JP2008248697A - Cooling structure of vehicular heat exchanger - Google Patents

Cooling structure of vehicular heat exchanger Download PDF

Info

Publication number
JP2008248697A
JP2008248697A JP2007087028A JP2007087028A JP2008248697A JP 2008248697 A JP2008248697 A JP 2008248697A JP 2007087028 A JP2007087028 A JP 2007087028A JP 2007087028 A JP2007087028 A JP 2007087028A JP 2008248697 A JP2008248697 A JP 2008248697A
Authority
JP
Japan
Prior art keywords
fan
intercooler
heat exchanger
cooling
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007087028A
Other languages
Japanese (ja)
Inventor
Toshikatsu Tawara
利克 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Radiator Mfg Co Ltd
Original Assignee
Tokyo Radiator Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Radiator Mfg Co Ltd filed Critical Tokyo Radiator Mfg Co Ltd
Priority to JP2007087028A priority Critical patent/JP2008248697A/en
Publication of JP2008248697A publication Critical patent/JP2008248697A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide cooling structure of vehicular heat exchanger, suppressing temperature increase of cooling air after the passage of the cooling air through a high temperature part of an intercooler to suppress the temperature of the cooling air hit to a core part of a radiator overlapped with the high temperature part of the intercooler, and thereby to efficiently perform heat exchange in a limited engine room. <P>SOLUTION: In the vehicular heat exchanger, the intercooler and the radiator are arranged in series from a front of a vehicle, and a main cooling fan is installed at a rear end of a fan guide for efficiently sucking the cooling air from the front. In the vehicular heat exchanger, an auxiliary fan with electric motor smaller in size than a main cooling fan is installed on an intake side of a high temperature area where a distance from the center of a main cooling fan is longer than a distance to a fan tip and the temperature of the intercooler gets locally high. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、インタークーラとラジエータとを直列に配列する車両用熱交換器に、熱交換器全体へ均等に冷却風が通過するように冷却ファンを取り付ける車両用熱交換器の冷却構造に関するものである。   The present invention relates to a cooling structure for a vehicle heat exchanger in which a cooling fan is attached to a vehicle heat exchanger in which an intercooler and a radiator are arranged in series so that cooling air can pass evenly through the entire heat exchanger. is there.

従来のインタークーラとラジエータとを冷却風の移動方向に対して前後方向へ直列に配列する車両用の熱交換器10では、図5に示すように、車両前方よりインタークーラ1とラジエータ2を順に設置し、ラジエータ2の後方に冷却風を吸引するファン3を設け、ファン3の直径よりもやや大きいファン挿入孔を有するファンガイド4をラジエータ2の後側に設けた構造であった。
この構造では、ファン3を作動すると、車両前方から冷却風を吸い込み、冷却風がインタークーラ1、ラジエータ2、ファンガイド4を順に通過してファン3の羽車3a,…,3aを介して車両後方へ冷却風を流出する(特許文献1,2,3)。
In the vehicle heat exchanger 10 in which the conventional intercooler and the radiator are arranged in series in the front-rear direction with respect to the moving direction of the cooling air, as shown in FIG. 5, the intercooler 1 and the radiator 2 are sequentially arranged from the front of the vehicle. The fan 3 that is installed and sucks the cooling air is provided behind the radiator 2, and the fan guide 4 having a fan insertion hole that is slightly larger than the diameter of the fan 3 is provided on the rear side of the radiator 2.
In this structure, when the fan 3 is operated, cooling air is sucked from the front of the vehicle, and the cooling air passes through the intercooler 1, the radiator 2, and the fan guide 4 in this order, and passes through the impellers 3 a,. Cooling air flows out backward (Patent Documents 1, 2, and 3).

特開2003−172139公報JP 2003-172139 A 特開2005− 3225公報JP 2005-3225 A 特開2006− 46113公報JP 2006-46113 A

〔従来技術の問題点〕
しかしながら、近年の排気ガス規制に対応するために、熱交換器10が大型化してきたことにより、エンジンルームのスペースの制約上、熱交換器10とその中に組み込まれるファン3との中心がそれぞれずれて設置されることが多くなってきた。そのためファン3から遠い部位A,Bでは冷却風が十分に行き渡らず、局所的に温度が高くなる高温領域となり、熱交換効率の悪化を招いていた。
これを解決するためには、限られたエンジンスペースの中で、ファン3により吸い込まれる冷却風が効率良く熱交換器10の全体に当たるようにファンガイド4の形状を工夫したり、吸込み側に位置するインタークーラ1とフレームとの間の隙間をなくしたり、導風板の設置、最悪の場合には熱交換器10そのものの構造を変える等の対策が必要となり、新規の開発工数と費用が予想以上に増加していった。
[Problems of the prior art]
However, since the heat exchanger 10 has been increased in size in order to comply with recent exhaust gas regulations, the center of the heat exchanger 10 and the fan 3 incorporated in the heat exchanger 10 are respectively limited due to space restrictions in the engine room. It has been increasingly installed with a shift. For this reason, in the portions A and B far from the fan 3, the cooling air does not spread sufficiently and becomes a high temperature region where the temperature is locally increased, resulting in deterioration of heat exchange efficiency.
In order to solve this problem, the shape of the fan guide 4 is devised so that the cooling air sucked by the fan 3 efficiently hits the entire heat exchanger 10 in a limited engine space, or positioned on the suction side. Measures such as eliminating the gap between the intercooler 1 and the frame, installing a baffle plate, and changing the structure of the heat exchanger 10 in the worst case are expected. More than that.

このような技術では、限られたエンジンルームの中では排気ガス規制に対応した熱交換器10の冷却風の温度上昇を抑制することには限界があった。
さらに近年では、燃費向上、CO削減のために使用されるターボチャージャ等の過給機による過給圧が上がってきており、インタークーラ1へ導かれる吸気の温度が上昇し、インタークーラ1の吸気付近が高温となり、ファンガイド4のファン挿入部の縁からファン3の軸の放射方向に離れているために(ファン3の設置位置から遠くなり)、ファン3が吸い込む風の流れが直線的ではなく、ファンガイド4にぶつかることによって流れの角度が大きくついてしまい、風量が低下してしまう熱交換器のコアの部位A,Bが生じるため、インタークーラ1の吸気付近では十分な熱交換がなされず、インタークーラ1の高温部を通過後の冷却風の温度が上昇し、高温になった冷却風がラジエータ2に当たるため、インタークーラ1とラジエータ2との冷却効率が双方とも悪化していた。
また、エンジンからの配管の取り回し上、ラジエータ2の冷却水入口付近とインタークーラ1の吸気側が反対方向となった場合、ますます熱交換効率が悪化していた。
In such a technique, there is a limit in suppressing the temperature rise of the cooling air of the heat exchanger 10 corresponding to the exhaust gas regulation in a limited engine room.
Furthermore, in recent years, the supercharging pressure by turbochargers such as turbochargers used for improving fuel efficiency and reducing CO 2 has increased, and the temperature of the intake air led to the intercooler 1 has increased. Since the temperature near the intake air is high and the fan guide 4 is separated from the edge of the fan insertion portion in the radial direction of the axis of the fan 3 (away from the installation position of the fan 3), the flow of the air sucked by the fan 3 is linear. Rather than hitting the fan guide 4, the angle of the flow becomes large, and the core parts A and B of the heat exchanger where the air volume is reduced are generated, so that sufficient heat exchange is performed in the vicinity of the intake air of the intercooler 1. Since the temperature of the cooling air after passing through the high temperature part of the intercooler 1 rises and the high temperature cooling air hits the radiator 2, the intercooler 1 and the radiator The cooling efficiency with 2 was worse.
Further, when the piping from the engine is routed and the vicinity of the cooling water inlet of the radiator 2 and the intake side of the intercooler 1 are in opposite directions, the heat exchange efficiency has been further deteriorated.

本発明は、従来の技術における前記問題点に鑑みて成されたものであり、これを解決するため具体的に設定した技術的な課題は、インタークーラの高温部を通過後の冷却風の温度上昇を抑えることで、インタークーラの高温部と重なるラジエータのコア部に当たる冷却風の温度上昇を抑え、限られたエンジンルームの中で効率良く熱交換を行うことができるようにした車両用熱交換器の冷却構造を提供することにある。   The present invention has been made in view of the above problems in the prior art, and the technical problem specifically set in order to solve this problem is the temperature of the cooling air after passing through the high temperature portion of the intercooler. By suppressing the rise, the heat exchange for the vehicle is designed so that the temperature rise of the cooling air that hits the core of the radiator that overlaps the high temperature part of the intercooler can be suppressed and heat can be exchanged efficiently in a limited engine room. It is in providing the cooling structure of a vessel.

本発明における前記課題が効果的に解決される車両用熱交換器の冷却構造を特定するために、必要と認める事項の全てが網羅され、具体的に構成された、課題解決手段を以下に示す。
車両用熱交換器の冷却構造に係る第1の課題解決手段は、車両前方よりインタークーラとラジエータを直列に配置して設置し、前方からの冷却風を効率良く吸込むためのファンガイドの後端に主冷却ファンを設置した車両用熱交換器において、前記主冷却ファンの中心からの距離がファン先端までの距離よりも遠い位置となりかつインタークーラの温度が局所的に高くなる高温領域の吸気側に、主冷却ファンよりも小型の電動モータ付き補助ファンを設置したことを特徴とするものである。
In order to specify a cooling structure for a vehicle heat exchanger that effectively solves the above-described problems in the present invention, all the matters recognized as necessary are covered and specifically configured as the problem solving means shown below. .
A first problem-solving means relating to a cooling structure for a heat exchanger for a vehicle is that a rear end of a fan guide for efficiently sucking cooling air from the front by installing an intercooler and a radiator arranged in series from the front of the vehicle In the vehicle heat exchanger having a main cooling fan installed on the intake side in a high temperature region where the distance from the center of the main cooling fan is farther than the distance to the fan tip and the temperature of the intercooler is locally high In addition, an auxiliary fan with an electric motor that is smaller than the main cooling fan is installed.

同上車両用熱交換器の冷却構造に係る第2の課題解決手段は、前記インタークーラのインタークーラガス入口近傍の吸気側に前記電動モータ付き補助ファンを取り付けたことを特徴とする。   The second problem solving means according to the cooling structure for a vehicle heat exchanger is characterized in that the auxiliary fan with the electric motor is attached to the intake side in the vicinity of the intercooler gas inlet of the intercooler.

車両用熱交換器の冷却構造に係る第1の課題解決手段では、主冷却ファンによる冷却風の吸引だけでは、インタークーラに局所的な高温領域(例えば図5のA,B等)ができ、インタークーラ通過後の冷却風の温度も上昇するが、新たに設けた補助ファンを作動させることにより、インタークーラの高温領域になる可能性のある位置の冷却風量を高めることができ、インタークーラ通過後の冷却風の温度上昇を抑えることでラジエータに当たる冷却風の温度を低めに抑え、インタークーラとラジエータとの双方の熱交換効率を高めることができる。   In the first problem-solving means relating to the cooling structure of the vehicle heat exchanger, a local high temperature region (for example, A, B in FIG. 5) can be formed in the intercooler only by suction of the cooling air by the main cooling fan. The temperature of the cooling air after passing through the intercooler also rises, but by operating a newly installed auxiliary fan, the amount of cooling air at a position that can become the high temperature region of the intercooler can be increased, and the cooling air passing through the intercooler By suppressing the temperature rise of the subsequent cooling air, the temperature of the cooling air hitting the radiator can be kept low, and the heat exchange efficiency of both the intercooler and the radiator can be increased.

車両用熱交換器の冷却構造に係る第2の課題解決手段では、インタークーラガス入口近傍に局所的な高温領域ができるから、この位置に新たに補助ファンを設けて冷却風の風量を上げ、インタークーラ通過後の冷却風の温度を低く抑え、ラジエータにおいても、インタークーラガス入口近傍を通過しても温度を低めに抑えられた冷却風によって熱交換することによって、ラジエータ通過後の冷却風の温度が低く抑えられて、インタークーラとラジエータとの双方の熱交換効率を効果的に高めることができる。   In the second problem solving means relating to the cooling structure of the vehicle heat exchanger, a local high temperature region is formed in the vicinity of the intercooler gas inlet. Therefore, an auxiliary fan is newly provided at this position to increase the amount of cooling air, The temperature of the cooling air after passing through the intercooler is kept low, and even in the radiator, heat exchange is performed with the cooling air whose temperature is kept low even when passing through the vicinity of the intercooler gas inlet. The temperature can be kept low, and the heat exchange efficiency of both the intercooler and the radiator can be effectively increased.

以下、本発明による最良の実施形態を具体的に説明する。
ただし、この実施形態は、発明の趣旨をより良く理解させるため具体的に説明するものであり、特に指定のない限り、発明内容を限定するものではない。
また、従来の技術で説明したものと同じものは同じ符号を付して具体的な説明を省略する。
Hereinafter, the best embodiment according to the present invention will be described in detail.
However, this embodiment is specifically described for better understanding of the gist of the invention, and does not limit the content of the invention unless otherwise specified.
The same components as those described in the prior art are denoted by the same reference numerals, and a specific description thereof is omitted.

〔構成〕
この実施形態における車両用の熱交換器20は、図1〜3に示すように、冷却風の流れ方向へ順にインタークーラ1とラジエータ2と主冷却ファン13とが直列に並び、最前列に配置されたインタークーラ1の斜め上方に設けられたインタークーラガスの入口部1aと出口部1bとがコア部1cの各側面の上方に接続する。
主冷却ファン13は、図2に示すように、外径がラジエータ2の横幅に相当する羽根(狭義のファン)13a,…,13aを多数枚設けた根元部に、エンジン側からのファン駆動軸を接続するかまたは駆動用のモータを直結し、エンジンまたはモータの駆動力により回転するように形成する。
近年はラジエータ2の大きさが大きくなり、主冷却ファン13に対してラジエータ2の高さは、ファン外径よりも高くなるため、ラジエータ2の上部にはファン先端以上に高い位置までコア部2cが形成される。
また、通常は、ラジエータ2よりもインタークーラ1の形状が小さくなるから、横幅を同じ幅にすると、インタークーラ1の高さがラジエータ2よりも低くなり、インタークーラ1とラジエータ2との上端を同じ高さとなるように組み立てると、インタークーラ1の下端がラジエータ2の下端よりも高い位置になる。
〔Constitution〕
In the vehicle heat exchanger 20 in this embodiment, as shown in FIGS. 1 to 3, the intercooler 1, the radiator 2, and the main cooling fan 13 are sequentially arranged in the front row in the flow direction of the cooling air. The intercooler gas inlet portion 1a and outlet portion 1b provided obliquely above the intercooler 1 connected to each other are connected above the respective side surfaces of the core portion 1c.
As shown in FIG. 2, the main cooling fan 13 has a fan drive shaft from the engine side at the base portion provided with a large number of blades (narrowly defined fans) 13 a,..., 13 a whose outer diameter corresponds to the lateral width of the radiator 2. Or a drive motor is directly connected, and it is formed so as to rotate by the driving force of the engine or motor.
In recent years, the size of the radiator 2 is increased, and the height of the radiator 2 with respect to the main cooling fan 13 is higher than the outer diameter of the fan. Is formed.
Also, since the shape of the intercooler 1 is usually smaller than that of the radiator 2, if the horizontal width is the same, the height of the intercooler 1 becomes lower than the radiator 2, and the upper ends of the intercooler 1 and the radiator 2 are When assembled so as to have the same height, the lower end of the intercooler 1 is positioned higher than the lower end of the radiator 2.

インタークーラガスの入口部1aが接続するコア部1cの側面位置に近い位置の上側角部に、コア部1cの前側の位置で主冷却ファン13の風向と同じ向きの風向となるように補助ファン14の向きを向けて、補助ファン14を組み付ける。
補助ファン14は、図4に示すように、枠体により中央部で支持された電動モータ14aに羽根車14b(図2参照)が直結された、全体的に小型の電動モータ直結型のファンで、補助ファン14の性能は、補助ファン14単独で送られる風量が、補助ファン14が無い場合における主冷却ファン13により補助ファン14が設けられる位置に通過する冷却風の風量よりも、多くなるような性能を有するものとする。
Auxiliary fan so that the wind direction in the same direction as the wind direction of the main cooling fan 13 at the front side position of the core portion 1c is located at the upper corner portion near the side surface position of the core portion 1c to which the inlet portion 1a of the intercooler gas is connected. The auxiliary fan 14 is assembled with the direction of 14 facing.
As shown in FIG. 4, the auxiliary fan 14 is an overall small electric motor direct connection type fan in which an impeller 14 b (see FIG. 2) is directly connected to an electric motor 14 a supported at the center by a frame. The performance of the auxiliary fan 14 is such that the amount of air sent by the auxiliary fan 14 alone is larger than the amount of cooling air passing through the position where the auxiliary fan 14 is provided by the main cooling fan 13 when there is no auxiliary fan 14. It shall have a good performance.

〔作用効果〕
このような補助ファン14を設けた熱交換器20の冷却構造では、主冷却ファン13とともに補助ファン14を作動してインタークーラ1とラジエータ2とに冷却風を通過させると、従来の冷却風が十分に行き渡らず熱交換効率の悪化を招いていた主冷却ファン13の中心からの距離が中心からファン先端までの距離よりも遠い位置にある高温領域A,B(図5参照)にも、冷却風が十分に行き渡り、インタークーラ1では入口部1aからコア部1cを介して出口部1bへ通過するインタークーラガスが主冷却ファン13から遠い部位Aによっても高温のままで通過することなく冷却され、またラジエータ2でも入口部2aからコア部2cを介して出口部2bへ通過するラジエータ冷却水が高い温度のままで通過することなく冷却されて、インタークーラ1とラジエータ2との両方の局所的な高温領域を解消して、それぞれの冷却効率を向上し、インタークーラ1とラジエータ2とを通過する冷却風の温度上昇を抑えて、全体的に熱交換効率を高めることができる。
[Function and effect]
In such a cooling structure of the heat exchanger 20 provided with the auxiliary fan 14, when the auxiliary fan 14 is operated together with the main cooling fan 13 to pass the cooling air through the intercooler 1 and the radiator 2, the conventional cooling air is generated. Cooling is also performed in the high temperature regions A and B (see FIG. 5) in which the distance from the center of the main cooling fan 13 that has not been sufficiently spread and the heat exchange efficiency is deteriorated is farther than the distance from the center to the fan tip. The wind is sufficiently distributed, and in the intercooler 1, the intercooler gas passing from the inlet 1a to the outlet 1b via the core 1c is cooled by the portion A far from the main cooling fan 13 without passing through at a high temperature. Also, in the radiator 2, the radiator cooling water passing from the inlet portion 2a to the outlet portion 2b via the core portion 2c is cooled without passing at a high temperature, and the The local high temperature region of both the tur- cooler 1 and the radiator 2 is eliminated, the respective cooling efficiency is improved, the temperature rise of the cooling air passing through the intercooler 1 and the radiator 2 is suppressed, and overall heat is generated. Exchange efficiency can be improved.

〔別態様〕
このような実施形態における車両用熱交換器の冷却構造では、主冷却ファン13の配置位置から遠くなり、かつインタークーラガスやラジエータ冷却水の温度が高くなるインタークーラガスの入口部1aの近辺に補助ファン14の配置位置としたが、この位置だけに限らず、さまざまな要因により冷却ガスや冷却水の温度が局所的に高くなる部位に設置しても良い。
また、補助ファン14の稼動、風量等は、吸気温度が最も高温となった状態で最適となるように設定するか、または温度の変化に合わせて制御を電子的に行っても良い。
[Another aspect]
In the cooling structure for a vehicle heat exchanger in such an embodiment, the intercooler gas inlet 1a is located near the position where the main cooling fan 13 is disposed and the temperature of the intercooler gas or the radiator cooling water increases. Although the arrangement position of the auxiliary fan 14 is not limited to this position, the auxiliary fan 14 may be installed at a location where the temperature of the cooling gas or the cooling water is locally increased due to various factors.
Further, the operation of the auxiliary fan 14, the air volume, etc. may be set so as to be optimal when the intake air temperature becomes the highest, or the control may be performed electronically in accordance with the temperature change.

本発明の実施態様に係る車両用熱交換器の冷却構造を示す斜視図である。It is a perspective view which shows the cooling structure of the heat exchanger for vehicles which concerns on the embodiment of this invention. 同上車両用熱交換器の冷却構造を示す正面説明図である。It is front explanatory drawing which shows the cooling structure of the heat exchanger for vehicles same as the above. 同上車両用熱交換器の冷却構造を示す側面説明図である。It is side explanatory drawing which shows the cooling structure of the heat exchanger for vehicles same as the above. 同上車両用交換器の冷却構造に用いられた補助ファンを示す拡大斜視図である。It is an expansion perspective view which shows the auxiliary fan used for the cooling structure of the exchanger for vehicles same as the above. 従来の車両用熱交換器の冷却構造を示す側面説明図である。It is side surface explanatory drawing which shows the cooling structure of the conventional vehicle heat exchanger.

符号の説明Explanation of symbols

1 インタークーラ
1a (インタークーラガスの)入口部
1b (インタークーラガスの)出口部
1c (インタークーラの)コア部
2 ラジエータ
2a (ラジエータ冷却水の)入口部
2b (ラジエータ冷却水の)出口部
2c (ラジエータの)コア部
3 ファン
4 ファンガイド
10,20 (車両用の)熱交換器
13 主冷却ファン
13a 羽根(狭義のファン)
14 補助ファン
14a 電動モータ
14b 羽根車
DESCRIPTION OF SYMBOLS 1 Intercooler 1a (Intercooler gas) inlet part 1b (Intercooler gas) outlet part 1c (Intercooler) core part 2 Radiator 2a (Radiator cooling water) inlet part 2b (Radiator cooling water) outlet part 2c Core part (of radiator) 3 Fan 4 Fan guide 10, 20 Heat exchanger 13 (for vehicle) Main cooling fan 13a Blade (fan in narrow sense)
14 Auxiliary fan 14a Electric motor 14b Impeller

Claims (2)

車両前方よりインタークーラとラジエータを直列に配置して設置し、前方からの冷却風を効率良く吸込むためのファンガイドの後端に主冷却ファンを設置した車両用熱交換器において、
前記主冷却ファンの中心からの距離がファン先端までの距離よりも遠い位置となりかつインタークーラの温度が局所的に高くなる高温領域の吸気側に、主冷却ファンよりも小型の電動モータ付き補助ファンを設置した
ことを特徴とする車両用熱交換器の冷却構造。
In the vehicle heat exchanger in which the intercooler and the radiator are arranged in series from the front of the vehicle and the main cooling fan is installed at the rear end of the fan guide for efficiently sucking the cooling air from the front.
Auxiliary fan with electric motor smaller than the main cooling fan on the intake side in the high temperature region where the distance from the center of the main cooling fan is farther than the distance to the fan tip and the temperature of the intercooler is locally higher A cooling structure for a vehicle heat exchanger, characterized in that is installed.
前記インタークーラのインタークーラガス入口近傍の吸気側に前記電動モータ付き補助ファンを取り付けたことを特徴とする請求項1記載の車両用熱交換器の冷却構造。   The cooling structure for a vehicle heat exchanger according to claim 1, wherein the auxiliary fan with the electric motor is attached to an intake side of the intercooler in the vicinity of an intercooler gas inlet.
JP2007087028A 2007-03-29 2007-03-29 Cooling structure of vehicular heat exchanger Pending JP2008248697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087028A JP2008248697A (en) 2007-03-29 2007-03-29 Cooling structure of vehicular heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087028A JP2008248697A (en) 2007-03-29 2007-03-29 Cooling structure of vehicular heat exchanger

Publications (1)

Publication Number Publication Date
JP2008248697A true JP2008248697A (en) 2008-10-16

Family

ID=39973953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087028A Pending JP2008248697A (en) 2007-03-29 2007-03-29 Cooling structure of vehicular heat exchanger

Country Status (1)

Country Link
JP (1) JP2008248697A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102996220A (en) * 2012-10-19 2013-03-27 无锡市普尔换热器制造有限公司 Composite cooler device capable of increasing cold air flux
CN103437877A (en) * 2013-08-08 2013-12-11 赵永胜 Low-speed and high-power enhanced heat radiating device of mine vehicle engine
JP2017072063A (en) * 2015-10-07 2017-04-13 いすゞ自動車株式会社 Cooling module
JP2017072064A (en) * 2015-10-07 2017-04-13 いすゞ自動車株式会社 Cooling module
CN108468586A (en) * 2017-12-25 2018-08-31 昆山三动力有限公司 Radiator, engine and mechanical equipment
CN115653738A (en) * 2022-10-31 2023-01-31 三一专用汽车有限责任公司 Engine temperature control method and device and engineering vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102996220A (en) * 2012-10-19 2013-03-27 无锡市普尔换热器制造有限公司 Composite cooler device capable of increasing cold air flux
CN103437877A (en) * 2013-08-08 2013-12-11 赵永胜 Low-speed and high-power enhanced heat radiating device of mine vehicle engine
JP2017072063A (en) * 2015-10-07 2017-04-13 いすゞ自動車株式会社 Cooling module
JP2017072064A (en) * 2015-10-07 2017-04-13 いすゞ自動車株式会社 Cooling module
CN108468586A (en) * 2017-12-25 2018-08-31 昆山三动力有限公司 Radiator, engine and mechanical equipment
CN108468586B (en) * 2017-12-25 2024-02-02 昆山三一动力有限公司 Radiator, engine and mechanical equipment
CN115653738A (en) * 2022-10-31 2023-01-31 三一专用汽车有限责任公司 Engine temperature control method and device and engineering vehicle
CN115653738B (en) * 2022-10-31 2024-01-09 三一专用汽车有限责任公司 Engine temperature control method and device and engineering vehicle

Similar Documents

Publication Publication Date Title
JP4557738B2 (en) Fuel cell vehicle cooling system
US8267209B2 (en) Vehicle front structure
US7625276B2 (en) Shroud for axial flow fan
JP2008248697A (en) Cooling structure of vehicular heat exchanger
JP2014016084A (en) Outdoor unit of air conditioner
JP2012001060A (en) Heat exchanger for vehicle
JP2008145093A (en) Outdoor unit of air conditioner
JP2009121424A (en) Blower device
JP6221891B2 (en) Intake device for an internal combustion engine with a supercharger
JP2007147207A (en) Outdoor unit for air conditioner
KR100848569B1 (en) A fan shroud
JP2005139952A (en) Construction machine equipped with air cooled intercooler
JP6155475B2 (en) Cooling structure of vehicle engine room
JP2007090962A (en) Arrangement configuration of radiator peripheral part
JP5929614B2 (en) Cooling system
JP2009052856A (en) Outdoor unit for air-conditioner
JP2006226200A (en) Engine cooling device
JP2008019741A (en) Cooling system for vehicle
JP2006044337A (en) Cooling device for vehicle
US20090114366A1 (en) Heat exchanger for vehicle
JPH10141059A (en) Engine cooling device and construction machine
JP2010216348A (en) Air-cooled cooling device of internal combustion engine for vehicle
JP2005299458A (en) Heat exchanger cooling system
JP2006017028A (en) Blower
JP5339202B2 (en) Cooling system