JP2008246748A - Mold - Google Patents

Mold Download PDF

Info

Publication number
JP2008246748A
JP2008246748A JP2007088891A JP2007088891A JP2008246748A JP 2008246748 A JP2008246748 A JP 2008246748A JP 2007088891 A JP2007088891 A JP 2007088891A JP 2007088891 A JP2007088891 A JP 2007088891A JP 2008246748 A JP2008246748 A JP 2008246748A
Authority
JP
Japan
Prior art keywords
nozzle
pressure
receiving portion
injection
molten resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007088891A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Ishikura
義靖 石蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007088891A priority Critical patent/JP2008246748A/en
Publication of JP2008246748A publication Critical patent/JP2008246748A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold which can prevent the leakage of fluid from the gap between a nozzle and an injection opening by using simple constitution, materialize cost reduction, and reduce the amount of abrasion by friction in the contact surface between the nozzle and the injection opening in a mold in which the injection opening is formed and which has a nozzle support part into which the fluid is injected from the nozzle through the injection opening and a cavity to be filled with the fluid from the nozzle support part. <P>SOLUTION: A fitting hole slidably fitted in a nozzle support part 2 in the direction moving near/away to/from the nozzle A is provided. Therefore, the nozzle support part 2 is slid to the nozzle A side with the increase of the pressure of a molten resin C filled in the cavity 5 so that the injection opening 3 gets into pressure-contact with the nozzle A to raise pressure-contact force to the nozzle A gradually. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流動体が充填されるキャビティを備える金型に関する。   The present invention relates to a mold including a cavity filled with a fluid.

近年、電気製品に対する消費者の選択は、電気製品が持つ性能だけでなく、該電気製品のデザインを重要基準としている。このような市場の動向に合わせ、各メーカは自社製品のモデルチェンジを頻繁に行っており、このようなモデルチェンジ間隔の短縮化は、金型を用いた成形技術の進歩をもたらしてきた。   In recent years, consumer choices for electrical products are based not only on the performance of the electrical product but also on the design of the electrical product. In line with such market trends, manufacturers frequently change their product models, and shortening the interval between model changes has led to advances in molding technology using molds.

一方、金型を用いた成形は、溶融樹脂、溶融金属等の流動体を、ノズルを介して通称キャビティと呼ばれる所定空間に流し込むことにより行われる。例えば、溶融樹脂を用いる射出成形の場合は、キャビティ内に溶融樹脂を充填させる充填期と、注入口側が凝固するまで注入口を防いだまま射出を続ける保圧期と、金型から離型できる状態まで溶融樹脂を冷却させる冷却期とに、工程が大きく分けられる。特に、保圧期は、ノズルの先端部が注入口を防いでいる状態で溶融樹脂の射出を続け、キャビティ内の溶融樹脂の圧力を高くすることにより、キャビティの壁に付着し易い気泡の除去し、複雑形状のキャビティも隙間なく溶融樹脂で充填させ、ヒケ(見劣り)の発生を防止すると共に、注入口側が凝固するまで射出を続けることにより、樹脂の逆流を防止するために設けられた工程である。   On the other hand, molding using a mold is performed by pouring a fluid such as a molten resin or a molten metal into a predetermined space called a cavity through a nozzle. For example, in the case of injection molding using a molten resin, the mold can be released from the mold during the filling period in which the cavity is filled with the molten resin, the pressure holding period in which the injection is prevented while the injection port side is solidified, and the injection is prevented. The process is roughly divided into a cooling period in which the molten resin is cooled to a state. In particular, during the pressure holding period, the injection of molten resin is continued with the nozzle tip preventing the injection port, and the pressure of the molten resin in the cavity is increased to remove bubbles that are likely to adhere to the walls of the cavity. The process is provided to prevent the back flow of the resin by filling the cavity with a complicated shape with molten resin without any gaps and preventing the occurrence of sink marks (inferior appearance) and continuing the injection until the inlet side solidifies. It is.

しかし、保圧期においては、ノズルと注入口との間に隙間が存在する場合、該隙間を介して溶融樹脂の漏れが発生し、キャビティ内の溶融樹脂の圧力を高めることができなくなる。また、このような溶融樹脂の漏れは射出圧力と共に発生し易くなる。このような問題を防止するために、ノズルが注入口を防ぐ力つまり、ノズルと注入口との圧接力を高く保持した状態での射出が行われており、圧接力を高くするためにサーボモーター、コンプレッサーなどが使用されている。   However, in the pressure holding period, if there is a gap between the nozzle and the injection port, leakage of the molten resin occurs through the gap, and the pressure of the molten resin in the cavity cannot be increased. Further, such molten resin leakage is likely to occur with the injection pressure. In order to prevent such problems, injection is performed in a state where the nozzle prevents the injection port, that is, the pressure contact force between the nozzle and the injection port is high, and the servo motor is used to increase the pressure contact force. Compressors are used.

しかし、上述のように圧接力を高く保持した状態で射出が行われる場合は、ノズルと注入口の接触面における摩擦・磨耗量が増えるといった問題があった。このような問題を解決するために、ノズル又は、該ノズルと接するノズル受部がバネのような弾性体により支持されるように構成することにより、ノズルと注入口の接触面における摩擦・磨耗量を軽減させる射出成形用金型が提案されている(例えば、特許文献1参照)。
特開2006−281745号公報
However, when injection is performed with the pressure contact force kept high as described above, there is a problem that the amount of friction and wear on the contact surface between the nozzle and the injection port increases. In order to solve such a problem, by configuring the nozzle or the nozzle receiving portion in contact with the nozzle to be supported by an elastic body such as a spring, the amount of friction and wear on the contact surface between the nozzle and the injection port There has been proposed an injection mold for reducing the above (for example, see Patent Document 1).
JP 2006-281745 A

しかしながら、上述のような解決方法においては、圧接力を高くするためにサーボモーター、コンプレッサーなどの圧接力を高める機構が別に必要とされ、コストが上がるといった問題があった。   However, the above-described solution has a problem that a separate mechanism for increasing the pressure contact force such as a servo motor or a compressor is required to increase the pressure contact force, which increases the cost.

一方、複数のノズルを備えて射出成形を行う場合は、各ノズルと各注入口との間隔にバラツキが生じ、溶融樹脂の漏れが発生する虞もあるが、特許文献1の射出成形用金型ではこのような問題を解決することができない。さらに、特許文献1の射出成形用金型はノズル又はノズル受部が弾性体により支持されているので、金型の構成が複雑になるといった問題もあった。   On the other hand, when injection molding is performed with a plurality of nozzles, there is a possibility that the gap between the nozzles and the injection ports may vary and leakage of the molten resin may occur. Then, such a problem cannot be solved. Furthermore, the injection mold of Patent Document 1 has a problem that the configuration of the mold becomes complicated because the nozzle or nozzle receiving portion is supported by an elastic body.

本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、ノズルと接離する注入口が形成され、該注入口を介してノズルから流動体が注入されるノズル受部と、該ノズル受部からの流動体が充填されるキャビティとを備える金型において、前記ノズル受部を流動体の注入によって発生するキャビティ内の圧力でノズルとの接離方向に摺動するように嵌合穴に嵌合することにより、前記キャビティを満たす前記流動体の圧力の増加と共に前記ノズル受部がノズル側に摺動し、前記注入口が前記ノズルと圧接し、ノズルとの圧接力が徐々に高まって前記ノズル及び注入口の隙間からの前記流動体の漏れが防止され、簡単な構成を用いて前記流動体の漏れを防止でき、コスト削減が実現されると共に、前記ノズルと注入口の接触面における摩擦・磨耗量を軽減させることができる金型を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to form a nozzle receiving portion in which an inlet that is in contact with and away from the nozzle is formed, and a fluid is injected from the nozzle through the inlet. And a cavity filled with the fluid from the nozzle receiving portion, the nozzle receiving portion is slid in the contact and separation direction with the nozzle by the pressure in the cavity generated by the injection of the fluid. By fitting into the fitting hole, the nozzle receiving portion slides toward the nozzle side with an increase in the pressure of the fluid filling the cavity, and the injection port is in pressure contact with the nozzle, and the pressure contact force with the nozzle The fluid gradually increases and leakage of the fluid from the gap between the nozzle and the inlet is prevented, and the fluid can be prevented from leaking using a simple configuration. Inlet contact It is to provide a mold friction and amount of wear can be reduced in.

また、本発明の他の目的は、前記ノズル受部が前記接離方向における前記注入口と反対側(ノズル受部の下端面)に、前記流動体が流れ込む受圧部を備えることにより、前記受圧部を満たす前記流動体の圧力で前記ノズル受部がノズル側に摺動され、前記注入口が前記ノズルと圧接し、前記受圧部内の前記流動体の圧力の増加と共に前記圧接力が徐々に高くなるので、常時、ノズルと注入口の接触面に圧力をかけておく必要がないため、摩擦・磨耗量を軽減させると共に、別途の装置を設けることなく前記流動体の漏れを防ぐことができる金型を提供することにある。   Another object of the present invention is to provide the pressure receiving portion, wherein the nozzle receiving portion includes a pressure receiving portion into which the fluid flows on a side opposite to the injection port in the contact / separation direction (a lower end surface of the nozzle receiving portion). The nozzle receiving portion is slid to the nozzle side with the pressure of the fluid filling the portion, the injection port is in pressure contact with the nozzle, and the pressure contact force gradually increases as the pressure of the fluid in the pressure receiving portion increases. Therefore, since it is not necessary to always apply pressure to the contact surface between the nozzle and the inlet, the amount of friction and wear can be reduced and the fluid can be prevented from leaking without providing a separate device. To provide a mold.

また、本発明の他の目的は、前記嵌合穴の底面に前記流動体が流れ込む受圧部を設けることにより、前記受圧部を満たす前記流動体の圧力で前記ノズル受部がノズル側に摺動され、前記注入口が前記ノズルと圧接し、前記受圧部内の前記流動体の圧力の増加と共に前記圧接力が徐々に高くなるので、ノズルと注入口の接触面における摩擦・磨耗量を軽減させることができる上、別途の装置を設けることなく前記流動体の漏れを防ぐことができる金型を提供することにある。   Another object of the present invention is to provide a pressure receiving part into which the fluid flows into the bottom surface of the fitting hole, so that the nozzle receiving part slides toward the nozzle with the pressure of the fluid satisfying the pressure receiving part. Since the injection port is in pressure contact with the nozzle, and the pressure contact force gradually increases as the pressure of the fluid in the pressure receiving portion increases, the amount of friction and wear on the contact surface between the nozzle and the injection port is reduced. It is another object of the present invention to provide a mold capable of preventing leakage of the fluid without providing a separate device.

また、本発明の他の目的は、前記ノズル受部を複数備えることにより、複数のノズルを用いた量産の場合において、各ノズルと各注入口との間隔のバラツキから生じる前記流動体の漏れの発生を防ぐことができる金型を提供することにある。   Another object of the present invention is to provide a plurality of the nozzle receiving portions so that in the case of mass production using a plurality of nozzles, leakage of the fluid caused by variations in the spacing between the nozzles and the injection ports. It is in providing the metal mold | die which can prevent generation | occurrence | production.

本発明に係る金型は、ノズルと接離する注入口が形成され、該注入口を介して前記ノズルから流動体が注入される流路を備えるノズル受部と、該ノズル受部を摺動可能に嵌合する嵌合穴と、前記ノズル受部からの流動体が充填されるキャビティとを備える金型において、前記ノズル受部が、流動体の注入により発生する前記キャビティ内の圧力によって前記接離の方向へ摺動することを特徴とする。   The mold according to the present invention has an inlet that is in contact with and away from the nozzle, and a nozzle receiving portion that has a flow path through which fluid is injected from the nozzle, and slides on the nozzle receiving portion. In a mold including a fitting hole to be fitted and a cavity filled with a fluid from the nozzle receiving part, the nozzle receiving part is caused by the pressure in the cavity generated by injection of a fluid. It slides in the direction of contact and separation.

本発明にあっては、ノズルから射出される流動体は前記注入口及び前記流路を介して前記キャビティに充填される。前記キャビティが満杯にされた後、流動体の注入が継続された場合、前記キャビティ内の流動体の圧力が高くなる。この際の該流動体の圧力により、前記嵌合穴に摺動可能に嵌合されている前記ノズル受部が前記ノズル側に摺動し、前記ノズルは前記注入口と圧接することになる。以降、前記キャビティ内の流動体の圧力の増加と共に前記ノズルとの圧接力も高くなる。   In the present invention, the fluid ejected from the nozzle is filled into the cavity via the inlet and the flow path. If fluid injection continues after the cavity is full, the pressure of the fluid in the cavity increases. At this time, due to the pressure of the fluid, the nozzle receiving portion slidably fitted in the fitting hole slides toward the nozzle, and the nozzle comes into pressure contact with the injection port. Thereafter, as the pressure of the fluid in the cavity increases, the pressure contact force with the nozzle also increases.

本発明に係る金型は、一端に流れ込む前記流路の他端からの流動体を、前記キャビティまで導くランナーを備えており、前記ノズル受部には、前記接離の方向における前記注入口と反対側に受圧部を設けてあり、該受圧部と、前記流路の他端又はランナーの一端との間を前記流動体が通流するように構成されていることを特徴とする。   The mold according to the present invention includes a runner that guides a fluid from the other end of the flow path flowing into one end to the cavity, and the nozzle receiving portion includes the inlet in the direction of contact and separation. A pressure receiving portion is provided on the opposite side, and the fluid is configured to flow between the pressure receiving portion and the other end of the flow path or one end of the runner.

本発明にあっては、前記流動体より前記キャビティが満杯にされた後、前記流動体の注入が継続された場合、前記流動体が前記流路の他端又は前記ランナーの一端から流れ出し、前記受圧部内を満たす。前記受圧部が満杯になった後も前記流動体の注入が継続されることにより、前記受圧部内の流動体の圧力が高くなる。この際の前記流動体の圧力により、前記ノズル受部が前記ノズル側に摺動し、前記ノズルは前記注入口と圧接することになる。   In the present invention, when the injection of the fluid is continued after the cavity is filled with the fluid, the fluid flows out from the other end of the flow path or one end of the runner, Fills the pressure receiving part. Even after the pressure receiving portion becomes full, the fluid is continuously injected, so that the pressure of the fluid in the pressure receiving portion increases. At this time, due to the pressure of the fluid, the nozzle receiving portion slides toward the nozzle, and the nozzle comes into pressure contact with the injection port.

本発明に係る金型は、前記嵌合穴は底面を有し、該底面には受圧部を設けてあり、該受圧部と、前記流路の他端又はランナーの一端との間を前記流動体が通流するように構成されていることを特徴とする。   In the mold according to the present invention, the fitting hole has a bottom surface, and a pressure receiving portion is provided on the bottom surface, and the flow between the pressure receiving portion and the other end of the flow path or one end of the runner. The body is configured to flow.

本発明にあっては、前記流動体より前記キャビティが満杯にされた後、前記流動体の注入が継続された場合、前記流動体が前記流路の他端又は前記ランナーの一端から流れ出し、前記受圧部内を満たす。前記受圧部が満杯になった後も前記流動体の注入が継続されることにより、前記受圧部内の流動体の圧力が高くなる。この際の前記流動体の圧力により、前記ノズル受部が前記ノズル側に摺動し、前記ノズルは前記注入口と圧接することになる。   In the present invention, when the injection of the fluid is continued after the cavity is filled with the fluid, the fluid flows out from the other end of the flow path or one end of the runner, Fills the pressure receiving part. Even after the pressure receiving portion becomes full, the fluid is continuously injected, so that the pressure of the fluid in the pressure receiving portion increases. At this time, due to the pressure of the fluid, the nozzle receiving portion slides toward the nozzle, and the nozzle comes into pressure contact with the injection port.

本発明に係る金型は、前記ノズル受部を複数備えていることを特徴とする。   The metal mold | die which concerns on this invention is equipped with multiple said nozzle receiving parts, It is characterized by the above-mentioned.

本発明にあっては、例えば複数のキャビティと、該複数のキャビティに対応する複数のノズル受部とを備え、同時に各キャビティを流動体で充填する場合、各ノズル受部が対応するノズルの方に個別に移動して各ノズルと圧接する。従って、各ノズルとノズル受部との間隔に装置の構造上、又は動作上の誤差(本文中ではバラツキと表現する。)が生じることによる前記流動体の漏れが防止される。   In the present invention, for example, when a plurality of cavities and a plurality of nozzle receiving portions corresponding to the plurality of cavities are provided, and each cavity is filled with a fluid at the same time, the nozzle corresponding to each nozzle receiving portion To each nozzle and press-contact with each nozzle. Accordingly, leakage of the fluid due to an error in the structure or operation of the apparatus (represented as variation in the text) occurs between the nozzles and the nozzle receiving portion.

本発明によれば、ノズルと接離する注入口が形成されたノズル受部を嵌脱方向へ摺動可能に嵌合する嵌合穴と前記キャビティを満たす前記流動体の圧力の増加と共にノズル側に摺動するノズル受部とから構成されるため、前記注入口が前記ノズルと圧接し、ノズルとの圧接力が徐々に高まり、前記ノズル及び注入口の隙間からの前記流動体の漏れが防止される。即ち、ノズルからの流動体の射出圧力が大きい場合においても本発明の効果は十分に発揮される。従って、簡単な構成を用いて前記流動体の漏れを防止でき、コスト削減が実現されると共に、前記ノズルと注入口の接触面における摩擦・磨耗量を軽減させることができる。   According to the present invention, as the pressure of the fluid filling the cavity and the fitting hole in which the nozzle receiving portion formed with the injection port contacting and separating from the nozzle is slidably fitted in the fitting / removing direction is increased, the nozzle side Since the injection port is in pressure contact with the nozzle and the pressure contact force with the nozzle is gradually increased, leakage of the fluid from the gap between the nozzle and the injection port is prevented. Is done. That is, even when the injection pressure of the fluid from the nozzle is large, the effect of the present invention is sufficiently exhibited. Therefore, the fluid can be prevented from leaking with a simple configuration, and the cost can be reduced, and the amount of friction and wear on the contact surface between the nozzle and the inlet can be reduced.

本発明によれば、前記ノズル受部に設けられた受圧部を満たす前記流動体の圧力の増加と共に前記ノズル受部がノズル側に摺動して前記注入口とノズルとが圧接し、前記圧接力が徐々に高くなるので、ノズルと注入口の接触面における摩擦・磨耗量を軽減させると共に、別途の装置を設けることなく前記流動体の漏れを防ぐことができる。   According to the present invention, as the pressure of the fluid filling the pressure receiving portion provided in the nozzle receiving portion increases, the nozzle receiving portion slides toward the nozzle side, and the injection port and the nozzle are in pressure contact, and the pressure contact Since the force gradually increases, the amount of friction and wear at the contact surface between the nozzle and the inlet can be reduced, and leakage of the fluid can be prevented without providing a separate device.

本発明によれば、前記嵌合穴の底面に設けられた受圧部を満たす前記流動体の圧力の増加と共に前記ノズル受部がノズル側に摺動して前記注入口とノズルとが圧接し、前記圧接力が徐々に高くなるので、ノズルと注入口の接触面における摩擦・磨耗量を軽減させることができる上、別途の装置を設けることなく前記流動体の漏れを防ぐことができる。   According to the present invention, as the pressure of the fluid filling the pressure receiving portion provided on the bottom surface of the fitting hole increases, the nozzle receiving portion slides toward the nozzle side, and the inlet and the nozzle are in pressure contact with each other, Since the pressure contact force gradually increases, the amount of friction and wear on the contact surface between the nozzle and the inlet can be reduced, and leakage of the fluid can be prevented without providing a separate device.

本発明によれば、例えば複数の前記ノズル受部及び各ノズル受部に対応する複数のノズルを用いた量産の場合において、各ノズル受部が個別に移動して各ノズルと圧接するので、各ノズルと各注入口との間隔のバラツキによって生じる前記流動体の漏れを防ぐことができる。   According to the present invention, for example, in the case of mass production using a plurality of nozzle receivers and a plurality of nozzles corresponding to the nozzle receivers, each nozzle receiver moves individually and comes into pressure contact with each nozzle. It is possible to prevent the fluid from leaking due to variations in the distance between the nozzle and each inlet.

(実施の形態1)
以下、本発明の実施の形態1を、溶融樹脂を射出するノズルと、該溶融樹脂により充填されるいわゆるキャビティを有する射出成形用金型1を例とし、図面を参照して説明する。図1は本発明の実施の形態1に係る射出成形用金型1及びノズルAの縦断面図である。
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings, taking as an example an injection mold 1 having a nozzle for injecting molten resin and a so-called cavity filled with the molten resin. FIG. 1 is a longitudinal sectional view of an injection mold 1 and a nozzle A according to Embodiment 1 of the present invention.

実施の形態1に係る射出成形用金型1は例えばSKD51、アルミニウム等の金属製であり、直方体形状の上型11及び下型12からなる。上型11の下面及び下型12の上面には、射出成形品を成形するための凹部又は凸部が夫々設けられており、上型11及び下型12を組み合わせた場合、例えばリチウムイオン二次電池の電池パックとして使用される一面が開口している箱状の射出成形品を成形するためのキャビティ5が構成される。また、射出成形用金型1は上型11を上下方向に貫通する円柱状のノズル受部2を備えており、ノズル受部2は水密性を維持した状態で上下方向に摺動可能に設けられている。ノズルAは、上型11の上側に配置されており、先端に向けて縮径するテーパ状の端部A1を有している。   The injection mold 1 according to the first embodiment is made of metal such as SKD51 and aluminum, and includes an upper mold 11 and a lower mold 12 having a rectangular parallelepiped shape. The lower surface of the upper die 11 and the upper surface of the lower die 12 are respectively provided with concave portions or convex portions for molding an injection molded product. When the upper die 11 and the lower die 12 are combined, for example, a lithium ion secondary A cavity 5 is formed for molding a box-shaped injection-molded product that is open as one surface and used as a battery pack for a battery. The injection mold 1 is provided with a cylindrical nozzle receiving portion 2 penetrating the upper die 11 in the vertical direction, and the nozzle receiving portion 2 is provided so as to be slidable in the vertical direction while maintaining watertightness. It has been. The nozzle A is disposed on the upper side of the upper mold 11 and has a tapered end A1 whose diameter decreases toward the tip.

図2は実施の形態1に係る射出成形用金型1の縦断面を模式的に示す分解図である。図3は実施の形態1に係る射出成形用金型1のノズル受部2を示す模式図である。図3(a)はノズル受部2の底面図であり、図3(b)は縦断面図、図3(c)は平面図である。   FIG. 2 is an exploded view schematically showing a longitudinal section of the injection mold 1 according to the first embodiment. FIG. 3 is a schematic diagram showing the nozzle receiving portion 2 of the injection mold 1 according to the first embodiment. 3A is a bottom view of the nozzle receiving portion 2, FIG. 3B is a longitudinal sectional view, and FIG. 3C is a plan view.

ノズル受部2は、ノズルAの端部A1の形状に対応する形状を有し、ノズルAの端部A1と圧接する注入口3と、注入口3に連通され注入口3からの溶融樹脂をキャビティ5まで導く横断面視円形の流路4を中心部に設けている。流路4はノズル受部2を上下方向に貫通しており、注入口3及びキャビティ5を連通させている。また、ノズル受部2は、上端側の周縁部に被掛止鍔部22が周設されており、被掛止鍔部22によってノズル受部2の下方向への移動は制限される。   The nozzle receiving portion 2 has a shape corresponding to the shape of the end A1 of the nozzle A, the injection port 3 that is in pressure contact with the end A1 of the nozzle A, and the molten resin from the injection port 3 that is in communication with the injection port 3. A flow path 4 having a circular cross-sectional view leading to the cavity 5 is provided at the center. The flow path 4 penetrates the nozzle receiving portion 2 in the vertical direction, and makes the inlet 3 and the cavity 5 communicate with each other. Further, the nozzle receiving portion 2 has a hooked hook portion 22 provided around the upper edge side, and the downward movement of the nozzle receiving portion 2 is restricted by the hooked hook portion 22.

上型11は、上下方向へ摺動可能にノズル受部2が嵌合される嵌合孔14を設けており、嵌合孔14によりノズル受部2の上下摺動が誘導される。嵌合孔14の上端側の縁には被掛止鍔部22の下面に沿う扁平を有する掛止部13が周設され、嵌合孔14の下端はキャビティ5内へ開口している。従って、嵌合孔14にノズル受部2が嵌合された場合、ノズル受部2の下端面がキャビティ5内の溶融樹脂と接することになる。   The upper die 11 is provided with a fitting hole 14 into which the nozzle receiving portion 2 is fitted so as to be slidable in the vertical direction, and the vertical sliding of the nozzle receiving portion 2 is induced by the fitting hole 14. A hooking portion 13 having a flatness along the lower surface of the hooked hook portion 22 is provided around the upper end side edge of the fitting hole 14, and the lower end of the fitting hole 14 opens into the cavity 5. Therefore, when the nozzle receiving part 2 is fitted in the fitting hole 14, the lower end surface of the nozzle receiving part 2 comes into contact with the molten resin in the cavity 5.

以下、射出成形の工程における実施の形態1に係る射出成形用金型1の作用について説明する。射出成形の工程には、キャビティ5内に溶融樹脂を充填させる充填期と、ノズルAが注入口3を防いだまま注入口3側の溶融樹脂が凝固するまで射出を続けてキャビティ5内の圧力が高くなる保圧期と、金型から離型できる状態まで溶融樹脂を冷却させる冷却期とに大きく分けられている。   Hereinafter, the operation of the injection mold 1 according to Embodiment 1 in the injection molding process will be described. The injection molding process includes a filling period in which the cavity 5 is filled with the molten resin, and the injection in the cavity 5 is continued until the molten resin on the inlet 3 side solidifies while the nozzle A prevents the inlet 3. Is generally divided into a pressure holding period in which the temperature rises and a cooling period in which the molten resin is cooled to a state where it can be released from the mold.

まず、充填期について説明する。ノズルAから射出された溶融樹脂は注入口3を介して流路4に流れていく。流路4は注入口3及びキャビティ5を連通させているので、前記溶融樹脂は流路4を介してキャビティ5に流れ込み、キャビティ5は前記溶融樹脂により充填される。   First, the filling period will be described. The molten resin injected from the nozzle A flows into the flow path 4 through the injection port 3. Since the flow path 4 communicates the inlet 3 and the cavity 5, the molten resin flows into the cavity 5 through the flow path 4, and the cavity 5 is filled with the molten resin.

キャビティ5内が前記溶融樹脂で満杯された場合にも、ノズルAからの溶融樹脂の射出は継続される。従って、キャビティ5内の溶融樹脂の圧力が高くなり、ノズル受部2は下端面を介して前記圧力を受付け、ノズルA側へ移動する。ノズル受部2がノズルA側へ移動することにより、ノズル受部2の下端面及びキャビティ5の間には空間ができるが、その間にもノズルAからの溶融樹脂の射出は継続されるので、直に溶融樹脂により充填される。ノズルAからの溶融樹脂の射出はその後も継続され、ノズル受部2は上述と同様にノズルA側へ移動し、ノズル受部2の注入口3がノズルAの端部A1と圧接し、保圧期の工程が開始される。図4は保圧期において、注入口3がノズルAの端部A1と圧接した状態を示す模式図である。ノズル受部2は、図1に示す注入開始前の位置からノズルA側へ移動し、ノズル受部2の注入口3がノズルAの端部A1と圧接している。   Even when the cavity 5 is filled with the molten resin, the injection of the molten resin from the nozzle A is continued. Accordingly, the pressure of the molten resin in the cavity 5 is increased, and the nozzle receiving portion 2 receives the pressure via the lower end surface and moves to the nozzle A side. By moving the nozzle receiving part 2 to the nozzle A side, a space is created between the lower end surface of the nozzle receiving part 2 and the cavity 5, but since the injection of the molten resin from the nozzle A is continued in the meantime, Immediately filled with molten resin. The injection of the molten resin from the nozzle A is continued thereafter, the nozzle receiving part 2 moves to the nozzle A side as described above, and the injection port 3 of the nozzle receiving part 2 comes into pressure contact with the end part A1 of the nozzle A to maintain it. The press phase process begins. FIG. 4 is a schematic diagram showing a state in which the inlet 3 is in pressure contact with the end A1 of the nozzle A during the pressure holding period. The nozzle receiving part 2 moves from the position before the injection start shown in FIG. 1 to the nozzle A side, and the injection port 3 of the nozzle receiving part 2 is in pressure contact with the end A1 of the nozzle A.

その後においても、ノズルAの溶融樹脂Cの射出が継続されるので、ノズルA及び注入口3の間の圧接力は徐々に増加する。つまり、ノズルAの溶融樹脂Cの射出が継続されることによってキャビティ5内及びノズル受部2の下端面及びキャビティ5の間の空間における溶融樹脂Cの圧力は徐々に高くなるが、それに従ってノズルA及び注入口3の間の圧接力も共に増加する。従って、ノズルA及び注入口3の間からの溶融樹脂Cの漏れを防止することが可能となる。また、キャビティ5内の溶融樹脂Cの圧力が高くなることにより、キャビティ5が隙間なく充填されると共に、キャビテーションによる気泡の発生防止、キャビティの壁に付着し易い気泡の除去の効果が得られる。ノズルAの溶融樹脂Cの射出は、注入口3側の溶融樹脂Cが凝固するまで継続される。   Even after that, since the injection of the molten resin C from the nozzle A is continued, the pressure contact force between the nozzle A and the injection port 3 gradually increases. That is, by continuing the injection of the molten resin C from the nozzle A, the pressure of the molten resin C in the cavity 5 and in the space between the lower end surface of the nozzle receiving portion 2 and the cavity 5 gradually increases. The pressure contact force between A and the inlet 3 also increases. Therefore, leakage of the molten resin C from between the nozzle A and the injection port 3 can be prevented. Further, since the pressure of the molten resin C in the cavity 5 is increased, the cavity 5 is filled without a gap, and the effect of preventing the generation of bubbles due to cavitation and the removal of bubbles that easily adhere to the walls of the cavity are obtained. The injection of the molten resin C from the nozzle A is continued until the molten resin C on the injection port 3 side solidifies.

注入口3側の溶融樹脂Cが凝固された場合、溶融樹脂Cの射出が停止され、溶融樹脂Cを冷却させる冷却期が開始される。所定の冷却時間が経過し、樹脂が凝固された場合、成形品が射出成形用金型1から離型される。   When the molten resin C on the inlet 3 side is solidified, the injection of the molten resin C is stopped, and a cooling period for cooling the molten resin C is started. When a predetermined cooling time has elapsed and the resin is solidified, the molded product is released from the injection mold 1.

(実施の形態2)
図5は本発明の実施の形態2に係る射出成形用金型1及びノズルAの模式的縦断面図である。図6は実施の形態2に係る射出成形用金型1のノズル受部2を示す模式図である。図6(a)はノズル受部2の底面図であり、図6(b)は縦断面図、図6(c)は平面図である。
(Embodiment 2)
FIG. 5 is a schematic longitudinal sectional view of the injection mold 1 and the nozzle A according to Embodiment 2 of the present invention. FIG. 6 is a schematic diagram showing the nozzle receiving portion 2 of the injection mold 1 according to the second embodiment. 6A is a bottom view of the nozzle receiving portion 2, FIG. 6B is a longitudinal sectional view, and FIG. 6C is a plan view.

実施の形態2に係る射出成形用金型1は、直方体形状の上型11及び下型12からなる。上型11の下面及び下型12の上面には、射出成形品を成形するための凹部又は凸部が夫々設けられており、上型11及び下型12を組み合わせた場合、例えばリチウムイオン二次電池の電池パックとして使用される一面が開口している箱状の射出成形品を成形するためのキャビティ5が構成される。また、射出成形用金型1は上型11を上下方向に貫通する円柱状のノズル受部2を上下摺動可能に備えている。以下上型11及び下型12を組み合わせた場合を例に説明する。   The injection mold 1 according to the second embodiment includes an upper mold 11 and a lower mold 12 having a rectangular parallelepiped shape. The lower surface of the upper die 11 and the upper surface of the lower die 12 are respectively provided with concave portions or convex portions for molding an injection molded product. When the upper die 11 and the lower die 12 are combined, for example, a lithium ion secondary A cavity 5 is formed for molding a box-shaped injection-molded product that is open as one surface and used as a battery pack for a battery. The injection mold 1 includes a columnar nozzle receiving portion 2 penetrating the upper mold 11 in the vertical direction so as to be slidable in the vertical direction. Hereinafter, a case where the upper mold 11 and the lower mold 12 are combined will be described as an example.

実施の形態2に係る射出成形用金型1のノズル受部2は、ノズルAの端部A1と圧接する注入口3と、注入口3に連通され、ノズル受部2を上下方向に貫通する横断面視円形の流路4とを中心部に設けている。また、ノズル受部2は流路4の下端と通流する受圧部7を下端面に設けている。受圧部7は、外径がノズル受部2の直径より小径であって内径が流路4の内径より大径の底面視円環状の凹部であり、流路4と同軸上に設けられている。また、受圧部7の内周側壁面7aの上下方向の寸法は、外周側壁面7bの上下方向の寸法より低い。受圧部7は、溶融樹脂Cのキャビティ5内への射出によって生じた圧力をコントロールすることができる。従って、前記凹部の形状(圧力を受ける面積)を変化させることにより、ノズル受部2の摺動力を調整することが可能となる。   The nozzle receiving part 2 of the injection mold 1 according to the second embodiment communicates with the injection port 3 that is in pressure contact with the end A1 of the nozzle A and the injection port 3, and penetrates the nozzle receiving part 2 in the vertical direction. A flow path 4 having a circular cross-sectional view is provided at the center. In addition, the nozzle receiving portion 2 is provided with a pressure receiving portion 7 that communicates with the lower end of the flow path 4 on the lower end surface. The pressure receiving portion 7 is an annular concave portion as viewed from the bottom with an outer diameter smaller than the diameter of the nozzle receiving portion 2 and an inner diameter larger than the inner diameter of the flow path 4, and is provided coaxially with the flow path 4. . Moreover, the vertical dimension of the inner peripheral side wall surface 7a of the pressure receiving portion 7 is lower than the vertical dimension of the outer peripheral side wall surface 7b. The pressure receiving unit 7 can control the pressure generated by the injection of the molten resin C into the cavity 5. Therefore, it is possible to adjust the sliding force of the nozzle receiving portion 2 by changing the shape of the concave portion (area receiving pressure).

流路4の下端の縁にはバリア8が周設され、受圧部7の内周側壁面7aと連結されている。バリア8を設けることにより、流路4の下端から後述のランナー6の上端に流れるべき溶融樹脂Cが受圧部7内へ流れ込み難くなる。バリア8はノズル受部2と一対成形されている。   A barrier 8 is provided around the lower edge of the flow path 4 and is connected to the inner peripheral side wall surface 7 a of the pressure receiving portion 7. By providing the barrier 8, the molten resin C that should flow from the lower end of the flow path 4 to the upper end of a runner 6 to be described later hardly flows into the pressure receiving portion 7. The barrier 8 is formed as a pair with the nozzle receiving portion 2.

上型11は、ノズル受部2が上下移動可能に嵌合される嵌合凹部14を設けており、嵌合凹部14によりノズル受部2の上下移動が案内される。また、上型11はノズル受部2の流路4を介して注入口3と連通される流路4と略等しい内径のランナー6を備えており、ランナー6の上端はノズル受部2の下端面と当接する嵌合凹部14の底面9に開口しており、ランナー6の下端はキャビティ5に開口している。上型11の下面には、ランナー6が凹設されており、ノズル受部2の下端面が嵌合凹部14の底面9と当接した場合、注入口3から注入された溶融樹脂Cは流路4、ランナー6を記載の順に流れ、キャビティ5に充填される。   The upper mold 11 is provided with a fitting concave portion 14 into which the nozzle receiving portion 2 is fitted so as to be movable up and down, and the vertical movement of the nozzle receiving portion 2 is guided by the fitting concave portion 14. The upper die 11 includes a runner 6 having an inner diameter substantially equal to the flow path 4 communicating with the injection port 3 via the flow path 4 of the nozzle receiving portion 2, and the upper end of the runner 6 is below the nozzle receiving portion 2. An opening is formed in the bottom surface 9 of the fitting recess 14 that contacts the end surface, and a lower end of the runner 6 is opened in the cavity 5. The runner 6 is recessed in the lower surface of the upper mold 11, and when the lower end surface of the nozzle receiving portion 2 comes into contact with the bottom surface 9 of the fitting recess 14, the molten resin C injected from the injection port 3 flows. The channel 4 and the runner 6 flow in the order described, and the cavity 5 is filled.

一方、ノズルAから溶融樹脂Cが射出されてキャビティ5が前記溶融樹脂Cにより充填され、キャビティ5内が前記溶融樹脂Cで満杯された場合、ランナー6が溶融樹脂Cに満たされるようになる。その後においても、ノズルAからの溶融樹脂Cの射出は継続され、流路4又はランナー6からの溶融樹脂Cはバリア8を越えて受圧部7に流れ込み、受圧部7が前記溶融樹脂Cで満杯される。受圧部7が前記溶融樹脂Cで満杯された後も、溶融樹脂Cの射出は継続されるので、受圧部7内の溶融樹脂Cの圧力は高くなり、ノズル受部2は受圧部7内の溶融樹脂Cの圧力を受付け、ノズルA側へ移動される。ノズル受部2がノズルA側へ移動することにより、ノズル受部2の下端面及び嵌合凹部14の底面9の間には空間ができるが、その間にもノズルAからの溶融樹脂Cの射出は継続されるので、直に溶融樹脂Cにより充填される。ノズルAからの溶融樹脂Cの射出はその後も継続され、ノズル受部2は上述と同様にノズルA側へ移動し、ノズル受部2の注入口3がノズルAの端部A1と圧接し、保圧期の工程が開始される。図7は保圧期において、注入口3がノズルAの端部A1と圧接した状態を示す模式図である。ノズル受部2は、図5に示す注入開始前の位置からノズルA側へ移動し、ノズル受部2の注入口3がノズルAの端部A1と圧接している。   On the other hand, when the molten resin C is injected from the nozzle A, the cavity 5 is filled with the molten resin C, and the cavity 5 is filled with the molten resin C, the runner 6 is filled with the molten resin C. Even after that, the injection of the molten resin C from the nozzle A is continued, and the molten resin C from the flow path 4 or the runner 6 flows over the barrier 8 into the pressure receiving portion 7, and the pressure receiving portion 7 is filled with the molten resin C. Is done. Even after the pressure receiving portion 7 is filled with the molten resin C, the injection of the molten resin C is continued, so that the pressure of the molten resin C in the pressure receiving portion 7 becomes high, and the nozzle receiving portion 2 is in the pressure receiving portion 7. The pressure of the molten resin C is received and moved to the nozzle A side. As the nozzle receiving portion 2 moves to the nozzle A side, a space is formed between the lower end surface of the nozzle receiving portion 2 and the bottom surface 9 of the fitting recess 14, but the molten resin C is injected from the nozzle A in the meantime. Is continued, so it is directly filled with the molten resin C. The injection of the molten resin C from the nozzle A is continued thereafter, the nozzle receiving part 2 moves to the nozzle A side as described above, and the injection port 3 of the nozzle receiving part 2 is in pressure contact with the end A1 of the nozzle A, The pressure holding period process is started. FIG. 7 is a schematic diagram showing a state in which the inlet 3 is in pressure contact with the end A1 of the nozzle A during the pressure holding period. The nozzle receiving part 2 moves from the position before the injection start shown in FIG. 5 to the nozzle A side, and the injection port 3 of the nozzle receiving part 2 is in pressure contact with the end A1 of the nozzle A.

その後においても、ノズルAによる溶融樹脂Cの射出が継続されるので、ノズルA及び注入口3の間の圧接力は徐々に増加する。つまり、ノズルAの溶融樹脂Cの射出が継続されることによって受圧部7内と、ノズル受部2の下端面及び嵌合凹部14の底面9の間の空間とにおける溶融樹脂Cの圧力が徐々に高くなり、それに従ってノズルA及び注入口3の間の圧接力も共に増加する。従って、ノズルA及び注入口3の間からの溶融樹脂Cの漏れを防止することが可能となる。   Even after that, since the injection of the molten resin C by the nozzle A is continued, the pressure contact force between the nozzle A and the injection port 3 gradually increases. That is, as the injection of the molten resin C from the nozzle A is continued, the pressure of the molten resin C in the pressure receiving portion 7 and the space between the lower end surface of the nozzle receiving portion 2 and the bottom surface 9 of the fitting recess 14 is gradually increased. Accordingly, the pressure contact force between the nozzle A and the inlet 3 increases accordingly. Therefore, leakage of the molten resin C from between the nozzle A and the injection port 3 can be prevented.

本実施の形態2は以上の如き構成としており、その他の構成及び作用は実施の形態1と同様であるので、対応する部分には同一の符号を付してその詳細な説明を省略する。   The second embodiment is configured as described above, and the other configurations and operations are the same as those of the first embodiment. Therefore, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.

(実施の形態3)
図8は本発明の実施の形態3に係る射出成形用金型1及びノズルAの縦断面図である。図9は実施の形態3に係る射出成形用金型1の上型11を、ノズル受部2を取り外した状態で示す模式図である。図9(a)は上型11の縦断面図であり、図9(b)は平面図である。
(Embodiment 3)
FIG. 8 is a longitudinal sectional view of the injection mold 1 and the nozzle A according to Embodiment 3 of the present invention. FIG. 9 is a schematic diagram showing the upper mold 11 of the injection mold 1 according to Embodiment 3 with the nozzle receiving portion 2 removed. FIG. 9A is a vertical cross-sectional view of the upper mold 11, and FIG. 9B is a plan view.

実施の形態3に係る射出成形用金型1の上型11は、ノズル受部2が上下移動可能に嵌合される嵌合凹部14を設けており、嵌合凹部14によりノズル受部2の上下移動が案内される。ノズル受部2の下端面と当接する嵌合凹部14の底面9には、ノズル受部2の中心部に設けた流路4を介して注入口3と連通する流路4と略等しい内径のランナー6が開口している。また、嵌合凹部14の底面9にはランナー6の上端と通流する受圧部7を設けている。受圧部7は、外径が嵌合凹部14内径より小径であって内径がランナー6の内径より大径の平面視円環状の凹部であり、ランナー6上端と同軸上に設けられている。また、受圧部7の内周側壁面7aの上下方向の寸法は、外周側壁面7bの上下方向の寸法より低い。   The upper mold 11 of the injection mold 1 according to Embodiment 3 is provided with a fitting recess 14 in which the nozzle receiving portion 2 is fitted so as to be movable up and down. Guided up and down movement. The bottom surface 9 of the fitting recess 14 that comes into contact with the lower end surface of the nozzle receiving part 2 has an inner diameter substantially equal to that of the flow path 4 communicating with the injection port 3 via the flow path 4 provided in the center of the nozzle receiving part 2. The runner 6 is open. In addition, the bottom surface 9 of the fitting recess 14 is provided with a pressure receiving portion 7 that flows through the upper end of the runner 6. The pressure receiving portion 7 is an annular concave portion having an outer diameter smaller than the inner diameter of the fitting concave portion 14 and an inner diameter larger than the inner diameter of the runner 6, and is provided coaxially with the upper end of the runner 6. Moreover, the vertical dimension of the inner peripheral side wall surface 7a of the pressure receiving portion 7 is lower than the vertical dimension of the outer peripheral side wall surface 7b.

ランナー6の上端の縁にはバリア8が周設され、受圧部7の内周側壁面7aと連結されている。バリア8を設けることにより、流路4の下端からランナー6の上端に流れるべき溶融樹脂Cが受圧部7内へ流れ込み難くなる。バリア8は嵌合凹部14と一対成形されている。   A barrier 8 is provided around the upper edge of the runner 6 and is connected to the inner peripheral side wall surface 7 a of the pressure receiving portion 7. By providing the barrier 8, it becomes difficult for the molten resin C that should flow from the lower end of the flow path 4 to the upper end of the runner 6 to flow into the pressure receiving portion 7. The barrier 8 is formed as a pair with the fitting recess 14.

ノズルAから溶融樹脂Cが射出されてキャビティ5が前記溶融樹脂Cにより充填され、キャビティ5内が前記溶融樹脂Cで満杯にされた後、ランナー6が溶融樹脂Cに満たされるようになる。その後においても、ノズルAからの溶融樹脂Cの射出は継続され、流路4又はランナー6からの溶融樹脂Cはバリア8を越えて受圧部7内へ流れ込み、受圧部7が前記溶融樹脂Cで満杯になる。受圧部7が前記溶融樹脂Cで満杯になった後も、溶融樹脂Cの射出は継続されるので、受圧部7内の溶融樹脂Cの圧力は高くなり、ノズル受部2は下端面を介して受圧部7内の溶融樹脂Cの圧力を受付け、ノズルA側へ移動される。ノズル受部2がノズルA側へ移動することにより、ノズル受部2の下端面及び嵌合凹部14の底面9の間には空間がさらにできるが、その間にもノズルAからの溶融樹脂Cの射出は継続されるので、直に溶融樹脂Cにより充填される。ノズルAからの溶融樹脂Cの射出はその後も継続され、ノズル受部2は上述と同様にノズルA側へ移動し、ノズル受部2の注入口3がノズルAの端部A1と圧接し、保圧期の工程が開始される。図10は保圧期において、注入口3がノズルAの端部A1と圧接した状態を示す模式図である。ノズル受部2は、図8に示す注入開始前の位置からノズルA側へ移動し、ノズル受部2の注入口3がノズルAの端部A1と圧接している。   After the molten resin C is injected from the nozzle A and the cavity 5 is filled with the molten resin C, and the interior of the cavity 5 is filled with the molten resin C, the runner 6 is filled with the molten resin C. Even after that, the injection of the molten resin C from the nozzle A is continued, and the molten resin C from the flow path 4 or the runner 6 flows into the pressure receiving portion 7 through the barrier 8, and the pressure receiving portion 7 is the molten resin C. It becomes full. Even after the pressure receiving portion 7 is filled with the molten resin C, the injection of the molten resin C is continued, so the pressure of the molten resin C in the pressure receiving portion 7 is increased, and the nozzle receiving portion 2 passes through the lower end surface. The pressure of the molten resin C in the pressure receiving portion 7 is received and moved to the nozzle A side. As the nozzle receiving portion 2 moves to the nozzle A side, a space is further formed between the lower end surface of the nozzle receiving portion 2 and the bottom surface 9 of the fitting concave portion 14, but the molten resin C from the nozzle A is also in the meantime. Since the injection is continued, it is directly filled with the molten resin C. The injection of the molten resin C from the nozzle A is continued thereafter, the nozzle receiving part 2 moves to the nozzle A side as described above, and the injection port 3 of the nozzle receiving part 2 is in pressure contact with the end A1 of the nozzle A, The pressure holding period process is started. FIG. 10 is a schematic diagram showing a state where the inlet 3 is in pressure contact with the end A1 of the nozzle A during the pressure holding period. The nozzle receiving portion 2 moves from the position before the injection start shown in FIG. 8 to the nozzle A side, and the injection port 3 of the nozzle receiving portion 2 is in pressure contact with the end A1 of the nozzle A.

その後においても、ノズルAによる溶融樹脂Cの射出が継続されるので、ノズルA及び注入口3の間の圧接力は徐々に増加する。つまり、ノズルAの溶融樹脂Cの射出が継続されることによって受圧部7内と、ノズル受部2の下端面及び嵌合凹部14の底面9の間の空間とにおける溶融樹脂Cの圧力が徐々に高くなり、それに従ってノズルA及び注入口3の間の圧接力も共に増加する。従って、ノズルA及び注入口3の間からの溶融樹脂Cの漏れを防止することが可能となる。   Even after that, since the injection of the molten resin C by the nozzle A is continued, the pressure contact force between the nozzle A and the injection port 3 gradually increases. That is, as the injection of the molten resin C from the nozzle A is continued, the pressure of the molten resin C in the pressure receiving portion 7 and the space between the lower end surface of the nozzle receiving portion 2 and the bottom surface 9 of the fitting recess 14 is gradually increased. Accordingly, the pressure contact force between the nozzle A and the inlet 3 increases accordingly. Therefore, leakage of the molten resin C from between the nozzle A and the injection port 3 can be prevented.

本実施の形態3は以上の如き構成としており、その他の構成及び作用は実施の形態1と同様であるので、対応する部分には同一の符号を付してその詳細な説明を省略する。   The third embodiment is configured as described above, and the other configurations and operations are the same as those of the first embodiment. Therefore, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.

(実施の形態4)
図11は本発明の実施の形態4に係る射出成形用金型1,1及びノズルA,Bの縦断面図である。
(Embodiment 4)
FIG. 11 is a vertical cross-sectional view of injection molds 1 and 1 and nozzles A and B according to Embodiment 4 of the present invention.

実施の形態4に係る射出成形用金型1は、直方体形状の上型11及び下型12からなる。上型11の下面及び下型12の上面には、射出成形品を成形するための凹部又は凸部が夫々設けられており、上型11及び下型12を組み合わせた場合、例えばリチウムイオン二次電池の電池パックとして使用される一面が開口している箱状の射出成形品を成形するためのキャビティ5が構成される。また、射出成形用金型1は、各キャビティ5A,5Bに係る円柱状のノズル受部2A,2Bと、各ノズル受部2A,2Bを上下方向に貫通する流路4A,4Bとを備えている。また、ノズル受部2A,2Bは、上型11を上下方向に貫通する嵌合孔14A,14Bによって上下方向へ移動可能に夫々嵌合されている。ノズル受部2A,2Bの上端側の周縁部には被掛止鍔部22A,22Bが夫々周設されており、嵌合孔14A,14Bの上端側の縁には被掛止鍔部22A,22Bの下面に沿う扁平を有する掛止部13A,13Bが夫々周設されている。   The injection mold 1 according to Embodiment 4 includes a rectangular parallelepiped upper mold 11 and lower mold 12. The lower surface of the upper die 11 and the upper surface of the lower die 12 are respectively provided with concave portions or convex portions for molding an injection molded product. When the upper die 11 and the lower die 12 are combined, for example, a lithium ion secondary A cavity 5 is formed for molding a box-shaped injection-molded product that is open as one surface and used as a battery pack for a battery. The injection mold 1 includes cylindrical nozzle receiving portions 2A and 2B related to the cavities 5A and 5B, and flow paths 4A and 4B penetrating the nozzle receiving portions 2A and 2B in the vertical direction. Yes. The nozzle receiving portions 2A and 2B are fitted so as to be movable in the vertical direction by fitting holes 14A and 14B penetrating the upper mold 11 in the vertical direction. The hook receiving hooks 22A and 22B are provided around the upper edge of the nozzle receiving portions 2A and 2B, respectively, and the hooking hooks 22A and 22B are provided at the upper edges of the fitting holes 14A and 14B. Latching portions 13A and 13B having flatness along the lower surface of 22B are respectively provided around.

実施の形態4に係る射出成形用金型1においては、図11中にΔGa及びΔGbとして夫々表示する、ノズルA及びノズルBの先端からノズルA及びノズルBに夫々対応する注入口3A,3Bまでの間隔(以下、ノズル・注入口間隔という)にいわゆるわずかにバラツキが生じており、ΔGa<ΔGbの関係を有している。   In the injection mold 1 according to the fourth embodiment, from the tip of the nozzle A and the nozzle B, which are indicated as ΔGa and ΔGb in FIG. 11, respectively, to the injection ports 3A and 3B corresponding to the nozzle A and the nozzle B, respectively. (Hereinafter, referred to as the nozzle / injector interval) has a slight variation, and has a relationship of ΔGa <ΔGb.

以下、上述のようにノズル・注入口間隔にバラツキを持つ場合における射出成形用金型1の作用について説明する。   Hereinafter, the operation of the injection mold 1 when there is variation in the nozzle / injection gap as described above will be described.

ノズルA,Bから射出される溶融樹脂Cは夫々キャビティ5A,5Bに充填され、略同時に各キャビティ5A,5Bは満杯になる。その後においてもノズルA,Bからの溶融樹脂Cの射出は継続され、各キャビティ5A,5B内の溶融樹脂Cの圧力が高くなり、各ノズル受部2A,2Bは夫々の下端面を介して溶融樹脂Cの圧力を受付け、ノズルA,B側へ夫々移動される。各ノズル受部2A,2Bが夫々ノズルA,B側へ移動することにより、各ノズル受部2A,2Bの下端面及びキャビティ5A,5Bの間には夫々空間ができるが、その間もノズルA,Bからの溶融樹脂Cの射出は継続されるので、直に溶融樹脂Cにより充填される。ノズルA,Bからの溶融樹脂Cの射出はその後も継続され、ノズル受部2A,2Bは上述と同様にノズルA,B側へ移動するが、ノズル・注入口間隔の短いノズル受部2Aの注入口3Aが先にノズルAの端部A1と圧接し、保圧期の工程が開始される。   The molten resin C injected from the nozzles A and B is filled into the cavities 5A and 5B, respectively, and the cavities 5A and 5B are filled almost simultaneously. After that, the injection of the molten resin C from the nozzles A and B is continued, the pressure of the molten resin C in the cavities 5A and 5B is increased, and the nozzle receiving portions 2A and 2B are melted through the respective lower end surfaces. The pressure of the resin C is received and moved toward the nozzles A and B, respectively. By moving the nozzle receiving portions 2A and 2B toward the nozzles A and B, respectively, spaces are formed between the lower end surfaces of the nozzle receiving portions 2A and 2B and the cavities 5A and 5B, respectively. Since the injection of the molten resin C from B is continued, it is directly filled with the molten resin C. The injection of the molten resin C from the nozzles A and B continues thereafter, and the nozzle receivers 2A and 2B move to the nozzles A and B in the same manner as described above. The inlet 3A is first brought into pressure contact with the end A1 of the nozzle A, and the pressure-holding process is started.

その後においても、ノズルAの溶融樹脂Cの射出が継続されるので、ノズルA及び注入口3Aの間の圧接力は徐々に増加するが、ノズル受部2BはノズルB方向への移動を続け、ノズル受部2Aよりはわずかに遅いが、ノズル受部2Bの注入口3BもノズルBの端部B1と圧接されるようになる。すなわち、前述したΔGaとΔGbとの差(バラツキ)に係わらず夫々のノズル先端と注入口とを圧接することが可能となる。   Even after that, since the injection of the molten resin C from the nozzle A is continued, the pressure contact force between the nozzle A and the injection port 3A gradually increases, but the nozzle receiving portion 2B continues to move in the nozzle B direction, Although slightly slower than the nozzle receiving portion 2A, the inlet 3B of the nozzle receiving portion 2B is also brought into pressure contact with the end B1 of the nozzle B. That is, regardless of the difference (variation) between ΔGa and ΔGb described above, it is possible to press-contact each nozzle tip and the injection port.

図12は保圧期において、注入口3A,3Bが夫々ノズルA,Bの端部A1,B1と圧接した状態を示す模式図である。ノズル受部2A,2Bは、図11に示す注入開始前の位置からノズルA,Bの方向に移動し、ノズル受部2A,2Bの注入口3A,3BがノズルA,Bの端部A1,B1と夫々圧接している。   FIG. 12 is a schematic diagram showing a state where the injection ports 3A and 3B are in pressure contact with the end portions A1 and B1 of the nozzles A and B, respectively, in the pressure holding period. The nozzle receiving portions 2A and 2B move in the direction of the nozzles A and B from the position before the injection start shown in FIG. 11, and the injection ports 3A and 3B of the nozzle receiving portions 2A and 2B are the end portions A1 and A1 of the nozzles A and B, respectively. Each is in pressure contact with B1.

その後においても、ノズルA,Bの溶融樹脂Cの射出は継続されるので、ノズルA,B及び注入口3A,3Bの間の圧接力は徐々に増加する。つまり、ノズルA,Bの溶融樹脂Cの射出が継続されることによってキャビティ5A,5B内と、ノズル受部2A,2Bの下端面及びキャビティ5A,5Bの間の各空間とにおける溶融樹脂Cの圧力は高くなるが、それに従ってノズルA,B及び注入口3A,3Bの間の圧接力も共に増加する。従って、上述のようにノズル・注入口間隔にバラツキが生じている場合においても、ノズルA,B及び注入口3A,3Bの間からの溶融樹脂Cが漏れることを防止することが可能となる。   Even after that, since the injection of the molten resin C from the nozzles A and B is continued, the pressure contact force between the nozzles A and B and the injection ports 3A and 3B gradually increases. That is, by continuing the injection of the molten resin C from the nozzles A and B, the molten resin C in the cavities 5A and 5B and the spaces between the lower end surfaces of the nozzle receiving portions 2A and 2B and the cavities 5A and 5B. Although the pressure increases, the pressure contact force between the nozzles A and B and the inlets 3A and 3B increases accordingly. Therefore, it is possible to prevent the molten resin C from leaking from between the nozzles A and B and the injection ports 3A and 3B even when the nozzle / injection interval varies as described above.

本実施の形態4は以上の如き構成としており、その他の構成及び作用は実施の形態1と同様であるので、対応する部分には同一の参照番号を付してその詳細な説明を省略する。   The fourth embodiment is configured as described above, and other configurations and operations are the same as those of the first embodiment. Therefore, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.

実施の形態2及び3に記載の射出成形用金型1においては、バリア8を設け、溶融樹脂Cの受圧部7への流れ込みを制限する場合を例として説明したが、これに限るものでなく、バリア8を省略する構成にしても良い。   In the injection mold 1 described in the second and third embodiments, the case where the barrier 8 is provided and the flow of the molten resin C into the pressure receiving portion 7 is limited is described as an example. However, the present invention is not limited thereto. The barrier 8 may be omitted.

また、実施の形態2及び3に記載の射出成形用金型1においては、受圧部7の形状が底面視(又は平面視)円環状である場合について説明したがこれに限るものではない。   Moreover, in the injection mold 1 described in the second and third embodiments, the case where the shape of the pressure receiving portion 7 is an annular shape in a bottom view (or a plan view) is described, but the present invention is not limited to this.

本発明の実施の形態1に係る射出成形用金型及びノズルの縦断面図である。It is a longitudinal cross-sectional view of the injection mold and nozzle which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る射出成形用金型の縦断面を模式的に示す分解図である。It is an exploded view which shows typically the longitudinal cross-section of the metal mold | die for injection molding which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る射出成形用金型のノズル受部を示す模式図である。It is a schematic diagram which shows the nozzle receiving part of the metal mold | die for injection molding which concerns on Embodiment 1 of this invention. 保圧期において、注入口がノズルの端部と圧接した状態を示す模式図である。It is a schematic diagram which shows the state in which the injection port was press-contacted with the edge part of the nozzle in the pressure-holding period. 本発明の実施の形態2に係る射出成形用金型及びノズルの模式的縦断面図である。It is a typical longitudinal cross-sectional view of the injection mold and nozzle which concern on Embodiment 2 of this invention. 本発明の実施の形態2に係る射出成形用金型のノズル受部を示す模式図である。It is a schematic diagram which shows the nozzle receiving part of the metal mold | die for injection molding which concerns on Embodiment 2 of this invention. 保圧期において、注入口がノズルの端部と圧接した状態を示す模式図である。It is a schematic diagram which shows the state in which the injection port was press-contacted with the edge part of the nozzle in the pressure-holding period. 本発明の実施の形態3に係る射出成形用金型及びノズルの縦断面図である。It is a longitudinal cross-sectional view of the injection mold and nozzle which concern on Embodiment 3 of this invention. 本発明の実施の形態3に係る射出成形用金型の上型を、ノズル受部を取り外した状態で示す模式図である。It is a schematic diagram which shows the upper mold | type of the injection mold which concerns on Embodiment 3 of this invention in the state which removed the nozzle receiving part. 保圧期において、注入口がノズルの端部と圧接した状態を示す模式図である。It is a schematic diagram which shows the state in which the injection port was press-contacted with the edge part of the nozzle in the pressure-holding period. 本発明の実施の形態4に係る射出成形用金型及びノズルの縦断面図である。It is a longitudinal cross-sectional view of the injection mold and nozzle which concern on Embodiment 4 of this invention. 保圧期において、注入口が夫々ノズルの端部と圧接した状態を示す模式図である。It is a schematic diagram which shows the state in which the injection port was press-contacted with the edge part of the nozzle in the pressure-holding period, respectively.

符号の説明Explanation of symbols

1 射出成形用金型
2 ノズル受部
3 注入口
4 流路
5 キャビティ
6 ランナー
7 受圧部
9 底面
14 嵌合孔、嵌合凹部
A,B ノズル
C 溶融樹脂
DESCRIPTION OF SYMBOLS 1 Injection mold 2 Nozzle receiving part 3 Inlet 4 Flow path 5 Cavity 6 Runner 7 Pressure receiving part 9 Bottom face 14 Fitting hole, fitting recessed part A, B Nozzle C Molten resin

Claims (4)

ノズルと接離する注入口が形成され、該注入口を介して前記ノズルから流動体が注入される流路を備えるノズル受部と、該ノズル受部を摺動可能に嵌合する嵌合穴と、前記ノズル受部からの流動体が充填されるキャビティとを備える金型において、
前記ノズル受部が、流動体の注入により発生する前記キャビティ内の圧力によって前記接離の方向へ摺動することを特徴とする金型。
A nozzle receiving portion having a flow path through which fluid is injected from the nozzle through the injection port, and a fitting hole in which the nozzle receiving portion is slidably fitted. And a mold including a cavity filled with a fluid from the nozzle receiving portion,
The mold characterized in that the nozzle receiving portion slides in the contact / separation direction by pressure in the cavity generated by injection of a fluid.
一端に流れ込む前記流路の他端からの流動体を、前記キャビティまで導くランナーを備えており、
前記ノズル受部には、前記接離の方向における前記注入口と反対側に受圧部を設けてあり、
該受圧部と、前記流路の他端又はランナーの一端との間を前記流動体が通流するように構成されていることを特徴とする請求項1に記載の金型。
Comprising a runner for guiding the fluid from the other end of the flow path flowing into one end to the cavity;
The nozzle receiving portion is provided with a pressure receiving portion on the side opposite to the injection port in the contact and separation direction,
The mold according to claim 1, wherein the fluid is configured to flow between the pressure receiving portion and the other end of the flow path or one end of the runner.
前記嵌合穴は底面を有し、
該底面には受圧部を設けてあり、
該受圧部と、前記流路の他端又はランナーの一端との間を前記流動体が通流するように構成されていることを特徴とする請求項1又は請求項2に記載の金型。
The fitting hole has a bottom surface;
A pressure receiving portion is provided on the bottom surface,
The mold according to claim 1 or 2, wherein the fluid is configured to flow between the pressure receiving portion and the other end of the flow path or one end of a runner.
前記ノズル受部を複数備えていることを特徴とする請求項1乃至3のいずれか一つに記載の金型。   The mold according to any one of claims 1 to 3, comprising a plurality of the nozzle receiving portions.
JP2007088891A 2007-03-29 2007-03-29 Mold Withdrawn JP2008246748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088891A JP2008246748A (en) 2007-03-29 2007-03-29 Mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007088891A JP2008246748A (en) 2007-03-29 2007-03-29 Mold

Publications (1)

Publication Number Publication Date
JP2008246748A true JP2008246748A (en) 2008-10-16

Family

ID=39972292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088891A Withdrawn JP2008246748A (en) 2007-03-29 2007-03-29 Mold

Country Status (1)

Country Link
JP (1) JP2008246748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200464316Y1 (en) 2010-09-03 2012-12-26 대성전기공업 주식회사 Hot runner for injection molding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200464316Y1 (en) 2010-09-03 2012-12-26 대성전기공업 주식회사 Hot runner for injection molding machine

Similar Documents

Publication Publication Date Title
US8070479B2 (en) Injection mold device
TWI503216B (en) Mold for injection molding, and injection molding method, injection-molded article, and injection molding machine using the mold for injection molding
JP5884302B2 (en) INJECTION MOLDING METHOD, INJECTION MOLDED ARTICLE, INK TANK, RECORDING DEVICE AND INJECTION MOLD
US20120308764A1 (en) Injection mold, injection-molded product, optical element, optical prism, ink tank, recording device, and injection molding method
JP2008246748A (en) Mold
JP4876684B2 (en) Injection mold
JP2009061767A (en) Injection press molding method
WO2007072686A1 (en) Molding method and molding apparatus
KR100838788B1 (en) Mold assembly
CN109153191B (en) Resin product
JP4474397B2 (en) Injection mold equipment
JP6572384B2 (en) Injection molding equipment
JP6322018B2 (en) Injection mold and method of manufacturing resin molded product using the same
JP5610747B2 (en) Molded product manufacturing method and injection mold
JP2007152655A (en) Injection molding machine, in-mold nozzle and mold used in injection molding machine
JP2012106375A (en) Injection mold
JP2007253587A (en) Resin-molding mold
JP4235053B2 (en) Casting type mold release agent coating system
JP2007083650A (en) Injection mold and injection molding method
JP2009190381A (en) Injection molding apparatus, and method for cooling injection-molded product
JP2007022044A (en) Injection molding device
JP2005246770A (en) Injection mold
JP2024040897A (en) Method of manufacturing molded article, method of manufacturing liquid discharging head, molded article, and liquid discharging head
KR101020382B1 (en) A extension nozzle for the stack mold
KR20130107715A (en) Open type multi-gate nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110202