JP2008256553A - Apparatus for measuring interval of structure in nuclear reactor - Google Patents

Apparatus for measuring interval of structure in nuclear reactor Download PDF

Info

Publication number
JP2008256553A
JP2008256553A JP2007099510A JP2007099510A JP2008256553A JP 2008256553 A JP2008256553 A JP 2008256553A JP 2007099510 A JP2007099510 A JP 2007099510A JP 2007099510 A JP2007099510 A JP 2007099510A JP 2008256553 A JP2008256553 A JP 2008256553A
Authority
JP
Japan
Prior art keywords
distance
measuring
sensor
reactor
sensor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007099510A
Other languages
Japanese (ja)
Inventor
Yoshiro Matsui
芳郎 松井
Junichi Takabayashi
順一 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007099510A priority Critical patent/JP2008256553A/en
Publication of JP2008256553A publication Critical patent/JP2008256553A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure intervals in a short time by simplifying and downsizing the whole configuration of an interval measuring apparatus for narrow structural parts and to facilitate inspection work by eliminating the necessity of movable parts or downsizing them. <P>SOLUTION: The apparatus includes a holding jig 1 inserted into a reactor pressure vessel 100 filled with water, a noncontact sensor component 2 mounted on the holding jig 1 to measure the water distance between structures in the water and remote handling equipment 3 for handling the sensor component 2 remotely. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は原子炉の炉内点検、炉内構造物の交換等の際に原子炉内構造物の間隔寸法を水中において遠隔操作により測定する原子炉内構造物の間隔測定装置に関する。   The present invention relates to a reactor internal structure interval measuring apparatus for remotely measuring a space dimension of a reactor internal structure in water during inspection of the reactor, replacement of a reactor internal structure, and the like.

原子炉内に設置されているジェットポンプ、炉心シュラウド等の点検工事や交換工事の際には、各々の構造物間の間隔寸法測定が重要であり、工事装置が構造物と干渉しないように狭隘部への接近性を予め確認しておく必要がある。この確認を行う場合、従来では原子炉内の構造物間の間隔および形状等を測定する手段として、機械的計測器具を使用して測定を行うことが一般的であった。   When inspecting or replacing jet pumps, core shrouds, etc. installed in a nuclear reactor, it is important to measure the distance between each structure, so that the construction equipment does not interfere with the structure. It is necessary to confirm the accessibility to the part in advance. In the case of performing this confirmation, conventionally, it has been common to perform measurement using a mechanical measuring instrument as a means for measuring the spacing and shape between structures in the nuclear reactor.

このような従来の機械的計測器具を使用して炉内構造物の間隔および形状等を測定する例として、ジェットポンプと炉心シュラウドの外壁または原子炉圧力容器の内壁までの距離を計測する場合について、図7、図8および図9を参照して説明する。   As an example of measuring the distance and shape of reactor internals using such conventional mechanical measuring instruments, measuring the distance between the jet pump and the outer wall of the core shroud or the inner wall of the reactor pressure vessel This will be described with reference to FIGS. 7, 8 and 9. FIG.

図7には第1の従来例として、ジェットポンプ101と炉心シュラウド102の外壁102aとの間に炉上から保持治具としてポール103を吊下し、このポール103の下端に設けた間隔ゲージ104を使用する場合を示している。この例では、両先端間の長さが定められた間隔ゲージ104を当該測定部位に接触させることにより構造物間の間隔確認を行っていたが、間隔の実測値を得るために間隔ゲージ104の先端長さが異なる複数種類のものを用意して測定する必要があった。   In FIG. 7, as a first conventional example, a pole 103 is suspended from the furnace as a holding jig between the jet pump 101 and the outer wall 102 a of the core shroud 102, and a distance gauge 104 provided at the lower end of the pole 103. The case where is used is shown. In this example, the distance between the structures is confirmed by bringing the distance gauge 104 having a length between both ends into contact with the measurement site. However, in order to obtain the measured value of the distance, It was necessary to prepare and measure multiple types with different tip lengths.

図8には第2の従来例として、ジェットポンプ101と炉心シュラウド102の外壁との間に炉上からポール103およびエアホース105を吊下し、これらの下端にエアシリンダ106を接続し、エアシリンダ106にリニアゲージ107を設けた場合を示している。この例では、リニアゲージ107を水中仕様とし、その両先端を測定部位に接触させて間隔の測定をしていた。   In FIG. 8, as a second conventional example, a pole 103 and an air hose 105 are suspended from the top of the furnace between the jet pump 101 and the outer wall of the core shroud 102, and an air cylinder 106 is connected to the lower ends thereof. A case where a linear gauge 107 is provided in 106 is shown. In this example, the linear gauge 107 is underwater specifications, and both ends are brought into contact with the measurement site to measure the distance.

図9には第3の従来例として形状測定用の装置を示している。この例では保持治具としてのポール103に距離ゲージ109を移動させる駆動機構108を取付け、エアシリンダ106により位置決めし、測定対象構造物101に沿って距離ゲージ109を駆動機構108により移動させて間隔を測定することにより、形状の測定を行うものであった。   FIG. 9 shows a shape measuring apparatus as a third conventional example. In this example, a driving mechanism 108 for moving a distance gauge 109 is attached to a pole 103 as a holding jig, positioned by an air cylinder 106, and the distance gauge 109 is moved by the driving mechanism 108 along the structure 101 to be measured. The shape was measured by measuring.

なお、従来では炉内構造物の検査、測定、補修等について、曲り部を有する縦長なアームの先端にセンサを設け、原子炉内の狭隘空間に挿入することができる装置(例えば特許文献1参照)、計側機器をライザ管に取付けてライザ管とジェットポンプパッドとの間隔を測定する提案(特許文献2参照)、ロボットを用いて炉内構造物の状態を点検する提案(特許文献3参照)等、種々の提案がされている。
特開2001−349977号公報 特開2002−341084号公報 特開2003−337192号公報
Conventionally, for inspection, measurement, repair, etc. of reactor internals, a sensor is provided at the tip of a vertically long arm having a bent portion and can be inserted into a narrow space in a nuclear reactor (see, for example, Patent Document 1) ), A proposal to measure the distance between the riser pipe and the jet pump pad by attaching a measuring instrument to the riser pipe (see Patent Document 2), and a proposal to check the state of the in-furnace structure using a robot (see Patent Document 3) Various proposals have been made.
JP 2001-349977 A Japanese Patent Laid-Open No. 2002-341084 JP 2003-337192 A

原子炉の定期検査中における炉内構造物は放射線被曝低減のため炉内満水となっており、直接接近して測定等を行うことは不可能である。上述した従来の技術では測定箇所に寸法測定装置を取付ける際、遠隔で行われるので、エアシリンダ等の動作機構を持つことになるが、炉上から炉内に亘る長いエアホースや計測ケーブルなどの多くの装置が必要となる。このため、装置構造が複雑となり、特に狭隘部ではそのアクセスが困難なため、装置の取り扱いに多くの時間を必要とする。また、最悪の場合には炉内構造物に引掛る等の干渉が生じ、あるいは回収困難となり、炉内構造物に損傷を与える可能性がある。   During the periodic inspection of the nuclear reactor, the internal structure of the reactor is filled with water in order to reduce radiation exposure, and it is impossible to directly measure it. In the above-described conventional technique, when the dimension measuring device is attached to the measurement location, it is performed remotely, so that it has an operation mechanism such as an air cylinder. However, there are many long air hoses and measurement cables extending from the furnace to the furnace. Equipment is required. For this reason, the structure of the apparatus is complicated, and it is difficult to access the apparatus particularly in a narrow part, so that a long time is required for handling the apparatus. Further, in the worst case, interference such as catching on the internal structure of the furnace may occur, or it may be difficult to recover, and the internal structure of the furnace may be damaged.

本発明はこのような事情に鑑みてなされたもので、エアシリンダやその駆動用機器等の複雑な動作機構を必要とすることなく、装置構造の単純化および小型化等が図れるとともに、対象物に非接触で測定を行うことができ、取り扱い性にも優れ、しかも装置取付け時間を含めた測定時間を短縮できるうえ、測定精度を高めることができる原子炉内構造物の間隔測定装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to simplify and downsize the device structure without requiring a complicated operation mechanism such as an air cylinder or a driving device thereof. Provided is an interval measurement device for reactor internals that can perform non-contact measurement, is easy to handle, can reduce measurement time including device installation time, and can improve measurement accuracy. For the purpose.

前記の目的を達成するため、本発明では、原子炉圧力容器内の複雑形状部における構造物間の狭隘空間距離を測定する原子炉内構造物の間隔測定装置であって、水張りされた前記原子炉圧力容器内に挿入される保持治具と、この保持治具に設けられ前記構造物間の水距離を水中にて計測する非接触形のセンサ部と、このセンサ部を遠隔操作する遠隔操作装置とを備えたことを特徴とする原子炉内構造物の間隔測定装置を提供する。   In order to achieve the above object, according to the present invention, there is provided an inter-reactor structure interval measuring apparatus for measuring a narrow space distance between structures in a complex-shaped portion in a reactor pressure vessel, the water-filled atom A holding jig inserted into the furnace pressure vessel, a non-contact type sensor unit provided in the holding jig for measuring the water distance between the structures in water, and a remote operation for remotely operating the sensor unit And a device for measuring the interval between the reactor internals.

本発明によれば、可動部分を不要化または小型化することができ、それにより装置構成全体の単純化および小型化が図れ、測定装置を使用することにより、狭隘部の間隔測定が短時間で行え、検査作業が容易となる。さらに、複数振動子超音波センサやレーザセンサ等非接触式センサを用いると測定センサ部を高放射能で汚染している測定部位に直接接触させる必要がないので、測定装置の除染上極めて有利である。   According to the present invention, the movable part can be made unnecessary or downsized, thereby simplifying and downsizing the entire apparatus configuration. By using the measuring apparatus, it is possible to measure the distance between the narrow portions in a short time. This can be done and the inspection work becomes easy. Furthermore, if a non-contact type sensor such as a multi-vibrator ultrasonic sensor or a laser sensor is used, the measurement sensor unit does not need to be in direct contact with the measurement site contaminated with high radioactivity, which is extremely advantageous for decontamination of the measurement device. It is.

[第1実施形態(図1)]
本実施形態では、水張りされた原子炉圧力容器内に挿入される保持治具と、この保持治具に設けられ構造物間の水距離を水中にて計測する非接触形のセンサ部と、このセンサ部を遠隔操作する遠隔操作装置とを備え、センサ部は測定部位の温度を測定する温度センサを備え、遠隔操作装置は校正時との温度差による誤差を補正する補正手段を備える構成の原子炉内構造物の間隔測定装置について説明する。
[First Embodiment (FIG. 1)]
In the present embodiment, a holding jig inserted into a water-filled nuclear reactor pressure vessel, a non-contact type sensor unit that is provided in the holding jig and measures a water distance between structures in water, A remote control device that remotely controls the sensor unit, the sensor unit includes a temperature sensor that measures the temperature of the measurement site, and the remote control device includes a correction unit that corrects an error due to a temperature difference from the calibration time. An apparatus for measuring the interval between furnace structures will be described.

図1は本発明の第1実施形態による原子炉内構造物の間隔測定装置を示す構成図である。図1に示すように、本実施形態による原子炉内構造物の間隔測定装置は、原子炉圧力容器100内の複雑形状部であるダウンカマ部における構造物としての炉心シュラウド102の外壁102aとジェットポンプ101との間の狭隘空間距離lを測定する原子炉内構造物の間隔測定装置である。   FIG. 1 is a block diagram showing a reactor internal structure interval measuring apparatus according to a first embodiment of the present invention. As shown in FIG. 1, the reactor internal structure interval measuring apparatus according to the present embodiment includes an outer wall 102a of a core shroud 102 as a structure in a downcomer portion that is a complicated shape portion in a reactor pressure vessel 100, and a jet pump. 1 is a device for measuring the distance between internal structures of a nuclear reactor, which measures a narrow space distance l with respect to 101.

そして、水張りされた原子炉圧力容器100内に挿入される保持治具1と、この保持治具1に設けられ炉心シュラウド102の外壁102aとジェットポンプ101との間の構造物間の水距離を水中にて計測する非接触形のセンサ部2と、このセンサ部2を遠隔操作する遠隔操作装置3とを備えている。   The holding jig 1 inserted into the water-filled reactor pressure vessel 100 and the water distance between the structures provided on the holding jig 1 between the outer wall 102a of the core shroud 102 and the jet pump 101 are as follows. A non-contact type sensor unit 2 for measuring in water and a remote control device 3 for remotely operating the sensor unit 2 are provided.

センサ部2は、計測対象となる炉心シュラウド102の外壁102aとジェットポンプ101との間で超音波またはレーザ光を発振して両構造物までの水距離を検出する超音波距離センサまたはレーザ光距離センサを備えている。なお、本実施形態においては以下、両センサを含めて「センサ5」といい、代表的に超音波距離センサとして説明する。   The sensor unit 2 is an ultrasonic distance sensor or laser light distance that detects ultrasonic water or laser light between the outer wall 102a of the core shroud 102 to be measured and the jet pump 101 to detect the water distance to both structures. It has a sensor. In the present embodiment, hereinafter, both sensors will be referred to as “sensor 5” and will be typically described as an ultrasonic distance sensor.

遠隔操作装置3は、オペレーションフロア110上に設置されてセンサ部2からの検出情報をリアルタイムで入力および読取処理する入力処置装置7を備えている。   The remote operation device 3 includes an input treatment device 7 that is installed on the operation floor 110 and inputs and reads detection information from the sensor unit 2 in real time.

具体的には、超音波方式のセンサ部2が原子炉圧力容器100内の水中にてジェットポンプ101の炉内側位置に保持治具1により固定配置されている。保持治具1は例えば縦長管状のものであり、炉心シュラウド102のフランジ部から吊下してある。センサ部2には、超音波振動子からなるセンサ5と、水温を測定する温度センサ6とが内臓されている。センサ部2から保持治具1を貫通して、接続ケーブル4がオペレーションフロア110に設置した遠隔操作装置3に接続されている。   Specifically, the ultrasonic sensor unit 2 is fixedly disposed by the holding jig 1 at a position inside the reactor of the jet pump 101 in the water in the reactor pressure vessel 100. The holding jig 1 is, for example, a vertically long tube, and is suspended from the flange portion of the core shroud 102. The sensor unit 2 includes a sensor 5 composed of an ultrasonic transducer and a temperature sensor 6 for measuring the water temperature. A connecting cable 4 is connected to the remote operation device 3 installed on the operation floor 110 through the holding jig 1 from the sensor unit 2.

このような構成において、間隔測定を行う場合には、まず、保持治具1によりジェットポンプ101の間隔測定部位にセンサ部2を固定配置する。そして、超音波振動子であるセンサ5から超音波を発生させ、炉心シュラウド102の外壁からの反射波をセンサ5により受信することにより、ジェットポンプ101と炉心シュラウド102間の間隔が測定される。   In such a configuration, when the interval measurement is performed, first, the sensor unit 2 is fixedly arranged at the interval measurement portion of the jet pump 101 by the holding jig 1. Then, an ultrasonic wave is generated from the sensor 5 which is an ultrasonic vibrator, and the reflected wave from the outer wall of the core shroud 102 is received by the sensor 5, whereby the distance between the jet pump 101 and the core shroud 102 is measured.

ここで、超音波の音速は水温によって変化するため、温度センサ6により水温を測定する。そして、センサ5からの距離計測データと温度センサ6からの水温データとを、接続ケーブル4を介してオペレーションフロア110に設置している遠隔操作装置3の入力処置装置7に集め、水温データにより自動補正した距離測定結果を表示する。   Here, since the speed of sound of the ultrasonic wave changes depending on the water temperature, the water temperature is measured by the temperature sensor 6. Then, the distance measurement data from the sensor 5 and the water temperature data from the temperature sensor 6 are collected in the input treatment device 7 of the remote control device 3 installed on the operation floor 110 via the connection cable 4 and automatically based on the water temperature data. The corrected distance measurement result is displayed.

本実施形態によれば、可動部分がなく、構造が単純で、小型の測定装置を使用するので、狭隘部の間隔測定が短時間で行える。従って、構造物間で測定装置が干渉し回収困難となる危険性が減少し、さらに放射線管理区域内での作業についての人体への被曝を少なくすることができる。   According to the present embodiment, since there is no movable part, the structure is simple, and a small measuring device is used, it is possible to measure the distance between the narrow portions in a short time. Therefore, the risk that the measurement apparatus interferes with each other between the structures and it becomes difficult to recover is reduced, and further, it is possible to reduce exposure to the human body for work in the radiation control area.

また、構造物に接触させる必要がないため、構造物間で測定装置が引掛り回収困難になる虞もない。   Further, since there is no need to contact the structure, there is no possibility that the measuring device is caught between the structures and difficult to collect.

[第2実施形態(図2、図3)]
本実施形態では、センサ部が2体のセンサを備え、これらのセンサから互いに相反する方向に同時に超音波またはレーザ光を発振することにより、センサを構造物間の任意の位置に挿入するのみで構造物間距離の測定が可能な原子炉内構造物の間隔測定装置について説明する。また、遠隔操作装置は、2体のセンサがそれぞれ測定した構造物までの距離値と2つのセンサ間のオフセット距離値とを合算して表示することで、構造物間の距離を直接表示する表示部を有する間隔測定装置について説明する。また、センサ部にレーザ光距離センサを備え、レーザスポット径に対応する微小エリアの間隔測定を可能とした間隔測定装置について説明する。さらに、センサ部は測定部位の温度を測定する温度センサを備え、遠隔操作装置は校正時との温度差による誤差を補正する補正手段を備える原子炉内構造物の間隔測定装置について説明する。
[Second Embodiment (FIGS. 2 and 3)]
In this embodiment, the sensor unit includes two sensors, and by oscillating ultrasonic waves or laser light simultaneously in opposite directions from these sensors, the sensor can be simply inserted at an arbitrary position between structures. An apparatus for measuring the distance between structures in a reactor capable of measuring the distance between structures will be described. The remote control device also displays the distance between the structures directly by adding and displaying the distance value to the structure measured by the two sensors and the offset distance value between the two sensors. An interval measuring apparatus having a section will be described. Further, an interval measuring apparatus that includes a laser beam distance sensor in the sensor unit and can measure an interval between minute areas corresponding to the laser spot diameter will be described. Further, a description will be given of a reactor internal structure interval measuring device that includes a temperature sensor that measures the temperature of the measurement site and a remote control device that includes correction means for correcting an error due to a temperature difference from the calibration.

図2は、本発明の第2実施形態による原子炉内構造物の間隔測定装置を示す構成図である。図2に示すように、本実施形態による原子炉内構造物の間隔測定装置は、2振動子超音波センサ部9が、原子炉圧力容器内における水中のジェットポンプ101と、炉心シュラウド102との間に保持治具1により固定されている。保持治具1は、炉心シュラウド102のフランジ部から吊下してある。2振動子超音波センサ部9は、互いに反対向きに第1超音波振動子10と第2超音波振動子11とを内臓したものであり、さらに水温を測定する温度センサ6が内臓されている。2振動子超音波センサ部9から保持治具1を貫通して、接続ケーブル4がオペレーションフロアに設置された遠隔操作装置3に接続してある。   FIG. 2 is a block diagram showing a reactor internal structure interval measuring apparatus according to a second embodiment of the present invention. As shown in FIG. 2, in the reactor internal structure interval measuring apparatus according to the present embodiment, the two-vibrator ultrasonic sensor unit 9 includes an underwater jet pump 101 in the reactor pressure vessel and a core shroud 102. It is fixed by the holding jig 1 between them. The holding jig 1 is suspended from the flange portion of the core shroud 102. The two-vibrator ultrasonic sensor unit 9 includes a first ultrasonic transducer 10 and a second ultrasonic transducer 11 in opposite directions, and further includes a temperature sensor 6 for measuring the water temperature. . A connecting cable 4 is connected to a remote operation device 3 installed on the operation floor through the holding jig 1 from the two-vibrator ultrasonic sensor unit 9.

次に作用を説明する。保持治具1により、ジェットポンプ101と炉心シュラウド102との間隔測定部位に2振動子超音波センサ部9を固定する。次に、第1超音波振動子10からジェットポンプ101の向きに超音波を発生させ、ジェットポンプ101の壁からの反射波を第1超音波振動子10によって受信することにより、ジェットポンプ101と2振動子超音波センサ部9の間隔を測定する。   Next, the operation will be described. The two-vibrator ultrasonic sensor unit 9 is fixed to the interval measurement site between the jet pump 101 and the core shroud 102 by the holding jig 1. Next, an ultrasonic wave is generated in the direction of the jet pump 101 from the first ultrasonic transducer 10, and a reflected wave from the wall of the jet pump 101 is received by the first ultrasonic transducer 10. The interval between the two transducer ultrasonic sensor units 9 is measured.

さらに、第2超音波振動子11から炉心シュラウド102の向きに超音波を発生させ、炉心シュラウド102の外壁102aからの反射波を第2超音波振動子11で受信することにより、炉心シュラウド102と2振動子超音波センサ部9の間隔を測定する。従って、計測に必要なジェットポンプ101と炉心シュラウド102との間隔は、それぞれのデータおよび2振動子10,11のオフセット距離値を合計することで測定される。ここで、超音波の音速は水温によって変化するため、温度センサ6によって水温を測定する。第1超音波振動子10と第2超音波振動子11からの距離計測データと温度センサ6からの水温データとが、接続ケーブル4を通ってオペレーションフロアに設置された遠隔操作装置3に集められ、水温データにより自動補正した距離測定結果が表示部12に表示される。   Furthermore, by generating ultrasonic waves from the second ultrasonic transducer 11 in the direction of the core shroud 102 and receiving reflected waves from the outer wall 102a of the core shroud 102 by the second ultrasonic transducer 11, the core shroud 102 and The interval between the two transducer ultrasonic sensor units 9 is measured. Therefore, the distance between the jet pump 101 and the core shroud 102 necessary for measurement is measured by summing the respective data and the offset distance values of the two vibrators 10 and 11. Here, since the speed of sound of the ultrasonic wave changes depending on the water temperature, the water temperature is measured by the temperature sensor 6. The distance measurement data from the first ultrasonic transducer 10 and the second ultrasonic transducer 11 and the water temperature data from the temperature sensor 6 are collected through the connection cable 4 to the remote control device 3 installed on the operation floor. The distance measurement result automatically corrected by the water temperature data is displayed on the display unit 12.

本実施形態によれば、可動部分がなく、構造が単純で小型の測定装置を使用するので、狭隘部の間隔測定が短時間で行える。従って、放射線管理区域内での作業においても、人体への被曝が少なくすることができる。また、測定センサ部を高放射能で汚染している測定部位に直接接触させる必要がないので、測定装置の除染上極めて有利である。   According to the present embodiment, a small measuring device having no movable part and a simple structure is used, so that it is possible to measure the distance between narrow portions in a short time. Therefore, exposure to the human body can be reduced even in work in the radiation control area. In addition, since it is not necessary to directly contact the measurement sensor part with a measurement site contaminated with high radioactivity, it is extremely advantageous in terms of decontamination of the measurement apparatus.

次に、図3は本発明の第2実施形態の変形例における間隔測定装置の超音波センサ部を示す説明図である。図3において、2振動子超音波センサ部9には、背中合わせに設置した2個の超音波振動子、すなわち第1超音波振動子10と第2超音波振動子11、および温度センサ6が内蔵されている。作用については、図2に示した構成と略同様であるが、両者の超音波の方向の軸が一致するので、より正確な間隔測定が可能となる。   Next, FIG. 3 is an explanatory view showing an ultrasonic sensor section of the interval measuring device in a modification of the second embodiment of the present invention. In FIG. 3, the two-vibrator ultrasonic sensor unit 9 includes two ultrasonic transducers installed back to back, that is, a first ultrasonic transducer 10, a second ultrasonic transducer 11, and a temperature sensor 6. Has been. Although the operation is substantially the same as the configuration shown in FIG. 2, since the axes of the directions of the two ultrasonic waves coincide with each other, more accurate interval measurement is possible.

なお、本実施形態の2振動子超音波センサ部9では被測定面がセンサ表面とほぼ平行である必要があるが、構造物間の距離は設計寸法としてほぼ知られているので、その設計上の寸法範囲をカバーする測定範囲をもつレーザ式距離計等、他の方式の非接触式距離計を用いることにより、面の平行が保たれなくても間隔測定可能となる。   In the two-vibrator ultrasonic sensor unit 9 of the present embodiment, the surface to be measured needs to be substantially parallel to the sensor surface, but the distance between structures is almost known as a design dimension. By using another type of non-contact type distance meter such as a laser range finder having a measurement range that covers the dimensional range, the distance can be measured even if the parallelism of the surface is not maintained.

本実施形態によれば、原子炉圧力容器内の測定部位の間、例えばジェットポンプ101の鉛直パイプ部と炉心シュラウド102の外壁102aまたは原子炉圧力容器内壁の間の任意の位置に置いた超音波方式センサ部から両方向に超音波を発振し、2振動子超音波センサ部9からジェットポンプ101の鉛直パイプ部までの距離および2振動子超音波センサ部9から炉心シュラウド102の外壁102aまたは原子炉圧力容器の内壁までの距離を同時に短時間で計測することができる。   According to this embodiment, the ultrasonic wave placed at an arbitrary position between the measurement sites in the reactor pressure vessel, for example, between the vertical pipe portion of the jet pump 101 and the outer wall 102a of the core shroud 102 or the inner wall of the reactor pressure vessel. The ultrasonic wave is oscillated in both directions from the system sensor unit, and the distance from the two transducer ultrasonic sensor unit 9 to the vertical pipe portion of the jet pump 101 and the outer wall 102a of the core shroud 102 from the two transducer ultrasonic sensor unit 9 or the nuclear reactor The distance to the inner wall of the pressure vessel can be measured simultaneously in a short time.

また、水温により音速が変化するので、本実施形態の2振動子超音波センサ部9には温度センサ6が付属しており、2つの距離計測データと水温データとがオペレーションフロア上に設置した遠隔操作装置3に集まり、2振動子10,11間のオフセット距離値を合算した上で、自動補正された距離測定結果の表示を行うことができる。また、2振動子超音波センサ部9に代えてレーザ式距離計を用いることにより、レーザスポット径の約1mm程度の範囲の距離を測定することがきる。したがって、局部的に形状が変化している微小範囲についても測定が行えるうえ、超音波方式では測定困難なセンサと測定部位とが平行でない場合でも、測定可能となり、より精度の高い間隔測定が可能となる。   In addition, since the sound velocity changes depending on the water temperature, the two-sensor ultrasonic sensor unit 9 of the present embodiment is provided with a temperature sensor 6, and the two distance measurement data and the water temperature data are remotely installed on the operation floor. It is possible to display the automatically measured distance measurement result after the offset distance values between the two vibrators 10 and 11 are added together in the operation device 3. Further, by using a laser distance meter in place of the two-transducer ultrasonic sensor unit 9, it is possible to measure a distance in the range of about 1 mm of the laser spot diameter. Therefore, it is possible to measure even a minute range whose shape is locally changing, and even when the sensor and measurement site, which are difficult to measure with the ultrasonic method, are not parallel, measurement is possible and more accurate interval measurement is possible. It becomes.

さらに、センサ部には温度センサが組み込まれているので、超音波方式センサの場合に、水温により音速が変化しても、2振動子超音波センサ部9に付属する温度センサ6により水温を測定し、オペレーションフロア上の間隔測定装置に水温データを送り、距離測定結果を自動補正することができる。   Furthermore, since a temperature sensor is incorporated in the sensor unit, in the case of an ultrasonic sensor, even if the sound speed changes due to the water temperature, the water temperature is measured by the temperature sensor 6 attached to the two-vibrator ultrasonic sensor unit 9. Then, the water temperature data can be sent to the interval measuring device on the operation floor, and the distance measurement result can be automatically corrected.

また、レーザ方式センサの場合、付属の温度センサにより測定時の温度を測定し、校正時の温度との比較により距離測定結果を自動補正することができる。   In the case of a laser sensor, the temperature at the time of measurement can be measured by an attached temperature sensor, and the distance measurement result can be automatically corrected by comparison with the temperature at the time of calibration.

[第3実施形態(図4)]
本実施形態では、保持治具が間隔測定箇所近傍の構造物に位置決めされ、その位置を基点としてセンサ部を原子炉内の当該測定部位に接近させることを可能とした間隔測定装置について説明する。また、センサ部が原子炉内構造物の測定部位の正位置に設置されていることを確認する手段として、水中テレビカメラおよび水中照明具を備えた原子炉内構造物の間隔測定装置について説明する。
[Third Embodiment (FIG. 4)]
In the present embodiment, a distance measuring device is described in which the holding jig is positioned on a structure near the distance measurement location, and the sensor unit can be brought close to the measurement site in the nuclear reactor with the position as a base point. In addition, as a means for confirming that the sensor unit is installed at the normal position of the measurement site of the reactor internal structure, a distance measurement apparatus for the reactor internal structure provided with an underwater television camera and an underwater illumination device will be described. .

図4は、本発明の第3実施形態による間隔測定装置を示す構成図である。この図4に示すように、炉心シュラウド102のフランジ上にレール12を設置する。レール12には例えばローラ等を用いた上下駆動機構13が取付けてあり、この上下駆動機構13に保持治具1を保持している。また、燃料交換プラットフォーム等から、水中照明具14および水中テレビカメラ15が吊下げてあり、これらを間隔測定部位近くに配置している。超音波センサ部2を当該間隔測定部位に設置するため、水中照明具14および水中テレビカメラ15を使用して、遠隔操作装置3の図示しないモニタを見ながらレール12に取付けられている上下駆動機構13を炉心シュラウド102の周方向および上下方向に移動させ、保持治具1に保持されている超音波センサ部2の位置合せを行う。   FIG. 4 is a block diagram showing an interval measuring apparatus according to the third embodiment of the present invention. As shown in FIG. 4, the rail 12 is installed on the flange of the core shroud 102. For example, a vertical drive mechanism 13 using a roller or the like is attached to the rail 12, and the holding jig 1 is held by the vertical drive mechanism 13. In addition, an underwater lighting device 14 and an underwater television camera 15 are suspended from a fuel exchange platform or the like, and these are arranged near the interval measurement site. In order to install the ultrasonic sensor unit 2 at the interval measurement site, the vertical drive mechanism attached to the rail 12 while using the underwater illumination tool 14 and the underwater television camera 15 while watching the monitor (not shown) of the remote control device 3 13 is moved in the circumferential direction and up and down direction of the core shroud 102 to align the ultrasonic sensor unit 2 held by the holding jig 1.

本実施形態によれば、適確かつ短時間に所定の位置に超音波センサ部2を設置することができる。なお、炉心シュラウド102のフランジ上にレールを設置することなく、フランジ部形状をガイドとして利用してもよい。   According to this embodiment, the ultrasonic sensor unit 2 can be installed at a predetermined position accurately and in a short time. In addition, you may utilize a flange part shape as a guide, without installing a rail on the flange of the core shroud 102. FIG.

また、燃料交換プラットフォームまたは原子炉圧力容器フランジまたはシュラウドフランジから水中テレビカメラ15および水中照明具14を吊下げ、原子炉内構造物の当該寸法測定部位の正しい位置にセンサ部2が取付けられ、または位置決めされたことを、オペレーションフロア上のモニタテレビ等で確認することができる。   In addition, the underwater television camera 15 and the underwater lighting device 14 are suspended from the fuel exchange platform or the reactor pressure vessel flange or the shroud flange, and the sensor unit 2 is attached to the correct position of the dimensional measurement site of the reactor internal structure. The positioning can be confirmed on a monitor TV or the like on the operation floor.

[第4実施形態(図5)]
本実施形態では、保持治具がセンサ部を構造物に沿って移動可能なスキャニング機構を備えた間隔測定装置について説明する。
[Fourth Embodiment (FIG. 5)]
In the present embodiment, an interval measuring apparatus including a scanning mechanism in which a holding jig can move a sensor unit along a structure will be described.

図5は本実施形態による間隔測定装置を示す構成図である。図5に示すように、本実施形態では図3よび図4に示した構成に加え、炉心シュラウド102から吊り下げられている保持治具1の先端に上下駆動機構16が設けられ、上下駆動機構16に超音波センサ部9が取付けられている。上下駆動機構16には移動距離測定器17が付属してある。すなわち、超音波センサ部9がシュラウドフランジに取付けたレールから吊下げられた上下動作可能な保持治具1に取付けられ、さらにセンサ部9がスキャニング機構19を持つ構成となっている。そして、保持治具により測定対象物との位置決めを行った後、センサ部9がスキャニング機構19により測定対象物に沿って移動して測定を続け、測定対象物の形状を測定する構成となっている。   FIG. 5 is a block diagram showing the interval measuring apparatus according to the present embodiment. As shown in FIG. 5, in the present embodiment, in addition to the configurations shown in FIGS. 3 and 4, a vertical drive mechanism 16 is provided at the tip of the holding jig 1 suspended from the core shroud 102. An ultrasonic sensor unit 9 is attached to 16. A movement distance measuring device 17 is attached to the vertical drive mechanism 16. That is, the ultrasonic sensor unit 9 is attached to the holding jig 1 that can move up and down suspended from a rail attached to the shroud flange, and the sensor unit 9 has a scanning mechanism 19. And after positioning with a measurement target object with a holding jig, the sensor part 9 moves along a measurement target object by the scanning mechanism 19, and becomes a structure which continues a measurement and measures the shape of a measurement target object. Yes.

本実施形態においては、炉心シュラウド102から吊り下げられている保持治具1により測定対象物であるジェットポンプ101との位置決めを行った後、上下駆動機構16により超音波センサ部9をスキャニングさせる。そして、スキャニングと同時に、第1超音波振動子10と第2超音波振動子11とを動作させ、測定対象物であるジェットポンプ101および炉心シュラウド102との間隔を測定する。そして、温度センサ6で水温を測定し、音速を補正する。また、移動距離測定器17で超音波センサ部9の位置を検出することにより、測定対象物の形状を測定する。超音波振動子を1個として片側のみの形状測定でもよい。   In the present embodiment, the ultrasonic sensor unit 9 is scanned by the vertical drive mechanism 16 after the holding jig 1 suspended from the core shroud 102 is positioned with respect to the jet pump 101 that is the measurement object. Simultaneously with the scanning, the first ultrasonic transducer 10 and the second ultrasonic transducer 11 are operated to measure the distance between the jet pump 101 and the core shroud 102 that are the measurement objects. Then, the water temperature is measured by the temperature sensor 6 to correct the sound speed. Further, the shape of the measurement object is measured by detecting the position of the ultrasonic sensor unit 9 with the movement distance measuring device 17. Only one ultrasonic transducer may be used for shape measurement on one side.

本実施形態によれば、構造が単純で小型の測定装置を使用するので、狭隘部の構造物の形状測定が短時間で行える。従って、放射線管理区域内での作業なので人体への被曝が少なくなる。また、測定センサ部を高放射能で汚染している測定部位に直接接触させる必要がないので、測定装置の除染上極めて有利である。   According to this embodiment, since the structure is simple and a small measuring device is used, the shape of the narrow structure can be measured in a short time. Therefore, since the work is performed in the radiation control area, the human body is less exposed. In addition, since it is not necessary to directly contact the measurement sensor part with a measurement site contaminated with high radioactivity, it is extremely advantageous in terms of decontamination of the measurement apparatus.

[第5実施形態(図6)]
本実施形態では、センサ部が多数の小型センサ要素の集合体からなるセンサを備えており、センサ部を定位置として構造物の形状測定を可能とするとともに、センサ部は測定部位の温度を測定する温度センサを備え、遠隔操作装置は校正時との温度差による誤差を補正する補正手段を備える原子炉内構造物の間隔測定装置について説明する。
[Fifth Embodiment (FIG. 6)]
In the present embodiment, the sensor unit includes a sensor made up of an assembly of a large number of small sensor elements, and the shape of the structure can be measured with the sensor unit as a fixed position, and the sensor unit measures the temperature of the measurement site. A distance measuring device for a reactor internal structure will be described that includes a temperature sensor that includes a correction unit that corrects an error due to a temperature difference from the calibration.

図6は本実施形態による間隔測定装置を示す構成図である。図6に示すように、炉心シュラウド102から吊り下げられている保持治具1の先端に超音波センサ部9が取付けられ、超音波センサ部9には多数の小型超音波振動子の集合体18が設置されている。   FIG. 6 is a block diagram showing the interval measuring apparatus according to the present embodiment. As shown in FIG. 6, the ultrasonic sensor unit 9 is attached to the tip of the holding jig 1 suspended from the core shroud 102, and the ultrasonic sensor unit 9 has a large number of small ultrasonic transducer assemblies 18. Is installed.

この構成において、炉心シュラウド102から吊り下げられている保持治具1により測定対象物との位置決めを行った後、多数の小型超音波振動子の集合体18を動作させて測定対象物であるジェットポンプ101および炉心シュラウド102との間隔を測定する。温度センサ6で水温を測定し、音速を補正する。多数の小型超音波振動子の互いの位置関係が決まっているので、多数の間隔測定データにより、測定対象物の形状を測定する。超音波振動子を片側のみとして片方向のみの形状測定でもよい。   In this configuration, after positioning the object to be measured by the holding jig 1 suspended from the core shroud 102, a large number of small ultrasonic transducers 18 are operated to operate a jet as the object to be measured. The distance between the pump 101 and the core shroud 102 is measured. The water temperature is measured by the temperature sensor 6 to correct the sound speed. Since the positional relationship between a large number of small ultrasonic transducers is determined, the shape of the measurement object is measured by a large number of interval measurement data. The shape may be measured only in one direction with only one ultrasonic transducer.

本実施の形態によれば、可動部分がなく、構造が単純で小型の測定装置を使用するので、狭隘部の構造物の形状測定が短時間で行える。従って、放射線管理区域内での作業なので人体への被曝が少なくなる。また、測定センサ部を高放射能で汚染している測定部位にじかに接触させる必要がないので、測定装置の除染上極めて有利である。なお、多数の小型超音波振動子はレーザ式センサ等を使用した複数の距離センサであってもよい。   According to the present embodiment, since a small measuring device having no movable part and a simple structure is used, the shape of the narrow structure can be measured in a short time. Therefore, since the work is performed in the radiation control area, the human body is less exposed. Further, since it is not necessary to bring the measurement sensor part into direct contact with the measurement site contaminated with high radioactivity, it is extremely advantageous for decontamination of the measurement apparatus. A number of small ultrasonic transducers may be a plurality of distance sensors using laser sensors or the like.

そして、超音波方式センサの場合水温により音速が変化するので、超音波方式センサ部に付属する温度センサが水温を測定し、オペレーションフロア上の間隔測定装置に水温データを送り距離測定結果を自動補正することができる。なお、レーザ方式センサの場合には付属の温度センサにより測定時の温度を測定し、校正時の温度との比較により距離測定結果を自動補正する。   In the case of an ultrasonic sensor, the speed of sound changes depending on the water temperature, so the temperature sensor attached to the ultrasonic sensor unit measures the water temperature, sends the water temperature data to the interval measurement device on the operation floor, and automatically corrects the distance measurement result. can do. In the case of a laser sensor, the temperature at the time of measurement is measured by an attached temperature sensor, and the distance measurement result is automatically corrected by comparison with the temperature at the time of calibration.

本発明の第1実施形態による間隔測定装置を示す構成図。The block diagram which shows the space | interval measuring apparatus by 1st Embodiment of this invention. 本発明の第2実施形態による間隔測定装置を示す構成図。The block diagram which shows the space | interval measuring apparatus by 2nd Embodiment of this invention. 本発明の第2実施形態による間隔測定装置の変形例を示す構成図。The block diagram which shows the modification of the space | interval measuring apparatus by 2nd Embodiment of this invention. 本発明の第3実施形態による間隔測定装置を示す構成図。The block diagram which shows the space | interval measuring apparatus by 3rd Embodiment of this invention. 本発明の第4実施形態による間隔測定装置を示す構成図。The block diagram which shows the space | interval measuring apparatus by 4th Embodiment of this invention. 本発明の第5実施形態による間隔測定装置を示す構成図。The block diagram which shows the space | interval measuring apparatus by 5th Embodiment of this invention. 従来の間隔測定装置の第1例を示す構成図。The block diagram which shows the 1st example of the conventional space | interval measuring apparatus. 従来の間隔測定装置の第2例を示す構成図。The block diagram which shows the 2nd example of the conventional space | interval measuring apparatus. 従来の間隔測定装置の第3例を示す構成図。The block diagram which shows the 3rd example of the conventional space | interval measuring apparatus.

符号の説明Explanation of symbols

100‥原子炉圧力容器、101‥ジェットポンプ、102‥炉心シュラウド、102a‥外壁、110‥オペレーションフロア、1‥保持治具、2‥センサ部、3‥遠隔操作装置、4‥接続ケーブル、5‥センサ、6‥温度センサ、7‥入力処置装置、9‥2振動子超音波センサ部、10‥第1超音波振動子、11‥第2超音波振動子、12‥レール、13‥上下駆動機構、14‥水中照明具、15‥水中カメラ、16‥上下駆動機構、17移動距離測定部、18‥小型超音波振動子の集合体。   DESCRIPTION OF SYMBOLS 100 ... Reactor pressure vessel, 101 ... Jet pump, 102 ... Core shroud, 102a ... Outer wall, 110 ... Operation floor, 1 ... Holding jig, 2 ... Sensor part, 3 ... Remote control device, 4 ... Connection cable, 5 ... Sensor 6. Temperature sensor 7 Input treatment device 9.2 Ultrasonic sensor unit 10 First ultrasonic transducer 11 Second ultrasonic transducer 12 Rail 13 Vertical drive mechanism , 14, underwater illumination device, 15, underwater camera, 16, vertical drive mechanism, 17 moving distance measuring unit, 18, assembly of small ultrasonic transducers.

Claims (10)

原子炉圧力容器内の複雑形状部における構造物間の狭隘空間距離を測定する原子炉内構造物の間隔測定装置であって、水張りされた前記原子炉圧力容器内に挿入される保持治具と、この保持治具に設けられ前記構造物間の水距離を水中にて計測する非接触形のセンサ部と、このセンサ部を遠隔操作する遠隔操作装置とを備えたことを特徴とする原子炉内構造物の間隔測定装置。 An apparatus for measuring a distance between structures in a reactor for measuring a narrow space distance between structures in a complex shape portion in a reactor pressure vessel, wherein the holding jig is inserted into the water-filled reactor pressure vessel. A nuclear reactor comprising a non-contact type sensor unit provided in the holding jig for measuring a water distance between the structures in water, and a remote control device for remotely operating the sensor unit. Internal structure distance measuring device. 前記センサ部は、計測対象となる前記構造物同士の間で超音波またはレーザ光を発振して前記構造物までの水距離を検出する超音波距離センサまたはレーザ光距離センサを備え、前記遠隔操作装置は、オペレーションフロア上に設置されて前記センサ部からの検出情報をリアルタイムで入力および読取処理する入力処置装置を備えた請求項1記載の原子炉内構造物の間隔測定装置。 The sensor unit includes an ultrasonic distance sensor or a laser light distance sensor for detecting a water distance to the structure by oscillating ultrasonic waves or laser light between the structures to be measured, and the remote operation The apparatus for measuring a distance between reactor internals according to claim 1, wherein the apparatus includes an input treatment device that is installed on an operation floor and inputs and reads detection information from the sensor unit in real time. 前記センサ部は2体のセンサを備え、これらのセンサから互いに相反する方向に同時に超音波またはレーザ光を発振することにより、前記センサを前記構造物間の任意の位置に挿入するのみで前記構造物間距離の測定が可能である請求項2記載の原子炉内構造物の間隔測定装置。 The sensor unit includes two sensors, and by oscillating ultrasonic waves or laser light simultaneously in directions opposite to each other from the sensors, the structure can be simply inserted at an arbitrary position between the structures. The apparatus for measuring a distance between structures in a nuclear reactor according to claim 2, wherein the distance between the objects can be measured. 前記遠隔操作装置は、前記2体のセンサがそれぞれ測定した構造物までの距離値と前記2つのセンサ間のオフセット距離値とを合算して表示することで、前記構造物間の距離を直接表示する表示部を有する請求項3記載の原子炉内構造物の間隔測定装置。 The remote control device directly displays the distance between the structures by displaying the distance value to the structure measured by the two sensors and the offset distance value between the two sensors. The apparatus for measuring an interval between reactor internals according to claim 3, further comprising a display unit configured to display the interval. 前記センサ部にレーザ光距離センサを備え、レーザスポット径に対応する微小エリアの間隔測定を可能とした請求項1ないし請求項4のいずれか1項に記載の原子炉内構造物の間隔測定装置。 The apparatus for measuring a distance between internal structures of a reactor according to any one of claims 1 to 4, wherein a laser beam distance sensor is provided in the sensor unit, and an interval measurement of a minute area corresponding to a laser spot diameter is possible. . 前記保持治具は、間隔測定箇所近傍の構造物に位置決めされ、当該位置を基点として前記センサ部を原子炉内の当該測定部位に接近させることを可能とした請求項1ないし請求項5のいずれか1項に記載の原子炉内構造物の間隔測定装置。 6. The method according to claim 1, wherein the holding jig is positioned on a structure in the vicinity of the interval measurement point, and the sensor unit can be brought close to the measurement site in the nuclear reactor based on the position. The apparatus for measuring a gap between reactor internals according to claim 1. 前記センサ部が前記原子炉内構造物の測定部位の正位置に設置されていることを確認する手段として、水中テレビカメラおよび水中照明具を備えた請求項1ないし請求項6のいずれか1項に記載の原子炉内構造物の間隔測定装置。 The underwater television camera and the underwater lighting device are provided as the means for confirming that the sensor unit is installed at the normal position of the measurement site of the reactor internal structure. An apparatus for measuring the interval of a reactor internal structure as described in 1. 前記保持治具は、前記センサ部を前記構造物に沿って移動可能なスキャニング機構を備えた請求項1ないし請求項7のいずれか1項に記載の原子炉内構造物の間隔測定装置。 The said holding jig is a space | interval structure measuring apparatus of the reactor internal structure of any one of Claim 1 thru | or 7 provided with the scanning mechanism which can move the said sensor part along the said structure. 前記センサ部は多数の小型センサ要素の集合体からなるセンサを備え、前記センサ部を定位置として前記構造物の形状測定を可能とした請求項1ないし請求項8のいずれか1項に記載の原子炉内構造物の間隔測定装置。 The said sensor part is provided with the sensor which consists of an aggregate | assembly of many small sensor elements, The shape measurement of the said structure was enabled with the said sensor part as a fixed position. A device for measuring the spacing of reactor internals. 前記センサ部は測定部位の温度を測定する温度センサを備え、前記遠隔操作装置は校正時との温度差による誤差を補正する補正手段を備える請求項1ないし請求項9のいずれか1項に記載の原子炉内構造物の間隔測定装置。 The said sensor part is provided with the temperature sensor which measures the temperature of a measurement site | part, The said remote control apparatus is provided with the correction | amendment means which correct | amends the error by the temperature difference with the time of calibration. For measuring the distance between reactor internals.
JP2007099510A 2007-04-05 2007-04-05 Apparatus for measuring interval of structure in nuclear reactor Pending JP2008256553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099510A JP2008256553A (en) 2007-04-05 2007-04-05 Apparatus for measuring interval of structure in nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099510A JP2008256553A (en) 2007-04-05 2007-04-05 Apparatus for measuring interval of structure in nuclear reactor

Publications (1)

Publication Number Publication Date
JP2008256553A true JP2008256553A (en) 2008-10-23

Family

ID=39980256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099510A Pending JP2008256553A (en) 2007-04-05 2007-04-05 Apparatus for measuring interval of structure in nuclear reactor

Country Status (1)

Country Link
JP (1) JP2008256553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063182A (en) * 2010-09-15 2012-03-29 Hitachi-Ge Nuclear Energy Ltd Crack diagnostic method and crack diagnostic device for reactor structure
KR102563362B1 (en) * 2022-11-25 2023-08-04 영동이앤지(주) digital type apparatus for measuring gap of bridge expansion joint

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121347A (en) * 1998-10-14 2000-04-28 Mitsubishi Heavy Ind Ltd Instrument and method for shape measurement
JP2000356697A (en) * 1999-06-11 2000-12-26 Toshiba Corp Reactor core shroud inner diameter automatic measuring device
JP2001349977A (en) * 2000-06-08 2001-12-21 Toshiba Corp Apparatus and method for measuring size of clearance between upper grid plates
JP2002341084A (en) * 2001-05-14 2002-11-27 Toshiba Corp Jet pump clearance measuring device
JP2003337192A (en) * 2002-05-21 2003-11-28 Hitachi Ltd Inspection and preventive maintenance apparatus for structure within reactor pressure vessel, and inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121347A (en) * 1998-10-14 2000-04-28 Mitsubishi Heavy Ind Ltd Instrument and method for shape measurement
JP2000356697A (en) * 1999-06-11 2000-12-26 Toshiba Corp Reactor core shroud inner diameter automatic measuring device
JP2001349977A (en) * 2000-06-08 2001-12-21 Toshiba Corp Apparatus and method for measuring size of clearance between upper grid plates
JP2002341084A (en) * 2001-05-14 2002-11-27 Toshiba Corp Jet pump clearance measuring device
JP2003337192A (en) * 2002-05-21 2003-11-28 Hitachi Ltd Inspection and preventive maintenance apparatus for structure within reactor pressure vessel, and inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063182A (en) * 2010-09-15 2012-03-29 Hitachi-Ge Nuclear Energy Ltd Crack diagnostic method and crack diagnostic device for reactor structure
KR102563362B1 (en) * 2022-11-25 2023-08-04 영동이앤지(주) digital type apparatus for measuring gap of bridge expansion joint

Similar Documents

Publication Publication Date Title
US20110198075A1 (en) In-pipe work device
JP5155692B2 (en) Ultrasonic inspection equipment
US20050056105A1 (en) Method and apparatus for inspection of reactor head components
JP2007057357A (en) Inspection maintenance method of reactor inside
JP2007240342A (en) Flaw inspection apparatus and method
JP2008145432A (en) Ultrasonic inspection crawler and method for inspecting weld zone of jet pump in nuclear reactor vessel
JP2012181097A (en) Structure flaw inspection method and device
JP5172625B2 (en) Piping inspection device and piping inspection method
JP3485984B2 (en) Furnace inspection system and furnace inspection method
KR101390889B1 (en) Remote Visual Inspection System and Remote Visual Inspection Method for internals of CANDU type reactor
JP2008256553A (en) Apparatus for measuring interval of structure in nuclear reactor
JP2010085105A (en) Motorized valve state monitoring and diagnosing apparatus and method
JP2007003400A (en) Inspection device for control rod through-hole member
JP2008215877A (en) Ultrasonic flaw detection device and inspection device
JP4823157B2 (en) Nuclear power facility service equipment
JP2008032508A (en) Piping inspection device and piping inspection method
US9205507B2 (en) Nuclear power plant construction preparation unit, nuclear power plant construction system, and nuclear power plant construction method
JP2011053165A (en) Device and method for detecting position of moving carriage of trackless type
JP2006317388A (en) Fuel assembly test system and fuel assembly test method
RU2497074C1 (en) Device for diagnostics of wall of manifold pipelines with moire method
JP2018205091A (en) Ultrasonic flaw detection device and inspection method using ultrasonic wave
KR101496020B1 (en) An inspecting robot arrangement device
RU2691246C1 (en) Method of determining leakage coordinates of a nuclear power plant pool with a pronounced acoustic signature and a robotic system for its implementation
JP2005300266A (en) Positioning device of nuclear reactor inspection/repair robot
JP2008209313A (en) Distortion measuring method, or the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405