JP2008249180A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008249180A
JP2008249180A JP2007087938A JP2007087938A JP2008249180A JP 2008249180 A JP2008249180 A JP 2008249180A JP 2007087938 A JP2007087938 A JP 2007087938A JP 2007087938 A JP2007087938 A JP 2007087938A JP 2008249180 A JP2008249180 A JP 2008249180A
Authority
JP
Japan
Prior art keywords
air
blower
temperature
heat exchanger
air volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007087938A
Other languages
Japanese (ja)
Inventor
Yuuki Mochizuki
勇希 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007087938A priority Critical patent/JP2008249180A/en
Publication of JP2008249180A publication Critical patent/JP2008249180A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of suppressing generation and growing of dew condensation in a main body casing even when an air blower is operated with a rotational frequency lower than a prescribed rotational frequency. <P>SOLUTION: In this air conditioner comprising the main body casing 9 having a suction opening 1 and a blowout opening 5, the variable air-volume air blower 4 disposed in a ventilation flue from the suction opening 1 to the blowout opening 5, an indoor-side heat exchanger 2 disposed in the ventilation flue in a state of being inclined to the ventilating direction, and an air volume control means 10 for controlling the air volume of the air blower 4, the air volume control means 10 comprises an air volume increasing means 11 for increasing the rotational frequency of the air blower 4 to be higher than the prescribed rotational frequency when the air blower 4 is operated with the rotational frequency lower than the prescribed rotational frequency continuously for a prescribed time. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気調和装置に係り、更に詳しくは空気調和装置の本体ケーシング内における結露の発生、成長を抑制可能な空気調和装置に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner capable of suppressing the occurrence and growth of dew condensation in a main body casing of the air conditioner.

従来、空気調和装置は、装置の小型化の目的で、室内側熱交換器が通風路内において通風方向に対し傾斜して設置される場合がある。このような空気調和装置においては、室内側熱交換器の一端部及び他端部と、通風路内に設置されている送風機との距離が異なるため、室内側熱交換器を通過後の空気の風速分布に偏りが生じ、その結果、本体ケーシング内において、結露が発生、成長するという問題がある。   Conventionally, an air conditioner is sometimes installed with an indoor heat exchanger inclined with respect to the ventilation direction in the ventilation path for the purpose of downsizing the apparatus. In such an air conditioner, since the distance between the one end and the other end of the indoor heat exchanger and the blower installed in the ventilation path is different, the air after passing through the indoor heat exchanger There is a problem that the wind speed distribution is biased, and as a result, condensation occurs and grows in the main casing.

下記特許文献1には、壁掛けタイプの空気調和装置の吹出口の結露の発生を防止するため、冷却運転中に室内熱交換器温度が積算で所定の第1基準時間以上のあいだ所定の基準温度以下であったときは、制御手段は、送風ファンの下限回転数を所定量だけ高くする露付防止制御を行うことにより、吹出口に設けられた水平フラップやルーバ等に結露の発生を防止する技術が開示されている。 In Patent Document 1 below, in order to prevent the occurrence of condensation at the air outlet of the wall-mounted air conditioner, the indoor heat exchanger temperature is integrated during the cooling operation for a predetermined reference temperature or more during a predetermined first reference time. When it is below, the control means prevents dew condensation from occurring on a horizontal flap or a louver provided at the air outlet by performing dew prevention control that increases the lower limit rotational speed of the blower fan by a predetermined amount. Technology is disclosed.

また、下記特許文献2には吸込空気を直接除湿することができるよう装置内に除湿器を備えた室内空気調和機に関する技術が開示されている。 Patent Document 2 below discloses a technique related to an indoor air conditioner that includes a dehumidifier in the apparatus so that the intake air can be directly dehumidified.

特開平10−253136号公報JP-A-10-253136

特許第2522136号公報Japanese Patent No. 2522136

上記のように、室内側熱交換器が通風路内において通風方向に対し傾斜して設置される空気調和装置においては、風速の偏りを予め考慮に入れ、最適な空調条件を満たす室内側熱交換器の傾斜角度を選択し設計を行っている。よって、通常は本体ケーシング内の空気の混合による結露の問題は生じない。 As described above, in an air conditioner in which the indoor heat exchanger is installed in the ventilation path so as to be inclined with respect to the ventilation direction, the indoor heat exchange satisfying the optimal air conditioning condition is taken into consideration in advance. The angle of inclination of the vessel is selected and designed. Therefore, the problem of dew condensation due to the mixing of air in the main body casing does not usually occur.

しかしながら、送風機として、風量可変の送風機を用いた場合には、空気調和装置が所定回転数以下の回転数で運転を行われる場合もあり、このような場合には本体ケーシングに予想以上の風速差が生じ、その結果、本体ケーシング内を流れる空気の温度が不均一となる。そして、この温度差のある空気が混合すると、結露が発生、成長していく。 However, when a blower with variable air volume is used as the blower, the air conditioner may be operated at a rotational speed equal to or lower than a predetermined rotational speed. As a result, the temperature of the air flowing in the main body casing becomes non-uniform. When air having this temperature difference is mixed, condensation occurs and grows.

また、上記特許文献1,2に記載の空気調和装置は、室内側熱交換器が通風路内において通風方向に対し傾斜して設置される空気調和装置に関する技術ではないため、本発明の課題の解決には至らない。 In addition, the air conditioners described in Patent Documents 1 and 2 are not related to an air conditioner in which the indoor heat exchanger is installed to be inclined with respect to the ventilation direction in the ventilation path. It does not lead to a solution.

本発明は上記のような問題点を解消するためになされたもので、送風機が所定回転数より少ない回転数で運転した場合であっても本体ケーシング内における結露の発生、成長を抑制することの可能な空気調和装置の提供を目的とする。   The present invention has been made to solve the above-described problems, and suppresses the occurrence and growth of condensation in the main body casing even when the blower is operated at a rotational speed lower than a predetermined rotational speed. An object is to provide a possible air conditioner.

上記目的を達成するために、本発明に係る空気調和装置は、吸込口及び吹出口を有する本体ケーシングと、前記吸込口から前記吹出口への通風路内に設置された風量可変の送風機と、前記通風路内で、通風方向に対し傾斜して設置された室内側熱交換器と、前記送風機の風量を制御する風量制御手段とを備えた空気調和装置において、前記風量制御手段は、前記送風機が所定時間継続して所定回転数より少ない回転数で運転した場合に、前記送風機の回転数を所定回転数以上に増加させる風量増加手段を備えているものである。   In order to achieve the above object, an air conditioner according to the present invention includes a main body casing having a suction port and a blower outlet, a blower with variable air volume installed in a ventilation path from the suction port to the blower outlet, In the air conditioning apparatus, comprising an indoor heat exchanger installed in the ventilation path so as to be inclined with respect to the ventilation direction, and an air volume control means for controlling the air volume of the blower, the air volume control means includes the blower Is provided with an air volume increasing means for increasing the rotational speed of the blower to a predetermined rotational speed or higher when operating at a rotational speed lower than the predetermined rotational speed for a predetermined time.

本発明によれば、風量増加手段により、送風機が所定時間継続して所定回転数より少ない回転数で運転した場合に、送風機の回転数を強制的に所定回転数以上に増加させるよう制御するので、通風路内の風速を一時的に上昇させることで、通風路内の空気の温度分布を均一なものとすることができ、これにより、結露の発生、成長を抑制することができる。 According to the present invention, when the blower is operated at a rotational speed lower than the predetermined rotational speed for a predetermined time by the air volume increasing means, the rotational speed of the blower is controlled to be forcibly increased to a predetermined rotational speed or more. By temporarily raising the wind speed in the ventilation path, the temperature distribution of the air in the ventilation path can be made uniform, thereby suppressing the occurrence of condensation and growth.

実施の形態1.
図1は本発明の一実施形態に係る空気調和装置の内部構成図である。
同図において、本実施形態1に係る空気調和装置は、上部に吸込口1、下部に吹出口5を有する本体ケーシング9と、吸込口1から吹出口5への通風路内に設置された風量可変の送風機4と、通風路内で、通風方向に対し傾斜して設置された室内側熱交換器2と、送風機4の風量を制御する風量制御手段10を備えている。また、熱交換機2の下方には室内側熱交換器2に付着した水滴を受け止める複数のドレンパン3が設けられている。
Embodiment 1 FIG.
FIG. 1 is an internal configuration diagram of an air conditioner according to an embodiment of the present invention.
In the figure, the air conditioner according to the first embodiment includes a main body casing 9 having a suction port 1 in the upper part and a blower outlet 5 in the lower part, and an air volume installed in the ventilation path from the suction port 1 to the blower outlet 5. A variable blower 4, an indoor heat exchanger 2 installed at an inclination with respect to the ventilation direction in the ventilation path, and an air volume control means 10 for controlling the air volume of the blower 4 are provided. A plurality of drain pans 3 for receiving water droplets attached to the indoor heat exchanger 2 are provided below the heat exchanger 2.

風量制御手段10は、送風機4の回転数を制御することにより吹出口5から空調室内に吹き出される空気の風量を制御する。風量制御手段10は、送風機4が所定時間taだけ継続して所定回転数Raより少ない回転数で運転した場合に、送風機4の回転数を所定回転数Ra以上に増加させる風量増加手段11を備えている。 The air volume control means 10 controls the air volume of the air blown from the air outlet 5 into the air conditioned room by controlling the rotational speed of the blower 4. The air volume control means 10 includes an air volume increasing means 11 that increases the rotation speed of the blower 4 to a predetermined rotation speed Ra or more when the blower 4 continues for a predetermined time ta and operates at a rotation speed less than the predetermined rotation speed Ra. ing.

所定時間taとは、空気調和装置の大きさにもよるが、例えば20分〜40分程度の時間である。所定時間が20分以上である場合には、20分より短い場合に比較して、吹出口5から吹き出される風量を強制的に増加させる時間の間隔が長くなるので、空調室内温度の安定性を維持できる。また、所定時間taが40分以下の場合には、40分より長い場合に比較して、本体ケーシング9内において多量の結露が発生する前に強制的に送風機4の風量を増加させることで、効率的に本体ケーシング9内の結露の発生、成長を抑制することができる。 The predetermined time ta is, for example, about 20 minutes to 40 minutes, although it depends on the size of the air conditioner. When the predetermined time is 20 minutes or longer, the time interval for forcibly increasing the amount of air blown from the outlet 5 is longer than when the predetermined time is shorter than 20 minutes. Can be maintained. Further, when the predetermined time ta is 40 minutes or less, as compared with a case where the predetermined time ta is longer than 40 minutes, the air volume of the blower 4 is forcibly increased before a large amount of dew condensation occurs in the main body casing 9, Generation | occurrence | production and the growth of the dew condensation in the main body casing 9 can be suppressed efficiently.

また、所定回転数Raとは、空気調和装置内に備えた送風機4の大きさにもよるが、下限風量、又は下限風量に近い風量となる回転数であって、例えば、600rpm〜780rpm程度である。600rpm以上の場合には、空気調和装置が運転可能な状態であり、風量増加御手段11による制御が必要となる。また、780rpm以下の場合には780rpmより多い場合に比較して、本体ケーシング9内の通風路内の風速分布が不均一になりやすく、結露を発生しやすい状況にあるので、風量増加手段11による制御が必要となる。 Moreover, although predetermined rotation speed Ra is based also on the magnitude | size of the air blower 4 with which the air conditioning apparatus was equipped, it is rotation speed used as the air volume close | similar to a minimum air volume or a minimum air volume, for example, about 600 rpm-780 rpm. is there. In the case of 600 rpm or more, the air conditioner is in an operable state, and control by the air volume increase control means 11 is necessary. Further, in the case of 780 rpm or less, the air velocity distribution in the ventilation passage in the main body casing 9 is likely to be non-uniform and more likely to cause condensation than in the case where it is higher than 780 rpm. Control is required.

送風機4の回転数を所定回転数Ra以上に増加した後、その増加した回転数を維持し運転を行う時間tbは2分〜15分程度である。増加後の回転数を維持し運転を行う時間tbが2分以上の場合には、2分より短い場合に比較して、本体ケーシング9内の結露の発生、成長を十分抑制できるため好ましい。また、増加後の回転数を維持し運転を行う時間tbが15分以下の場合には、15分より長い場合に比較して、吹出口5から吹き出される風量を強制的に増加させる時間が短くなり、空調室内の温度の安定性を維持できるため好ましい。 After the rotation speed of the blower 4 is increased to a predetermined rotation speed Ra or higher, the time tb during which the increased rotation speed is maintained and the operation is performed is about 2 to 15 minutes. When the time tb during which operation is performed while maintaining the increased number of rotations is 2 minutes or more, it is preferable because the occurrence and growth of dew condensation in the main body casing 9 can be sufficiently suppressed as compared with the case where it is shorter than 2 minutes. Further, when the time tb during which the operation is performed while maintaining the increased number of rotations is 15 minutes or less, the time for forcibly increasing the amount of air blown from the outlet 5 is longer than when the time tb is longer than 15 minutes. This is preferable because the temperature becomes shorter and the temperature stability in the air-conditioned room can be maintained.

次に、本実施形態1に係る空気調和装置の動作につき以下に説明する。空気調和装置は冷房運転中に、吸込口1から本体ケーシング9内に吸い込まれた空気は、室内側熱交換器2において室内側熱交換器2の冷媒配管内を流通する冷媒と熱交換して冷媒を蒸発させることにより冷却される。その後、送風機4を通過し、吹出口5より空調室内に吹き出される。 Next, the operation of the air conditioning apparatus according to the first embodiment will be described below. During the cooling operation of the air conditioner, the air sucked into the main body casing 9 from the suction port 1 exchanges heat with the refrigerant flowing in the refrigerant pipe of the indoor heat exchanger 2 in the indoor heat exchanger 2. It is cooled by evaporating the refrigerant. Thereafter, the air passes through the blower 4 and is blown out from the blowout port 5 into the air-conditioned room.

室内側熱交換器2の冷媒配管内を流通する冷媒は、管壁との摩擦により流速が徐々に低下するので、室内側熱交換器2内においては、冷媒配管を流通する冷媒の量に偏りが生じている。 Since the flow rate of the refrigerant flowing through the refrigerant pipe of the indoor heat exchanger 2 gradually decreases due to friction with the pipe wall, the refrigerant is biased toward the amount of refrigerant flowing through the refrigerant pipe in the indoor heat exchanger 2. Has occurred.

また、図1においては、室内側熱交換器2が通風方向である上下方向に対し傾斜して設置されているため、室内側熱交換器2の上端部と下端部とでは、室内側熱交換器2の下方に設けられた送風機4との距離が等しくならない。このため、送風機4に近い室内側熱交換器の下端部を通過する空気Lの風速が早くなり、送風機4からの距離が遠い室内側熱交換器2の上端部を通過する空気Sの風速は遅くなってしまう。この場合、送風機4からの距離が短い室内側熱交換器2の下端部を通過する空気Lは風速が速いためにあまり冷却されず、温度があまり低下しない。これに対し、送風機4からの距離の遠い室内側熱交換器2の上端部を通った空気Sは風速が遅いために室内側熱交換器2近傍においてよく冷却され温度が低下する。 Moreover, in FIG. 1, since the indoor side heat exchanger 2 is installed inclining with respect to the vertical direction that is the ventilation direction, the indoor side heat exchange is performed between the upper end portion and the lower end portion of the indoor side heat exchanger 2. The distance to the blower 4 provided below the fan 2 is not equal. For this reason, the wind speed of the air L which passes the lower end part of the indoor side heat exchanger close | similar to the air blower 4 becomes quick, and the wind speed of the air S which passes the upper end part of the indoor side heat exchanger 2 far from the air blower 4 is It will be late. In this case, the air L passing through the lower end of the indoor heat exchanger 2 with a short distance from the blower 4 is not cooled much because the wind speed is fast, and the temperature does not drop much. On the other hand, the air S passing through the upper end of the indoor heat exchanger 2 that is far from the blower 4 is well cooled in the vicinity of the indoor heat exchanger 2 because the wind speed is slow, and the temperature is lowered.

このように、通風路内において風速に差が生じた場合には、通風路を流れる空気温度が不均一となるが、通常はこれら冷媒量の偏りや風速の偏りを予め考慮に入れた設計を行い、最適な空調条件を満たすよう室内側熱交換器の傾斜角度を選択しているので、本体ケーシング9内の空気の混合による結露の問題は生じない。 In this way, when there is a difference in the wind speed in the ventilation path, the temperature of the air flowing through the ventilation path will be non-uniform, but usually the design that takes into account the deviation of the refrigerant amount and the deviation of the wind speed in advance. Since the inclination angle of the indoor heat exchanger is selected so as to satisfy the optimum air conditioning conditions, the problem of condensation due to the mixing of air in the main body casing 9 does not occur.

しかしながら、風量可変の送風機4を用いた空気調和装置において、下限風量又は下限風量に近い風量で運転を行った場合には、本体ケーシング9に予想以上の風速差が生じ、その結果、上記したように風速が速い空気は比較的暖かく、風速が遅い空気は速い空気よりも冷たくなり、本体ケーシング9内を流れる空気温度が不均一となる。そして、図2の湿り空気線図に示すように、暖かい空気が冷たい空気によって露点温度以下にまで冷却され、結露が発生する。 However, in the air conditioner using the blower 4 with variable air volume, when the operation is performed with the air volume close to the lower limit air volume or the lower air volume, a wind speed difference more than expected occurs in the main body casing 9, and as a result, as described above. In addition, air with a high wind speed is relatively warm, and air with a low wind speed is colder than fast air, and the temperature of the air flowing in the main body casing 9 becomes uneven. Then, as shown in the wet air diagram of FIG. 2, warm air is cooled to below the dew point temperature by cold air, and condensation occurs.

そこで、本実施形態1では、風量増加手段11により、送風機4が所定時間taだけ継続して所定回転数Raより少ない回転数で運転した場合に、送風機4の回転数を強制的に所定回転数Ra以上に増加させるよう制御することで、通風路内の風速を所定時間tbだけ強制的に速めて、本体ケーシング9内の空気温度分布を均一なものとし、結露の発生、成長を抑制することができる。 Therefore, in the first embodiment, when the blower 4 is operated for a predetermined time ta by the air volume increasing unit 11 and operated at a rotational speed lower than the predetermined rotational speed Ra, the rotational speed of the blower 4 is forcibly set to the predetermined rotational speed. By controlling to increase to Ra or higher, the wind speed in the ventilation path is forcibly increased by a predetermined time tb, the air temperature distribution in the main body casing 9 is made uniform, and the generation and growth of condensation are suppressed. Can do.

特に、電気機器を多数収容した室内など、結露の発生が非常に問題となるため、この本体ケーシング9内での結露の発生、成長を極力抑制したい場所等において、本実施形態に係る空気調和装置を設置し、使用すれば、風量増加手段11により結露の発生、成長を抑制できるのでより好ましい。また、このような電気機器を多数収容した室内等において空気調和装置を運転する際には、空調室内に人がいない場合が多く、設定風量から所定時間tbの間強制的に風量を増加させても空調室内にいる者に不快感を与えるといったことはない。 In particular, since the occurrence of dew condensation is extremely problematic, such as in a room containing a large number of electrical devices, the air conditioner according to the present embodiment is used in places where it is desired to suppress the occurrence of dew condensation and growth in the main body casing 9 as much as possible. If it is installed and used, the generation and growth of condensation can be suppressed by the air volume increasing means 11, which is more preferable. In addition, when operating the air conditioner in a room or the like containing a large number of such electrical devices, there are many cases where there are no people in the air conditioning room, and the air volume is forcibly increased from the set air volume for a predetermined time tb. However, there is no discomfort for those who are in the air-conditioned room.

図3は、本実施形態1に係る空気調和装置の風量増加手段11のフローチャートである。まず、ステップS1では、風量制御手段10に備えた通常運転の際の制御、即ち、設定風量での運転を行う。そして、ステップS2において、送風機4の回転数が、予め設定した所定回転数Raより少ない回転数において、予め設定した所定時間taの間継続して運転しているかどうかを判断する。未だ所定時間taを経過していない場合には、本体ケーシング9内において結露は殆ど発生しないので、ステップS1へ戻る。 FIG. 3 is a flowchart of the air volume increasing means 11 of the air conditioner according to the first embodiment. First, in step S1, control during normal operation provided in the air volume control means 10, that is, operation with a set air volume is performed. In step S2, it is determined whether or not the rotation speed of the blower 4 is continuously operated for a predetermined time ta set at a predetermined rotation speed less than the predetermined rotation speed Ra. If the predetermined time ta has not yet elapsed, condensation hardly occurs in the main body casing 9, and the process returns to step S1.

ステップS2において、所定回転数Raより少ない回転数での運転が、所定時間ta以上となった場合には、ステップS3へ進み、送風機4の回転数を所定回転数Ra以上に増加し、所定時間tbの間運転し、室内に吹き出す空気の風量を増加させる。そして、所定時間tb経過後はS1に戻り、風量制御手段10による通常制御を行う。 In step S2, when the operation at the rotation speed less than the predetermined rotation speed Ra becomes equal to or longer than the predetermined time ta, the process proceeds to step S3, and the rotation speed of the blower 4 is increased to the predetermined rotation speed Ra or higher for a predetermined time. It is operated for tb and the air volume blown into the room is increased. And after predetermined time tb progresses, it returns to S1 and performs normal control by the air volume control means 10. FIG.

これにより、本体ケーシング9内で局所的に非常に冷たい空気が存在するといったことがなく、本体ケーシング9内の空気温度分布が均一となり、結露の発生、成長を抑制することができる。 Thereby, there is no local very cold air in the main body casing 9, the air temperature distribution in the main body casing 9 becomes uniform, and the generation and growth of dew condensation can be suppressed.

実施の形態2
図4は、本実施形態2に係る空気調和装置を示す。同図において、空気調和装置は上記実施形態1と同様に、上部に吸込口1及び下部に吹出口5を有する本体ケーシング9と、風量可変の送風機4と、通風方向に傾斜して設置された室内側熱交換器2と、送風機4の風量を制御する風量制御手段10とを備えている。また、熱交換機2の下方には室内側熱交換器2に付着した水滴を受け止める複数のドレンパン3が設けられている。
Embodiment 2
FIG. 4 shows an air conditioner according to the second embodiment. In the same figure, the air conditioner was installed in a slanted manner in the ventilation direction, a main body casing 9 having a suction port 1 in the upper part and a blower outlet 5 in the lower part, a blower 4 with variable air volume, as in the first embodiment. The indoor side heat exchanger 2 and the air volume control means 10 for controlling the air volume of the blower 4 are provided. A plurality of drain pans 3 for receiving water droplets attached to the indoor heat exchanger 2 are provided below the heat exchanger 2.

本実施形態2においては、室内側熱交換器2はプレートフィンチューブ式熱交換器を用いており、このフィンの表面には、室内側熱交換器2の所定箇所における温度を検出する複数の熱交換器温度検出手段6を備えている。この熱交換器温度検出手段6は、室内側熱交換器2のうち送風機4からの距離が遠い部分に多く取り付けることが好ましい。即ち、図4における室内側熱交換器2の上端部近傍に多く取り付けることが好ましい。これの部分は、送風機4が所定回転数Raより少ない回転数において運転を行った場合に、送風機4からの距離が遠いために風速が遅くなり、室内側熱交換器2近傍に比較的長く滞在する空気がよく冷却されることでフィン表面温度が低下しやすい部分だからである。 In Embodiment 2, the indoor heat exchanger 2 uses a plate fin tube heat exchanger, and a plurality of heats for detecting temperatures at predetermined locations of the indoor heat exchanger 2 are formed on the surface of the fin. An exchanger temperature detecting means 6 is provided. It is preferable that a large number of the heat exchanger temperature detection means 6 is attached to a portion of the indoor heat exchanger 2 that is far from the blower 4. That is, it is preferable to install many in the vicinity of the upper end of the indoor heat exchanger 2 in FIG. In this part, when the blower 4 is operated at a rotational speed less than the predetermined rotational speed Ra, the wind speed is slow because the distance from the blower 4 is long, and the air stays relatively long in the vicinity of the indoor heat exchanger 2. This is because the fin surface temperature is likely to be lowered by the air being cooled well.

また、吸込口1には、吸込空気の温度を検出する吸込空気温度検出手段7aと、吸込空気の湿度を検出する吸込空気湿度検出手段7bとを備えている。 Further, the suction port 1 is provided with suction air temperature detection means 7a for detecting the temperature of the suction air and suction air humidity detection means 7b for detecting the humidity of the suction air.

さらに、風量制御手段10は風量増加手段11aを備え、風量増加手段11aは、吸込空気温度検出手段7aにより検出された吸込空気温度、及び、吸込空気湿度検出手段7bにより検出された吸込空気湿度とに基づいて吸込空気の露点温度Twを演算する。そして、演算した露点温度Twと、熱交換器温度検出手段6により検出された熱交換器温度Tfとを比較する。露点温度Twが熱交換器温度Tfより低い状態で、予め設定した所定時間tc以上経過した場合に、送風機4の回転数を強制的に所定回転数Ra以上に増加させるよう制御を行う。 Further, the air volume control means 10 includes an air volume increasing means 11a, and the air volume increasing means 11a includes the intake air temperature detected by the intake air temperature detecting means 7a and the intake air humidity detected by the intake air humidity detecting means 7b. Based on the above, the dew point temperature Tw of the intake air is calculated. Then, the calculated dew point temperature Tw is compared with the heat exchanger temperature Tf detected by the heat exchanger temperature detecting means 6. In a state where the dew point temperature Tw is lower than the heat exchanger temperature Tf, control is performed so that the rotational speed of the blower 4 is forcibly increased to a predetermined rotational speed Ra or more when a predetermined time tc or more has elapsed.

所定時間tcとは上記実施形態1の所定時間taと同様に、例えば20分〜40分程度の時間である。所定時間taと同様の理由により、所定時間tcが20分以上である場合は空調室内の温度の安定性を維持できるため好ましく、所定時間tcが40分以下の場合は本体ケーシング9内の結露の発生を効率的に抑制することができるため好ましい。 The predetermined time tc is, for example, about 20 minutes to 40 minutes, like the predetermined time ta in the first embodiment. For the same reason as the predetermined time ta, when the predetermined time tc is 20 minutes or more, it is preferable because the temperature stability in the air-conditioned room can be maintained, and when the predetermined time tc is 40 minutes or less, condensation in the main body casing 9 occurs. Since generation | occurrence | production can be suppressed efficiently, it is preferable.

尚、本実施形態2の風量制御手段11aにおける所定回転数Raは、上記実施形態1の風量制御手段11における所定回転数Raと同義である。 The predetermined rotational speed Ra in the air volume control means 11a of the second embodiment is synonymous with the predetermined rotational speed Ra in the air volume control means 11 of the first embodiment.

次に、本実施形態2に係る空気調和装置の動作につき以下に説明する。吸込口1から吸い込まれた空気は、吸込空気温度検出手段7aによって吸込空気温度が検出され、吸込空気湿度検出手段7bによって吸込空気湿度が検出される。そして、この空気は、室内側熱交換器2を通過して冷却された後、送風機4を通過し、吹出口5より吹き出される。その際、熱交換器温度検出手段6は、室内側熱交換器2のフィン表面温度Tfを検出する。 Next, the operation of the air conditioner according to the second embodiment will be described below. As for the air sucked from the suction port 1, the suction air temperature is detected by the suction air temperature detection means 7a, and the suction air humidity is detected by the suction air humidity detection means 7b. The air passes through the indoor heat exchanger 2 and is cooled, then passes through the blower 4 and is blown out from the air outlet 5. At that time, the heat exchanger temperature detection means 6 detects the fin surface temperature Tf of the indoor heat exchanger 2.

図5は、本実施形態2にかかる風量増加手段11aについてのフローチャートである。ステップS11において、空気調和装置は風量制御手段10に備える通常運転の制御手段により、通常の制御、即ち、設定風量での運転を行う。ステップS12において、吸込空気温度検出手段7aにより検出した吸込空気温度、及び吸込空気湿度検出手段7bにより検出した吸込空気湿度に基づいて吸込空気の露点温度Twを演算する。 FIG. 5 is a flowchart of the air volume increasing means 11a according to the second embodiment. In step S <b> 11, the air conditioner performs normal control, that is, operation with the set air volume, by the normal operation control means provided in the air volume control means 10. In step S12, the dew point temperature Tw of the suction air is calculated based on the suction air temperature detected by the suction air temperature detection means 7a and the suction air humidity detected by the suction air humidity detection means 7b.

そして、ステップS13において、熱交換器温度検出手段6により検出した熱交換器温度Tfと、ステップ12において演算した吸込空気の露点温度Twとを比較する。熱交換器温度Tfの方が露点温度Twより高くステップS13を満たさない場合には、本体ケーシング9内において結露は殆ど発生しないと考えられるので、ステップS11に戻り通常運転を行う。 In step S13, the heat exchanger temperature Tf detected by the heat exchanger temperature detecting means 6 is compared with the dew point temperature Tw of the intake air calculated in step 12. If the heat exchanger temperature Tf is higher than the dew point temperature Tw and does not satisfy Step S13, it is considered that almost no condensation occurs in the main body casing 9, so the routine returns to Step S11 and normal operation is performed.

ステップS13において、熱交換器温度Tfの方が露点温度Twより低くステップS13を満たす場合には、本体ケーシング9内において結露が発生すると考えられるので、ステップS14に進み、Tf<Twの状態で例えば30分といった所定時間tc以上継続してステップS13の条件Tf<Twを満たしたかどうかを判断する。 In step S13, if the heat exchanger temperature Tf is lower than the dew point temperature Tw and satisfies step S13, it is considered that condensation occurs in the main body casing 9, so the process proceeds to step S14, and in the state of Tf <Tw, for example, It is determined whether or not the condition Tf <Tw in step S13 is satisfied continuously for a predetermined time tc such as 30 minutes.

ステップS13の条件Tf<Twを満たす状態で所定時間tcより短い時間しか経過しなかった場合には、本体ケーシング9内において、結露は殆ど発生しないと考えられるので、ステップS11に戻り通常運転を行う。これに対し、ステップS13の条件Tf<Twを所定時間tc以上継続して満たした場合には、ステップS15に進み、例えばtd=5分間といった所定時間tdにわたり送風機4の回転数を所定回転数Ra以上に上昇させる。送風機4の回転数を所定回転数Ra以上として所定時間tdの間連続運転した後は、ステップS11に戻り、通常制御により運転を行う。そして、このような制御を繰り返し行う。 If only a time shorter than the predetermined time tc has passed in the state satisfying the condition Tf <Tw in step S13, it is considered that almost no condensation occurs in the main body casing 9, so the process returns to step S11 to perform normal operation. . On the other hand, when the condition Tf <Tw in step S13 is continuously satisfied for the predetermined time tc or longer, the process proceeds to step S15, and the rotational speed of the blower 4 is set to the predetermined rotational speed Ra over a predetermined time td such as td = 5 minutes. Raise more. After continuously operating for a predetermined time td with the rotational speed of the blower 4 being equal to or higher than the predetermined rotational speed Ra, the process returns to step S11 and the operation is performed under normal control. Such control is repeated.

これにより、吸込空気温度検出手段7aにより検出された吸込空気温度と、吸込み空気湿度検出手段7bにより検出された吸込空気湿度から露点温度Twを演算し、演算された露点温度Twと、熱交換器温度検出手段6により検出された熱交換器温度Tfとの比較に基づいて、送風機4の回転数を所定回転数Ra以上に増加させるかどうかの判断を行う。よって、ステップS13の条件Tf<Twとなる結露が発生しやすい状態となり、風量増加の必要が生じたときにのみ、空気調和装置の風量を増加することが可能となる。 Thus, the dew point temperature Tw is calculated from the intake air temperature detected by the intake air temperature detection means 7a and the intake air humidity detected by the intake air humidity detection means 7b, and the calculated dew point temperature Tw and the heat exchanger are calculated. Based on the comparison with the heat exchanger temperature Tf detected by the temperature detection means 6, it is determined whether or not to increase the rotational speed of the blower 4 to a predetermined rotational speed Ra or higher. Therefore, it becomes easy to generate condensation that satisfies the condition Tf <Tw in step S13, and the air volume of the air conditioner can be increased only when the air volume needs to be increased.

従って、結露が発生せず、風量増加の必要がない場合には、通常運転即ち設定風量による運転を行うことができ、空調室内の温度安定性を維持することができる。また、上記実施形態1に係る空気調和装置の風量増加手段11とは異なり、送風機4が所定時間ta継続して所定回転数Raより少ない回転数で運転した場合であっても、ステップS13の条件Tf<Twを満たさず、結露が発生しやすい状態でない、即ち、風量増加の必要のない場合には所定回転数Raより少ない回転数で送風機4を運転できるので、運転コストを抑えることができる。 Therefore, when condensation does not occur and there is no need to increase the air volume, normal operation, that is, operation with the set air volume can be performed, and temperature stability in the air-conditioned room can be maintained. In addition, unlike the air volume increasing means 11 of the air conditioner according to the first embodiment, the condition of step S13 is satisfied even when the blower 4 continues for a predetermined time ta and operates at a rotation speed lower than the predetermined rotation speed Ra. When Tf <Tw is not satisfied and condensation is not likely to occur, that is, when there is no need to increase the air volume, the blower 4 can be operated at a rotational speed lower than the predetermined rotational speed Ra, so that the operating cost can be suppressed.

送風機4の回転数の使用範囲が500rpm〜1000rpm程度であり、通常運転の際の送風機の回転数が1000rpmである空気調和装置において、送風機4の回転数を730rpmとして、ta=30分間連続運転を行ったところ、本体ケーシング9内で結露が発生し、徐々に成長していった。そこで、送風機4の回転数を800rpmに増加させた状態で、tb=10分間にわたり運転を行った。この結果、本体ケーシング9内で発生していた結露の発生、成長を抑制することができた。 In an air conditioner in which the rotational speed of the blower 4 is about 500 rpm to 1000 rpm and the rotational speed of the blower during normal operation is 1000 rpm, the rotational speed of the blower 4 is set to 730 rpm, and ta = 30 minutes continuous operation. As a result, dew condensation occurred in the main body casing 9, and it gradually grew. Therefore, the operation was performed for tb = 10 minutes in a state where the rotational speed of the blower 4 was increased to 800 rpm. As a result, it was possible to suppress the occurrence and growth of condensation that occurred in the main body casing 9.

本発明の一実施形態に係る空気調和装置の内部構造図である。It is an internal structure figure of the air conditioning apparatus which concerns on one Embodiment of this invention. 前記空気調和装置の結露発生に関する湿り空気線図である。It is a moist air line figure about dew generation of the air harmony device. 前記空気調和装置の風量増加手段のフローチャートである。It is a flowchart of the air volume increasing means of the air conditioner. 本発明の他の実施形態に係る空気調和装置の内部構造図である。It is an internal structure figure of the air harmony device concerning other embodiments of the present invention. 前記空気調和装置の風量増加手段のフローチャートである。It is a flowchart of the air volume increasing means of the air conditioner.

符号の説明Explanation of symbols

1 吸込口
2 室内側熱交換器
4 送風機
5 吹出口
6 熱交換器検出手段
7a 吸込空気温度検出手段
7b 吸込空気湿度検出手段
9 本体ケーシング
10 風量制御手段
11,11a 風量増加手段
DESCRIPTION OF SYMBOLS 1 Suction port 2 Indoor side heat exchanger 4 Blower 5 Outlet 6 Heat exchanger detection means 7a Suction air temperature detection means 7b Suction air humidity detection means 9 Main body casing 10 Air volume control means 11, 11a Air volume increase means

Claims (2)

吸込口及び吹出口を有する本体ケーシングと、前記吸込口から前記吹出口への通風路内に設置された風量可変の送風機と、前記通風路内で、通風方向に対し傾斜して設置された室内側熱交換器と、前記送風機の風量を制御する風量制御手段とを備えた空気調和装置において、前記風量制御手段は、前記送風機が所定時間継続して所定回転数より少ない回転数で運転した場合に、前記送風機の回転数を所定回転数以上に増加させる風量増加手段を備えていることを特徴とする空気調和装置。 A main body casing having an inlet and an outlet, an air volume variable fan installed in the ventilation path from the inlet to the outlet, and a chamber installed in an inclined manner with respect to the ventilation direction in the ventilation path In an air conditioner comprising an inner heat exchanger and an air volume control means for controlling the air volume of the blower, the air volume control means is operated when the blower is operated at a speed lower than a predetermined speed for a predetermined time. And an air volume increasing means for increasing the rotational speed of the blower to a predetermined rotational speed or more. 吸込空気の温度を検出する吸込空気温度検出手段と、吸込空気の湿度を検出する吸込空気湿度検出手段と、室内側熱交換器の所定箇所における温度を検出する熱交換器温度検出手段とを備えるとともに、風量増加手段は、検出された吸込空気温度及び検出された吸込空気湿度より吸込空気の露点温度を演算し、演算した露点温度と検出された熱交換器温度とを比較し、前記露点温度が前記熱交換器温度より低い状態が所定時間継続した場合に、前記送風機の回転数を所定の回転数以上に増加させることを特徴とする請求項1に記載の空気調和装置。 Suction air temperature detection means for detecting the temperature of the suction air, suction air humidity detection means for detecting the humidity of the suction air, and heat exchanger temperature detection means for detecting the temperature at a predetermined location of the indoor heat exchanger The air volume increasing means calculates the dew point temperature of the intake air from the detected intake air temperature and the detected intake air humidity, compares the calculated dew point temperature with the detected heat exchanger temperature, and determines the dew point temperature. 2. The air conditioner according to claim 1, wherein when the temperature lower than the heat exchanger temperature continues for a predetermined time, the rotational speed of the blower is increased to a predetermined rotational speed or more.
JP2007087938A 2007-03-29 2007-03-29 Air conditioner Pending JP2008249180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087938A JP2008249180A (en) 2007-03-29 2007-03-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087938A JP2008249180A (en) 2007-03-29 2007-03-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2008249180A true JP2008249180A (en) 2008-10-16

Family

ID=39974337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087938A Pending JP2008249180A (en) 2007-03-29 2007-03-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2008249180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092282A (en) * 2011-10-25 2013-05-16 Azbil Corp Surface temperature estimating device, surface temperature estimating method, and dew condensation determination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092282A (en) * 2011-10-25 2013-05-16 Azbil Corp Surface temperature estimating device, surface temperature estimating method, and dew condensation determination device

Similar Documents

Publication Publication Date Title
JP5611694B2 (en) Air conditioner
US11002451B2 (en) Air conditioner
JP6253459B2 (en) Ventilator for air conditioning
JP6157339B2 (en) Indoor unit and air conditioner
JP2010127572A (en) Air conditioner and method for controlling the same
JP2004354040A (en) Ventilation and air conditioning system
JP2010121819A (en) Indoor unit of air conditioner, and air conditioner
WO2016047028A1 (en) Heat exchanger ventilator
JP5244411B2 (en) Energy saving operation method of air conditioner and air conditioner
JP2006234326A (en) Air conditioning system
EP1316760B1 (en) Decorative panel for air conditioning system, air outlet blow-off unit, and air conditioning system
JP2007333356A (en) Blowing out structure for ceiling embedded type indoor machine unit
JP2009243801A (en) Air conditioner
JP2011043300A (en) Air conditioner
JP6418147B2 (en) air conditioner
JP6322814B2 (en) Heat exchange ventilator
JP5053128B2 (en) Circulator
JP2008157503A (en) Air conditioning device
JP2008249180A (en) Air conditioner
JP2016153701A (en) Heat exchange type ventilation device
JP4807149B2 (en) Air conditioner
CN109405069B (en) Indoor unit and air conditioning unit
JP2005061674A (en) Indoor unit for air conditioner
JP2008039333A (en) Air conditioner
JP2021014978A (en) Air conditioner