JP2008246512A - Method of controlling thickness of tapered steel sheet of which thickness varies in tapered shape in rolling direction - Google Patents

Method of controlling thickness of tapered steel sheet of which thickness varies in tapered shape in rolling direction Download PDF

Info

Publication number
JP2008246512A
JP2008246512A JP2007089147A JP2007089147A JP2008246512A JP 2008246512 A JP2008246512 A JP 2008246512A JP 2007089147 A JP2007089147 A JP 2007089147A JP 2007089147 A JP2007089147 A JP 2007089147A JP 2008246512 A JP2008246512 A JP 2008246512A
Authority
JP
Japan
Prior art keywords
thickness
rolling
roll gap
rolling load
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007089147A
Other languages
Japanese (ja)
Other versions
JP4869127B2 (en
Inventor
Atsushi Aizawa
敦 相沢
Katsuhide Nishio
克秀 西尾
Shinobu Kano
忍 狩野
Kenji Hara
健治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2007089147A priority Critical patent/JP4869127B2/en
Publication of JP2008246512A publication Critical patent/JP2008246512A/en
Application granted granted Critical
Publication of JP4869127B2 publication Critical patent/JP4869127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacture a tapered steel sheet which is high in the accuracy of thickness even when the rolled length is long. <P>SOLUTION: In the method of controlling thickness of the tapered steel sheet, the thickness on the outlet side in the rolling direction is continuously varied by changing the target thickness on the outlet side according to the rolled length into a tapered shape by using a control system for performing thickness control by setting the roll gap on the basis of the relational expression which holds among the target rolling load and the rolling load, the roll gap and the thickness of the steel sheet, wherein the preset value of the roll gap is corrected on the basis of the predicted value of the rolling load difference between adjacent control sampling points and the measured value of the thickness. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧延方向に板厚がテーパ状に変化するテーパ鋼板を圧延する際の板厚制御方法に関する。   The present invention relates to a thickness control method for rolling a tapered steel plate whose thickness changes in a taper shape in the rolling direction.

構造物の軽量化,材料費の低減,溶接工程の省略等の観点から、圧延方向で板厚がテーパ状に変化するように圧延された鋼板が要求されている。この種のテ−パ鋼板の圧延には、圧延方向に出側板厚をテーパ状に変化させる板厚制御が必要となる。
通常、平板圧延における板厚制御は、圧延荷重P,ロールギャップS及び鋼板の出側板厚hの間に成り立つ下記の(1)式で示される基本的な関係に基づいて行われる。
S=h−P/M (1)
ここで、Mはミル剛性係数である。
From the viewpoint of reducing the weight of the structure, reducing the material cost, omitting the welding process, and the like, there is a demand for a steel plate that is rolled so that the plate thickness changes in a taper shape in the rolling direction. In rolling this type of taper steel plate, it is necessary to control the plate thickness so that the outlet side plate thickness is changed in a taper shape in the rolling direction.
Usually, the plate thickness control in flat plate rolling is performed based on the basic relationship expressed by the following equation (1) that holds among the rolling load P, the roll gap S, and the outlet side plate thickness h of the steel plate.
S = h−P / M (1)
Here, M is a mill stiffness coefficient.

(1)式は圧延中の状態で常に成り立つ式であるが、鋼板のかみ込み前の予測計算においても、目標出側板厚h*を得るために(1)式と同様の(2)式を用いて予測圧延荷重P*に基づいてロールギャップS*を設定することが行われている。
*=h*−P*/M (2)
そして、(1)式で得られる鋼板の出側板厚hを、(2)式で得られる目標出側板厚hに一致させるために下記の(3)式に従ってロールギャップSを設定制御する。
S=S*−1/M・(P−P*) (3)
Equation (1) is an equation that always holds in the rolling state. In the prediction calculation before the steel plate is bitten, the same equation (2) as equation (1) is used to obtain the target exit thickness h *. The roll gap S * is set based on the predicted rolling load P * .
S * = h * −P * / M (2)
Then, the roll gap S is set and controlled in accordance with the following equation (3) in order to make the outlet thickness h of the steel plate obtained by the equation (1) coincide with the target outlet thickness h * obtained by the equation (2).
S = S * -1 / M. (PP * ) (3)

(3)式は絶対値AGCと称される制御方式であり、平板圧延の板厚制御に広く用いられているが、これをテーパ鋼板の板厚制御に適用する技術として、例えば特許文献1では、上記(3)式をベースとして、目標出側板厚h*を圧延長に従って時々刻々変更していくためのロールギャップSを(4)式で与える方法が提案されている。
S=S*−1/M・(P−P*)+ΔhT (4)
ここで、ΔhTはかみ込み端を基準にして圧延長に対応した目標出側テーパ板厚変化量である。
Equation (3) is a control method called absolute value AGC, and is widely used for plate thickness control of flat plate rolling. As a technique for applying this to plate thickness control of tapered steel plates, for example, in Patent Document 1 Based on the above equation (3), a method has been proposed in which the roll gap S for changing the target delivery thickness h * from moment to moment according to the rolling length is given by equation (4).
S = S * −1 / M · (P−P * ) + Δh T (4)
Here, Δh T is a target outlet taper thickness change corresponding to the rolling length with reference to the biting end.

また、特許文献2では、ミルヒステリシス等の影響により制御系が不安定になることを防止するために、絶対値AGCにおいて板厚制御系のゲインであるスケールファクタKAを使用した場合にも目標とするテーパ板厚が得られるように、目標出側テーパ板厚変化量ΔhTを補正する方法が開示されている。この技術では下記(5)式に従ってロールギャップを設定することで、板厚制御系のゲインであるスケールファクタKAが1.0より小さい場合でも、出側板厚を目標出側テーパ板厚に一致させ得るようにしている。
S=S*−K/M・(P−P*)+η・Δh (5)
η=(M+Q(1−KA))/M (6)
ここで、Qは被圧延材の塑性係数(−∂P/∂h)である。
The target even when used in Patent Document 2, in order to control system by the influence of the mill hysteresis is prevented from becoming unstable, the scale factor K A is the gain of the thickness control system in absolute value AGC A method of correcting the target outlet taper plate thickness change amount Δh T so that the taper plate thickness is obtained is disclosed. By setting the roll gap in accordance with the following equation (5) in this technique, even if the scale factor K A is the gain of the gauge control system is less than 1.0, it exits matching side thickness to the target output side tapered thickness I am trying to let you.
S = S * −K A / M · (P−P * ) + η · Δh T (5)
η = (M + Q (1−K A )) / M (6)
Here, Q is a plasticity coefficient (−∂P / ∂h) of the material to be rolled.

(5),(6)式に基づく板厚制御方法は、テーパ鋼板を圧延する際に圧延荷重変動量を予測し、この予測値に基づいて板厚制御を行うものであり、(7)式と等価である。
S=S*−KA/M・(P−P*)−(1−KA)/M・ΔP’+ΔhT (7)
(7)式中の予測圧延荷重変動量ΔP’は、
ΔP’=−Q・ΔhT (8)
で示されるが、この式による圧延荷重予測に誤差がある場合、すなわちΔP’=P−P*の関係が成り立たない場合には、出側板厚に誤差を生じるという問題がある。
The plate thickness control method based on the equations (5) and (6) predicts the rolling load fluctuation amount when rolling the tapered steel plate, and performs the plate thickness control based on the predicted value. Is equivalent to
S = S * −K A / M · (PP * ) − (1−K A ) / M · ΔP ′ + Δh T (7)
The predicted rolling load fluctuation amount ΔP ′ in the equation (7) is
ΔP ′ = − Q · Δh T (8)
However, when there is an error in the rolling load prediction according to this equation, that is, when the relationship ΔP ′ = P−P * does not hold, there is a problem that an error occurs in the delivery side plate thickness.

そこで、特許文献3では、被圧延材の塑性係数の長手方向分布(制御のサンプリング点に相当するi点圧延時における被圧延材の塑性係数)Qiを予め求めておき、(9)式によりi点圧延時における予測圧延荷重変動量ΔPi’を算出することにより目標通りのテーパ勾配を有するテーパ鋼板が得られる板厚制御方法が提案されている。
ΔPi’=−Σ(Qi・Δhn) (9)
ここで、Δhnは目標出側テーパ板厚変化量ΔhTを制御のサンプリング区分でn等分したものである。
特開昭51‐97565号公報 特開平8‐90031号公報 特許第3016119号公報
Therefore, in Patent Document 3, the longitudinal distribution of the plastic coefficient of the material to be rolled (the plastic coefficient of the material to be rolled at the time of i-point rolling corresponding to the control sampling point) Q i is obtained in advance, and the equation (9) is used. A plate thickness control method has been proposed in which a tapered steel plate having a taper gradient as a target is obtained by calculating a predicted rolling load fluctuation amount ΔP i ′ during i-point rolling.
ΔP i ′ = −Σ (Q i · Δh n ) (9)
Here, Δh n is obtained by dividing the target outlet taper thickness change amount Δh T into n equal parts in the control sampling section.
Japanese Patent Laid-Open No. 51-97565 JP-A-8-90031 Japanese Patent No. 3016119

特許文献3で提案されている方法では、切り板等のように圧延長が短く、熱膨張等の影響によりロール径が変化しないとともに、制御のサンプリングタイムが短く、隣接するサンプリング点であるi点とi−1点との圧延荷重差が小さい場合には目標通りのテーパ勾配を有するテーパ鋼板が得られる。
しかし、同一テーパ形状のテーパ鋼板を繰り返し圧延するテーパ鋼板の連続成形においては、圧延長が長くなると、ロールの温度が上昇し、熱膨張等の影響によりロール径が大きくなり、出側板厚に誤差を生じる場合があった。また、制御系のプロセスコンピュータの容量等の観点から、制御のサンプリングタイムを短くすることができず、サンプリングタイムが長くなる場合には、隣接するサンプリング点であるi点とi−1点との圧延荷重差が大きくなり、目標通りのテーパ勾配を有するテーパ鋼板が得られない場合があった。
In the method proposed in Patent Document 3, the rolling length is short like a cut plate, the roll diameter does not change due to the influence of thermal expansion, etc., and the sampling time of control is short, i points being adjacent sampling points. When the rolling load difference between point i-1 and point i-1 is small, a tapered steel plate having a taper gradient as intended is obtained.
However, in the continuous forming of tapered steel sheets that repeatedly roll taper steel sheets with the same taper shape, the roll temperature increases as the rolling length increases, the roll diameter increases due to the effects of thermal expansion, etc. May have occurred. Further, from the viewpoint of the capacity of the process computer of the control system, when the sampling time of control cannot be shortened and the sampling time becomes long, the points i and i-1 which are adjacent sampling points are In some cases, the rolling load difference becomes large, and a tapered steel plate having a taper gradient as intended cannot be obtained.

本発明は、このような問題を解消すべく案出されたものであり、同一テーパ形状のテーパ鋼板を繰り返し圧延するテーパ鋼板の連続成形において圧延長が長くなる場合においても、制御のサンプリングタイムにかかわらず板厚精度の高いテーパ鋼板の圧延が可能な方法を提供することを目的とする。   The present invention has been devised to solve such a problem, and even when the rolling length becomes long in the continuous forming of the tapered steel sheet repeatedly rolling the tapered steel sheet having the same taper shape, the sampling time of the control is achieved. It is an object of the present invention to provide a method capable of rolling a tapered steel plate with high sheet thickness accuracy.

本発明の圧延方向に板厚がテーパ状に変化するテーパ鋼板の板厚制御方法は、その目的を達成するため、予測圧延荷重と圧延荷重,ロールギャップ及び鋼板の板厚の間に成り立つ関係式に基づいてロールギャップを設定し板厚制御を行う制御系を用い、目標出側板厚を圧延長に従ってテーパ状に変更することにより出側板厚を圧延方向に連続的に変化させるテーパ鋼板の板厚制御方法において、隣接する制御のサンプリング点間の圧延荷重差予測値及び板厚測定値に基づいてロールギャップ設定値を補正することを特徴とする。
また、同一テーパ形状のテーパ鋼板を繰り返し圧延するテーパ鋼板の圧延において、繰り返しの1サイクル内で隣接する制御のサンプリング点間の圧延荷重差予測値に基づいてロールギャップ設定値を補正するとともに、サイクル間で板厚測定値に基づいてロールギャップ設定値を補正することを特徴とする。
In order to achieve the purpose of the sheet thickness control method of the tapered steel sheet in which the sheet thickness changes in a taper shape in the rolling direction of the present invention, a relational expression is established between the predicted rolling load, the rolling load, the roll gap, and the sheet thickness of the steel sheet. The thickness of the taper steel plate that continuously changes the outlet side plate thickness in the rolling direction by changing the target outlet side plate thickness to a taper shape according to the rolling length using a control system that controls the thickness by setting the roll gap based on In the control method, the roll gap set value is corrected based on a rolling load difference predicted value and a measured thickness value between adjacent control sampling points.
Further, in rolling a tapered steel sheet that repeatedly rolls the same tapered taper steel sheet, the roll gap setting value is corrected based on the rolling load difference prediction value between the sampling points of the adjacent controls within one repeated cycle, and the cycle The roll gap setting value is corrected based on the measured value of the sheet thickness.

本発明においては、繰り返しのサイクル間で板厚測定値に基づいてロールギャップ設定値を補正した板厚制御式を用いるとともに1サイクル内で隣接する制御のサンプリング点間の圧延荷重差予測値に基づいてロールギャップ設定値を補正した板厚制御式を用いているので、同一テーパ形状のテーパ鋼板を繰り返し圧延するテーパ鋼板の連続成形において圧延長が長くなる場合においても、サンプリングタイムにかかわらず板厚精度の高いテーパ鋼板の圧延が可能となる。   In the present invention, a sheet thickness control formula in which a roll gap set value is corrected based on a measured thickness value between repeated cycles is used, and based on a rolling load difference prediction value between sampling points of adjacent controls within one cycle. Therefore, even if the rolling length becomes long in continuous forming of tapered steel sheets that repeatedly roll the same tapered taper steel sheet, the sheet thickness is controlled regardless of the sampling time. It is possible to roll a tapered steel plate with high accuracy.

本発明者らは、ロール径の変化の影響を考慮した板厚制御式を用いることにより同一テーパ形状のテーパ鋼板を繰り返し圧延するテーパ鋼板の連続成形において圧延長が長くなり、熱膨張等の影響によりロール径が変化する場合においても、板厚精度の高いテーパ鋼板の圧延が可能な板厚制御方法を種々調査検討した。
その結果、繰り返しのサイクル間で板厚測定値に基づいてロールギャップ設定値を補正した板厚制御式を用いることにより、ロール径変化の影響が考慮され、出側板厚の誤差が少なくなることを見出した。また、制御のサンプリングタイムにかかわらず板厚精度の高いテーパ鋼板の圧延が可能な板厚制御方法について種々調査検討した結果、繰り返しの1サイクル内で隣接するサンプリング点であるi点とi−1点との圧延荷重差予測値に基づいてロールギャップ設定値を補正した板厚制御式を用いることにより、サンプリングタイムが長く、隣接するサンプリング点間の圧延荷重差が大きくなる場合にも、目標通りのテーパ勾配を有するテーパ鋼板が得られことを見出した。
The present inventors have increased the rolling length in continuous forming of a tapered steel sheet by repeatedly rolling a tapered steel sheet having the same taper shape by using a sheet thickness control formula that takes into account the influence of changes in the roll diameter, and influences such as thermal expansion. Various investigations and investigations were conducted on sheet thickness control methods that enable rolling of a tapered steel sheet with high sheet thickness accuracy even when the roll diameter changes due to the above.
As a result, by using the plate thickness control formula that corrects the roll gap setting value based on the plate thickness measurement value between repeated cycles, the influence of the roll diameter change is taken into account, and the error in the exit side plate thickness is reduced. I found it. In addition, as a result of various investigations and studies on a plate thickness control method capable of rolling a tapered steel plate with high plate thickness accuracy regardless of the control sampling time, the i point and i-1 which are adjacent sampling points within one repeated cycle. By using the plate thickness control formula that corrects the roll gap setting value based on the rolling load difference prediction value with the point, even when the sampling time is long and the rolling load difference between adjacent sampling points becomes large, It was found that a taper steel plate having a taper gradient of 5 mm was obtained.

以下に、本発明の実施の形態について、制御式に基づいて詳しく説明する。
基準位置である先端の目標板厚をh0、基準位置の圧延荷重予測値をP0 C、ミル剛性係数をMとして、基準位置におけるロールギャップS0を(10)式で設定する。
0=h0−P0 c/M (10)
そして、同一テーパ形状のテーパ鋼板の繰り返し圧延における1サイクル内で、制御の各サンプリング点のロールギャップSiを(11)式で補正する。
i=S0−1/M・(Pi-1−P0 c)−1/M・(Pi c−Pi-1 c)・Pi-1/Pi-1 c+Δh (11)
ここで、Pi c,Pi-1 cはそれぞれ制御しようとしているサンプリング点と1つ前のサンプリング点の圧延荷重予測値、Pi-1は制御しようとしているサンプリング点の1つ前のサンプリング点の圧延荷重測定値、Δhiは制御しようとしているサンプリング点の基準位置に対する目標出側板厚差である。
Hereinafter, embodiments of the present invention will be described in detail based on control equations.
The roll gap S 0 at the reference position is set by the equation (10), where h 0 is the target plate thickness at the tip that is the reference position, P 0 C is the predicted rolling load at the reference position, and M is the mill stiffness coefficient.
S 0 = h 0 −P 0 c / M (10)
Then, in one cycle in the repeated rolling of the tapered steel having the same tapered, to correct the roll gap S i of each sampling point of control (11).
S i = S 0 -1 / M · (P i-1 -P 0 c ) -1 / M · (P i c -P i-1 c ) · P i-1 / P i-1 c + Δh i ( 11)
Here, P i c and P i-1 c are the sampling point to be controlled and the rolling load prediction value at the previous sampling point, and P i-1 is the sampling at the previous sampling point to be controlled. rolling load measurement value of the point, Delta] h i is the target delivery side thickness difference with respect to a reference position of the sampling points are trying to control.

なお、従来技術で示した特許文献1〜3で提案されている方法はいずれも(11)式における第3項である1/M・(Pi c−Pi-1 c)・Pi-1/Pi-1 cが考慮されておらず、本発明を構成する(11)式はこの第3項により隣接する制御のサンプリング点であるi点とi−1点との圧延荷重差予測値に基づいてロールギャップ設定値を補正しているところに特徴がある。 The methods proposed in Patent Documents 1 to 3 shown in the prior art are all the 1 / M · (P i c −P i−1 c ) · P i− which is the third term in the equation (11). 1 / P i-1 c is not considered, and the expression (11) constituting the present invention predicts the rolling load difference between the i point and the i-1 point, which are sampling points of the adjacent control, according to the third term. It is characterized in that the roll gap setting value is corrected based on the value.

また、繰り返し圧延におけるサイクル間で、繰り返しの1サイクルの終わりのサンプリング点におけるロールギャップSmを(12)式で補正する。
m=S0−1/M・(Pm-1−P0 c)−1/M・(Pm c−Pm-1 c)・Pm-1/Pm-1 c
+Δhm+(hj−hj m)・α (12)
ここで、m点は繰り返しの1サイクルの終わりのサンプリング点、j点は繰り返しの1サイクルにおける任意のサンプリング点を示す。Pm c,Pm-1 cはそれぞれ制御しようとしているサンプリング点であるm点と1つ前のサンプリング点であるm−1点の圧延荷重予測値、Pm-1はm−1点の圧延荷重測定値、Δhmはm点の基準位置に対する目標出側板厚差、hj,hj mはそれぞれj点における目標出側板厚と出側板厚測定値,αは板厚測定値に基づいたロールギャップ設定値補正における補正係数である。
Further, the roll gap S m at the sampling point at the end of one repeated cycle is corrected by the equation (12) between cycles in repeated rolling.
S m = S 0 -1 / M · (P m-1 -P 0 c ) -1 / M · (P m c -P m-1 c ) · P m-1 / P m-1 c
+ Δh m + (h j −h j m ) · α (12)
Here, m point represents a sampling point at the end of one cycle of repetition, and j point represents an arbitrary sampling point in one cycle of repetition. P m c and P m-1 c are the rolling load prediction values at the m point which is the sampling point to be controlled and the m-1 point which is the previous sampling point, and P m-1 is the m-1 point. rolling load measurement value, Delta] h m is the target delivery side thickness difference with respect to a reference position of the point m, h j, h j m out goal in each point j side thickness and exit side thickness measurements, alpha is based on the thickness measurement It is a correction coefficient in the roll gap set value correction.

圧延中にはロールの温度が上昇し、熱膨張等の影響によりロール径が変化するが、本発明を構成する(12)式は第5項である(hj-hj m)・αで出側板厚の目標値と測定値の差を考慮しており、ロール径変化に伴う出側板厚誤差をサイクル間で補正するところに特徴がある。 During rolling, the temperature of the roll rises and the roll diameter changes due to the effects of thermal expansion, etc., but the formula (12) constituting the present invention is the fifth term (h j -h j m ) · α The difference between the target value of the delivery side plate thickness and the measured value is taken into consideration, and the feature is that the delivery side plate thickness error accompanying the roll diameter change is corrected between cycles.

図1は(10)式,(11)式及び(12)式に基づいてテーパ鋼板の板厚制御方法を実施するための制御系を示すブロック図である。図中1は圧延機、2はワークロール、3は圧下装置、4は圧下位置検出器、5は圧延荷重計、6はワークロール2の回転数に応じてパルスを出力するパルス発生器、7は板厚計、8は被圧延材を示している。圧延中に圧下位置検出器4により圧下位置を、圧延荷重計5により圧延荷重を、パルス発生器6によりロール周速を、さらに板厚計7により出側板厚を検出し、これらの検出結果に基づいて圧下装置3によりロールギャップを調節する。   FIG. 1 is a block diagram showing a control system for carrying out a method for controlling the thickness of a tapered steel plate based on the equations (10), (11) and (12). In the figure, 1 is a rolling mill, 2 is a work roll, 3 is a reduction device, 4 is a reduction position detector, 5 is a rolling load meter, 6 is a pulse generator that outputs a pulse according to the number of rotations of the work roll 2, 7 Indicates a thickness gauge, and 8 indicates a material to be rolled. During rolling, the rolling position detector 4 detects the rolling position, the rolling load meter 5 detects the rolling load, the pulse generator 6 detects the roll peripheral speed, and the plate thickness meter 7 detects the exit side plate thickness. Based on this, the roll gap is adjusted by the reduction device 3.

9は圧延条件入力器、10は目標板厚差設定器、11は圧延荷重予測器、12はロールギャップ設定器、13はロールギャップ位置制御系を示す。目標板厚差設定器10は、パルス発生器6から取り込んだパルス数より得られる被圧延材8の圧延長に基づき、制御しようとしているサンプリング点の基準位置に対する目標出側板厚差Δhを算出し、これを圧延荷重予測器11及びロールギャップ設定器12へ入力する。なお、被圧延材8の圧延長はパルス数から得られるロール周速に基づき、先進率予測式を用いて板速度を算出することにより得られる。 9 is a rolling condition input device, 10 is a target plate thickness difference setting device, 11 is a rolling load predictor, 12 is a roll gap setting device, and 13 is a roll gap position control system. Target thickness difference setter 10 on the basis of the rolling length of the rolled material 8 obtained from the number of pulses taken from the pulse generator 6, calculates the target delivery side thickness difference Delta] h i with respect to a reference position of the sampling points are trying to control This is input to the rolling load predictor 11 and the roll gap setter 12. The rolling length of the material to be rolled 8 is obtained by calculating the plate speed using an advanced rate prediction formula based on the roll peripheral speed obtained from the number of pulses.

圧延荷重予測器11は、目標板厚差設定器10から入力された被圧延材8の目標出側板厚差Δhと圧延条件入力器9に入力された圧延条件に基づき、Bland & Fordの式,Hillの式等の圧延荷重式により制御しようとしているサンプリング点と1つ前のサンプリング点の圧延荷重予測値Pi c,Pi-1 cを算出し、これをロールギャップ設定器12へ入力する。
ロールギャップ設定器12は、基準位置である先端の目標板厚h0、圧延荷重予測器11から入力された基準位置の圧延荷重予測値P0 cに基づき、前述の(10)式を用いて基準位置におけるロールギャップS0を算出し、これをロールギャップ位置制御系13に入力する。
Rolling load prediction unit 11, based on rolling condition inputted targeted delivery side thickness difference Delta] h i of the rolled material 8 that is input from the target thickness difference setter 10 to the rolling condition input unit 9, Bland & Ford of formula The rolling load prediction values P i c and P i-1 c of the sampling point to be controlled by the rolling load equation such as the Hill equation and the previous sampling point are calculated and input to the roll gap setting device 12. To do.
The roll gap setter 12 uses the above-described equation (10) based on the target plate thickness h 0 at the tip, which is the reference position, and the rolling load prediction value P 0 c at the reference position input from the rolling load predictor 11. The roll gap S 0 at the reference position is calculated and input to the roll gap position control system 13.

また、ロールギャップ設定器12では、同一テーパ形状のテーパ鋼板の繰り返し圧延における1サイクル内で、基準位置におけるロールギャップS0、基準位置の圧延荷重予測値P0 c、目標板厚差設定器10から入力された被圧延材8の目標出側板厚差Δhi、圧延荷重予測器11から入力された圧延荷重予測値Pi c,Pi-1 c及び制御しようとしているサンプリング点の1つ前のサンプリング点の圧延荷重測定値Pi-1に基づき、前述の(11)式を用いて各サンプリング点のロールギャップSiを算出し、これをロールギャップ位置制御系13に入力する。 In the roll gap setting device 12, the roll gap S 0 at the reference position, the rolling load prediction value P 0 c at the reference position, and the target plate thickness difference setting device 10 within one cycle of repeated rolling of the tapered steel plates having the same taper shape. , The target thickness difference Δh i of the material 8 to be rolled, the rolling load prediction values P i c and P i-1 c input from the rolling load predictor 11, and the sampling point to be controlled. Based on the rolling load measurement value P i-1 at the sampling point, the roll gap S i at each sampling point is calculated using the above-described equation (11), and this is input to the roll gap position control system 13.

さらに、繰り返し圧延におけるサイクル間では、1サイクル内でのロールギャップS算出時の入力データに加えて、繰り返しの1サイクルにおける任意のサンプリング点であるj点における目標出側板厚と出側板厚測定値h,hj mに基づき、前述の(12)式を用いて繰り返しの1サイクルの終わりのサンプリング点であるm点におけるロールギャップSmを算出し、これをロールギャップ位置制御系13に入力する。 Further, between cycles in repeated rolling, in addition to the input data when calculating the roll gap S i within one cycle, the target outlet thickness and outlet thickness measurement at point j, which is an arbitrary sampling point in one repeated cycle. Based on the values h j and h j m , the roll gap S m at the point m which is the sampling point at the end of one cycle of repetition is calculated using the above-described equation (12), and this is given to the roll gap position control system 13. input.

以下、本発明をその実施例を示す図面に基づき具体的に説明する。
図1に示した制御系を用いて、図2の形状を繰り返し圧延し、テーパ鋼板を連続成形した。圧延素材として、板厚1.6mm,板幅250mmのコイル状の普通鋼鋼板を用い、目標とするテーパ形状を薄肉部板厚1.0mm,厚肉部板厚1.4mm,薄肉部長さ100mm,テーパ部長さ300mm,厚肉部長さ200mmの形状とし、全長1000mmのテーパ鋼板を繰り返し800枚圧延した。なお、圧延荷重式としては、Hillの式を用い、板厚測定値に基づいたロールギャップ設定値補正における補正係数αを0.7として圧延を行った。また、板厚制御におけるサンプリングタイムについては、圧延長20mm間隔で制御を行うようにした。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
Using the control system shown in FIG. 1, the shape of FIG. 2 was repeatedly rolled to continuously form a tapered steel plate. As a rolling material, a coiled plain steel plate with a plate thickness of 1.6 mm and a plate width of 250 mm is used, and the target taper shape is a thin portion plate thickness of 1.0 mm, a thick portion plate thickness of 1.4 mm, and a thin portion length of 100 mm. The taper steel sheet was formed into a shape having a taper length of 300 mm and a thick wall length of 200 mm, and a taper steel plate having a total length of 1000 mm was repeatedly rolled by 800 sheets. As the rolling load equation, Hill's equation was used, and rolling was performed with a correction coefficient α in the roll gap setting value correction based on the measured thickness value being 0.7. Further, the sampling time in the plate thickness control is controlled at intervals of 20 mm in rolling length.

従来法として特許文献3で提案されている方法によりテーパ鋼板圧延における板厚制御を行った場合と、本発明により板厚制御を行った場合の板厚精度を比較した。その結果は表1に示すとおりである。
従来法では、熱膨張等によるロール径変化の影響や隣接する制御のサンプリング点間の圧延荷重差が考慮されていないため、平均偏差が34μmであったが、本発明法では平均偏差が13μmと改善されている。また、従来法では、圧延長が長くなるにつれてロール径変化が大きくなるため、最大偏差が82μmであったが、本発明法では最大偏差が25μmと改善されている。
The plate thickness accuracy in the case where the plate thickness control in the tapered steel plate rolling was performed by the method proposed in Patent Document 3 as a conventional method was compared with the plate thickness accuracy in the case where the plate thickness control was performed according to the present invention. The results are shown in Table 1.
In the conventional method, since the influence of the roll diameter change due to thermal expansion or the like and the rolling load difference between adjacent control sampling points are not taken into consideration, the average deviation was 34 μm, but in the method of the present invention, the average deviation was 13 μm. It has been improved. Further, in the conventional method, the change in roll diameter increases as the rolling length becomes longer, so the maximum deviation was 82 μm, but in the method of the present invention, the maximum deviation is improved to 25 μm.

本発明の板厚制御方法の制御系を示すブロック図The block diagram which shows the control system of the board thickness control method of this invention 実施例で製造したテーパ形状Tapered shape manufactured in the example

符号の説明Explanation of symbols

1:圧延機 2:ワークロール
3:圧下装置 4:圧下位置検出器
5:圧延荷重計 6:パルス発生器
7:板厚計 8:被圧延材
9:圧延条件入力器 10:目標板厚差設定器
11:圧延荷重予測器 12:ロールギャップ設定器
13:ロールギャップ位置制御系
1: Rolling mill 2: Work roll 3: Rolling device 4: Rolling position detector 5: Rolling load meter 6: Pulse generator 7: Plate thickness meter 8: Material to be rolled 9: Rolling condition input device 10: Target plate thickness difference Setter 11: Rolling load predictor 12: Roll gap setter 13: Roll gap position control system

Claims (2)

予測圧延荷重と圧延荷重,ロールギャップ及び鋼板の板厚の間に成り立つ関係式に基づいてロールギャップを設定し板厚制御を行う制御系を用い、目標出側板厚を圧延長に従ってテーパ状に変更することにより出側板厚を圧延方向に連続的に変化させるテーパ鋼板の板厚制御方法において、隣接する制御のサンプリング点間の圧延荷重差予測値及び板厚測定値に基づいてロールギャップ設定値を補正することを特徴とする圧延方向に板厚がテーパ状に変化するテーパ鋼板の板厚制御方法。   Using a control system that sets the roll gap based on the relational expression established between the predicted rolling load and rolling load, the roll gap, and the plate thickness, and changes the target exit thickness to a taper according to the rolling length. In the sheet thickness control method of the tapered steel sheet that continuously changes the exit side sheet thickness in the rolling direction, the roll gap setting value is determined based on the rolling load difference predicted value and the measured thickness value between the sampling points of adjacent controls. A method for controlling the thickness of a tapered steel plate, wherein the thickness changes in a taper shape in the rolling direction, wherein correction is performed. 同一テーパ形状のテーパ鋼板を繰り返し圧延するテーパ鋼板の圧延において、繰り返しの1サイクル内で隣接する制御のサンプリング点間の圧延荷重差予測値に基づいてロールギャップ設定値を補正するとともに、サイクル間で板厚測定値に基づいてロールギャップ設定値を補正することを特徴とする請求項1記載の圧延方向に板厚がテーパ状に変化するテーパ鋼板の板厚制御方法。   In rolling taper steel plates that repeatedly roll taper steel plates with the same taper shape, the roll gap setting value is corrected based on the rolling load difference prediction value between adjacent sampling points of control within one cycle, and between cycles. 2. The method for controlling the thickness of a tapered steel sheet, wherein the thickness of the roll changes in a rolling direction according to claim 1, wherein the roll gap setting value is corrected based on the measured thickness value.
JP2007089147A 2007-03-29 2007-03-29 Thickness control method for taper steel plate whose thickness changes in the rolling direction in a taper shape Active JP4869127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089147A JP4869127B2 (en) 2007-03-29 2007-03-29 Thickness control method for taper steel plate whose thickness changes in the rolling direction in a taper shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089147A JP4869127B2 (en) 2007-03-29 2007-03-29 Thickness control method for taper steel plate whose thickness changes in the rolling direction in a taper shape

Publications (2)

Publication Number Publication Date
JP2008246512A true JP2008246512A (en) 2008-10-16
JP4869127B2 JP4869127B2 (en) 2012-02-08

Family

ID=39972084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089147A Active JP4869127B2 (en) 2007-03-29 2007-03-29 Thickness control method for taper steel plate whose thickness changes in the rolling direction in a taper shape

Country Status (1)

Country Link
JP (1) JP4869127B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073006A (en) * 2009-09-29 2011-04-14 Nisshin Steel Co Ltd Sheet thickness control method of tapered steel sheet with sheet thickness varied in tapered shape in rolling direction
CN104985006A (en) * 2015-07-08 2015-10-21 燕山大学 Four-roller mill load roller gap shape prediction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073006A (en) * 2009-09-29 2011-04-14 Nisshin Steel Co Ltd Sheet thickness control method of tapered steel sheet with sheet thickness varied in tapered shape in rolling direction
CN104985006A (en) * 2015-07-08 2015-10-21 燕山大学 Four-roller mill load roller gap shape prediction method
CN104985006B (en) * 2015-07-08 2016-08-24 燕山大学 A kind of four-high mill loading roll gap shape forecasting procedure

Also Published As

Publication number Publication date
JP4869127B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4919857B2 (en) Manufacturing method of single-sided taper steel plate whose thickness changes in a taper shape in the rolling direction
JP4869126B2 (en) Tapered steel sheet manufacturing method in which the sheet thickness changes in a taper shape in the rolling direction
JP4869127B2 (en) Thickness control method for taper steel plate whose thickness changes in the rolling direction in a taper shape
JP5610734B2 (en) Thickness control method for taper steel plate whose thickness changes in the rolling direction in a tapered shape
JP5418244B2 (en) Control method for cold tandem rolling mill
KR100660204B1 (en) Thickness control apparatus in rolling mill
JP2016078078A (en) Plate thickness control method for tapered steel plate having plate thickness changed in tapered shape in rolling direction
JP3016119B2 (en) Thickness control method of taper plate
JP2007185703A (en) Method of rolling control and hot finishing mill
JP4609197B2 (en) Plate thickness controller
JP5557464B2 (en) Tension control method for multi-high mill and tension control device for multi-high mill
JP5786844B2 (en) Control method and control device for tandem rolling mill
JP2006272386A (en) Thickness control method of deformed steel plate
JP5631233B2 (en) Thickness control method of rolling mill
JP2803573B2 (en) Manufacturing method of tapered steel plate
JP2016147276A (en) Plate thickness control method of rolling machine
JP6394782B2 (en) Sheet width control device for rolled material
JP4641906B2 (en) Sheet thickness control method and rolling mill
JP5617307B2 (en) Steel plate rolling method and pass schedule calculation method
JPH0890031A (en) Method for controlling thickness of taper plate
JPH08332507A (en) Method for controlling thickness of taper plate
JP5885615B2 (en) How to determine rolling pass schedule
JP2950182B2 (en) Manufacturing method of tapered steel plate
JP2018027553A (en) Plate thickness control method and device for rolling machine
JP2953334B2 (en) Manufacturing method of tapered thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4869127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350