JP2008246690A - Resin transfer molding method - Google Patents

Resin transfer molding method Download PDF

Info

Publication number
JP2008246690A
JP2008246690A JP2007087311A JP2007087311A JP2008246690A JP 2008246690 A JP2008246690 A JP 2008246690A JP 2007087311 A JP2007087311 A JP 2007087311A JP 2007087311 A JP2007087311 A JP 2007087311A JP 2008246690 A JP2008246690 A JP 2008246690A
Authority
JP
Japan
Prior art keywords
resin
mold
injected
cavity
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007087311A
Other languages
Japanese (ja)
Inventor
Yusuke Majima
祐介 間嶋
Kentaro Shima
健太郎 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2007087311A priority Critical patent/JP2008246690A/en
Publication of JP2008246690A publication Critical patent/JP2008246690A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an RTM molding method for obtaining an excellent molded product free from pinholes or voids. <P>SOLUTION: A preform obtained by shaping a fiber reinforcing material into a molded product shape or a sheetlike fiber reinforcing material 5 are arranged in a mold composed of an upper mold 1 and a lower mold 2 and, after the mold is clamped, the cavity formed of the upper mold and the lower mold is evacuated, a resin is injected in the cavity to impregnate the fiber reinforcing material and the impregnated fiber reinforcing material is cured. In this resin transfer molding method, the resin is first injected in the cavity under pressure, a part of the injected resin is subsequently sucked and the resin is next again injected under pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、樹脂トランスファー(RTM)成形法に関し、更に詳しくは、最適な成形条件を設けることによって、ピンホール等の欠陥のない優れた成形品を得ることのできるRTM成形法の改良に関する。 The present invention relates to a resin transfer (RTM) molding method, and more particularly to an improvement in an RTM molding method that can provide an excellent molded product free from defects such as pinholes by providing optimum molding conditions.

RTM成形法は、長繊維や短繊維からなる繊維強化材を、成形品形状に賦形したプリフォームあるいはシート状で、上型下型からなる金型内部に配置し、金型を型締めした後、樹脂注入口から樹脂を減圧下に注入して繊維強化材に含浸させ、必要なら加熱して硬化の後、金型を開いて脱型する成形方法である。いわゆるプリプレグが必要でなく、オートクレーブ法やハンドレイアップ法に比べて生産性が良く、両面の仕上がりの良い、品質の優れた成形品が得られるという特徴がある。 In the RTM molding method, a fiber reinforcing material composed of long fibers and short fibers is placed inside a mold composed of an upper mold and a lower mold in a preform or sheet shaped into a molded product shape, and the mold is clamped Thereafter, the resin is injected from the resin injection port under reduced pressure to impregnate the fiber reinforcing material, and if necessary, after heating and curing, the mold is opened and removed. A so-called prepreg is not required, and it is characterized in that a molded product with good productivity and good quality on both sides can be obtained compared to the autoclave method and the hand lay-up method.

従来、樹脂の繊維強化材への拡散速度を高めて注入時間を短縮する方法として、型に溝を形成する方法、樹脂流動基材(メディア)を用いる方法、溝加工や貫通穴加工をしたコア材を用いる方法がある。これらの方法はいずれも、樹脂の流路を確保することにより樹脂の拡散速度を向上させ、樹脂の注入に要する時間を短縮するものである。 Conventionally, as a method of increasing the diffusion rate of the resin into the fiber reinforcing material and shortening the injection time, a method of forming a groove in a mold, a method using a resin fluidized substrate (media), a core having a groove processing or through-hole processing There is a method using a material. In any of these methods, the resin diffusion rate is improved by securing a resin flow path, and the time required for the resin injection is shortened.

例えば、特開2001−62932号公報(特許文献1)には、溝を形成した型と樹脂流動基材を用いる方法が記載されている。溝を形成した型上に、繊維強化材、コア材、繊維強化材を順に積層し、更に樹脂流動基材を重ね、積層した材料と樹脂流動基材とをバギングフィルムで覆って内部を減圧した後、溝と樹脂流動基材とから樹脂を注入することによりサンドイッチ積層板を製造するものである。しかしこの方法でも、樹脂の流動性が十分でない場合がある。 For example, Japanese Patent Application Laid-Open No. 2001-62932 (Patent Document 1) describes a method using a mold having a groove and a resin flowable substrate. A fiber reinforced material, a core material, and a fiber reinforced material are laminated in this order on the mold in which the groove is formed, and a resin fluid base material is further stacked. The laminated material and the resin fluid base material are covered with a bagging film, and the inside is decompressed. Thereafter, a sandwich laminate is manufactured by injecting a resin from the groove and the resin flow base material. However, even with this method, the fluidity of the resin may not be sufficient.

また、例えば、特開2000−501659号公報(特許文献2)に記載されたような樹脂流動基材を用いる方法は、次のような問題がある。樹脂流動基材は網状のシートで、型に敷設した繊維強化材に重ねて配置して使用されるが、成形後に軽量化のため取り除かれ廃棄される。従って、樹脂流動基材を用いる方法は、成形後に樹脂流動基材を取り除く必要があり、樹脂流動基材を再利用できないことから成形品の製造コストが高く、またそれ自体が廃棄物となる問題がある。更に、これらの方法により得られた成形品の表面には、型に形成した溝や樹脂流動基材の凹凸を転写した樹脂の突起物が形成される。ピールクロスを用いることにより、樹脂の突起物をある程度除去することは可能であるが、より製造コストの高いものとなる上、意匠性の高い平滑な表面とすることは困難である。 Moreover, for example, the method using a resin fluidized substrate as described in JP-A-2000-501659 (Patent Document 2) has the following problems. The resin fluidized base material is a net-like sheet that is used by being placed on a fiber reinforcing material laid on a mold, but is removed and discarded for weight reduction after molding. Therefore, the method using a resin fluidized substrate requires the resin fluidized substrate to be removed after molding, and the resin fluidized substrate cannot be reused. Therefore, the manufacturing cost of the molded product is high, and the product itself becomes a waste. There is. Furthermore, resin protrusions are formed on the surface of the molded product obtained by these methods. By using peel cloth, it is possible to remove resin protrusions to some extent, but the manufacturing cost is higher and it is difficult to obtain a smooth surface with high design.

更に、例えば、特開2002−86579号公報(特許文献3)に記載されたような溝や貫通孔を形成したコア材を用いる方法は、樹脂流動基材や溝を形成した型等を必要とせず、比較的低コストでサンドイッチ積層板を製造することができる。また、特開2005−193587号公報(特許文献4)には、金型のキャビティ内への樹脂の注入速度を特定の条件範囲に設定することによって、表面に気泡等の少ない優れた表面意匠性を有するFRP成形品を得る方法も提案されている。しかしながら、いずれの場合も、樹脂の繊維強化材に対する均一な含浸性や、樹脂の流動性は必ずしも十分ではなく、一段の改良が望まれていた。 Furthermore, for example, a method using a core material in which grooves and through holes are formed as described in JP-A-2002-86579 (Patent Document 3) requires a resin flow base material, a mold in which grooves are formed, and the like. Therefore, a sandwich laminate can be manufactured at a relatively low cost. Japanese Patent Application Laid-Open No. 2005-193987 (Patent Document 4) describes an excellent surface design with few bubbles on the surface by setting the injection rate of the resin into the cavity of the mold within a specific condition range. There has also been proposed a method for obtaining an FRP molded product having the following. However, in any case, the uniform impregnation property of the resin to the fiber reinforcement and the fluidity of the resin are not always sufficient, and further improvement has been desired.

特開2001−62932号公報JP 2001-62932 A 特表2000−501659号公報JP 2000-501659 A 特開2002−86579号公報JP 2002-86579 A 特開2005−193587号公報JP-A-2005-193588

RTM成形法において、一般に、金型のキャビティ内を減圧下で樹脂を注入すると、樹脂が繊維強化材に含浸するに従い、キャビティ内の真空度は均一にならずに、排気口から離れるにつれ真空度が低下する。そして、排気口から最も遠く位置する樹脂注入口付近と排気口付近の真空度が異なり、硬化後の成形物の厚みが異なったものとなる。かかる問題点を改善するために、樹脂を加圧注入することも行われている。しかしながら、一度樹脂がキャビティ内に注入充填されると樹脂の流動性が少なくなり、樹脂表面のエアー抜きができず、その結果、成形品にピンホールが発生するという問題がある。あるいは、繊維強化材に樹脂未含浸部分が発生し、内部にボイドが発生するという問題もある。従って、本発明の目的は、金型のキャビティ内に樹脂を注入する際、樹脂が繊維強化材に均一に拡散・含浸するような工夫をすることによって、硬化後にピンホールやボイドのない優れた成形品が得られるRTM成形法を提供することにある。 In the RTM molding method, in general, when resin is injected into a mold cavity under reduced pressure, the degree of vacuum in the cavity does not become uniform as the resin impregnates the fiber reinforcement, and the degree of vacuum increases as the distance from the exhaust port increases. Decreases. Then, the degree of vacuum near the resin injection port located farthest from the exhaust port is different from that near the exhaust port, and the thickness of the molded product after curing is different. In order to improve such a problem, pressure injection of resin is also performed. However, once the resin is injected and filled into the cavity, the fluidity of the resin is reduced, and the resin surface cannot be vented. As a result, there is a problem that pinholes are generated in the molded product. Or there exists a problem that the resin non-impregnation part generate | occur | produces in a fiber reinforcement and a void generate | occur | produces inside. Therefore, the object of the present invention is to provide an excellent solution that does not have pinholes or voids after curing by ingenuating the resin to uniformly diffuse and impregnate the fiber reinforcement when the resin is injected into the cavity of the mold. An object of the present invention is to provide an RTM molding method for obtaining a molded article.

本発明の請求項1に記載された発明は、上型と下型からなる金型内部に、繊維強化材を成形品形状に賦形したプリフォーム又はシート状の繊維強化材を配置し、金型を型締めした後、上型と下型で形成されるキャビティ内を排気し、樹脂をキャビティ内に注入して繊維強化材に含浸せしめ、そして硬化させる樹脂トランスファー成形法において、先ずキャビティ内に樹脂の加圧注入を行い、次いで、注入された樹脂の一部を吸引し、その後、再度樹脂の加圧注入を行うことを特徴とする樹脂トランスファー成形法である。 According to a first aspect of the present invention, a preform or sheet-like fiber reinforcement formed by molding a fiber reinforcement into a molded product shape is disposed inside a mold composed of an upper mold and a lower mold, In the resin transfer molding method, after the mold is clamped, the cavity formed by the upper mold and the lower mold is evacuated, the resin is injected into the cavity, impregnated into the fiber reinforcement, and cured. This is a resin transfer molding method in which a pressure injection of a resin is performed, a part of the injected resin is sucked, and then a pressure injection of the resin is performed again.

請求項2に記載された発明は、金型の一端に形成された排気口からキャビティ内を吸引し、真空度を−0.1〜−0.08MPaとし、次いで、金型の他端に形成された樹脂注入口からキャビティ内に樹脂を1〜7kgf/cmの注入圧力で加圧注入し、その後、加圧注入を止め注入された樹脂の一部を樹脂注入口の外に取り出し、その後、再度、樹脂注入口からキャビティ内に樹脂を1〜7kgf/cmの注入圧力で加圧注入する請求項1記載の樹脂トランスファー成形法である。 In the invention described in claim 2, the inside of the cavity is sucked from the exhaust port formed at one end of the mold, the degree of vacuum is -0.1 to -0.08 MPa, and then formed at the other end of the mold. The resin is injected from the resin injection port into the cavity at an injection pressure of 1 to 7 kgf / cm 2 , and then the pressure injection is stopped and a part of the injected resin is taken out of the resin injection port, and then The resin transfer molding method according to claim 1, wherein the resin is again injected under pressure at an injection pressure of 1 to 7 kgf / cm 2 from the resin injection port into the cavity.

そして、請求項3に記載された発明は、キャビティ内への樹脂の加圧注入、加圧注入された樹脂の一部の吸引、そしてその後の、樹脂の再加圧注入を繰り返すことを特徴とする請求項1又は2記載の樹脂トランスファー成形法である。 The invention described in claim 3 is characterized in that the pressure injection of the resin into the cavity, the suction of a part of the pressure-injected resin, and the subsequent re-pressure injection of the resin are repeated. The resin transfer molding method according to claim 1 or 2.

本発明によれば、工業的に有利なRTM成形法が提供され、それによって、繊維強化材に対する樹脂の拡散・含浸性が良く、従って、ピンホールやボイドが少なく且つ厚さが均一な成形品が得られる。 According to the present invention, an industrially advantageous RTM molding method is provided, whereby a resin diffusion / impregnation property with respect to a fiber reinforcing material is good, and thus a molded product having few pinholes and voids and a uniform thickness. Is obtained.

RTM成形法においては、上型と下型からなる金型内部に、繊維強化材を成形品形状に賦形したプリフォーム又はシート状の繊維強化材を配置し、金型を型締めした後、上型と下型が形成するキャビティ内を排気し、樹脂をキャビティ内に注入して繊維強化材に含浸せしめ、そして硬化させる方法がとられる。プリフォームとは、例えば、繊維強化材の連続ストランドを熱可塑性樹脂をバインダーとして結合し、成形型に近似した形状寸法に製作した半成形品である。 In the RTM molding method, a preform or sheet-shaped fiber reinforcement formed by molding a fiber reinforcement into a molded product shape is placed inside a mold composed of an upper mold and a lower mold, and the mold is clamped, A method is adopted in which the inside of the cavity formed by the upper mold and the lower mold is evacuated, resin is injected into the cavity, the fiber reinforcement is impregnated, and cured. The preform is, for example, a semi-molded product manufactured by combining continuous strands of fiber reinforcing material with a thermoplastic resin as a binder and having a shape approximate to a mold.

本発明においては、RTM成形法において、先ずキャビティ内に樹脂の加圧注入を行い、次いで、注入された樹脂の一部を吸引し、その後、再度樹脂の加圧注入を行うことを特徴とする方法である。従来通り、キャビティ内を減圧状態にして、一度樹脂を加圧充填させるが、従来の方法と異なるのは、樹脂が十分に充填された後、注入口から充填した樹脂の一部を注入口外まで(樹脂タンクまで)戻し、その後再加圧注入することで、樹脂をキャビティ内で流動させるものである。かかる方法によって、樹脂表面のエアー抜きが行われ、また、繊維強化材への樹脂の含浸も均一になり、ピンホールやボイドの無い成形品が得られる。 In the present invention, in the RTM molding method, the resin is first pressurized and injected into the cavity, then a part of the injected resin is sucked, and then the resin is pressure-injected again. Is the method. As usual, the cavity is evacuated and the resin is once filled with pressure. Unlike the conventional method, after the resin is sufficiently filled, a part of the resin filled from the injection port to the outside of the injection port. By returning (to the resin tank) and then repressurizing and injecting, the resin is caused to flow in the cavity. By this method, the air is removed from the resin surface, and the impregnation of the resin into the fiber reinforcement is made uniform, and a molded product free from pinholes and voids can be obtained.

好ましいのは、金型の一端に形成された排気口からキャビティ内を吸引し、真空度を−0.1〜−0.08MPaとし、次いで、金型の他端に形成された樹脂注入口からキャビティ内に樹脂を1〜7kgf/cmの注入圧力で加圧注入し、その後、加圧注入を止め注入された樹脂の一部を樹脂注入口の外に取り出し、その後、再度、樹脂注入口からキャビティ内に樹脂を1〜7kgf/cmの注入圧力で加圧注入するやり方である。加圧注入は、排気口からキャビティ内を吸引し、キャビティ内を減圧した段階で排気口を閉じて行っても良いし、あるいは排気口を閉じることなく減圧しながら行っても良い。この場合には、樹脂が排気口から流れ出す状態になった時点で、排気口を閉じれば良い。再度の加圧注入は、排気口を閉じた状態で行うのが良い。 Preferably, the inside of the cavity is sucked from the exhaust port formed at one end of the mold, the degree of vacuum is -0.1 to -0.08 MPa, and then from the resin injection port formed at the other end of the mold The resin is pressurized and injected into the cavity at an injection pressure of 1 to 7 kgf / cm 2 , and then the pressure injection is stopped and a part of the injected resin is taken out of the resin injection port. From this, the resin is pressurized and injected into the cavity at an injection pressure of 1 to 7 kgf / cm 2 . The pressurized injection may be performed by sucking the inside of the cavity from the exhaust port and closing the exhaust port when the inside of the cavity is decompressed, or may be performed while reducing the pressure without closing the exhaust port. In this case, the exhaust port may be closed when the resin flows out of the exhaust port. The pressure injection again is preferably performed with the exhaust port closed.

樹脂を加圧注入した後、注入された樹脂の一部は吸引され、樹脂注入口の外に取り出されるが、その樹脂の量(割合)は特に制限はない。注入した樹脂の10〜50%の範囲が適当である。注入された樹脂の一部を吸引し樹脂注入口の外に取り出すやり方としては、排気口を閉じた後、樹脂の一部を樹脂注入口から積極的に減圧吸引しても良いし、あるいは単に、加圧注入を止めるか、加圧注入の圧力を下げることによって一部の樹脂を逆流させても良い。 After the resin is injected under pressure, a part of the injected resin is sucked and taken out of the resin injection port, but the amount (ratio) of the resin is not particularly limited. A range of 10-50% of the injected resin is suitable. As a method of sucking out a part of the injected resin and taking it out of the resin injection port, after closing the exhaust port, a part of the resin may be actively sucked from the resin injection port under reduced pressure, or simply Alternatively, a part of the resin may be caused to flow backward by stopping the pressure injection or lowering the pressure of the pressure injection.

成形品の形状が複雑な場合、あるいは樹脂の粘度が高い場合等、キャビティ内への樹脂の加圧注入、注入された樹脂の一部の吸引、そしてその後の、樹脂の再加圧注入を繰り返し、含浸をより均一にすることもできる。樹脂注入時の樹脂の粘度は、0.01〜1Pa・sであるのが好ましい。 When the shape of the molded product is complicated, or when the viscosity of the resin is high, repeatedly pressurize the resin into the cavity, suck a part of the injected resin, and then repressurize the resin. The impregnation can be made more uniform. The viscosity of the resin at the time of resin injection is preferably 0.01 to 1 Pa · s.

本発明において用いられる繊維強化材としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等の、通常の繊維強化材に用いる材料が使用できる。中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。繊維強化材の形態としては特に制限されず、織物又は不織布等が利用できる。織物としては、強化繊維フィラメントの束(強化繊維ストランド)を使用した織物を挙げることができ、例えば、経糸と緯糸に強化繊維ストランドを使用した平織物、綾織物、繻子織物等、あるいは一軸織物、多軸織物等を挙げることができる。織物を形成する強化繊維ストランドは、繊維径4〜8μmのモノフィラメントを一束あたり500〜24,000本とすることが好ましい。なお、一軸織物とは、互いに平行に並んだ強化繊維ストランドをナイロン糸、ポリエステル糸、ガラス繊維糸等で編んだ織物をいう。多軸織物とは、互いに平行に並んだ強化繊維ストランドを角度を変えて積層してナイロン糸、ポリエステル糸、ガラス繊維糸等で編んだ織物をいう。 As the fiber reinforcing material used in the present invention, materials used for ordinary fiber reinforcing materials such as carbon fiber, glass fiber, aramid fiber, boron fiber, and metal fiber can be used. Among these, carbon fiber, glass fiber, and aramid fiber are preferable. The form of the fiber reinforcement is not particularly limited, and a woven fabric or a nonwoven fabric can be used. Examples of the woven fabric include woven fabrics using bundles of reinforcing fiber filaments (reinforced fiber strands), such as plain fabrics, twill fabrics, cocoon fabrics, or uniaxial fabrics using reinforcing fiber strands for warps and wefts, A multiaxial woven fabric etc. can be mentioned. The reinforcing fiber strands forming the woven fabric preferably have 500 to 24,000 monofilaments having a fiber diameter of 4 to 8 μm per bundle. The uniaxial woven fabric refers to a woven fabric in which reinforcing fiber strands arranged in parallel to each other are knitted with nylon yarn, polyester yarn, glass fiber yarn or the like. The multiaxial woven fabric refers to a woven fabric in which reinforcing fiber strands arranged in parallel to each other are laminated at different angles and knitted with nylon yarn, polyester yarn, glass fiber yarn or the like.

繊維強化材として織物を使用する場合には、複数の織物を互いに角度を変えて積層してもよい。繊維強化材は、それ自体が強化繊維の配向が面対称のものを用いるか、あるいは複数の繊維強化材を、強化繊維の配向が面対称となるように組み合わせて積重し使用するのが好ましい。面対称の繊維強化材あるいは積重して面対称とした繊維強化材を用いることにより、積層板とした際に表面板の反りを防止できる。織物の厚さは、積層板の用途により適宜選択するものであり、特に制限はないが、通常0.2〜5.0mm程度とすることが好ましい。繊維強化材の目付は、使用する繊維強化材により異なるが、炭素繊維の場合には300〜5,000g/m程度が好ましく、300〜2,000g/m程度がより好ましい。また、プリフォームの形状や種類についても何ら限定されるものではない。 When a woven fabric is used as the fiber reinforcement, a plurality of woven fabrics may be laminated at different angles. It is preferable that the fiber reinforcing material itself has a symmetrical orientation of the reinforcing fibers, or a plurality of fiber reinforcing materials are combined and used so that the reinforcing fiber orientations are symmetrical. . By using a plane symmetric fiber reinforcing material or a piled and symmetrical fiber reinforcing material, warpage of the surface plate can be prevented when a laminated board is formed. The thickness of the woven fabric is appropriately selected depending on the use of the laminate, and is not particularly limited, but is usually preferably about 0.2 to 5.0 mm. Basis weight of the fiber reinforcement, differs by fiber reinforcement used is preferably about 300~5,000g / m 2 in the case of carbon fibers, about 300~2,000g / m 2 is more preferable. Further, the shape and type of the preform are not limited at all.

本発明において用いられる樹脂は、好ましいのは熱硬化性樹脂であるが、熱可塑性樹脂も混合して用いることができる。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等があり、これらの熱硬化性樹脂を適宜量配合したものでも良い。これらの樹脂のうち、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂、ビニルエステル樹脂が好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤等が含まれていてもよい。 The resin used in the present invention is preferably a thermosetting resin, but a thermoplastic resin can also be mixed and used. As the thermosetting resin, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide resin and cyanate ester resin were prepolymerized. Resins and the like may be used, and these thermosetting resins may be blended in appropriate amounts. Of these resins, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are preferable. These thermosetting resins may contain a curing agent, a curing accelerator and the like.

本発明において用いられる金型としては、特に制限はないが、剛性の高い金属の金型やFRP型等の金型が用いられる。下型には、シリコーンワックス等の公知の離型剤を用いて離型処理した後、繊維強化材を敷設・積層しても良い。また、成形品を取出す際の離型性を高める目的で、繊維強化材上にはピールクロス等を重ねても良い。以下、実施例により本発明を詳述する。 The mold used in the present invention is not particularly limited, but a metal mold such as a highly rigid metal mold or FRP mold is used. The lower mold may be subjected to a release treatment using a known release agent such as silicone wax, and then a fiber reinforcing material may be laid and laminated. Moreover, a peel cloth or the like may be stacked on the fiber reinforcement for the purpose of improving the releasability when taking out the molded product. Hereinafter, the present invention will be described in detail by way of examples.

図1に示したようなRTM成形装置を用いて成形を行った。図1において、1は金型の上型、2は金型の下型、3と4はシール部材、5は金型のキャビティ内に敷設・積層された繊維強化材、6は排気管であり真空ポンプ(図示せず)につながっている。 7は樹脂注入管であり、樹脂タンク10につながっている。8と9は共に開閉用のバルブである。樹脂タンク10は、圧空導入管11から圧空を導入して加圧できるようになっている。 Molding was performed using an RTM molding apparatus as shown in FIG. In FIG. 1, 1 is an upper mold of the mold, 2 is a lower mold of the mold, 3 and 4 are sealing members, 5 is a fiber reinforcement laid and laminated in the cavity of the mold, and 6 is an exhaust pipe. It is connected to a vacuum pump (not shown). Reference numeral 7 denotes a resin injection pipe connected to the resin tank 10. 8 and 9 are both open and close valves. The resin tank 10 can be pressurized by introducing pressurized air from a compressed air introduction pipe 11.

炭素繊維(東邦テナックス社製)を使用した織物(CF目付100〜500g/m、ストランド幅2〜5mm)を幅1,000mm、長さ1,000mmにカットした。鉄製の金型の下型に離型処理を施し、その上に前記織物を3枚敷設・積層した。織物の配置は0/90°方向に積層した。次いで、この上に上型をかぶせ型締めし密封した。 A woven fabric (CF weight per unit area: 100 to 500 g / m 2 , strand width: 2 to 5 mm) using carbon fiber (manufactured by Toho Tenax Co., Ltd.) was cut into a width of 1,000 mm and a length of 1,000 mm. A release process was performed on the lower mold of the iron mold, and three sheets of the woven fabric were laid and laminated thereon. The woven fabric was laminated in the 0/90 ° direction. Next, the upper mold was put on this and the mold was clamped and sealed.

先ず、図1の樹脂注入管7のバルブ9を閉じた後、排気管6のバルブ8を開き、排気管につながった真空ポンプで、金型の上型と下型で形成されるキャビティ内を排気し、真空度を−0.1〜−0.08MPaとした。金型は60〜100℃に加温した。その後、樹脂タンク10(エポキシ樹脂を100質量部、硬化剤を1.0〜5.0質量部混合した混合液のタンク)につながっている樹脂注入管7のバルブ9を開き、25℃雰囲気下で、樹脂注入管7からキャビティ内に樹脂を注入し、炭素繊維の積層物に含浸させた。樹脂の注入は、圧空導入管11から樹脂タンク10に圧空を導入することによって、樹脂の注入圧力が4kgf/cmになるようにして行った。樹脂の注入は、注入された樹脂の一部が排気管6に流れ出て来た時点で、バルブ8を閉じて止めた。なお、バルブ8は成形の終了まで閉じたままとした。 First, after closing the valve 9 of the resin injection pipe 7 in FIG. 1, the valve 8 of the exhaust pipe 6 is opened, and the inside of the cavity formed by the upper mold and the lower mold of the mold is opened with a vacuum pump connected to the exhaust pipe. The air was exhausted, and the degree of vacuum was -0.1 to -0.08 MPa. The mold was heated to 60-100 ° C. Thereafter, the valve 9 of the resin injection tube 7 connected to the resin tank 10 (a mixed liquid tank in which 100 parts by mass of epoxy resin and 1.0 to 5.0 parts by mass of curing agent are mixed) is opened, and the atmosphere is 25 ° C. Then, the resin was injected into the cavity from the resin injection tube 7 and impregnated into the carbon fiber laminate. The resin was injected by introducing compressed air from the compressed air introduction pipe 11 to the resin tank 10 so that the injection pressure of the resin was 4 kgf / cm 2 . The injection of the resin was stopped by closing the valve 8 when a part of the injected resin flowed out to the exhaust pipe 6. The valve 8 was kept closed until the end of molding.

その後も樹脂を注入し続け、キャビティ内に樹脂が完全に充填されるまで加圧注入を継続した。樹脂が完全に充填されたかどうかは、樹脂タンク10の樹脂の重量を測定することにより、樹脂の重量が減少しなくなり、これ以上キャビティ内に樹脂が入らない状態になった時をもって判断した。
その後、樹脂タンク10の加圧を止めて常圧(0kgf/cm)に戻した。かかる操作で、約20〜30%の樹脂がキャビティから樹脂タンク10に逆流した。次いで、前記と同様にして、圧空導入管11から圧空を導入することによって樹脂タンク10を加圧し、樹脂の注入圧力が4kgf/cmで樹脂を再加圧注入した。
Thereafter, the resin was continuously injected, and the pressure injection was continued until the cavity was completely filled with the resin. Whether or not the resin was completely filled was determined by measuring the weight of the resin in the resin tank 10 when the weight of the resin did not decrease and the resin no longer entered the cavity.
Thereafter, the pressurization of the resin tank 10 was stopped and returned to normal pressure (0 kgf / cm 2 ). With this operation, about 20 to 30% of the resin flowed back from the cavity to the resin tank 10. Next, in the same manner as described above, the resin tank 10 was pressurized by introducing pressurized air from the compressed air introduction tube 11, and the resin was repressurized and injected at a resin injection pressure of 4 kgf / cm 2 .

その後、樹脂の注入圧力は維持したまま樹脂を硬化させ、炭素繊維とエポキシ樹脂からなる成形品を得た。得られた成形品は、厚みが均一でピンホールやボイドが全く見られない優れた品質の物であった。 Thereafter, the resin was cured while maintaining the injection pressure of the resin to obtain a molded product made of carbon fiber and epoxy resin. The obtained molded product was of excellent quality with a uniform thickness and no pinholes or voids.

図1は、本発明のRTM成形法の一例を説明するための図である。FIG. 1 is a view for explaining an example of the RTM molding method of the present invention.

符号の説明Explanation of symbols

1 金型の上型
2 金型の下型
3、4 シール部材
5 繊維強化材
6 排気管
7 樹脂注入管
8、9 開閉用のバルブ
10 樹脂タンク
11 圧空導入管
DESCRIPTION OF SYMBOLS 1 Upper mold 2 Mold lower mold 3, 4 Seal member 5 Fiber reinforcement 6 Exhaust pipe 7 Resin injection pipe 8, 9 Valve for opening and closing
10 Resin tank 11 Compressed air introduction pipe

Claims (3)

上型と下型からなる金型内部に、繊維強化材を成形品形状に賦形したプリフォーム又はシート状の繊維強化材を配置し、金型を型締めした後、上型と下型で形成されるキャビティ内を排気し、樹脂をキャビティ内に注入して繊維強化材に含浸せしめ、そして硬化させる樹脂トランスファー成形法において、先ずキャビティ内に樹脂の加圧注入を行い、次いで、注入された樹脂の一部を吸引し、その後、再度樹脂の加圧注入を行うことを特徴とする樹脂トランスファー成形法。 Inside the mold consisting of the upper mold and the lower mold, place a preform or sheet-shaped fiber reinforcement made of fiber reinforcement into the shape of the molded product, and after clamping the mold, the upper mold and lower mold In the resin transfer molding method in which the inside of the cavity to be formed is evacuated, the resin is injected into the cavity and impregnated into the fiber reinforcement, and cured, the resin is first injected into the cavity under pressure, and then injected. A resin transfer molding method characterized in that a part of the resin is sucked and then the resin is injected under pressure again. 金型の一端に形成された排気口からキャビティ内を吸引し、真空度を−0.1〜−0.08MPaとし、次いで、金型の他端に形成された樹脂注入口からキャビティ内に樹脂を1〜7kgf/cmの注入圧力で加圧注入し、その後、加圧注入を止め注入された樹脂の一部を樹脂注入口の外に取り出し、その後、再度、樹脂注入口からキャビティ内に樹脂を1〜7kgf/cmの注入圧力で加圧注入する請求項1記載の樹脂トランスファー成形法。 The inside of the cavity is sucked from the exhaust port formed at one end of the mold, the degree of vacuum is -0.1 to -0.08 MPa, and then the resin is injected into the cavity from the resin injection port formed at the other end of the mold Is injected at an injection pressure of 1 to 7 kgf / cm 2 , and then the pressure injection is stopped and a part of the injected resin is taken out of the resin injection port, and then again from the resin injection port into the cavity. The resin transfer molding method according to claim 1, wherein the resin is injected under pressure at an injection pressure of 1 to 7 kgf / cm 2 . キャビティ内への樹脂の加圧注入、加圧注入された樹脂の一部の吸引、そしてその後の、樹脂の再加圧注入を繰り返すことを特徴とする請求項1又は2記載の樹脂トランスファー成形法。





3. The resin transfer molding method according to claim 1, wherein pressure injection of the resin into the cavity, suction of a part of the pressure-injected resin, and subsequent re-pressure injection of the resin are repeated. .





JP2007087311A 2007-03-29 2007-03-29 Resin transfer molding method Pending JP2008246690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087311A JP2008246690A (en) 2007-03-29 2007-03-29 Resin transfer molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087311A JP2008246690A (en) 2007-03-29 2007-03-29 Resin transfer molding method

Publications (1)

Publication Number Publication Date
JP2008246690A true JP2008246690A (en) 2008-10-16

Family

ID=39972238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087311A Pending JP2008246690A (en) 2007-03-29 2007-03-29 Resin transfer molding method

Country Status (1)

Country Link
JP (1) JP2008246690A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110937A (en) * 2008-11-05 2010-05-20 Kojima Press Industry Co Ltd Method for producing woody decorative board
JP2013527052A (en) * 2010-04-13 2013-06-27 ヘンケル コーポレイション Curable composition, process for using the composition for composite production, and process for producing a composite with excellent surface finish and high fiber adhesion
JP2013203005A (en) * 2012-03-29 2013-10-07 Toray Ind Inc Device and method of manufacturing frp
JP2014517779A (en) * 2011-05-06 2014-07-24 スネクマ Injection molding method for composite material parts
JP2014534918A (en) * 2011-11-08 2014-12-25 スネクマ Pressure holding device and associated method for manufacturing composite parts by resin injection
JP2016083780A (en) * 2014-10-22 2016-05-19 日産自動車株式会社 Molding method and molding device for composite material
CN105670012A (en) * 2014-11-21 2016-06-15 台山市爱达电器厂有限公司 Anti-impact resin product and processing method thereof
US11318686B2 (en) 2017-09-21 2022-05-03 Toyota Jidosha Kabushiki Kaisha Manufacturing method and manufacturing apparatus for pressure tank

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110937A (en) * 2008-11-05 2010-05-20 Kojima Press Industry Co Ltd Method for producing woody decorative board
JP2013527052A (en) * 2010-04-13 2013-06-27 ヘンケル コーポレイション Curable composition, process for using the composition for composite production, and process for producing a composite with excellent surface finish and high fiber adhesion
JP2014517779A (en) * 2011-05-06 2014-07-24 スネクマ Injection molding method for composite material parts
JP2014534918A (en) * 2011-11-08 2014-12-25 スネクマ Pressure holding device and associated method for manufacturing composite parts by resin injection
JP2013203005A (en) * 2012-03-29 2013-10-07 Toray Ind Inc Device and method of manufacturing frp
JP2016083780A (en) * 2014-10-22 2016-05-19 日産自動車株式会社 Molding method and molding device for composite material
CN105670012A (en) * 2014-11-21 2016-06-15 台山市爱达电器厂有限公司 Anti-impact resin product and processing method thereof
US11318686B2 (en) 2017-09-21 2022-05-03 Toyota Jidosha Kabushiki Kaisha Manufacturing method and manufacturing apparatus for pressure tank

Similar Documents

Publication Publication Date Title
JP2008246690A (en) Resin transfer molding method
JP5670381B2 (en) Controlled atmospheric pressure resin injection process
JP6161175B2 (en) Method for forming a molded preform
JP5533743B2 (en) Manufacturing method of fiber reinforced plastic
JP5322920B2 (en) Vacuum RTM molding method
JP6702185B2 (en) Resin supply material, preform, and method for producing fiber-reinforced resin
US11001011B2 (en) Method of producing fiber reinforced composite material
JP4805375B2 (en) Method for manufacturing FRP structure
CA3017455C (en) Method for manufacturing composite material
JP4839523B2 (en) Manufacturing method of fiber reinforced resin
WO2013049966A1 (en) Manufacturing moulded articles of fibre-reinforced resin composite material
JP4338550B2 (en) Method for manufacturing FRP structure
JP4631395B2 (en) Method for shaping reinforcing fiber base material for FRP molding
JP2012245623A (en) Method and device of molding composite material using porous mold
JP2007144994A (en) Method for molding fiber-reinforced plastic, its molding apparatus and molded body
JP2008302498A (en) Resin transfer molding method and composite material
JP4764121B2 (en) Resin transfer molding method.
WO2013025115A1 (en) Three- dimensional (3d) knitted reinforced composite structure production method thereof
JP2018192717A (en) Reinforcing fiber base material and preform
JP4824462B2 (en) Manufacturing method of fiber reinforced composite material
JP4371671B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP4330364B2 (en) Resin transfer molding method
JP2006015611A (en) Method for producing sandwich laminate
JP2004256961A (en) Method for producing reinforcing fiber substrate and method for producing composite material by using the substrate
JP2009248552A (en) Method for producing fiber-reinforced resin molding