Document 1 adjusts the addition balance of Nb and B in addition to lowering C and lowering P. In Patent Document 2, Nb is positively contained in TiN inclusions present in the welding steel to suppress the formation of coarse ferrite. However, in these Patent Documents 1 and 2, when TiN is insufficient or TiN is sufficient, TiN is coarsened, and there is room for further improvement of HAZ toughness. Also, the low temperature base metal toughness was not considered.

特許文献3は、鋼材にNを比較的多量に添加し、かつTiとBの添加バランスを適切に制御すれば、大入熱溶接したときのHAZ靭性を改善できるとしている。しかし特許文献3でも、TiNやBNの析出量が十分でなかったり、微細でなかったり、またはNb無添加で焼入性が低いためにフェライトが粗大になったりするため、さらなるHAZ靭性の改善余地がある。また低温母材靭性についても考慮されていない。   Patent Document 3 states that if a relatively large amount of N is added to a steel material and the balance of addition of Ti and B is appropriately controlled, the HAZ toughness at the time of high heat input welding can be improved. However, even in Patent Document 3, the precipitation amount of TiN and BN is not sufficient, is not fine, or the ferrite becomes coarse due to low hardenability without adding Nb, so there is room for further improvement of HAZ toughness. There is. Also, low temperature base metal toughness is not taken into consideration.

ところで、厚鋼板は、材質異方性が低いことも重要である。しかし低温母材靭性と材質異方性の両立も、難度の高い技術的課題の一つである。例えば、熱間圧延を制御して音響異方性を改善する技術として特許文献4、5が知られている。特許文献4では、950℃以下の温度域における累積圧下率を50%以下にし、圧延仕上温度を800℃以上にすることによって音響異方性を低減している。また特許文献5では、オーステナイト未再結晶域での累積圧下率を60%以下にし、オーステナイトの未再結晶化温度−80℃以上で圧延を終了することによって音響異方性を低減している。しかし、本発明者らの検討によれば、熱間圧延の制御が十分でなく、音響異方性及び低温母材靭性のどちらかをさらに改善する余地がある。
特開2003−166033号公報 特開2004−218010号公報 特開2005−200716号公報 特開平11−193445号公報 特開2002−53912号公報
By the way, it is also important that the thick steel plate has a low material anisotropy. However, coexistence of low-temperature base material toughness and material anisotropy is one of the difficult technical issues. For example, Patent Documents 4 and 5 are known as techniques for improving acoustic anisotropy by controlling hot rolling. In Patent Document 4, the acoustic anisotropy is reduced by setting the cumulative rolling reduction in a temperature range of 950 ° C. or lower to 50% or lower and the rolling finishing temperature to 800 ° C. or higher. In Patent Document 5, the acoustic anisotropy is reduced by setting the cumulative reduction ratio in the austenite non-recrystallized region to 60% or less and ending rolling at the austenite non-recrystallization temperature of −80 ° C. or higher. However, according to the study by the present inventors, control of hot rolling is not sufficient, and there is room for further improvement of either acoustic anisotropy or low temperature base metal toughness.
Japanese Patent Laid-Open No. 2003-166033 JP 2004-2181010 A JP-A-2005-200716 Japanese Patent Laid-Open No. 11-193445 JP 2002-53912 A

従って本発明の目的は、材質異方性が少なく、超大入熱溶接しても優れたHAZ靭性を示すと共に、低温母材靭性にも優れる厚鋼板を提供することにある。   Accordingly, an object of the present invention is to provide a thick steel plate that has little material anisotropy, exhibits excellent HAZ toughness even with super-high heat input welding, and is excellent in low-temperature base metal toughness.

前記課題を解決しえた本発明の材質異方性が少なくHAZ靭性および低温母材靭性に優れた厚鋼板は、C:0.030〜0.10%(質量%の意味、以下同じ)、Si:1.0%以下(0%を含まない)、Mn:0.8〜2.0%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.10%、Nb:0.035%以下(0%を含まない)、Ti:0.015〜0.03%、B:0.0010〜0.0035%、およびN:0.0050〜0.01%を含有し、
さらにCu:2.0%以下(0%を含む)、Ni:2.0%以下(0%を含む)、Cr:1%以下(0%を含む)、Mo:0.5%以下(0%を含む)およびV:0.1%以下(0%を含む)を含有し、
残部がFeおよび不可避不純物からなる厚鋼板であって、
旧オーステナイト粒の平均円相当径が100μm以下、かつその扁平率(長径/短径)が2.5以下であり、
しかも下記式(1)および(2)を満足する点にその要旨を有する。
1.5≦[Ti]/[N]≦4 … (1)
40≦X値≦160 … (2)
X値=500[C]+32[Si]+8[Mn]−9[Nb]
+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]
(式中、[Ti]、[N]、[C]、[Si]、[Mn]、[Nb]、[Cu]、[Ni]、[Cr]、[Mo]、[V]は鋼板中の各元素の含有量(質量%)を表す)
本発明の厚鋼板では、δ域の温度範囲が、例えば、40℃以下である。また深さt/4の位置(t=板厚)において、Ti系炭窒化物の平均粒子径が43nm以下である。
The thick steel plate with less material anisotropy and excellent HAZ toughness and low-temperature base material toughness according to the present invention that can solve the above problems is C: 0.030 to 0.10% (meaning mass%, the same applies hereinafter), Si : 1.0% or less (not including 0%), Mn: 0.8 to 2.0%, P: 0.03% or less (not including 0%), S: 0.01% or less (0% Al: 0.01-0.10%, Nb: 0.035% or less (not including 0%), Ti: 0.015-0.03%, B: 0.0010-0. 0035%, and N: 0.0050-0.01%,
Further, Cu: 2.0% or less (including 0%), Ni: 2.0% or less (including 0%), Cr: 1% or less (including 0%), Mo: 0.5% or less (0 %) And V: 0.1% or less (including 0%),
The balance is a thick steel plate made of Fe and inevitable impurities,
The average equivalent circle diameter of the prior austenite grains is 100 μm or less, and the flatness (major axis / minor axis) is 2.5 or less,
And it has the gist in the point which satisfies following formula (1) and (2).
1.5 ≦ [Ti] / [N] ≦ 4 (1)
40 ≦ X value ≦ 160 (2)
X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb]
+14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V]
(In the formula, [Ti], [N], [C], [Si], [Mn], [Nb], [Cu], [Ni], [Cr], [Mo], [V] are in the steel plate. The content (% by mass) of each element of
In the thick steel plate of the present invention, the temperature range of the δ region is, for example, 40 ° C. or less. Further, at the position of depth t / 4 (t = plate thickness), the average particle diameter of the Ti-based carbonitride is 43 nm or less.

本発明の厚鋼板は、さらにCa:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)、REM:0.01%以下(0%を含まない)、Zr:0.1%以下(0%を含まない)、Hf:0.05%以下(0%を含まない)、Co:2.5%以下(0%を含まない)、W:2.5%以下(0%を含まない)などを含有していてもよい。   The thick steel plate of the present invention is further Ca: 0.005% or less (not including 0%), Mg: 0.005% or less (not including 0%), REM: 0.01% or less (including 0%) Zr: 0.1% or less (not including 0%), Hf: 0.05% or less (not including 0%), Co: 2.5% or less (not including 0%), W: It may contain 2.5% or less (not including 0%).

本発明の厚鋼板は前記成分組成を満足し、かつ前記式(1)及び(2)を満足するスラブを、温度950〜1300℃に加熱した後、下記式によって求まるY値±30℃の温度範囲を、圧下率が累積で40%以上となるようにかつ各パス終了から次のパス開始までの時間を5秒以上10秒以下になる様に圧延し、さらにY値−30℃未満の温度範囲の圧下率を累積で10%以下に抑えて圧延を終了させることによって製造できる。
Y値=750+4000[Nb]+32600[B]+250[Mo]+400[V]
(式中、[Nb]、[B]、[Mo]、[V]は鋼板中の各元素の含有量(質量%)を表す)
なお本明細書において「炭窒化物」は、炭化物、窒化物も含む意味で使用する。
The steel plate of the present invention is a temperature of Y value ± 30 ° C. obtained by the following equation after heating a slab satisfying the above-mentioned composition and satisfying the above formulas (1) and (2) to a temperature of 950 to 1300 ° C. The range is rolled so that the rolling reduction is cumulatively 40% or more and the time from the end of each pass to the start of the next pass is 5 seconds or more and 10 seconds or less, and the Y value is less than −30 ° C. The rolling can be completed by suppressing the rolling reduction in the range to 10% or less cumulatively.
Y value = 750 + 4000 [Nb] +32600 [B] +250 [Mo] +400 [V]
(In the formula, [Nb], [B], [Mo], [V] represent the content (% by mass) of each element in the steel sheet)
In the present specification, “carbonitride” is used to include carbides and nitrides.

本発明によれば、各元素の量をそれぞれ単独で制御するだけでなく、X値、Ti/N比などの観点から各元素量の相互の関係を制御しており、しかも旧オーステナイト(γ)粒の大きさと形態を制御しているため、材質異方性が少なく、超大入熱溶接しても優れたHAZ靭性を示し、かつ低温母材靭性にも優れている厚鋼板を得ることができる。   According to the present invention, not only the amount of each element is controlled independently, but also the mutual relationship between the amounts of each element is controlled from the viewpoint of the X value, Ti / N ratio, etc., and the prior austenite (γ) Since the grain size and form are controlled, a thick steel plate with little material anisotropy, excellent HAZ toughness even with super-high heat input welding, and excellent low-temperature base metal toughness can be obtained. .

本発明の厚鋼板では、HAZ靭性及び低温母材靭性(吸収エネルギー)を改善するために(A)X値、(B)Ti/N比、及び(C1)旧オーステナイト粒径を制御し、また材質異方性を改善するために(C2)旧オーステナイト粒の形態を制御している。以下、順に説明する。   In the steel plate of the present invention, (A) X value, (B) Ti / N ratio, and (C1) prior austenite grain size are controlled in order to improve HAZ toughness and low temperature base metal toughness (absorbed energy). In order to improve material anisotropy (C2), the morphology of prior austenite grains is controlled. Hereinafter, it demonstrates in order.

(A)X値
X値はδ域の温度範囲に関する関数である。HAZ靭性の改善を試みて、このX値に到達した経緯を説明する。まず始めに本発明者らは、Ti系炭窒化物を微細化することによって、超大入熱溶接でも良好なHAZ靭性を達成することを試みた。従来のTi系炭窒化物の分散状態は、溶鋼凝固時の冷却速度が一定であれば、Ti、Nの添加バランスのみにより定まるものと考えられてきた。しかし本発明者らが鋭意検討した結果、鋼の状態図において表されるδ域の温度範囲を縮小させることにより、同じTi、N添加量でも、Ti系炭窒化物を微細分散させ得ることを見出した。
(A) X value The X value is a function related to the temperature range of the δ region. An attempt to improve the HAZ toughness and how this X value was reached will be explained. First, the present inventors attempted to achieve good HAZ toughness even in super-high heat input welding by refining Ti-based carbonitrides. It has been considered that the dispersion state of a conventional Ti-based carbonitride is determined only by the balance of addition of Ti and N if the cooling rate during solidification of molten steel is constant. However, as a result of diligent investigations by the present inventors, it is possible to finely disperse Ti-based carbonitrides even with the same Ti and N addition amounts by reducing the temperature range of the δ region represented in the phase diagram of steel. I found it.

前記「δ域」とは、鋼の状態図においてδ鉄が含まれる領域を意味する。この「δ鉄が含まれる領域」は、δ鉄のみの領域の他にも、δ+γの2相領域など、δ鉄と他の状態が含まれる領域も包含する。そして「δ域の温度範囲」とは、δ鉄が含まれる温度範囲(δ域の上限温度と下限温度との差)をいう。特定組成の鋼において、例えば、δ鉄のみの温度範囲とδ+γ鉄の温度範囲がある場合、これらの温度範囲の合計が、δ域の温度範囲である。このδ域の温度範囲は、総合熱力学計算ソフトウェア(Thermo−calc、CRC総合研究所から購入可能)に、鋼板の化学成分組成を入力することにより計算することができる。   The “δ region” means a region including δ iron in the steel phase diagram. The “region including δ iron” includes not only a region including δ iron but also a region including δ iron and other states such as a two-phase region of δ + γ. The “temperature range in the δ range” refers to a temperature range including δ iron (difference between the upper limit temperature and the lower limit temperature in the δ range). In steel having a specific composition, for example, when there is a temperature range of only δ iron and a temperature range of δ + γ iron, the sum of these temperature ranges is the temperature range of the δ region. The temperature range of the δ region can be calculated by inputting the chemical composition of the steel sheet into the comprehensive thermodynamic calculation software (Thermo-calc, available from CRC Research Institute).

このδ鉄中ではTiの拡散速度が速い。δ域の温度範囲が広いほど、δ鉄が存在する時間が長くなってTiの拡散が進むため、粗大なTi系炭窒化物が形成され易くなると考えられる。そこで化学成分組成を調整してδ域の温度範囲を縮小することにより、Ti系炭窒化物を微細化することを検討した。特定成分を基準にしつつ化学成分量の1つだけを変更しながらThermo−calcの計算を繰り返すことにより、各化学成分のδ域の温度範囲への影響を調べた。この計算に基づき、δ域の温度範囲と相関関係があり、化学成分組成の関数として表されるX値(下記式(3))を定めた:
X値=500[C]+32[Si]+8[Mn]−9[Nb]
+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]…(3)
(式中、[C]、[Si]、[Mn]、[Nb]、[Cu]、[Ni]、[Cr]、[Mo]、[V]は鋼板中の各元素の含有量(質量%)を表す。)
In this δ iron, the diffusion rate of Ti is fast. It is considered that the wider the temperature range in the δ region, the longer the time during which δ iron is present and the Ti diffusion proceeds, so that coarse Ti-based carbonitrides are more easily formed. Therefore, the refinement of the Ti-based carbonitride was studied by adjusting the chemical composition and reducing the temperature range in the δ region. The influence of each chemical component on the temperature range in the δ region was examined by repeating the calculation of Thermo-calc while changing only one of the chemical component amounts while using the specific component as a reference. Based on this calculation, an X value (formula (3) below), which is correlated with the temperature range of the δ region and expressed as a function of the chemical composition, was determined:
X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb]
+14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V] (3)
(In the formula, [C], [Si], [Mn], [Nb], [Cu], [Ni], [Cr], [Mo], [V] are the contents (mass of each element in the steel plate). %).)

X値を定める上記式(3)中の係数は、特定成分の鋼から、各化学成分を変化させた場合のδ域の温度範囲の減少量に対応する。具体的には、例えば[C]の係数の「500」は、C量を0.01%だけ増大させたときに、Thermo−calcの計算にてδ域の温度範囲が約5℃減少することを意味する。そしてX値とδ域の温度範囲とは、ほぼ反比例の関係(X値が増大すれば、δ域の温度範囲は減少するという関係)にある。   The coefficient in the above formula (3) for determining the X value corresponds to the amount of decrease in the temperature range in the δ region when each chemical component is changed from the specific component steel. Specifically, for example, when the coefficient of [C] is “500”, when the C content is increased by 0.01%, the temperature range in the δ region decreases by about 5 ° C. in the calculation of Thermo-calc. Means. The X value and the temperature range in the δ region are in an inversely proportional relationship (the relationship that the temperature range in the δ region decreases as the X value increases).

そして様々なX値を有する鋼板を製造してそれらの特性を調べたところ、X値を増大させることによって(δ域の温度範囲を狭くすることによって)、Ti系炭窒化物が微細化し、かつ小入熱溶接及び超大入熱溶接のいずれであってもHAZ靭性が向上することが判明した。   And when the steel plate which has various X value was manufactured and those characteristics were investigated, Ti system carbonitride refined | miniaturized by increasing X value (by narrowing the temperature range of (delta) area), and It has been found that the HAZ toughness is improved by either the small heat input welding or the super large heat input welding.

さらにX値を増大させることで、Nb系炭窒化物が微細化するためか、鋼板の低温母材靭性(吸収エネルギー)も向上することも解った。Nb系炭窒化物はTi系炭窒化物を核にして析出するため、Ti系炭窒化物を微細化すれば、Nb系炭窒化物も微細化するものと思われる。   It has also been found that increasing the X value may improve the low-temperature base material toughness (absorbed energy) of the steel sheet, probably because the Nb-based carbonitrides become finer. Since Nb-based carbonitrides precipitate with Ti-based carbonitrides as nuclei, it is considered that Nb-based carbonitrides also become finer when Ti-based carbonitrides are refined.

従って本発明の厚鋼板では、X値の値が下記式(2)を満足するようにする。なおX値の意味は上記のように解釈されるが、最も重要なのはX値と諸特性との間に相関関係がある点であり、解釈の如何に拘わらずX値を満足するものは本発明に含まれる。
40≦X値≦160 … (2)
Therefore, in the thick steel plate of the present invention, the value of X satisfies the following formula (2). The meaning of the X value is interpreted as described above, but the most important point is that there is a correlation between the X value and various characteristics. What satisfies the X value regardless of the interpretation is the present invention. include.
40 ≦ X value ≦ 160 (2)

X値の範囲は、40以上、好ましくは45以上、さらに好ましくは50以上である。X値が大きくなるほど、Ti系炭窒化物が微細化し(かつそれによってNb系炭窒化物も微細化するためか)、HAZ靭性及び低温母材靭性(吸収エネルギー)が良好になる。しかしX値が大きくなると、硬質の第2相である島状マルテンサイト組織(Martensite−Austenite constituent(MA))が増大し、HAZ靭性及び低温母材靭性(吸収エネルギー)が劣化する。従ってX値は、160以下、好ましくは100以下、さらに好ましくは75以下である。   The range of the X value is 40 or more, preferably 45 or more, more preferably 50 or more. As the X value increases, the Ti-based carbonitride becomes finer (and possibly also the Nb-based carbonitride), and the HAZ toughness and low-temperature base material toughness (absorbed energy) become better. However, when the X value increases, the island-like martensite structure (Martensite-Austenite constituent (MA)), which is the hard second phase, increases, and the HAZ toughness and low-temperature base material toughness (absorbed energy) deteriorate. Therefore, the X value is 160 or less, preferably 100 or less, more preferably 75 or less.

(B)Ti/N比
また本発明の厚鋼板では、Ti量とN量とのバランスをとることによって、HAZ靭性と低温母材靭性(吸収エネルギー)を改善している。具体的には下記式(1)を満足するようにしている。
1.5≦[Ti]/[N]≦4 … (1)
(式中、[Ti]、[N]は鋼板中の各元素の含有量(質量%)を表す。)
(B) Ti / N ratio In the thick steel plate of the present invention, the HAZ toughness and the low-temperature base metal toughness (absorbed energy) are improved by balancing the Ti amount and the N amount. Specifically, the following formula (1) is satisfied.
1.5 ≦ [Ti] / [N] ≦ 4 (1)
(In the formula, [Ti] and [N] represent the content (mass%) of each element in the steel sheet.)

[Ti]/[N]が4を超えると、Ti系炭窒化物が粗大になり、HAZ靭性が低下する。好ましい[Ti]/[N]は、3.5以下である。また逆に[Ti]/[N]が1.5未満であれば、過剰Nの影響で、HAZ靭性および低温母材靭性(吸収エネルギー)が低下する。好ましい[Ti]/[N]は、2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上、特に3.5以上である。   When [Ti] / [N] exceeds 4, the Ti carbonitride becomes coarse and the HAZ toughness decreases. [Ti] / [N] is preferably 3.5 or less. On the other hand, if [Ti] / [N] is less than 1.5, the HAZ toughness and the low-temperature base material toughness (absorbed energy) are lowered due to the influence of excess N. [Ti] / [N] is preferably 2.0 or more, more preferably 2.5 or more, further preferably 3.0 or more, particularly 3.5 or more.

靭性の観点から、本発明の厚鋼板中のTi系炭窒化物は微細であることが好ましい。本発明の厚鋼板中のTi系炭窒化物は、例えば、43nm以下、好ましくは40nm以下、さらに好ましくは35nm以下、特に30nm以下である。   From the viewpoint of toughness, the Ti-based carbonitride in the thick steel plate of the present invention is preferably fine. The Ti-based carbonitride in the thick steel plate of the present invention is, for example, 43 nm or less, preferably 40 nm or less, more preferably 35 nm or less, particularly 30 nm or less.

なお本発明におけるTi系炭窒化物の平均粒子径の値は、以下のようにして測定した値である。まず、鋼板の熱履歴を代表する部分として深さt/4の位置(t=板厚)を、透過型電子顕微鏡(TEM)で、観察倍率6万倍以上(後述する実施例では6万倍)、観察視野2.0×2.0μm以上(後述する実施例では2.0×2.0μm)、観察箇所5箇所以上(後述する実施例では5箇所)の条件で観察する。そしてその視野中の各炭窒化物の面積を測定し、この面積から各炭窒化物の円相当径を算出する。この各炭窒化物の円相当径を算術平均(相加平均)して得られる値を、本発明におけるTi系炭窒化物の平均粒子径とする。   In addition, the value of the average particle diameter of the Ti-based carbonitride in the present invention is a value measured as follows. First, a position at a depth t / 4 (t = plate thickness) as a portion representing the thermal history of a steel plate is observed with a transmission electron microscope (TEM) at an observation magnification of 60,000 times or more (in the examples described later, 60,000 times). ), An observation visual field of 2.0 × 2.0 μm or more (2.0 × 2.0 μm in the examples described later), and observation sites of 5 or more locations (5 locations in the examples described later). Then, the area of each carbonitride in the field of view is measured, and the equivalent circle diameter of each carbonitride is calculated from this area. A value obtained by arithmetically averaging (arithmetic mean) the equivalent circle diameters of the carbonitrides is defined as the average particle diameter of the Ti-based carbonitrides in the present invention.

なおTi系炭窒化物であるかの判別は、各炭窒化物粒子の主体となる成分によって定まる。すなわちTi系炭窒化物とは、炭素および窒素を除いた残りの元素の合計質量を100%としたとき、Tiの割合が50質量%以上になるものをいう。元素の量はエネルギー分散型X線検出器(EDX)によって決定することができる。なお、あまりに微細な炭窒化物は測定できないため、本発明における炭窒化物とは、円相当径が5nm以上のものに限定する。   In addition, discrimination | determination whether it is Ti type carbonitride is decided by the component used as the main body of each carbonitride particle | grain. That is, the Ti-based carbonitride refers to a material in which the ratio of Ti is 50% by mass or more when the total mass of the remaining elements excluding carbon and nitrogen is 100%. The amount of element can be determined by an energy dispersive X-ray detector (EDX). In addition, since an extremely fine carbonitride cannot be measured, the carbonitride in the present invention is limited to those having an equivalent circle diameter of 5 nm or more.

(C1)(C2)旧オーステナイト粒の粒径と扁平率
さらに本発明の厚鋼板では、旧オーステナイト粒の粒径(平均円相当径)を100μm以下にし、その扁平率(長径/短径)を2.5以下にしている。旧オーステナイト粒の粒径の微細化は、低温母材靭性(吸収エネルギー)の改善にとって重要である。そして、本発明の特徴は、旧オーステナイト粒の粒径を微細化しながら、さらにその扁平率も抑制して異方性を低減している点にある。
(C1) (C2) Particle size and flatness of prior austenite grains Furthermore, in the thick steel sheet of the present invention, the particle size (average equivalent circle diameter) of prior austenite grains is set to 100 μm or less, and the flatness ratio (major axis / minor axis) is set. 2.5 or less. Refinement of the grain size of prior austenite grains is important for improving low-temperature base material toughness (absorbed energy). The feature of the present invention is that the anisotropy is reduced by further reducing the flatness while reducing the grain size of the prior austenite grains.

旧オーステナイト粒を微細化することによって母材靭性を改善すること自体は知られている。旧オーステナイト粒を微細化するためには、一般に、低温圧延が行われている。しかし、低温圧延すると、変態後の組織に異方性が生じてしまい、材質異方性が高くなる傾向がある。一方、組織の異方性を軽減するには、高温で圧延することが考えられる。例えば、前述の特許文献4では950℃以下の圧下率を小さくすることで(換言すれば、950℃超での圧延負荷を大きくすることで)、異方性を軽減している。また特許文献5でも、オーステナイト未再結晶温度域(実質的には、殆どの例で約950℃以上)で、実質的に圧下率約50%程度で圧延することで、異方性を軽減している。しかし、高温圧延すると、今度は旧オーステナイト粒が粗大化してしまい、母材靭性が劣化する。これらのため、これまで旧オーステナイト粒の微細化とその扁平率の抑制を両立させることは困難であった。本発明では、後述する特定の熱間圧延方法を採用しているため、旧オーステナイト粒を微細化しながら、さらにその扁平率も抑制できている。   It is known to improve the base material toughness by refining the prior austenite grains. In order to refine the prior austenite grains, low temperature rolling is generally performed. However, when cold rolling is performed, anisotropy occurs in the structure after transformation, and the material anisotropy tends to increase. On the other hand, rolling at a high temperature can be considered to reduce the anisotropy of the structure. For example, in the above-mentioned Patent Document 4, anisotropy is reduced by reducing the rolling reduction of 950 ° C. or less (in other words, increasing the rolling load above 950 ° C.). Also in Patent Document 5, anisotropy is reduced by rolling at a reduction ratio of about 50% in the austenite non-recrystallization temperature range (substantially about 950 ° C. or more in most cases). ing. However, when high-temperature rolling is performed, the prior austenite grains are coarsened and the base material toughness is deteriorated. For these reasons, it has been difficult to achieve both the refinement of prior austenite grains and the suppression of the flatness thereof. In this invention, since the specific hot rolling method mentioned later is employ | adopted, the flatness can also be suppressed, refine | miniaturizing a prior austenite grain.

旧オーステナイト粒の平均円相当径は、好ましくは95μm以下、さらに好ましくは90μm以下である。なお平均円相当径の下限を設定する必要はないが、容易に達成できる範囲が望ましく、例えば、40μm以上、好ましくは60μm以上であってもよい。   The average equivalent circle diameter of the prior austenite grains is preferably 95 μm or less, more preferably 90 μm or less. Although it is not necessary to set the lower limit of the average equivalent circle diameter, a range that can be easily achieved is desirable, and may be, for example, 40 μm or more, preferably 60 μm or more.

また旧オーステナイト粒の扁平率は、好ましくは2.0以下であり、最も優れている場合には1.8以下(特に1.5以下)にすることも可能である。扁平率の下限を設定する必要はないが、容易に達成できる範囲が望ましく、例えば、1以上、好ましくは1.1以上であってもよい。   The flatness of the prior austenite grains is preferably 2.0 or less, and can be 1.8 or less (especially 1.5 or less) when it is most excellent. Although it is not necessary to set the lower limit of the flatness, a range that can be easily achieved is desirable, and may be, for example, 1 or more, preferably 1.1 or more.

なお旧オーステナイト粒の平均円相当径及び扁平率(長径/短径)の測定法は以下の通りである。鋼板を圧延方向に沿って切断し、この切断面のt/4(t=板厚)位置をナイタール腐食した後、光学顕微鏡写真(観察倍率:100倍、観察視野:600×800μm)を撮影する(n数=10)。撮影した写真を画像解析装置(Media Cybernetics製、Image−Pro Plus)で処理することよって、平均円相当径(μm)と扁平率が求まる。なお前記扁平率は、各オーステナイト粒の扁平率の算術平均(相加平均)として求まる。   In addition, the measuring method of the average equivalent circle diameter and flatness (major axis / minor axis) of the prior austenite grains is as follows. The steel plate is cut along the rolling direction, and the t / 4 (t = plate thickness) position of the cut surface is subjected to nital corrosion, and then an optical micrograph (observation magnification: 100 times, observation field of view: 600 × 800 μm) is taken. (N number = 10). The average equivalent circle diameter (μm) and the flattening ratio can be obtained by processing the photographed image with an image analysis device (Image Cyber Pro, manufactured by Media Cybernetics). In addition, the said flat rate is calculated | required as an arithmetic average (arithmetic mean) of the flat rate of each austenite grain.

上述したように本発明では、(A)X値、(B)Ti/N比、(C)旧オーステナイト粒の粒径と扁平率などを制御することによって、材質異方性、HAZ靭性、低温母材靭性(吸収エネルギー)を改善している。しかし、これらの効果を有効に発揮させるためには、鋼板の成分組成も重要である。本発明の鋼板の成分組成及びその限定理由は、以下の通りである。   As described above, in the present invention, by controlling (A) X value, (B) Ti / N ratio, (C) grain size and flatness of prior austenite grains, material anisotropy, HAZ toughness, low temperature Improves base metal toughness (absorbed energy). However, in order to effectively exhibit these effects, the component composition of the steel sheet is also important. The component composition of the steel sheet of the present invention and the reasons for limitation are as follows.

[C:0.030〜0.10%]
Cは、鋼板の強度を確保するために必要な元素であり、また鋼の状態図におけるδ域の温度範囲を縮小させるために有効な元素である。C量が0.030%未満では強度を確保することができなくなる。一方、C量が0.10%を超えると、硬質の第2相組織(MA)が多くなりすぎて、母材靭性およびHAZ靭性が劣化する。そこでC量を0.030〜0.10%と定めた。C量の好ましい下限は0.04%以上、さらに好ましくは0.05%以上である。またC量の好ましい上限は0.09%以下、さらに好ましくは0.07%以下である。
[C: 0.030 to 0.10%]
C is an element necessary for ensuring the strength of the steel sheet, and is an effective element for reducing the temperature range in the δ region in the steel phase diagram. If the C content is less than 0.030%, the strength cannot be secured. On the other hand, when the amount of C exceeds 0.10%, the hard second phase structure (MA) becomes excessive, and the base material toughness and the HAZ toughness deteriorate. Therefore, the C amount is determined to be 0.030 to 0.10%. The minimum with preferable C amount is 0.04% or more, More preferably, it is 0.05% or more. Moreover, the upper limit with preferable C amount is 0.09% or less, More preferably, it is 0.07% or less.

[Si:1.0%以下(0%を含まない)]
Siは、鋼板の強度を確保するために有効な元素であり、そのためには、0.01%以上添加することが好ましい。しかしSiを過剰に添加すると、MA組織が多く生成し、母材靭性およびHAZ靭性が低下するため、その上限を1.0%とする必要がある。Si量の好ましい下限は、0.05%以上、さらに好ましくは0.10%以上である。Siの好ましい上限は0.8%以下であり、より好ましくは0.5%以下である。
[Si: 1.0% or less (excluding 0%)]
Si is an effective element for ensuring the strength of the steel sheet, and for that purpose, it is preferable to add 0.01% or more. However, if Si is added excessively, a large amount of MA structure is generated, and the base metal toughness and the HAZ toughness are lowered. Therefore, the upper limit must be made 1.0%. The minimum with the preferable amount of Si is 0.05% or more, More preferably, it is 0.10% or more. The upper limit with preferable Si is 0.8% or less, More preferably, it is 0.5% or less.

[Mn:0.8〜2.0%]
Mnは、焼入れ性を向上させ、鋼板の強度を確保するのに有効な元素である。Mn量が0.8%未満では、強度確保の作用が充分に発揮されない。一方、Mn量が2.0%を超えると、母材靭性およびHAZ靭性が低下する。そこでMn量を、0.8〜2.0%と定めた。Mn量の好ましい下限は1.0%以上であり、より好ましくは1.2%以上である。一方、Mn量の好ましい上限は1.8%以下、より好ましくは1.6%以下である。
[Mn: 0.8 to 2.0%]
Mn is an element effective for improving the hardenability and ensuring the strength of the steel sheet. When the amount of Mn is less than 0.8%, the effect of securing the strength is not sufficiently exhibited. On the other hand, when the amount of Mn exceeds 2.0%, the base material toughness and the HAZ toughness are lowered. Therefore, the amount of Mn is set to 0.8 to 2.0%. The minimum with the preferable amount of Mn is 1.0% or more, More preferably, it is 1.2% or more. On the other hand, the preferable upper limit of the amount of Mn is 1.8% or less, more preferably 1.6% or less.

[P:0.03%以下(0%を含まない)]
不純物元素であるPは、母材靭性およびHAZ靭性に悪影響を及ぼすため、その量は、できるだけ少ないことが好ましい。よってP量は、0.03%以下、好ましくは0.02%である。しかし工業的に、鋼中のP量を0%にすることは困難である。
[P: 0.03% or less (excluding 0%)]
Since the impurity element P adversely affects the base material toughness and the HAZ toughness, the amount is preferably as small as possible. Therefore, the amount of P is 0.03% or less, preferably 0.02%. However, industrially, it is difficult to reduce the P content in steel to 0%.

[S:0.01%以下(0%を含まない)]
Sは、MnSを形成して延性を低下させる元素であり、特に高張力鋼において悪影響が大きくなるため、その量は、できるだけ少ないことが好ましい。よってS量は、0.01%以下、好ましくは0.005%以下である。しかし工業的に、鋼中のS量を0%にすることは困難である。
[S: 0.01% or less (excluding 0%)]
S is an element that forms MnS and lowers the ductility, and the adverse effect is large particularly in high-strength steel. Therefore, the amount is preferably as small as possible. Therefore, the amount of S is 0.01% or less, preferably 0.005% or less. However, industrially, it is difficult to reduce the amount of S in steel to 0%.

[Al:0.01〜0.10%]
Alは、脱酸、およびミクロ組織の微細化により母材靭性を向上させる効果を有する元素である。このような効果を充分に発揮させるため、Alを0.01%以上添加する。もっともAlを過剰に添加すると、かえって母材靭性およびHAZ靭性が低下するため、上限を0.10%とする。Al量の好ましい下限は0.02%以上である。一方、その好ましい上限は0.06%以下であり、より好ましくは0.04%以下である。
[Al: 0.01 to 0.10%]
Al is an element having an effect of improving the base material toughness by deoxidation and refinement of the microstructure. In order to sufficiently exhibit such effects, 0.01% or more of Al is added. However, when Al is added excessively, the base material toughness and the HAZ toughness are lowered, so the upper limit is made 0.10%. A preferable lower limit of the amount of Al is 0.02% or more. On the other hand, the preferable upper limit is 0.06% or less, and more preferably 0.04% or less.

[Nb:0.035%以下(0%を含まない)]
Nbは、素地の焼入れ性を向上させて鋼板の強度を高めるために有効な元素である。このような効果を充分に発揮させるために、Nbは、好ましくは、0.001%以上、さらに好ましくは0.003%以上、特に0.005%以上であることが望まれる。しかしNbを過剰に添加すると、母材靭性およびHAZ靭性が低下するため、その上限量を0.035%と定めた。Nb量は、好ましくは0.025%以下、より好ましくは0.020%以下である。
[Nb: 0.035% or less (excluding 0%)]
Nb is an effective element for improving the hardenability of the substrate and increasing the strength of the steel sheet. In order to sufficiently exhibit such an effect, Nb is preferably 0.001% or more, more preferably 0.003% or more, and particularly preferably 0.005% or more. However, if Nb is added excessively, the base metal toughness and the HAZ toughness are lowered, so the upper limit was set to 0.035%. The Nb amount is preferably 0.025% or less, more preferably 0.020% or less.

[Ti:0.015〜0.03%]
Tiは、Nと微細な窒化物を形成し、溶接時におけるHAZのオーステナイト粒の粗大化を抑制することにより(いわゆるピンニング効果により)、HAZ靭性を向上させるために有効な元素である。このような効果を充分に発揮させるため、Tiを0.015%以上添加する。しかしTi量が過剰であると、かえってHAZ靭性が劣化するため、Ti量の上限を0.03%と定めた。Ti量は、好ましくは0.017%以上(特に0.020%以上)、0.025%以下である。
[Ti: 0.015-0.03%]
Ti is an effective element for improving HAZ toughness by forming fine nitrides with N and suppressing coarsening of austenite grains of HAZ during welding (due to a so-called pinning effect). In order to sufficiently exhibit such an effect, 0.015% or more of Ti is added. However, if the Ti amount is excessive, the HAZ toughness deteriorates, so the upper limit of the Ti amount is set to 0.03%. The amount of Ti is preferably 0.017% or more (particularly 0.020% or more) and 0.025% or less.

[B:0.0010〜0.0035%]
Bは、超大入熱溶接の際に、HAZ、殊にボンド部の付近で、BNを核にした粒内フェライトを生成させると共に、固溶Nの固定作用も有し、HAZ靭性改善に重要な元素である。本発明では、その効果を充分に発揮させるためにBを、通常の厚鋼板中の含有量よりも多く、0.0010%以上含有させている。しかしB量が過剰であると、超大入熱溶接の際に粗大なベイナイト組織が形成されるため、かえってHAZ靭性が劣化する。そのためB量の上限を0.0035%と定めた。B量は、好ましくは0.0015%以上(特に0.0020%以上)、0.0030%以下(特に0.0025%以下)である。
[B: 0.0010 to 0.0035%]
B produces HAG, especially in the vicinity of the bond part, in the vicinity of the bond part, and generates intragranular ferrite with BN as the nucleus, and also has a fixing action of solute N, which is important for improving HAZ toughness. It is an element. In this invention, in order to fully exhibit the effect, B is contained more than the content in a normal thick steel plate, 0.0010% or more. However, if the amount of B is excessive, a coarse bainite structure is formed during super-high heat input welding, so that the HAZ toughness deteriorates. Therefore, the upper limit of the B amount is set to 0.0035%. The amount of B is preferably 0.0015% or more (particularly 0.0020% or more) and 0.0030% or less (particularly 0.0025% or less).

[N:0.0050〜0.01%]
Nは、Tiと結合して微細な炭窒化物を形成し、超大入熱溶接の際にオーステナイト粒の粗大化を抑制し、HAZ靭性を向上させる効果を有する元素である。N量が少なすぎると、上記効果が充分に発揮されないため、その下限を0.0050%以上に定めた。一方、N量が過剰であると、母材靭性およびHAZ靭性に悪影響を及ぼすため、その上限を0.01%と定めた。N量の好ましい下限は0.006%以上であり、より好ましくは0.007%以上である。またN量の好ましい上限は0.009%以下であり、より好ましくは0.008%以下である。
[N: 0.0050 to 0.01%]
N combines with Ti to form fine carbonitrides, suppresses coarsening of austenite grains during super-high heat input welding, and has an effect of improving HAZ toughness. If the amount of N is too small, the above effect is not sufficiently exhibited, so the lower limit was set to 0.0050% or more. On the other hand, if the amount of N is excessive, the base material toughness and the HAZ toughness are adversely affected, so the upper limit was set to 0.01%. The minimum with the preferable amount of N is 0.006% or more, More preferably, it is 0.007% or more. Moreover, the upper limit with preferable N amount is 0.009% or less, More preferably, it is 0.008% or less.

本発明の厚鋼板は、上記各成分を必須成分として含有するが、必要に応じてさらに追加の成分を含有していてもよい。例えば、本発明の厚鋼板は、Cu、Ni、Cr、Mo、Vなどの第1の追加成分を、下記に示す範囲で含有していてもよい。なお任意成分であるため、下限値は0%に設定しているが、積極添加する場合には下限値は0%超になる。またこれらCu、Ni、Cr、Mo、Vなどは、単独で添加してもよく、2種以上を組み合わせて添加してもよい。   The thick steel plate of the present invention contains the above components as essential components, but may further contain additional components as necessary. For example, the thick steel plate of the present invention may contain a first additional component such as Cu, Ni, Cr, Mo, and V in the range shown below. In addition, since it is an arbitrary component, the lower limit value is set to 0%, but when it is actively added, the lower limit value exceeds 0%. Moreover, these Cu, Ni, Cr, Mo, V, etc. may be added independently and may be added in combination of 2 or more type.

[Cu:2.0%以下(0%を含む)]
Cuは、焼入れ性を高めて強度向上に寄与する元素であり、必要に応じて添加することができる。またCと同様にδ域の温度範囲を縮小させて、Ti系炭窒化物を微細化する効果を有すると考えられる。このような効果を充分に発揮させるために、Cu量は、好ましくは0.1%以上、より好ましくは0.2%以上であることが推奨される。しかしCu量が過剰であると、母材靭性およびHAZ靭性が低下する傾向があるため、その上限を2.0%と定めた。Cu量は好ましくは1.0%以下、さらに好ましくは0.5%以下である。
[Cu: 2.0% or less (including 0%)]
Cu is an element that enhances hardenability and contributes to strength improvement, and can be added as necessary. Further, like C, it is considered that the temperature range in the δ region is reduced to refine the Ti-based carbonitride. In order to sufficiently exhibit such an effect, it is recommended that the amount of Cu is preferably 0.1% or more, more preferably 0.2% or more. However, if the amount of Cu is excessive, the base material toughness and the HAZ toughness tend to decrease, so the upper limit was set to 2.0%. The amount of Cu is preferably 1.0% or less, more preferably 0.5% or less.

[Ni:2.0%以下(0%を含む)]
Niも、Cuと同様に、焼入れ性を高めて強度向上に寄与し、δ域の温度範囲を縮小させるために有効な元素であり、必要に応じて添加することができる。このような効果を充分に発揮させるために、Ni量は、好ましくは0.2%以上、より好ましくは0.3%以上であることが推奨される。しかしNi量が過剰であると、母材靭性およびHAZ靭性が低下する傾向があるため、その上限を2.0%と定めた。Ni量は好ましくは1.0%以下、さらに好ましくは0.5%以下である。
[Ni: 2.0% or less (including 0%)]
Ni, like Cu, is an element effective for increasing the hardenability and contributing to strength improvement, and reducing the temperature range in the δ region, and can be added as necessary. In order to sufficiently exhibit such an effect, it is recommended that the amount of Ni is preferably 0.2% or more, more preferably 0.3% or more. However, if the amount of Ni is excessive, the base material toughness and the HAZ toughness tend to decrease, so the upper limit was set to 2.0%. The amount of Ni is preferably 1.0% or less, more preferably 0.5% or less.

[Cr:1%以下(0%を含む)]
Crも、Cuと同様に、焼入れ性を高めて強度向上に寄与する元素であり、必要に応じて添加することができる。このような効果を充分に発揮させるために、Cr量は、好ましくは0.2%以上、より好ましくは0.4%以上であることが推奨される。しかしCr量が過剰であると、母材靭性およびHAZ靭性が低下するので、その上限を1%と定めた。Cr量の好ましい上限は0.8%である。
[Cr: 1% or less (including 0%)]
Cr, like Cu, is an element that increases the hardenability and contributes to strength improvement, and can be added as necessary. In order to sufficiently exhibit such effects, it is recommended that the Cr amount is preferably 0.2% or more, more preferably 0.4% or more. However, if the amount of Cr is excessive, the base metal toughness and the HAZ toughness are lowered, so the upper limit was set to 1%. The upper limit with preferable Cr amount is 0.8%.

[Mo:0.5%以下(0%を含む)]
Moは、焼入れ性を高めて強度を向上させることに加えて、焼戻し脆性を防止するために有効な元素であり、必要に応じて添加することができる。このような効果を充分に発揮させるために、Mo量は、好ましくは0.05%以上、より好ましくは0.10%以上であることが推奨される。しかしMo量が過剰であると、母材靭性およびHAZ靭性が劣化するため、その上限を0.5%と定めた。Mo量は、好ましくは0.3%以下である。
[Mo: 0.5% or less (including 0%)]
Mo is an element effective for improving hardenability and improving strength and preventing temper embrittlement, and can be added as necessary. In order to sufficiently exhibit such an effect, the Mo amount is preferably 0.05% or more, more preferably 0.10% or more. However, if the Mo amount is excessive, the base metal toughness and the HAZ toughness deteriorate, so the upper limit was set to 0.5%. The amount of Mo is preferably 0.3% or less.

[V:0.1%以下(0%を含む)]
Vは、少量の添加により、焼入れ性および焼戻し軟化抵抗を高める効果を有する元素であり、必要に応じて添加することができる。このような効果を充分に発揮させるために、V量は、好ましくは0.01%以上、より好ましくは0.02%以上であることが推奨される。しかしV量が過剰であると、母材靭性およびHAZ靭性が劣化するため、その上限を0.1%と定めた。V量は、好ましくは0.05%以下である。
[V: 0.1% or less (including 0%)]
V is an element having an effect of enhancing hardenability and temper softening resistance by addition of a small amount, and can be added as necessary. In order to sufficiently exhibit such effects, it is recommended that the V amount is preferably 0.01% or more, more preferably 0.02% or more. However, if the amount of V is excessive, the base metal toughness and the HAZ toughness deteriorate, so the upper limit was set to 0.1%. The amount of V is preferably 0.05% or less.

本発明の厚鋼板では、さらに必要に応じて第2の追加の成分を含有していてもよい。第2の追加の成分を添加する場合、それらの組み合わせ及び添加量は、以下の通りである。
(イ)Ca:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)、及びREM:0.01%以下(0%を含まない)から選択される少なくとも1種、
(ロ)Zr:0.1%以下(0%を含まない)および/またはHf:0.05%以下(0%を含まない)、
(ハ)Co:2.5%以下(0%を含まない)および/またはW:2.5%以下(0%を含まない)。
The thick steel plate of the present invention may further contain a second additional component as necessary. When adding a 2nd additional component, those combinations and addition amount are as follows.
(I) Ca: 0.005% or less (not including 0%), Mg: 0.005% or less (not including 0%), and REM: 0.01% or less (not including 0%) At least one of
(B) Zr: 0.1% or less (not including 0%) and / or Hf: 0.05% or less (not including 0%),
(C) Co: 2.5% or less (not including 0%) and / or W: 2.5% or less (not including 0%).

なお前記(イ)、(ロ)、(ハ)は、いずれか一つを実施してもよく、二つ以上を組み合わせて実施してもよい。以下、(イ)、(ロ)、(ハ)の詳細を説明する。   In addition, said (I), (B), (C) may implement any one, and may implement it in combination of 2 or more. Details of (A), (B), and (C) will be described below.

(イ)Ca:0.005%以下、Mg:0.005%以下、及びREM:0.01%以下から選択される少なくとも一種について
Ca、Mg、およびREM(希土類元素)は、HAZ靭性を向上させる効果を有する元素である。詳しくは、CaおよびREMは、MnSの球状化効果、言い換えれば介在物の形態制御による異方性の低減作用があり、HAZ靭性を向上させる。一方、Mgは、MgOを形成し、HAZのオーステナイト粒の粗大化を抑制することによってHAZ靭性を向上させる。このような効果を充分に発揮させるために鋼板中に、Caは0.0005%以上、Mgは0.0001%以上、REMは0.0005%以上含有させることが好ましい。しかしこれらの量が過剰であると、かえって母材靭性およびHAZ靭性を劣化させるので、Caは0.005%以下、Mgは0.005%以下、REMは0.01%以下と定めた。好ましくはCaが0.003%以下、Mgが0.0035%以下、REMが0.007%以下である。
(B) At least one selected from Ca: 0.005% or less, Mg: 0.005% or less, and REM: 0.01% or less Ca, Mg, and REM (rare earth elements) improve HAZ toughness. It is an element which has the effect to make. Specifically, Ca and REM have a spheroidizing effect of MnS, in other words, an effect of reducing anisotropy by shape control of inclusions, and improve HAZ toughness. On the other hand, Mg improves the HAZ toughness by forming MgO and suppressing the coarsening of the HAZ austenite grains. In order to sufficiently exhibit such effects, it is preferable to contain 0.0005% or more of Ca, 0.0001% or more of Mg, and 0.0005% or more of REM in the steel sheet. However, if these amounts are excessive, the base metal toughness and the HAZ toughness are deteriorated. Therefore, Ca is set to 0.005% or less, Mg is set to 0.005% or less, and REM is set to 0.01% or less. Preferably, Ca is 0.003% or less, Mg is 0.0035% or less, and REM is 0.007% or less.

(ロ)Zr:0.1%以下および/またはHf:0.05%以下について
ZrおよびHfは、Tiと同様に窒化物を形成し、溶接時におけるHAZのオーステナイト粒の粗大化を抑制するので、HAZ靭性の改善に有効な元素である。このような効果を充分に発揮させるため、Zr量は、好ましくは0.0005%以上、Hf量は、好ましくは0.001%以上であることが推奨される。しかしこれらの量が過剰であると、かえって母材靭性およびHAZ靭性が低下させるので、これらを含有させる場合、Zr量の上限を0.1%、Hf量の上限を0.05%と定めた。
(B) Zr: 0.1% or less and / or Hf: 0.05% or less Zr and Hf form nitrides similarly to Ti, and suppress coarsening of austenite grains of HAZ during welding. , An element effective in improving HAZ toughness. In order to sufficiently exhibit such effects, it is recommended that the Zr amount is preferably 0.0005% or more, and the Hf amount is preferably 0.001% or more. However, if these amounts are excessive, the toughness of the base metal and the HAZ toughness are lowered. Therefore, when these are included, the upper limit of the Zr amount is set to 0.1% and the upper limit of the Hf amount is set to 0.05%. .

(ハ)Co:2.5%以下および/またはW:2.5%以下について
CoおよびWは、焼入れ性を向上させ、鋼板の強度を高める効果を有する元素である。このような効果を充分に発揮させるため、これらの1つまたは両方を、それぞれ0.1%以上で含有させることが好ましい。しかしこれらの量が過剰であると、母材靭性およびHAZ靭性が劣化するため、これらの量の上限を、それぞれ2.5%と定めた。
(C) Co: 2.5% or less and / or W: 2.5% or less Co and W are elements having an effect of improving hardenability and increasing the strength of the steel sheet. In order to fully exhibit such an effect, it is preferable to contain one or both of these at 0.1% or more. However, if these amounts are excessive, the base material toughness and the HAZ toughness deteriorate, so the upper limit of these amounts was set to 2.5%.

本発明の厚鋼板では、残部は、Feおよび不可避不純物であってもよい。
本発明の厚鋼板は、概略、上記化学成分量、[Ti]/[N]およびX値の要件を満たす鋼を、通常の溶製法によって溶製し、この溶鋼を冷却してスラブとし、通常の条件で加熱(例えば、加熱温度:950〜1300℃程度)した後、後述する所定の方法で熱間圧延することによって製造できる。なお熱間圧延後は、放冷してもよく、加速冷却してもよい。またその後、必要により、焼入れ・焼戻ししてもよい。
In the thick steel plate of the present invention, the balance may be Fe and inevitable impurities.
The thick steel plate of the present invention is generally prepared by melting a steel satisfying the above-mentioned chemical component amounts, [Ti] / [N] and X value by an ordinary melting method, and cooling the molten steel into a slab. After heating under the conditions (for example, heating temperature: about 950 to 1300 ° C.), it can be manufactured by hot rolling by a predetermined method described later. In addition, after hot rolling, it may be allowed to cool or may be accelerated. Thereafter, it may be quenched and tempered as necessary.

まず溶鋼の冷却について詳述すると、本発明の厚鋼板は、X値を制御してδ域の温度範囲を狭くしているので、溶鋼を通常の条件で冷却(例えば1500℃から1100℃までを0.1〜2.0℃/秒の冷却速度で冷却)してスラブを形成しても、Ti系炭窒化物およびNb系炭窒化物の平均粒子径を十分に小さくできる。但し、より微細な炭窒化物を形成させるために、鋳造機の冷却水量や冷却方法を変更して、凝固時の冷却速度を向上させることが好ましい。   First, the cooling of the molten steel will be described in detail. Since the thick steel plate of the present invention controls the X value to narrow the temperature range in the δ region, the molten steel is cooled under normal conditions (for example, from 1500 ° C. to 1100 ° C.). Even if the slab is formed by cooling at a cooling rate of 0.1 to 2.0 ° C./second), the average particle diameter of the Ti-based carbonitride and the Nb-based carbonitride can be sufficiently reduced. However, in order to form a finer carbonitride, it is preferable to improve the cooling rate during solidification by changing the cooling water amount and cooling method of the casting machine.

そして本発明の厚鋼板の製造工程で最も重要なのは、熱間圧延条件である。本発明の熱間圧延では、Y値±30℃の間の圧下率を累積で40%以上(例えば、40〜60%程度)にし、かつY値±30℃の間の圧延の各パス間時間を5〜10秒に制御すると共に、Y値−30℃未満の温度範囲の圧下率を累積で10%以下に抑えている。なおY値については後で詳述するが、実施例では、830〜860℃程度であることが多い。Y値+30℃以下で実質的な圧延を行い、Y値−30℃未満の圧延を抑えることによって、旧オーステナイト粒の扁平化を防ぐことができる。そしてY値−30℃以上、Y値+30℃以下で実質的な圧延をする場合、通常であれば旧オーステナイト粒が粗大化してしまうが、本発明では各パス間時間を制御しているため、旧オーステナイト粒を微細化できる。パス間時間が短くても、長くても、旧オーステナイト粒が粗大化する。なおパス間時間とは、前パスの進行方向後端の圧延時と、本パスの進行方向後端の圧延時との時間差のことをいう。またY値+30℃以上での累積圧下率は特に限定されず、例えば、0〜80%程度の範囲から適宜設定できる。   And the most important thing in the manufacturing process of the thick steel plate of this invention is hot rolling conditions. In the hot rolling of the present invention, the rolling reduction between the Y values ± 30 ° C. is cumulatively 40% or more (for example, about 40 to 60%), and the time between each pass of the rolling between the Y values ± 30 ° C. Is controlled to 5 to 10 seconds, and the rolling reduction in the temperature range where the Y value is less than −30 ° C. is suppressed to 10% or less cumulatively. In addition, although Y value is explained in full detail later, in an Example, it is about 830-860 degreeC in many cases. By performing substantial rolling at a Y value of + 30 ° C. or less and suppressing rolling at a Y value of less than −30 ° C., it is possible to prevent the prior austenite grains from being flattened. And when the substantial rolling is performed at a Y value of −30 ° C. or more and a Y value of + 30 ° C. or less, the old austenite grains are usually coarsened, but in the present invention, the time between passes is controlled. Old austenite grains can be refined. Whether the time between passes is short or long, the prior austenite grains become coarse. The time between passes refers to the time difference between the rolling at the rear end in the traveling direction of the previous pass and the rolling at the rear end in the traveling direction of the main pass. In addition, the cumulative rolling reduction at a Y value of + 30 ° C. or higher is not particularly limited, and can be appropriately set, for example, from a range of about 0 to 80%.

Y値は、上述した様に、旧オーステナイト粒の扁平化に対して影響する値である。このY値は、下記式によって求まる。
Y値=750+4000[Nb]+32600[B]+250[Mo]+400[V]
(式中、[Nb]、[B]、[Mo]、[V]は鋼板中の各元素の含有量(質量%)を表す)
As described above, the Y value is a value that affects the flattening of the prior austenite grains. This Y value is obtained by the following equation.
Y value = 750 + 4000 [Nb] +32600 [B] +250 [Mo] +400 [V]
(In the formula, [Nb], [B], [Mo], [V] represent the content (% by mass) of each element in the steel sheet)

前記Y値に到達した経緯は、以下の通りである。すなわち所定の化学成分の鋼板について、その4/t位置から直径8mm×長さ12mmの試験片を採取し、加工フォーマスター試験機にセットし、温度1100℃に加熱した後、所定の試験温度まで急冷し、この試験温度で、6パス(各パスの相当歪は0.2)の加工を行った。試験温度を20℃刻みで変更し(最高値1000℃、最低値700℃)、オーステナイトが扁平化し始める試験温度(具体的には、旧オーステナイト粒の扁平率が2.0以上になる試験温度)を求めた。   The process of reaching the Y value is as follows. That is, for a steel plate having a predetermined chemical composition, a test piece having a diameter of 8 mm and a length of 12 mm is taken from the 4 / t position, set in a processing for master testing machine, heated to a temperature of 1100 ° C., and then up to a predetermined test temperature. The sample was quenched and processed at this test temperature for 6 passes (equivalent strain in each pass was 0.2). The test temperature is changed in increments of 20 ° C. (maximum value 1000 ° C., minimum value 700 ° C.), and the test temperature at which austenite begins to flatten (specifically, the test temperature at which the flatness of the prior austenite grains becomes 2.0 or more) Asked.

鋼板の化学成分を種々変更し、オーステナイトが扁平化し始める温度(Y値とする)に対して、化学成分が与える影響を調べ、重回帰計算して各成分の係数を求めた。   Various changes were made in the chemical composition of the steel sheet, the influence of the chemical composition on the temperature at which austenite begins to flatten (Y value) was examined, and multiple regression calculations were performed to determine the coefficient of each component.

本発明の厚鋼板は、JISの厚鋼板の定義に従い、板厚が3.0mm以上であるが、好ましくは、20mm以上、さらに好ましくは40mm以上、特に60mm以上である。本発明によれば、超大入熱溶接しても良好なHAZ靭性を示すため、板厚を厚くしても、HAZ靭性を低下することなく溶接できる。   The thick steel plate of the present invention has a plate thickness of 3.0 mm or more according to the definition of JIS thick steel plate, preferably 20 mm or more, more preferably 40 mm or more, particularly 60 mm or more. According to the present invention, since excellent HAZ toughness is exhibited even by super-high heat input welding, welding can be performed without reducing HAZ toughness even if the plate thickness is increased.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実験No.1〜59
表1〜3に示す組成の鋼を、通常の溶製法によって溶製し、この溶鋼を冷却(1500℃から1100℃までの冷却速度:0.1〜2.0℃/秒)し、スラブを得た(スラブ厚=270mm)。このスラブを温度1100℃に加熱した後、厚さ60mmまで熱間圧延した。この熱間圧延では、Y値±30℃の範囲、及びY値−30℃未満の範囲を表4〜5に示す累積圧下率で圧下し、さらにY値±30℃の範囲の各パス間時間を表4〜5に示す通りにした。熱間圧延終了後、放冷した。
Experiment No. 1-59
Steels having the compositions shown in Tables 1 to 3 were melted by an ordinary melting method, the molten steel was cooled (cooling rate from 1500 ° C. to 1100 ° C .: 0.1 to 2.0 ° C./second), and the slab was Obtained (slab thickness = 270 mm). The slab was heated to a temperature of 1100 ° C. and then hot-rolled to a thickness of 60 mm. In this hot rolling, the range of Y value ± 30 ° C. and the range of Y value less than −30 ° C. are reduced at the cumulative reduction rate shown in Tables 4 to 5, and the time between passes in the range of Y value ± 30 ° C. Were as shown in Tables 4-5. After completion of hot rolling, it was allowed to cool.

鋼板の化学成分組成から計算した[Ti]/[N]およびX値、Thermo−calcから計算したδ域の温度範囲の値(表中で「δ域」と記載)、並びにY値を表1〜3に示す。   Table 1 shows the [Ti] / [N] and X values calculated from the chemical composition of the steel sheet, the temperature range value in the δ range calculated from Thermo-calc (described as “δ range” in the table), and the Y value. Shown in ~ 3.

また上記のようにして製造した鋼板について、前述した要領で、旧オーステナイト粒の粒径及び扁平率、並びにTi系炭窒化物の平均粒径を調べた。また下記要領で、鋼板の引張強さ、母材靭性(低温靭性)、およびHAZ靭性を測定した。これらの結果を表4〜5に示す。   Further, with respect to the steel sheet produced as described above, the particle size and flatness of the prior austenite grains and the average particle diameter of the Ti-based carbonitride were examined in the manner described above. Further, the tensile strength, base metal toughness (low temperature toughness), and HAZ toughness of the steel sheet were measured in the following manner. These results are shown in Tables 4-5.

[引張強さ]
深さt/4の位置(t=板厚)で、長さ方向が幅方向(C方向)になるようにJIS4号試験片を採取し、引張試験を行うことにより、引張強度を測定した。引張強さが440MPa以上のものを合格とした。
[Tensile strength]
Tensile strength was measured by taking a JIS No. 4 test piece at a depth t / 4 (t = plate thickness) and taking a tensile test so that the length direction was the width direction (C direction). Those having a tensile strength of 440 MPa or more were regarded as acceptable.

[母材靭性]
深さt/4の位置(t=板厚)で、長さ方向が圧延方向(L方向)又は幅方向(C方向)になるようにJIS Z 2242に規定するVノッチ標準試験片を採取し、−40℃でシャルピー衝撃試験(衝撃刃半径2mm)を行い、吸収エネルギー(vE-40)を測定した。L方向の吸収エネルギーが200J以上であり、L方向とC方向の間の吸収エネルギー差が90J以下であるものを合格とした。
[Base material toughness]
Take a V-notch standard specimen specified in JIS Z 2242 so that the length direction is the rolling direction (L direction) or the width direction (C direction) at the position of depth t / 4 (t = sheet thickness). The Charpy impact test (impact blade radius 2 mm) was performed at −40 ° C., and the absorbed energy (vE −40 ) was measured. The absorption energy in the L direction was 200 J or more, and the difference in absorption energy between the L direction and the C direction was 90 J or less.

[HAZ靭性]
板厚60mmの鋼板に対して入熱40kJ/mmでセガーク(SEGARC)溶接を行った。図1に示すt/2部(t=板厚)からJIS Z 2242に規定するVノッチ標準試験片を採取し(ノッチ位置は、ボンドから0.5mmHAZ側)、−40℃でシャルピー衝撃試験(衝撃刃半径2mm)を行い、吸収エネルギー(vE-40)を測定した。吸収エネルギーが200J以上のものを合格とした。
[HAZ toughness]
SEGARC welding was performed on a steel plate having a thickness of 60 mm at a heat input of 40 kJ / mm. A V-notch standard test piece specified in JIS Z 2242 is taken from t / 2 part (t = plate thickness) shown in FIG. 1 (the notch position is 0.5 mm HAZ side from the bond), and a Charpy impact test at −40 ° C. ( Impact blade radius was 2 mm), and the absorbed energy (vE -40 ) was measured. The absorbed energy was 200 J or more.

また本発明の成分範囲を満足する実験No.1〜36の結果に基づき、X値、Ti系炭窒化物の平均粒径、HAZ靭性(vE-40)、及び低温母材靭性の関係を整理した。結果を図2〜4に示す。 Experiment No. 1 satisfying the component range of the present invention. Based on the results of 1-36, the relationship among the X value, the average grain size of the Ti-based carbonitride, the HAZ toughness (vE- 40 ), and the low temperature base metal toughness was arranged. The results are shown in FIGS.

さらに本発明の成分範囲とX値を満足する実験No.1〜35及び53〜55の結果に基づき、Y値±30℃での累積圧下率、旧オーステナイト粒の粒径、及び低温母材靭性(vE-40)との関係を整理した。結果を図5〜6に示す。 Furthermore, in Experiment No. satisfying the component range and X value of the present invention. Based on the results of 1 to 35 and 53 to 55, the relationship between the cumulative rolling reduction at Y value of ± 30 ° C., the grain size of the prior austenite grains, and the low temperature base material toughness (vE −40 ) was arranged. The results are shown in FIGS.

また実験No.1〜59の結果に基づき、旧オーステナイト粒の扁平率と低温母材靭性の異方性(ΔvE-40)との関係を整理した。結果を図7に示す。 In addition, Experiment No. Based on the results of 1 to 59, the relationship between the flatness of prior austenite grains and the anisotropy (ΔvE −40 ) of low-temperature base metal toughness was arranged. The results are shown in FIG.

図2〜4から明らかなように、X値を40以上にした実験No.1〜35の例では、Ti系炭窒化物の平均粒径を小さくでき、HAZ靭性(vE-40)を改善できる。またX値を40以上にした実験例No.1〜35の例では、Nb系炭窒化物も微細化できるためか、低温母材靭性(vE-40)も改善できる。 As is apparent from FIGS. 2 to 4, the experiment No. 1 with an X value of 40 or more was used. In the examples of 1 to 35, the average particle size of the Ti-based carbonitride can be reduced, and the HAZ toughness (vE- 40 ) can be improved. Experimental example No. with an X value of 40 or more was used. In the examples 1 to 35, the Nb-based carbonitride can also be made finer, or the low-temperature base material toughness (vE- 40 ) can be improved.

さらに図5〜6から明らかなように、Y値±30℃の圧下率を累積で40%以上にした実験No.1〜35の例では、旧オーステナイト粒を微細にでき、低温母材靭性(vE-40)を改善できる。加えて図7から明らかなように、旧オーステナイト粒の扁平率を2.5以下にした実験例No.1〜35の例では、異方性を軽減できる。 Further, as apparent from FIGS. 5 to 6, the experiment No. 1 in which the rolling reduction of the Y value ± 30 ° C. was made 40% or more cumulatively. In the examples of 1 to 35, the prior austenite grains can be made fine, and the low temperature base metal toughness (vE- 40 ) can be improved. In addition, as apparent from FIG. 7, Experimental Example No. 1 in which the flatness of the prior austenite grains was 2.5 or less. In the examples of 1 to 35, anisotropy can be reduced.

これらに対して、実験No.36、51、52はX値が小さすぎる例であり、低温母材靭性(vE-40)及びHAZ靭性が悪化する。No.50はX値が大きすぎ、低温母材靭性(vE-40)及びHAZ靭性が悪化する。No.37〜49は、成分範囲やTi/N比が不適切であるため、低温母材靭性(vE-40)及びHAZ靭性が劣化した。 In contrast, Experiment No. 36, 51 and 52 are examples in which the X value is too small, and the low temperature base material toughness (vE- 40 ) and the HAZ toughness are deteriorated. No. 50 has an X value that is too large, and the low temperature base material toughness (vE -40 ) and HAZ toughness deteriorate. No. For 37 to 49, the component range and the Ti / N ratio were inappropriate, so the low-temperature base metal toughness (vE- 40 ) and HAZ toughness deteriorated.

No.53〜55は、Y値±30℃の累積圧下率が低く、その結果、実質的な圧延温度がY値+30℃超になってしまい、旧オーステナイト粒が粗大化して、低温母材靭性(vE-40)が劣化した。 No. 53 to 55, the cumulative rolling reduction of Y value ± 30 ° C. is low. As a result, the substantial rolling temperature exceeds Y value + 30 ° C., and the prior austenite grains become coarse, resulting in low temperature base material toughness (vE -40 ) deteriorated.

No.56〜57では、Y値−30℃未満の累積圧下率が大きい為、旧オーステナイト粒が扁平し、異方性が大きくなった。   No. In 56-57, since the cumulative rolling reduction of Y value less than −30 ° C. was large, the prior austenite grains became flat and the anisotropy increased.

No.58と59は、Y値±30℃の間を圧延するときのパス間時間が不適切であって、旧オーステナイト粒が粗大化し、低温母材靭性が劣化した。   No. In Nos. 58 and 59, the time between passes when rolling between Y values of ± 30 ° C. was inappropriate, the prior austenite grains became coarse, and the low-temperature base metal toughness deteriorated.

本発明の厚鋼板の引張強度クラスは、例えば、440MPa以上、好ましくは490MPa以上であり、さらに好ましくは540MPa以上であり、最も好ましい場合には590MPa以上の厚鋼板も提供できる。本発明の厚鋼板は、例えば、船舶および海洋構造物などの溶接構造物に適用でき、特に引張強度の優れた高張力鋼板は、大型のコンテナ船等の製造に適している。   The tensile strength class of the thick steel plate of the present invention is, for example, 440 MPa or more, preferably 490 MPa or more, more preferably 540 MPa or more, and most preferably 590 MPa or more. The thick steel plate of the present invention can be applied to, for example, welded structures such as ships and offshore structures. Particularly, a high-tensile steel plate having excellent tensile strength is suitable for manufacturing a large container ship or the like.

図1はHAZ靭性測定用の試験片の採取位置を示す概略図である。FIG. 1 is a schematic view showing a sampling position of a test piece for measuring HAZ toughness. 図2は実験No.1〜36の結果に基づき、X値とTi系炭窒化物の平均粒径との関係を整理したグラフである。FIG. It is the graph which arranged the relationship between X value and the average particle diameter of Ti type carbonitride based on the results of 1-36. 図3は実験No.1〜36の結果に基づき、X値とHAZ靭性(vE-40)との関係を整理したグラフである。FIG. It is the graph which arranged the relationship between X value and HAZ toughness (vE- 40 ) based on the result of 1-36. 図4は実験No.1〜36の結果に基づき、X値と低温母材靭性(vE-40)との関係を整理したグラフである。FIG. It is the graph which arranged the relationship between X value and low-temperature base material toughness (vE- 40 ) based on the result of 1-36. 図5は実験No.1〜35及び53〜55の結果に基づき、Y値±30℃での累積圧下率と旧オーステナイト粒の粒径との関係を整理したグラフである。FIG. It is the graph which arranged the relationship between the cumulative reduction rate in Y value +/- 30 degreeC, and the particle size of a prior-austenite grain based on the result of 1-35 and 53-55. 図6は実験No.1〜35及び53〜55の結果に基づき、Y値±30℃での累積圧下率と低温母材靭性(vE-40)との関係を整理したグラフである。FIG. It is the graph which arranged the relationship between the cumulative reduction rate in Y value +/- 30 degreeC, and low temperature base material toughness (vE- 40 ) based on the result of 1-35 and 53-55. 図7は実験No.1〜59の結果に基づき、旧オーステナイト粒の扁平率と低温母材靭性の異方性(ΔvE-40)との関係を整理したグラフである。FIG. It is the graph which arranged the relationship between the flat rate of a prior austenite grain, and the anisotropy (ΔvE- 40 ) of low-temperature base material toughness based on the results of 1-59.

Claims (7)

C:0.030〜0.10%(質量%の意味、以下同じ)、Si:1.0%以下(0%を含まない)、Mn:0.8〜2.0%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.10%、Nb:0.035%以下(0%を含まない)、Ti:0.015〜0.03%、B:0.0010〜0.0035%、およびN:0.0050〜0.01%を含有し、
さらにCu:2.0%以下(0%を含む)、Ni:2.0%以下(0%を含む)、Cr:1%以下(0%を含む)、Mo:0.5%以下(0%を含む)およびV:0.1%以下(0%を含む)を含有し、
残部がFeおよび不可避不純物からなる厚鋼板であって、
旧オーステナイト粒の平均円相当径が100μm以下、かつその扁平率(長径/短径)が2.5以下であり、
しかも下記式(1)および(2)を満足することを特徴とする材質異方性が少なくHAZ靭性および低温母材靭性に優れた厚鋼板。
1.5≦[Ti]/[N]≦4 … (1)
40≦X値≦160 … (2)
X値=500[C]+32[Si]+8[Mn]−9[Nb]
+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]
(式中、[Ti]、[N]、[C]、[Si]、[Mn]、[Nb]、[Cu]、[Ni]、[Cr]、[Mo]、[V]は鋼板中の各元素の含有量(質量%)を表す)
C: 0.030 to 0.10% (meaning of mass%, the same shall apply hereinafter), Si: 1.0% or less (not including 0%), Mn: 0.8 to 2.0%, P: 0.0. 03% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.01 to 0.10%, Nb: 0.035% or less (not including 0%) ), Ti: 0.015-0.03%, B: 0.0010-0.0035%, and N: 0.0050-0.01%,
Further, Cu: 2.0% or less (including 0%), Ni: 2.0% or less (including 0%), Cr: 1% or less (including 0%), Mo: 0.5% or less (0 %) And V: 0.1% or less (including 0%),
The balance is a thick steel plate made of Fe and inevitable impurities,
The average equivalent circle diameter of the prior austenite grains is 100 μm or less, and the flatness (major axis / minor axis) is 2.5 or less,
In addition, a thick steel plate satisfying the following formulas (1) and (2), having low material anisotropy and excellent HAZ toughness and low-temperature base material toughness.
1.5 ≦ [Ti] / [N] ≦ 4 (1)
40 ≦ X value ≦ 160 (2)
X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb]
+14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V]
(In the formula, [Ti], [N], [C], [Si], [Mn], [Nb], [Cu], [Ni], [Cr], [Mo], [V] are in the steel plate. The content (% by mass) of each element of
δ域の温度範囲が40℃以下である請求項1に記載の厚鋼板。   The thick steel plate according to claim 1, wherein the temperature range of the δ region is 40 ° C or less. 深さt/4の位置(t=板厚)において、Ti系炭窒化物の平均粒子径が43nm以下である請求項1または2に記載の厚鋼板。   The thick steel plate according to claim 1 or 2, wherein an average particle diameter of the Ti-based carbonitride is 43 nm or less at a position at a depth t / 4 (t = plate thickness). さらにCa:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)、及びREM:0.01%以下(0%を含まない)から選択される少なくとも1種を含有する請求項1〜3のいずれかに記載の厚鋼板。   Furthermore, it is selected from Ca: 0.005% or less (not including 0%), Mg: 0.005% or less (not including 0%), and REM: 0.01% or less (not including 0%) The thick steel plate according to any one of claims 1 to 3, comprising at least one kind. さらにZr:0.1%以下(0%を含まない)および/またはHf:0.05%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の厚鋼板。   The thick steel plate according to any one of claims 1 to 4, further comprising Zr: 0.1% or less (excluding 0%) and / or Hf: 0.05% or less (not including 0%). さらにCo:2.5%以下(0%を含まない)および/またはW:2.5%以下(0%を含まない)を含有する請求項1〜5のいずれかに記載の厚鋼板。   The thick steel plate according to any one of claims 1 to 5, further comprising Co: 2.5% or less (not including 0%) and / or W: 2.5% or less (not including 0%). 請求項1、4、5又は6に記載の成分組成を満足し、かつ前記式(1)及び(2)を満足するスラブを、温度950〜1300℃に加熱した後、下記式によって求まるY値±30℃の温度範囲を、圧下率が累積で40%以上となるようにかつ各パス終了から次のパス開始までの時間を5秒以上10秒以下になる様に圧延し、さらにY値−30℃未満の温度範囲の圧下率を累積で10%以下に抑えて圧延を終了させることを特徴とする材質異方性が少なくHAZ靭性および低温母材靭性に優れた厚鋼板。
Y値=750+4000[Nb]+32600[B]+250[Mo]+400[V]
(式中、[Nb]、[B]、[Mo]、[V]は鋼板中の各元素の含有量(質量%)を表す)
A Y value obtained by the following formula after heating a slab satisfying the component composition of claim 1, 4, 5 or 6 and satisfying the formulas (1) and (2) to a temperature of 950 to 1300 ° C. The temperature range of ± 30 ° C is rolled so that the rolling reduction is cumulatively 40% or more, and the time from the end of each pass to the start of the next pass is 5 seconds or more and 10 seconds or less. A thick steel plate with low material anisotropy and excellent HAZ toughness and low-temperature base material toughness, characterized in that rolling is completed by suppressing the rolling reduction in a temperature range of less than 30 ° C. to 10% or less.
Y value = 750 + 4000 [Nb] +32600 [B] +250 [Mo] +400 [V]
(In the formula, [Nb], [B], [Mo], [V] represent the content (% by mass) of each element in the steel sheet)
JP2007104668A 2007-04-09 2007-04-12 Thick steel plate with little material anisotropy and excellent HAZ toughness and low temperature base metal toughness Active JP4964007B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007104668A JP4964007B2 (en) 2007-04-12 2007-04-12 Thick steel plate with little material anisotropy and excellent HAZ toughness and low temperature base metal toughness
CN2008100918179A CN101285159B (en) 2007-04-09 2008-04-03 Heavy plate excellent in haz toughness
KR1020080032412A KR100954042B1 (en) 2007-04-09 2008-04-08 Thick steel plate having excellent haz toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104668A JP4964007B2 (en) 2007-04-12 2007-04-12 Thick steel plate with little material anisotropy and excellent HAZ toughness and low temperature base metal toughness

Publications (2)

Publication Number Publication Date
JP2008261009A true JP2008261009A (en) 2008-10-30
JP4964007B2 JP4964007B2 (en) 2012-06-27

Family

ID=39983704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104668A Active JP4964007B2 (en) 2007-04-09 2007-04-12 Thick steel plate with little material anisotropy and excellent HAZ toughness and low temperature base metal toughness

Country Status (1)

Country Link
JP (1) JP4964007B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097589A1 (en) * 2020-11-05 2022-05-12 Jfeスチール株式会社 Steel sheet and method for manufacturing same
WO2022097588A1 (en) * 2020-11-05 2022-05-12 Jfeスチール株式会社 Steel sheet and method for manufacturing steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163527A (en) * 1991-12-13 1993-06-29 Nippon Steel Corp Manufacture of high tension steel superior in weldability
JP2004300567A (en) * 2003-03-19 2004-10-28 Kobe Steel Ltd High tensile steel sheet and its manufacturing method
JP2005226158A (en) * 2004-01-16 2005-08-25 Kobe Steel Ltd High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163527A (en) * 1991-12-13 1993-06-29 Nippon Steel Corp Manufacture of high tension steel superior in weldability
JP2004300567A (en) * 2003-03-19 2004-10-28 Kobe Steel Ltd High tensile steel sheet and its manufacturing method
JP2005226158A (en) * 2004-01-16 2005-08-25 Kobe Steel Ltd High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097589A1 (en) * 2020-11-05 2022-05-12 Jfeスチール株式会社 Steel sheet and method for manufacturing same
WO2022097588A1 (en) * 2020-11-05 2022-05-12 Jfeスチール株式会社 Steel sheet and method for manufacturing steel sheet
JPWO2022097588A1 (en) * 2020-11-05 2022-05-12
JP7099653B1 (en) * 2020-11-05 2022-07-12 Jfeスチール株式会社 Steel plate and its manufacturing method
JP7243916B2 (en) 2020-11-05 2023-03-22 Jfeスチール株式会社 Steel plate and steel plate manufacturing method

Also Published As

Publication number Publication date
JP4964007B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4976905B2 (en) Thick steel plate with excellent HAZ toughness and base metal toughness
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
US7520943B2 (en) Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP4976906B2 (en) Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance
JP5110989B2 (en) Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
KR20140138933A (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP5037744B2 (en) High strength steel plate and manufacturing method thereof
KR20100087235A (en) High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
KR20150029758A (en) Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
JP4914783B2 (en) Large steel plate for high heat input welding with excellent shearability
JP2005314796A (en) High strength hot rolled steel sheet having excellent elongation property, stretch flange property and tensile fatigue property, and its production method
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
KR102398709B1 (en) High-strength steel sheet and its manufacturing method
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP6301805B2 (en) Thick steel plate for tanks with excellent toughness of weld heat affected zone
JP4412098B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
WO2016060141A1 (en) Steel for high-energy-input welding
JP4768526B2 (en) Thick steel plate with excellent high heat input HAZ toughness and low temperature base metal toughness
JP4964007B2 (en) Thick steel plate with little material anisotropy and excellent HAZ toughness and low temperature base metal toughness
KR100954042B1 (en) Thick steel plate having excellent haz toughness
JP4284258B2 (en) Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method
JP4586080B2 (en) High-strength steel sheet with excellent stress-relieving annealing characteristics and low-temperature toughness
JP2018016890A (en) Thick steel sheet for tank excellent in toughness of hot affected zone
JP7315874B2 (en) thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Effective date: 20120214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120302

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20120321

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20150406