JP2008242391A - Diffraction optical element and optical system using the same - Google Patents

Diffraction optical element and optical system using the same Download PDF

Info

Publication number
JP2008242391A
JP2008242391A JP2007086843A JP2007086843A JP2008242391A JP 2008242391 A JP2008242391 A JP 2008242391A JP 2007086843 A JP2007086843 A JP 2007086843A JP 2007086843 A JP2007086843 A JP 2007086843A JP 2008242391 A JP2008242391 A JP 2008242391A
Authority
JP
Japan
Prior art keywords
optical element
line
diffractive optical
grating
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007086843A
Other languages
Japanese (ja)
Other versions
JP5258204B2 (en
JP2008242391A5 (en
Inventor
Hiroto Yasui
裕人 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007086843A priority Critical patent/JP5258204B2/en
Priority to US11/867,989 priority patent/US7710651B2/en
Priority to DE602007004710T priority patent/DE602007004710D1/en
Priority to EP07020072A priority patent/EP1972971B1/en
Priority to CN2007101624746A priority patent/CN101271168B/en
Publication of JP2008242391A publication Critical patent/JP2008242391A/en
Publication of JP2008242391A5 publication Critical patent/JP2008242391A5/ja
Application granted granted Critical
Publication of JP5258204B2 publication Critical patent/JP5258204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a diffraction optical element which has high diffraction efficiency for diffracted light of specific order (design order) in a wide wavelength range and can sufficiently suppress unnecessary diffracted light, is easely manufactured and to improve internal transmittance of the diffraction optical element at this time. <P>SOLUTION: The diffraction optical element has a structure in which a first diffraction grating made of a first material and a second diffraction grating made of a second material are stacked so that diffraction surfaces of diffraction parts of respective diffraction gratings are in contact with each other. The second material is made of a material obtained by mixing a particulate material with a resin material. Then a refractive index of the first material to a (d) line, an Abbe number, partial dispersion ratios to a (g) line and an F line, and partial dispersion ratios to the (g) line and (d) line are denoted as nd1, νd1, θg and F1, and θg and d1 and set to suitable values. Similarly, values of the second material are also denoted as nd2, νd2, θg and F2, and θg and d2 and refractive index, Abbe number to a (d) line are denoted as ndb2, νdb2 and set to suitable values. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は回折光学素子に関し、例えばデジタルスチルカメラ、ビデオカメラ、フィルム用カメラ、或いは監視用カメラ等の光学機器に好適なものである。   The present invention relates to a diffractive optical element, and is suitable for an optical apparatus such as a digital still camera, a video camera, a film camera, or a surveillance camera.

従来、硝材の組合せにより色収差を減じる方法に対して、レンズ面や光学系の一部に回折作用を有する回折光学素子(以下、回折格子ともいう)を設けることで色収差を減じる方法が知られている(非特許文献1、特許文献1〜3)。これは、光学系中の屈折面と回折面とでは、ある基準波長の光線に対して色収差が逆方向に発現するという物理現象を利用したものである。   Conventionally, a method of reducing chromatic aberration by providing a diffractive optical element (hereinafter also referred to as a diffraction grating) having a diffractive action on a lens surface or a part of an optical system is known as opposed to a method of reducing chromatic aberration by combining glass materials. (Non-patent document 1, Patent documents 1 to 3). This utilizes the physical phenomenon that chromatic aberration appears in the opposite direction with respect to a light beam having a certain reference wavelength at the refracting surface and the diffractive surface in the optical system.

さらに、このような回折光学素子には、その周期的構造の周期を変化させることで、非球面レンズのような効果を持たせることもでき、収差の低減に大きな効果があることが知られている。   Furthermore, it is known that such a diffractive optical element can have an effect similar to an aspherical lens by changing the period of its periodic structure, and has a great effect in reducing aberrations. Yes.

回折光学素子を有する光学系において、使用波長領域の光(回折光学素子への入射光)が特定の1つの次数(以下、設計次数ともいう)の回折光に集中している場合は、それ以外の回折次数の回折光の強度は低いものとなる。   In an optical system having a diffractive optical element, if the light in the wavelength range used (incident light on the diffractive optical element) is concentrated on the diffracted light of one specific order (hereinafter also referred to as the design order), otherwise The intensity of the diffracted light of the diffraction order is low.

例えば、該強度が0の場合は、その回折光は存在しない。ただし、設計次数以外の回折光が存在し、それがある程度の強度を有する場合は、設計次数の回折光とは別の位置に結像するため、光学系でのフレア光となる。   For example, when the intensity is 0, the diffracted light does not exist. However, when there is diffracted light other than the designed order and it has a certain intensity, it forms an image at a position different from the diffracted light of the designed order, so that it becomes flare light in the optical system.

したがって、回折光学素子の色収差の低減作用を利用するためには、使用波長領域全域において、設計次数の回折光の回折効率が十分高いことが必要である。このため、この設計次数での回折効率の分光分布及び設計次数以外の回折光の振舞いについても十分考慮することが重要である。   Therefore, in order to utilize the effect of reducing the chromatic aberration of the diffractive optical element, it is necessary that the diffraction efficiency of the diffracted light of the designed order is sufficiently high in the entire use wavelength region. For this reason, it is important to sufficiently consider the spectral distribution of diffraction efficiency at this design order and the behavior of diffracted light other than the design order.

ここで、ある次数の回折光の回折効率とは、回折光学素子を透過する全光束の光量に対する、その次数の回折光の光量の割合(透過率とも言える)である。   Here, the diffraction efficiency of a certain order of diffracted light is the ratio (also referred to as transmittance) of the light amount of the diffracted light of that order to the light amount of the total luminous flux transmitted through the diffractive optical element.

図14は、基板109とこの基板109上に形成された回折格子108とにより構成される単層より成る回折光学素子(以下、単層型DOEという)141の要部断面図である。図14においてD1は回折格子108の格子部108aの格子厚である。   FIG. 14 is a cross-sectional view of a main part of a diffractive optical element (hereinafter, referred to as a single layer type DOE) 141 composed of a single layer constituted by a substrate 109 and a diffraction grating 108 formed on the substrate 109. In FIG. 14, D1 is the grating thickness of the grating part 108a of the diffraction grating 108.

図15は、この単層型DOEをある面に形成した場合の特定次数に対する回折効率の特性図である。   FIG. 15 is a characteristic diagram of diffraction efficiency with respect to a specific order when this single-layer DOE is formed on a certain surface.

図15において、横軸は入射光の波長(nm)を、縦軸は回折効率(%)を示している。回折効率の値は、前述したように全透過光束の光量に対する各次数での回折光の光量の割合を表している。なお、ここでは、説明を簡単にするため、格子境界面での反射光等は考慮していない。   In FIG. 15, the horizontal axis represents the wavelength (nm) of incident light, and the vertical axis represents the diffraction efficiency (%). As described above, the value of the diffraction efficiency represents the ratio of the light amount of the diffracted light at each order to the light amount of the total transmitted light beam. Here, in order to simplify the explanation, the reflected light at the lattice boundary surface is not considered.

図15に示すように、図14に示した単層型DOEは、使用波長領域において、設計次数である1次の回折次数の回折効率(図中の太実線)が最も高くなるように設計されている。この設計次数で回折効率はある波長で最も高くなり(以下、この波長を設計波長という)、それ以外の波長では徐々に低くなる。この設計次数での回折効率の低下量に相当する光は、他の次数の回折光となり、フレア光となる。   As shown in FIG. 15, the single-layer DOE shown in FIG. 14 is designed so that the diffraction efficiency of the first order diffraction order (thick solid line in the figure) is the highest in the wavelength range used. ing. At this design order, the diffraction efficiency is highest at a certain wavelength (hereinafter, this wavelength is referred to as a design wavelength), and gradually decreases at other wavelengths. The light corresponding to the amount of decrease in diffraction efficiency at this design order becomes diffracted light of other orders and becomes flare light.

図15には、この他の次数として、設計次数1次に対するその近傍の次数(0次と2次)の回折効率も併せて示している。   FIG. 15 also shows the diffraction efficiency of the neighboring orders (0th order and 2nd order) with respect to the design order 1st order as other orders.

このようにして発生するフレア光の影響を低減する回折光学素子が知られている(特許文献4〜7)。   Diffractive optical elements that reduce the influence of flare light generated in this way are known (Patent Documents 4 to 7).

図16は特許文献4に開示されている回折光学素子の要部断面図である。   FIG. 16 is a cross-sectional view of an essential part of the diffractive optical element disclosed in Patent Document 4.

特許文献4にて開示された回折光学素子は、図16に示すように、3種類の異なる格子材料110〜112と2種類の異なる格子厚d1,d2の格子部とを最適に選び、複数の格子部(レリーフパターン)を等しいピッチ分布で密着配置して構成している。これにより、図17に示すように、可視波長域全域にわたって設計次数での高い回折効率を実現している。   As shown in FIG. 16, the diffractive optical element disclosed in Patent Document 4 optimally selects three types of different grating materials 110 to 112 and two types of grating portions having different grating thicknesses d1 and d2, The lattice portions (relief patterns) are arranged in close contact with an equal pitch distribution. As a result, as shown in FIG. 17, high diffraction efficiency at the design order is realized over the entire visible wavelength range.

図18は特許文献5に開示されている回折光学素子の要部断面図である。   FIG. 18 is a cross-sectional view of a main part of a diffractive optical element disclosed in Patent Document 5.

図18に示す特許文献5にて開示された回折光学素子113は、回折格子をそれぞれ含む素子部114,115を、空気層116を介して互いに近接させた構造を有する。   A diffractive optical element 113 disclosed in Patent Document 5 shown in FIG. 18 has a structure in which element portions 114 and 115 each including a diffraction grating are brought close to each other via an air layer 116.

以下、図16、図18に示すような複数の回折格子を積層した構成の回折光学素子を積層型DOEという。   Hereinafter, a diffractive optical element having a structure in which a plurality of diffraction gratings as shown in FIGS. 16 and 18 are stacked is referred to as a stacked DOE.

特許文献5では各回折格子を構成する材料の屈折率、分散特性及び各層(各格子部)の格子厚を最適化することにより、図19Aに示すように、可視波長域全域にわたって設計次数での高い回折効率を実現している。また、図19Bに示すように、0次回折光及び2次回折光である不要回折光の回折効率も概ね抑制されている。   In Patent Document 5, by optimizing the refractive index, dispersion characteristics, and grating thickness of each layer (each grating part) of the material constituting each diffraction grating, as shown in FIG. 19A, the design order over the entire visible wavelength range is obtained. High diffraction efficiency is achieved. In addition, as shown in FIG. 19B, the diffraction efficiencies of unnecessary diffracted light, which is zero-order diffracted light and second-order diffracted light, are generally suppressed.

また、特許文献6では、特許文献5にて開示された回折光学素子と同じ構成の積層型DOEを開示している。   Patent Document 6 discloses a stacked DOE having the same configuration as the diffractive optical element disclosed in Patent Document 5.

ただし、特許文献6では微粒子材料と樹脂材料を混合した材料を用いて各層の格子部の格子厚を最適化することにより、図20Aに示すように、特許文献5の回折光学素子よりもさらに高い回折効率を実現している。   However, in Patent Document 6, by using a material in which a fine particle material and a resin material are mixed and optimizing the grating thickness of the grating portion of each layer, as shown in FIG. 20A, it is even higher than the diffractive optical element of Patent Document 5. Achieves diffraction efficiency.

また、図20Bに示すように、0次回折光及び2次回折光である不要回折次数の回折効率も十分に抑制されている。   In addition, as shown in FIG. 20B, the diffraction efficiency of the unnecessary diffraction orders that are the 0th-order diffracted light and the second-order diffracted light is sufficiently suppressed.

図21は、特許文献7に開示されている回折光学素子の要部断面図である。   FIG. 21 is a cross-sectional view of a principal part of the diffractive optical element disclosed in Patent Document 7.

図21に示す特許文献7にて開示された回折光学素子119は、ガラス材料より成る回折格子117と樹脂材料より成る回折格子118が、それらの格子面で密着する構成を有している。   A diffractive optical element 119 disclosed in Patent Document 7 shown in FIG. 21 has a configuration in which a diffraction grating 117 made of a glass material and a diffraction grating 118 made of a resin material are in close contact with each other on their grating surfaces.

以下、このような構成の回折光学素子を、密着2層型DOEという。このような構成により、製造が容易で量産性に優れ、回折効率の斜入射劣化もある程度改善された回折光学素子を実現している。
SPIE Vol.1354 International Lens Design Conference(1990) 特開平4-213421号公報 特開平6-324262号公報 米国特許5044706号明細書 特開平9-127322号公報 特開2000-98118号公報 特開2004-78166号公報 特開2003-227913号公報
Hereinafter, the diffractive optical element having such a configuration is referred to as a contact two-layer DOE. Such a configuration realizes a diffractive optical element that is easy to manufacture, excellent in mass productivity, and improved in oblique incidence deterioration of diffraction efficiency to some extent.
SPIE Vol.1354 International Lens Design Conference (1990) Japanese Patent Laid-Open No. 4-134221 JP-A-6-324262 U.S. Patent No. 5044706 Japanese Unexamined Patent Publication No. 9-127322 JP 2000-98118 A JP 2004-78166 JP Japanese Patent Laid-Open No. 2003-227913

積層型DOEは複数の回折格子の材料を適切に設定することが広い波長域にわたり高い回折効率を得るのに重要である。   In the stacked DOE, it is important to appropriately set the materials of a plurality of diffraction gratings in order to obtain high diffraction efficiency over a wide wavelength range.

更に各回折格子の格子部の形状を適切に設定することも広い波長域にわたり高い回折効率を得るのに重要である。   Furthermore, it is important to appropriately set the shape of the grating portion of each diffraction grating in order to obtain high diffraction efficiency over a wide wavelength range.

特許文献4及び5にて開示された積層型DOEでは、設計次数の回折効率が使用波長領域全域で94%以上というように、単層型DOEに比べて大幅に改善されている。また、フレア光となる不要回折光も2%以下と概ね良好に抑えられている。   In the multilayer DOE disclosed in Patent Documents 4 and 5, the diffraction efficiency of the designed order is greatly improved as compared with the single-layer DOE such that the diffraction efficiency of the design order is 94% or more in the entire use wavelength region. Unnecessary diffracted light that becomes flare light is also suppressed to 2% or less.

スチルカメラやビデオカメラ等の光学機器に搭載される光学系においては、被写体として高輝度光源が存在する場合には、わずかに残存しているフレア光が問題となる場合がある。   In an optical system mounted on an optical apparatus such as a still camera or a video camera, when a high-luminance light source exists as a subject, a slight remaining flare light may be a problem.

特許文献6にて開示された微粒子材料と樹脂材料を混合した材料を用いた積層型DOEでは、設計次数の回折効率が使用波長領域全域で99.5%以上、不要回折光が0.05%以下であり、フレア光もかなり少ない。   In the multilayer DOE using a material obtained by mixing the fine particle material and the resin material disclosed in Patent Document 6, the diffraction efficiency of the design order is 99.5% or more over the entire wavelength region used, and the unnecessary diffracted light is 0.05% or less. There is also very little flare light.

特許文献6にて開示された空気層を含んだ積層型DOEは、各回折格子の位置合わせを高精度に行う必要がある。また微粒子分散材料はガラス材料に比べて内部透過率が低い性質がある。   The laminated DOE including an air layer disclosed in Patent Document 6 needs to align each diffraction grating with high accuracy. In addition, the fine particle dispersed material has a property of low internal transmittance as compared with the glass material.

特許文献7にて開示された密着2層型DOEでは、構成材料としてガラス材料と樹脂材料を組合せて使用している。従って、異なる2種類の樹脂材料から成る回折格子より成る回折光学素子に比べて、内部透過率が良い。   The close-contact two-layer DOE disclosed in Patent Document 7 uses a combination of a glass material and a resin material as constituent materials. Accordingly, the internal transmittance is better than that of a diffractive optical element made of a diffraction grating made of two different types of resin materials.

しかしながら、回折光学素子自体の性能、特に設計次数である1次回折光の回折効率が、使用波長領域全域で約97%程度である。このため不要回折光によるフレアが問題となる懸念がある。   However, the performance of the diffractive optical element itself, particularly the diffraction efficiency of the first-order diffracted light, which is the designed order, is about 97% over the entire wavelength region used. For this reason, there is a concern that flare due to unnecessary diffracted light becomes a problem.

本発明は、広い波長領域における特定次数(設計次数)の回折光の回折効率が高く、しかも不要回折光を十分抑制することができ、さらに製造が容易な回折光学素子の提供を目的とする。   An object of the present invention is to provide a diffractive optical element that has a high diffraction efficiency of diffracted light of a specific order (design order) in a wide wavelength region, can sufficiently suppress unnecessary diffracted light, and is easy to manufacture.

この他本発明は、内部透過率の良い回折光学素子の提供を目的とする。   Another object of the present invention is to provide a diffractive optical element having good internal transmittance.

本発明の回折光学素子は、第1の材料より成る第1の回折格子と第2の材料より成る第2の回折格子を各回折格子の格子部の格子面が互いに接するように積層した構造を有する回折光学素子であって、
該第2の材料は微粒子材料を樹脂材料に混合した材料より成り、
該第1の材料のd線に対する屈折率、アッベ数、g線とF線に対する部分分散比、g線とd線に対する部分分散比を順にnd1、νd1、θg,F1、θg,d1、
該第2の材料のd線に対する屈折率、アッベ数、g線とF線に対する部分分散比、g線とd線に対する部分分散比を順にnd2、νd2、θg,F2、θg,d2、
該微粒子材料のd線に対する屈折率、アッベ数を各々ndb2、νdb2とするとき
nd1≧1.48
νd1≧40
(-1.665E-07×νd1+5.213E-05×νd1‐5.656E-03×νd1+0.700) ≦θg,F1
≦(-1.665E-07×νd1+5.213E-05×νd1‐5.656E-03×νd1+0.662)
(-1.687E-07×νd1+5.702E-05×νd1‐6.603E-03×νd1+1.425) ≦θg,d1
≦(−1.687E−07×νd1+5.702E-05×νd1‐6.603E-03×νd1+1.513)
nd2≦1.6
νd2≦30
θg,F2≦(-1.665E-07×νd23+5.213E-05×νd22‐5.656E-03×νd2+0.675)
θg,d2≦(-1.687E-07×νd23+5.702E-05×νd22‐6.603E-03×νd2+1.400)
nd1-nd2>0
ndb2≧1.70
νdb2≦20
なる条件を満足することを特徴としている。
The diffractive optical element of the present invention has a structure in which a first diffraction grating made of a first material and a second diffraction grating made of a second material are laminated so that the grating surfaces of the grating portions of each diffraction grating are in contact with each other. A diffractive optical element having
The second material is made of a material obtained by mixing a fine particle material with a resin material,
The refractive index of the first material for d-line, Abbe number, partial dispersion ratio for g-line and F-line, and partial dispersion ratio for g-line and d-line are nd1, νd1, θg, F1, θg, d1,
The refractive index of the second material for the d-line, the Abbe number, the partial dispersion ratio for the g-line and the F-line, and the partial dispersion ratio for the g-line and the d-line are nd2, νd2, θg, F2, θg, d2,
When the refractive index and Abbe number for the d-line of the fine particle material are ndb2 and νdb2, respectively.
nd1 ≧ 1.48
νd1 ≧ 40
(-1.665E-07 × νd1 3 + 5.213E-05 × νd1 2 -5.656E-03 × νd1 + 0.700) ≦ θg, F1
≦ (-1.665E-07 × νd1 3 + 5.213E-05 × νd1 2 -5.656E-03 × νd1 + 0.662)
(-1.687E-07 × νd1 3 + 5.702E-05 × νd1 2 -6.603E-03 × νd1 + 1.425) ≦ θg, d1
≦ (−1.687E−07 × νd1 3 + 5.702E-05 × νd1 2 −6.603E-03 × νd1 + 1.513)
nd2 ≦ 1.6
νd2 ≦ 30
θg, F2 ≦ (-1.665E-07 × νd2 3 + 5.213E-05 × νd2 2 ‐5.656E-03 × νd2 + 0.675)
θg, d2 ≦ (-1.687E-07 × νd2 3 + 5.702E-05 × νd2 2 -6.603E-03 × νd2 + 1.400)
nd1-nd2> 0
ndb2 ≧ 1.70
νdb2 ≦ 20
It is characterized by satisfying the following conditions.

本発明によれば、広い波長領域における特定次数(設計次数)の回折光の回折効率が高く、しかも不要回折光を十分抑制することができ、さらに製造が容易な回折光学素子が得られる。またその際、回折光学素子の内部透過率も向上する。   According to the present invention, it is possible to obtain a diffractive optical element that has high diffraction efficiency of diffracted light of a specific order (design order) in a wide wavelength region, can sufficiently suppress unnecessary diffracted light, and is easy to manufacture. At that time, the internal transmittance of the diffractive optical element is also improved.

以下、本発明の回折光学素子及びそれを有する光学系の好ましい実施例について図面を参照しながら説明する。   Hereinafter, preferred embodiments of the diffractive optical element of the present invention and an optical system having the same will be described with reference to the drawings.

本発明の回折光学素子は、第1の材料より成る第1の回折格子と第2の材料より成る第2の回折格子を各回折格子の格子部の格子面が互いに接するように積層した構造を有する回折光学素子である。   The diffractive optical element of the present invention has a structure in which a first diffraction grating made of a first material and a second diffraction grating made of a second material are stacked so that the grating surfaces of the grating portions of each diffraction grating are in contact with each other. A diffractive optical element.

第1及び第2の回折格子の各々の格子部を形成する第1の材料及び第2の材料(以下、各々材料1,材料2ともいう)が、後述する条件式を満足している。特に材料2は、微粒子材料を樹脂材料に混合した材料より成っている。   The first material and the second material (hereinafter also referred to as material 1 and material 2, respectively) forming the respective grating portions of the first and second diffraction gratings satisfy the conditional expressions described later. In particular, the material 2 is made of a material obtained by mixing a fine particle material with a resin material.

図1は、本発明の実施例の回折光学素子の要部正面図である。図1において10は、回折光学素子である。Oは、回折光学素子10の中心軸である。また、図2は、図1に示した回折光学素子10をA−A′線で切断したときの断面形状の一部を拡大した断面概略図である。但し、図2では、回折格子の格子部の格子深さ方向に関してかなりデフォルメした構成を示している。   FIG. 1 is a front view of an essential part of a diffractive optical element according to an embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a diffractive optical element. O is the central axis of the diffractive optical element 10. 2 is a schematic cross-sectional view in which a part of the cross-sectional shape when the diffractive optical element 10 shown in FIG. 1 is cut along the line AA ′ is enlarged. However, FIG. 2 shows a considerably deformed configuration with respect to the grating depth direction of the grating portion of the diffraction grating.

図2に示すように、回折光学素子10は、第1の素子部12と第2の素子部13を有する。第1の素子部12は、第1の格子ベース部14及び該格子ベース部14に一体形成された第1の回折格子16により構成される第1の格子形成層とを有する。また、第2の素子部13は、第2の格子ベース部15及び該格子ベース部15に一体形成された第2の回折格子17により構成される第2の格子形成層とを有する。   As shown in FIG. 2, the diffractive optical element 10 has a first element portion 12 and a second element portion 13. The first element unit 12 includes a first grating base layer 14 and a first grating forming layer configured by a first diffraction grating 16 integrally formed with the grating base unit 14. The second element portion 13 includes a second grating base layer 15 and a second grating forming layer constituted by the second diffraction grating 17 integrally formed with the grating base portion 15.

16c、17cは第1の回折格子16、第2の回折格子17を構成する格子部である。第1及び第2の回折格子16,17は、互いに同一形状の格子部(周期構造)、すなわち同一の格子厚dと同一の格子ピッチPの複数の格子部16c、17cを有している。言い換えれば、互いに同一のパターンの格子部を有する。格子部16c、17cは、凸部(以下、山という)と凹部(以下、谷という)とが交互に現れる格子形状である。第1及び第2の素子部12、13の格子ベース部14,15の厚さは、各々h1,h2である。   Reference numerals 16 c and 17 c denote grating portions constituting the first diffraction grating 16 and the second diffraction grating 17. The first and second diffraction gratings 16 and 17 have a grating part (periodic structure) having the same shape, that is, a plurality of grating parts 16c and 17c having the same grating thickness d and the same grating pitch P. In other words, it has lattice portions having the same pattern. The lattice portions 16c and 17c have a lattice shape in which convex portions (hereinafter referred to as peaks) and concave portions (hereinafter referred to as valleys) appear alternately. The thicknesses of the lattice base portions 14 and 15 of the first and second element portions 12 and 13 are h1 and h2, respectively.

第1及び第2の素子部12,13は、第1及び第2の回折格子16,17の格子部16c、17cの格子面(格子部16c、17cの斜面に相当する面)16a,17aと格子壁面部16b,17bが互いに隙間なく接している。   The first and second element portions 12 and 13 include grating surfaces 16a and 17a of the grating portions 16c and 17c of the first and second diffraction gratings 16 and 17 (surfaces corresponding to the inclined surfaces of the grating portions 16c and 17c) 16a and 17a, The lattice wall surfaces 16b and 17b are in contact with each other without a gap.

即ち格子部16c、17cの格子面は、空気層を介さずに密着している。第1及び第2の素子部12,13は、全体で1つの回折光学素子10として作用する。   That is, the lattice surfaces of the lattice portions 16c and 17c are in close contact with each other without an air layer. The first and second element portions 12 and 13 function as one diffractive optical element 10 as a whole.

第1及び第2の回折格子16,17は、同心円状の格子形状の格子部16c、17cを有し、径方向における格子部16c、17cの格子ピッチが変化することでレンズ作用を有する。   The first and second diffraction gratings 16 and 17 have concentric grating-like grating parts 16c and 17c, and have a lens action by changing the grating pitch of the grating parts 16c and 17c in the radial direction.

尚、第1の格子ベース部14の光入射側の面14aと第2の格子ベース部15の光出射側の面15bは平面又は曲面より成っている。   The light incident side surface 14a of the first grating base portion 14 and the light emission side surface 15b of the second grating base portion 15 are formed of a flat surface or a curved surface.

この他、これらの面14a、15bの少なくとも一面に他の回折格子が形成されている場合もある。   In addition, another diffraction grating may be formed on at least one of the surfaces 14a and 15b.

本実施例において、回折光学素子10に入射する光(入射光)の波長領域、すなわち使用波長領域は可視波長領域(波長400〜800nm)である。第1及び第2の回折格子16,17の格子部16c、17cを構成する材料及び格子厚は、可視波長領域全域で設計次数である1次回折光の回折効率が最も高くなるように選択されている。   In the present embodiment, the wavelength region of light incident on the diffractive optical element 10 (incident light), that is, the used wavelength region is a visible wavelength region (wavelength 400 to 800 nm). The material and the grating thickness that constitute the grating portions 16c and 17c of the first and second diffraction gratings 16 and 17 are selected so that the diffraction efficiency of the first-order diffracted light that is the designed order is the highest in the entire visible wavelength region. Yes.

次に、本実施例の回折光学素子10の回折効率について説明する。図14に示す単層型の回折光学素子(DOE)141において、設計波長がλ0の場合に、ある次数の回折光の回折効率が最大となる条件は、以下の通りである。   Next, the diffraction efficiency of the diffractive optical element 10 of the present embodiment will be described. In the single-layer diffractive optical element (DOE) 141 shown in FIG. 14, the conditions under which the diffraction efficiency of a certain order of diffracted light is maximum when the design wavelength is λ0 are as follows.

すなわち、光束が回折格子108のベース面(図14中に点線で示す面142)に対して垂直に入射する場合に、格子部108aの山と谷の光学光路長の差(つまり山と谷のそれぞれを通過する光線間の光路長差)が波長の整数倍になることを条件とする。これを式で表すと、以下のようになる。   That is, when the light beam enters perpendicularly to the base surface of the diffraction grating 108 (surface 142 indicated by a dotted line in FIG. 14), the difference between the optical path lengths of the peaks and valleys of the grating portion 108a (that is, the peaks and valleys). The difference is that the optical path length difference between the light beams passing through each of the light beams is an integral multiple of the wavelength. This is expressed as follows.

(n01−1)×d = m×λ0 …(16)
ここで、n01は波長λ0の光に対する格子部108aを形成する材料の屈折率であり、dは格子部108aの格子厚、mは回折次数である。
(N01-1) × d = m × λ0 (16)
Here, n01 is the refractive index of the material forming the grating part 108a with respect to light of wavelength λ0, d is the grating thickness of the grating part 108a, and m is the diffraction order.

(16)式は、波長の項を含むため、同一次数では設計波長でしか等号は成り立たず、設計波長以外の波長では回折効率は最大値から低下してしまう。   Since the equation (16) includes a term of wavelength, an equal sign is established only at the design wavelength at the same order, and the diffraction efficiency is reduced from the maximum value at wavelengths other than the design wavelength.

また、任意の波長λでの回折効率η(λ)は下記の(17)式のように表すことができる。   Further, the diffraction efficiency η (λ) at an arbitrary wavelength λ can be expressed as the following equation (17).

η(λ) = sinc2 [π×{m-(n1(λ)-1)×d/λ}] …(17)
ここで、mは回折次数、n1(λ)は波長λの光に対する格子部を形成する材料の屈折率である。また、sinc2(x)は、{sin (x)/x}2 で表される関数である。
η (λ) = sinc 2 [π × {m- (n1 (λ) -1) × d / λ}] (17)
Here, m is the diffraction order, and n1 (λ) is the refractive index of the material forming the grating portion for light of wavelength λ. Further, sinc 2 (x) is a function represented by {sin (x) / x} 2 .

本実施例のように、2層以上の回折格子を積層した積層構造を持つ回折光学素子でも基本は同様であり、全層を通して1つの回折光学素子として作用させるためには、次のようにする。   As in this example, the basics are the same for a diffractive optical element having a laminated structure in which two or more diffraction gratings are laminated. In order to act as one diffractive optical element through all layers, the following is performed. .

各層を構成する材料の境界に形成された格子部の山と谷での光学光路長差を求め、この光学光路長差を全回折格子にわたって加算する。そして、この加算した光学光路長差が、波長の整数倍になるように格子部の格子形状の寸法を決定する。   The optical path length difference between the peaks and valleys of the grating portion formed at the boundary of the material constituting each layer is obtained, and this optical path length difference is added over all diffraction gratings. Then, the dimension of the grating shape of the grating part is determined so that the added optical path length difference is an integral multiple of the wavelength.

したがって、図2に示した回折光学素子10において、設計波長がλ0の場合に、m次回折光の回折効率が最大になる条件は次のようになる。   Therefore, in the diffractive optical element 10 shown in FIG. 2, when the design wavelength is λ0, the conditions under which the diffraction efficiency of m-th order diffracted light is maximized are as follows.

±(n01-n02)×d = m×λ0 …(18)
ここで、n01は第1の素子部12において第1の回折格子16を形成する格子部16cの材料の波長λ0の光に対する屈折率である。n02は第2の素子部13において第2の回折格子17を形成する格子部17cの材料の波長λ0の光に対する屈折率である。また、dは第1、第2の回折格子16,17の格子部16c、17cの格子厚であり、双方は同じ厚さとなる。
± (n01-n02) × d = m × λ0 (18)
Here, n01 is a refractive index with respect to light of wavelength λ0 of the material of the grating portion 16c that forms the first diffraction grating 16 in the first element portion 12. n02 is a refractive index with respect to light of wavelength λ0 of the material of the grating portion 17c forming the second diffraction grating 17 in the second element portion 13. Further, d is the grating thickness of the grating portions 16c and 17c of the first and second diffraction gratings 16 and 17, and both have the same thickness.

図2において0次回折光から斜め下向きに回折する光の回折次数を正の回折次数とし、0次回折光に対して斜め上向きに回折する光の回折次数を負の回折次数とする。   In FIG. 2, the diffraction order of light diffracted diagonally downward from the 0th-order diffracted light is defined as a positive diffraction order, and the diffraction order of light diffracted obliquely upward with respect to the 0th-order diffracted light is defined as a negative diffraction order.

この場合、(18)式での加減の符号は次のようになる。図中の上から下に第1の回折格子16の格子厚が増加する格子形状を持つ格子部の場合は正となり、逆に上から下に格子部の格子厚が減少する格子形状を持つ回折格子の場合は負となる。   In this case, the sign of addition / subtraction in equation (18) is as follows. In the figure, the diffraction grating has a grating shape with a grating shape in which the grating thickness of the first diffraction grating 16 increases from the top to the bottom, and conversely, diffraction with a grating shape in which the grating thickness of the grating part decreases from top to bottom. In the case of a lattice, it is negative.

図2に示す構成において、設計次数λ0以外の波長λでの回折効率η(λ)は次式で表すことができる。   In the configuration shown in FIG. 2, the diffraction efficiency η (λ) at a wavelength λ other than the design order λ0 can be expressed by the following equation.

η(λ)= sinc2 (π×[m-{±(n1(λ)-n2(λ))×d/λ}])
= sinc2 (π×(m-φ(λ)/λ)) … (19)
φ(λ)= ±(n1(λ)-n2(λ))×d …(20)
ここで、mは回折次数、n1(λ)は第1の回折格子16を形成する格子部16cの材料の波長λでの屈折率、n2(λ)は第2の回折格子17を形成する格子部17cの材料の波長λでの屈折率である。
η (λ) = sinc 2 (π × [m- {± (n1 (λ) -n2 (λ)) × d / λ}])
= sinc 2 (π × (m-φ (λ) / λ)) (19)
φ (λ) = ± (n1 (λ) -n2 (λ)) × d (20)
Here, m is the diffraction order, n1 (λ) is the refractive index at the wavelength λ of the material of the grating portion 16c forming the first diffraction grating 16, and n2 (λ) is the grating forming the second diffraction grating 17. This is the refractive index at the wavelength λ of the material of the portion 17c.

また、dは第1及び第2の回折格子16,17の格子部16c、17cの格子厚である。また、sinc2(x)={sin(x)/x}2で表される関数である。 Further, d is the grating thickness of the grating parts 16c and 17c of the first and second diffraction gratings 16 and 17. Further, it is a function represented by sinc 2 (x) = {sin (x) / x} 2 .

次に、本実施例の回折光学素子10において、高い回折効率を得るための条件について説明する。   Next, conditions for obtaining high diffraction efficiency in the diffractive optical element 10 of the present embodiment will be described.

使用波長領域の全域にわたって高い回折効率を得るためには、(19)式で表される値η(λ)が全ての使用波長に対して、1に近づけばよい。言い換えれば、設計次数mでの回折効率を高めるには、上記(19)式中のφ(λ)/λがmに近づけばよい。例えば、設計次数mを1次とした場合、φ(λ)/λが1に近づけばよい。   In order to obtain high diffraction efficiency over the entire use wavelength region, the value η (λ) expressed by equation (19) should be close to 1 for all use wavelengths. In other words, in order to increase the diffraction efficiency at the design order m, φ (λ) / λ in the above equation (19) should be close to m. For example, if the design order m is primary, φ (λ) / λ may be close to 1.

さらに、格子部から得られる光学光路長差φ(λ)は、上記関係から波長λに比例して線形に変化する、すなわち(20)式の右辺の項が線形性を有することが必要となる。   Further, the optical optical path length difference φ (λ) obtained from the grating portion changes linearly in proportion to the wavelength λ from the above relationship, that is, the right side term of the equation (20) needs to have linearity. .

つまり、第1の回折格子16を形成する格子部16cの材料の波長による屈折率の変化に対する第2の回折格子17を形成する格子部17cの材料の波長による屈折率の変化が、使用波長領域全域で一定の比率であることが必要である。   That is, the change in the refractive index due to the wavelength of the material of the grating portion 17c forming the second diffraction grating 17 relative to the change in the refractive index due to the wavelength of the material of the grating portion 16c forming the first diffraction grating 16 is the use wavelength region. It is necessary that the ratio is constant throughout the entire area.

次に本発明の実施例の回折光学素子の特徴について説明する。   Next, features of the diffractive optical element according to the embodiment of the present invention will be described.

第1の回折格子16を構成する第1の材料は、ガラス硝材である。   The first material constituting the first diffraction grating 16 is a glass glass material.

ガラス硝材は、ガラスモールド用硝材である。   The glass glass material is a glass material for glass mold.

ここでガラスモールド用硝材とは、屈伏点温度が600℃以下の低融点ガラスをいう。   Here, the glass material for glass mold refers to low-melting glass having a yield point temperature of 600 ° C. or lower.

第2の回折格子17を構成する第2の材料は微粒子材料を樹脂材料に混合した材料より成る。   The second material constituting the second diffraction grating 17 is made of a material obtained by mixing a fine particle material with a resin material.

第2の材料はITO、Ti、Nr、Crのいずれか1つ又はこれらのうち少なくとも1つを含む酸化物、複合物、混合物のいずれか1つの無機微粒子を含んだ樹脂材料である。   The second material is a resin material containing inorganic fine particles of any one of ITO, Ti, Nr, and Cr, or any one of oxides, composites, and mixtures containing at least one of them.

そして第2の材料の無機微粒子を混合する樹脂材料は、紫外線硬化樹脂で、かつアクリル系、フッ素系、ビニル系、エポキシ系のいずれかの有機樹脂である。   The resin material mixed with the inorganic fine particles of the second material is an ultraviolet curable resin and is an organic resin of any of acrylic, fluorine, vinyl, and epoxy.

そして第2の材料に含まれる無機微粒子材料の平均粒子径は、200nm以下である。   The average particle size of the inorganic fine particle material contained in the second material is 200 nm or less.

第1の材料のd線に対する屈折率、アッベ数、g線とF線に対する部分分散比、g線とd線に対する部分分散比を順にnd1、νd1、θg,F1、θg,d1とする。   The refractive index of the first material for the d-line, the Abbe number, the partial dispersion ratio for the g-line and the F-line, and the partial dispersion ratio for the g-line and the d-line are nd1, νd1, θg, F1, θg, d1 in this order.

第2の材料のd線に対する屈折率、アッベ数、g線とF線に対する部分分散比、g線とd線に対する部分分散比を順にnd2、νd2、θg,F2、θg,d2とする。   The refractive index of the second material for the d-line, the Abbe number, the partial dispersion ratio for the g-line and the F-line, and the partial dispersion ratio for the g-line and the d-line are nd2, νd2, θg, F2, and θg, d2.

微粒子材料のd線に対する屈折率、アッベ数を各々ndb2、νdb2とする。このとき
nd1≧1.48 ‥‥‥(1)
νd1≧40 ‥‥‥(2)
(-1.665E-07×νd1+5.213E-05×νd1‐5.656E-03×νd1+0.700) ≦θg,F1
≦(-1.665E-07×νd1+5.213E-05×νd1‐5.656E-03×νd1+0.662)
‥‥‥(3)
(-1.687E-07×νd1+5.702E-05×νd1‐6.603E-03×νd1+1.425) ≦θg,d1
≦(−1.687E−07×νd1+5.702E-05×νd1‐6.603E-03×νd1+1.513)
‥‥‥(4)
nd2≦1.6 ‥‥‥(5)
νd2≦30 ‥‥‥(6)
θg,F2≦(-1.665E-07×νd23+5.213E-05×νd22‐5.656E-03×νd2+0.675)…(7)
θg,d2≦(-1.687E-07×νd23+5.702E-05×νd22‐6.603E-03×νd2+1.400)…(8)
nd1-nd2>0 ‥‥‥(9)
ndb2≧1.70 ‥‥‥(10)
νdb2≦20 ‥‥‥(11)
なる条件を満足している。
The refractive index and Abbe number for the d-line of the fine particle material are ndb2 and νdb2, respectively. At this time
nd1 ≧ 1.48 (1)
νd1 ≧ 40 (2)
(-1.665E-07 × νd1 3 + 5.213E-05 × νd1 2 -5.656E-03 × νd1 + 0.700) ≦ θg, F1
≦ (-1.665E-07 × νd1 3 + 5.213E-05 × νd1 2 -5.656E-03 × νd1 + 0.662)
(3)
(-1.687E-07 × νd1 3 + 5.702E-05 × νd1 2 -6.603E-03 × νd1 + 1.425) ≦ θg, d1
≦ (−1.687E−07 × νd1 3 + 5.702E-05 × νd1 2 −6.603E-03 × νd1 + 1.513)
‥‥‥(Four)
nd2 ≦ 1.6 (5)
νd2 ≦ 30 (6)
θg, F2 ≦ (-1.665E-07 × νd2 3 + 5.213E-05 × νd2 2 ‐5.656E-03 × νd2 + 0.675) ... (7)
θg, d2 ≦ (-1.687E-07 × νd2 3 + 5.702E-05 × νd2 2 -6.603E-03 × νd2 + 1.400) ... (8)
nd1-nd2> 0 (9)
ndb2 ≧ 1.70 (10)
νdb2 ≦ 20 (11)
Is satisfied.

第1の材料のg線, F線, d線, C線に対する屈折率を順にng1, nF1, nd1, nC1とする。   The refractive indices of the first material for g-line, F-line, d-line, and C-line are ng1, nF1, nd1, and nC1, respectively.

第2の材料のg線, F線, d線, C線に対する屈折率を順にng2, nF2, nd2, nC2とする。   The refractive indices of the second material for g-line, F-line, d-line, and C-line are ng2, nF2, nd2, and nC2, respectively.

第2の材料に含まれる微粒子材料のF線, d線, C線に対する屈折率を順にnFb2, ndb2, nCb2とする。   The refractive indexes of the fine particle material included in the second material with respect to the F-line, d-line, and C-line are sequentially nFb2, ndb2, and nCb2.

このとき第1の材料のアッベ数νd1、部分分散比θg,F1、θg,d1、第2の材料のアッベ数νd2、部分分散比θg,F2、θg,d2、微粒子材料のアッベ数νdb2は次のとおりである。   At this time, the Abbe number νd1 of the first material, the partial dispersion ratios θg, F1, θg, d1, the Abbe number νd2 of the second material, the partial dispersion ratios θg, F2, θg, d2, and the Abbe number νdb2 of the particulate material are It is as follows.

νd1=(nd1-1)/(nF1-nC1)
νd2=(nd2-1)/(nF2-nC2)
θg,F1=(ng1-nF1)/(nF1-nC1)
θg,d1=(ng1-nd1)/(nF1-nC1)
θg,F2=(ng2-nF2)/(nF2-nC2)
θg,d2=(ng2-nd2)/(nF2-nC2)
νdb2=(ndb2-1)/(nFb2-nCb2)
次に条件式(1)〜(11)について説明する。
νd1 = (nd1-1) / (nF1-nC1)
νd2 = (nd2-1) / (nF2-nC2)
θg, F1 = (ng1-nF1) / (nF1-nC1)
θg, d1 = (ng1-nd1) / (nF1-nC1)
θg, F2 = (ng2-nF2) / (nF2-nC2)
θg, d2 = (ng2-nd2) / (nF2-nC2)
νdb2 = (ndb2-1) / (nFb2-nCb2)
Next, conditional expressions (1) to (11) will be described.

条件式(1)〜(4)は、材料1(第1の材料)の特性を規定する。また、材料1は条件式(1)〜(4)を全て同時に満足するのが良い。   Conditional expressions (1) to (4) define the characteristics of the material 1 (first material). Further, the material 1 preferably satisfies all of the conditional expressions (1) to (4) at the same time.

ここで、各条件の関係を理解し易くするため、図10〜図12を用いて説明する。図10は屈折率ndとアッベ数νdの関係を示す。   Here, in order to make it easy to understand the relationship between the conditions, a description will be given with reference to FIGS. FIG. 10 shows the relationship between the refractive index nd and the Abbe number νd.

図11は部分分散比θg,Fとアッベ数νdの関係を示す。図12は部分分散比θg,dとアッベ数νdの関係を示す。   FIG. 11 shows the relationship between the partial dispersion ratio θg, F and the Abbe number νd. FIG. 12 shows the relationship between the partial dispersion ratio θg, d and the Abbe number νd.

これらの図において、縦軸は各々屈折率nd、部分分散比θg,F、θg,dを示し、横軸は全てアッベ数νdを示す。   In these figures, the vertical axis represents the refractive index nd and the partial dispersion ratios θg, F, θg, d, respectively, and the horizontal axis represents the Abbe number νd.

なお、図10〜図12では、条件式の番号を丸囲み数字で示している。   In FIGS. 10 to 12, the numbers of the conditional expressions are indicated by encircled numbers.

条件式(1), (2)は、図10に示すように、回折光学素子を構成する材料1の屈折率ndとアッベ数νdの範囲を規定する。   Conditional expressions (1) and (2) define the ranges of the refractive index nd and the Abbe number νd of the material 1 constituting the diffractive optical element, as shown in FIG.

条件式(1)及び(2)の下限値を下回ると、回折光学素子を構成(密着2層型)するための材料2(第2の材料)、すなわち条件式((5)〜(8))を満足する材料2の確保が難しくなる。   If the lower limit value of conditional expressions (1) and (2) is not reached, material 2 (second material) for constituting the diffractive optical element (adherent two-layer type), that is, conditional expressions ((5) to (8) ) Is difficult to secure material 2.

条件式(3)は、図11に示すように、回折光学素子を構成するための材料1の部分分散比θg,Fとアッベ数νdの範囲を規定する。前述したように、この条件式は、条件式(1)及び(2)を満足した上で満たされるのが良い。   Conditional expression (3) defines the range of the partial dispersion ratio θg, F and the Abbe number νd of the material 1 for constituting the diffractive optical element, as shown in FIG. As described above, this conditional expression is preferably satisfied while satisfying the conditional expressions (1) and (2).

条件式(3)の下限値を下回ると、回折光学素子の格子部の格子厚が厚くなり、該回折光学素子に斜めから入射する光線(以下、斜入射光という)に対する回折効率が劣化してくる。   If the lower limit of conditional expression (3) is not reached, the grating thickness of the grating part of the diffractive optical element becomes thick, and the diffraction efficiency for light rays incident on the diffractive optical element obliquely (hereinafter referred to as oblique incident light) deteriorates. come.

また、条件式(3)の上限値を上回ると、密着2層型の回折光学素子で高い回折効率を得るための材料2、すなわち条件式((5)〜(8))を満足する材料2の確保が難しくなる。   If the upper limit of conditional expression (3) is exceeded, material 2 for obtaining high diffraction efficiency with a two-layer diffractive optical element, that is, material 2 that satisfies conditional expressions ((5) to (8)) It becomes difficult to secure.

条件式(4)は、図12に示すように、回折光学素子を構成する材料1の部分分散比θg,dとアッベ数νdの範囲を規定する。   Conditional expression (4) defines the range of the partial dispersion ratio θg, d and the Abbe number νd of the material 1 constituting the diffractive optical element, as shown in FIG.

この関係も、条件式(1)〜(3)が満たされた上で満たされるのが良い。条件式(4)の下限値を下回ると、回折光学素子の格子部の格子厚が厚くなり、斜入射光に対する回折効率が劣化してくる。また、条件式(4)の上限値を上回ると、密着2層型の回折光学素子で高い回折効率を得るための材料2、すなわち条件式((5)〜(8))を満足する材料2の確保が難しくなる。   This relationship should also be satisfied after the conditional expressions (1) to (3) are satisfied. If the lower limit of conditional expression (4) is not reached, the grating thickness of the grating part of the diffractive optical element becomes thick, and the diffraction efficiency for obliquely incident light deteriorates. If the upper limit of conditional expression (4) is exceeded, material 2 for obtaining high diffraction efficiency with a two-layer diffractive optical element, that is, material 2 that satisfies conditional expressions ((5) to (8)) It becomes difficult to secure.

材料1は、より高い回折効率を実現しつつ格子部の格子厚をより薄くするために、材料2の存在条件との関係上、各条件式は以下の条件式を満たすことが好ましい。   In the material 1, in order to make the grating thickness of the grating portion thinner while realizing higher diffraction efficiency, each conditional expression preferably satisfies the following conditional expression in relation to the existence condition of the material 2.

以下の条件式(1)、(2)の番号に付されたaは、その条件式がもとの条件式よりも満たすことが好ましい条件であることを示す。   The a attached to the numbers of the following conditional expressions (1) and (2) indicates that it is a preferable condition that the conditional expression satisfies the original conditional expression.

条件式に付されたbはaが付された条件式よりもさらに満たすことが好ましい条件であることを示す。条件式に付されたcはbが付された条件式よりもさらに満たすことが好ましい条件であることを示す。このことは、後述する他の条件式についても同じである。   “B” attached to the conditional expression indicates that it is more preferable to satisfy the conditional expression than “a”. “C” attached to the conditional expression indicates that it is more preferable to satisfy the conditional expression than “b”. The same applies to other conditional expressions described later.

1.50≦nd1≦1.80 …(1a)
1.55≦nd1≦1.75 …(1b)
1.58≦nd1≦1.70 …(1c)
40≦νd1≦80 …(2a)
40≦νd1≦70 …(2b)
条件式(5)〜(8)は、材料2の特性を規定する。また、材料2は、材料1が条件式(1)〜(4)を全て満足した上で、条件式(5)〜(8)を全て満足するのが良い。ここでも、各条件の関係を理解し易くするため、図10〜図12を用いて説明する。
1.50 ≦ nd1 ≦ 1.80… (1a)
1.55 ≦ nd1 ≦ 1.75… (1b)
1.58 ≦ nd1 ≦ 1.70 (1c)
40 ≦ νd1 ≦ 80 (2a)
40 ≦ νd1 ≦ 70… (2b)
Conditional expressions (5) to (8) define the characteristics of the material 2. In addition, the material 2 preferably satisfies all the conditional expressions (5) to (8) after the material 1 satisfies all the conditional expressions (1) to (4). Again, in order to facilitate understanding of the relationship between the conditions, description will be made with reference to FIGS.

条件式(5), (6)は、図10に示すように、回折光学素子を構成する材料2の屈折率ndとアッベ数νdの範囲を規定する。   Conditional expressions (5) and (6) define the ranges of the refractive index nd and the Abbe number νd of the material 2 constituting the diffractive optical element, as shown in FIG.

条件式(5)及び(6)の上限値を上回ると、回折光学素子を構成(密着2層型)する材料1、すなわち条件式((1)〜(4))を満足する材料1の確保が難しくなる。   If the upper limit of conditional expressions (5) and (6) is exceeded, material 1 that constitutes the diffractive optical element (adherent two-layer type), that is, material 1 that satisfies conditional expressions ((1) to (4)) is secured. Becomes difficult.

条件式(7)は、図11に示すように、回折光学素子を構成する材料2の部分分散比θg,Fとアッベ数νdの範囲を規定する。   Conditional expression (7) defines the range of the partial dispersion ratio θg, F and the Abbe number νd of the material 2 constituting the diffractive optical element, as shown in FIG.

前述したように、この条件式は、条件式(5)及び(6)が満たされた上で満たされるのが良い。   As described above, this conditional expression is preferably satisfied after the conditional expressions (5) and (6) are satisfied.

条件式(7)の上限値を上回ると、密着2層型の回折光学素子で高い回折効率を得るための材料1、すなわち条件式((1)〜(4))を満足する材料1の確保が難しくなる。   If the upper limit value of conditional expression (7) is exceeded, material 1 for obtaining high diffraction efficiency with a two-layer diffractive optical element, that is, material 1 that satisfies conditional expressions ((1) to (4)) is secured. Becomes difficult.

条件式(8)は、図12に示すように、回折光学素子を構成する材料2の部分分散比θg,dとアッベ数νdの範囲を規定する。この関係も、条件式(1)〜(4)が満たされた上で満たされるのが良い。   Conditional expression (8) defines the range of the partial dispersion ratio θg, d and the Abbe number νd of the material 2 constituting the diffractive optical element, as shown in FIG. This relationship is also preferably satisfied after conditional expressions (1) to (4) are satisfied.

条件式(8)の上限値を上回ると、密着2層型の回折光学素子で高い回折効率を得るための材料1、すなわち条件式((1)〜(4))を満足する材料1の確保が難しくなる。   If the upper limit of conditional expression (8) is exceeded, material 1 for obtaining high diffraction efficiency with a two-layer diffractive optical element, that is, material 1 that satisfies conditional expressions ((1) to (4)) is secured. Becomes difficult.

材料2に関する条件式(5)〜(8)は、より高い回折効率を実現しつつ、格子部の格子厚をより薄くするために、材料1の存在条件との関係上、以下の条件式を満たすことが好ましい。   Conditional expressions (5) to (8) relating to material 2 are expressed as follows in relation to the existence conditions of material 1 in order to reduce the grating thickness of the grating part while achieving higher diffraction efficiency. It is preferable to satisfy.

1.4≦nd2≦1.6 …(5a)
1.45≦nd2≦1.6 …(5b)
νd2≦25 …(6a)
θgF2≦‐1.665E-07xνd2+5.213E-05xνd2‐5.656E-03xνd2+0.600)
…(7a)
θgd2≦(‐1.687E-07xνd2+5.702E-05xνd2‐6.603E-03xνd2+1.300)
…(8a)
条件式(9)は、回折光学素子において、材料1と材料2の屈折率の大小関係を示す。この条件式を満足しないと、所望の高い回折効率を得るのが難しくなる。
1.4 ≦ nd2 ≦ 1.6 (5a)
1.45 ≦ nd2 ≦ 1.6 (5b)
νd2 ≦ 25 (6a)
θgF2 ≤ -1.665E-07xνd2 3 + 5.213E-05xνd2 2 -5.656E-03xνd2 +0.600)
… (7a)
θgd2 ≦ (-1.687E-07xνd2 3 + 5.702E-05xνd2 2 -6.603E-03xνd2 ++ 1.300)
… (8a)
Conditional expression (9) shows the magnitude relationship between the refractive indexes of the material 1 and the material 2 in the diffractive optical element. If this conditional expression is not satisfied, it becomes difficult to obtain a desired high diffraction efficiency.

条件式(10)、(11)は、回折光学素子において、材料2が上記条件式(5)〜(8)を満足するために用いる微粒子材料の材料特性の範囲を規定する。条件式(10)及び(11)を満足する微粒子材料としては、ITO, Ti, Nr, Cr及びその酸化物、複合物、混合物のいずれかの無機微粒子材料が挙げられる。実施例では、ITO(ndb2=1.77, νd=6.8)を例として使用した。条件式(10)の下限値を下回るか条件式(11)の上限値を上回ると、材料2が条件式(5)〜(8)を満足するのが困難となる。   Conditional expressions (10) and (11) define the range of the material characteristics of the particulate material used for the material 2 to satisfy the conditional expressions (5) to (8) in the diffractive optical element. Examples of the fine particle material satisfying the conditional expressions (10) and (11) include any inorganic fine particle material of ITO, Ti, Nr, Cr and oxides, composites, and mixtures thereof. In the examples, ITO (ndb2 = 1.77, νd = 6.8) was used as an example. If the lower limit of conditional expression (10) is exceeded or the upper limit of conditional expression (11) is exceeded, it becomes difficult for material 2 to satisfy conditional expressions (5) to (8).

ここで、微粒子材料は、条件式(10),(11)を満足する材料であれば上記例として使用したものに限られない。   Here, the fine particle material is not limited to the one used in the above example as long as it satisfies the conditional expressions (10) and (11).

また、更に好ましくは微粒子材料に関する条件式(10)、(11)の数値を次の如く設定するのが良い。   More preferably, the numerical values of conditional expressions (10) and (11) regarding the fine particle material are set as follows.

ndb2≧1.75 …(10a)
νdb2≦18 …(11a)
尚、前記実施例では、前述のような材料を使用したが、上記条件式(1)〜(11)を満足する材料であれば、これに限るものではない。
ndb2 ≧ 1.75… (10a)
νdb2 ≦ 18 (11a)
In the above-described embodiment, the above-described materials are used. However, the present invention is not limited to this as long as the materials satisfy the conditional expressions (1) to (11).

また、本発明に係る回折光学素子10において更に好ましくは、上記条件式(1)〜(11)に加えて、以下の条件を満足するのが良い。   In the diffractive optical element 10 according to the present invention, it is more preferable that the following conditions are satisfied in addition to the conditional expressions (1) to (11).

F線,d線,C線の波長を各々λF,λd,λCとする。   The wavelengths of the F-line, d-line, and C-line are λF, λd, and λC, respectively.

F線,d線,C線の波長におけるm次の回折光に対する第1、第2の各回折格子の格子部の凸部と凹部での光学光路長の差をその波長で除した値を順に、m(λF), m(λd), m(λC)とする。回折格子の格子部の格子厚をd(μm)とする。このとき
d≦20(μm) ‥‥‥(12)
0.92≦{m(λF)+m(λd)+m(λC)}/3≦1.08 ‥‥‥(13)
なる条件を満足している。
The value obtained by dividing the difference in optical path length between the convex part and concave part of the grating part of each of the first and second diffraction gratings for the m-th order diffracted light at the wavelengths of F-line, d-line and C-line by the wavelength in order. , M (λF), m (λd), and m (λC). Let d (μm) be the grating thickness of the grating part of the diffraction grating. At this time
d ≦ 20 (μm) (12)
0.92 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.08 (13)
Is satisfied.

ここで、m(λF)、m(λd)、m(λC)は次のとおりである。   Here, m (λF), m (λd), and m (λC) are as follows.

m(λF)={d×(nF1-nF2)}/λF
m(λd)={d×(nd1-nd2)}/λd
m(λC)={d×(nC1-nC2)}/λC
上記の式において、材料1のF線、d線、C線の屈折率を各々nF1、nd1、nC1とし、材料2のF線、d線、C線の屈折率を各々nF2、nd2、nC2とする。また、dは材料1と材料2の共通の格子厚である。
m (λF) = {d × (nF1-nF2)} / λF
m (λd) = {d × (nd1-nd2)} / λd
m (λC) = {d × (nC1-nC2)} / λC
In the above formula, the refractive indices of the F-line, d-line, and C-line of the material 1 are nF1, nd1, and nC1, respectively, and the refractive indexes of the F-line, d-line, and C-line of the material 2 are nF2, nd2, and nC2, respectively. To do. D is a common lattice thickness of the material 1 and the material 2.

条件式(12)及び(13)は、材料1及び材料2により形成される密着2層型DOEにおいて回折効率を高めるためのものである。   Conditional expressions (12) and (13) are for increasing the diffraction efficiency in the contact two-layer DOE formed of the material 1 and the material 2.

条件式(12)の上限値を上回ると、斜入射光に対する回折効率の劣化が大きくなる。また、条件式(13)の範囲を外れると、可視域全体にわたり所望の回折効率が得られなくなってくる。   If the upper limit value of conditional expression (12) is exceeded, the deterioration of diffraction efficiency with respect to obliquely incident light increases. Further, if the conditional expression (13) is not satisfied, the desired diffraction efficiency cannot be obtained over the entire visible range.

さらに高い回折効率を実現するためには、条件式(12)、(13)の数値を次の如く設定するのが良い。   In order to achieve higher diffraction efficiency, the numerical values of conditional expressions (12) and (13) are preferably set as follows.

d≦15(μm) …(12a)
d≦12.5(μm) …(12b)
d≦10(μm) …(12c)
0.93≦{m(λF)+m(λd)+m(λC)}/3≦1.07 …(13a)
0.94≦{m(λF)+m(λd)+m(λC)}/3≦1.06 …(13b)
0.96≦{m(λF)+m(λd)+m(λC)}/3≦1.04 …(13c)
また、本発明に係る回折光学素子10において、更に好ましくは上記条件式(1)〜(13)に加えて、以下の条件を満足するのが良い。
d ≦ 15 (μm) (12a)
d ≦ 12.5 (μm) (12b)
d ≦ 10 (μm)… (12c)
0.93 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.07 (13a)
0.94 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.06 (13b)
0.96 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.04 (13c)
In the diffractive optical element 10 according to the present invention, it is more preferable that the following condition is satisfied in addition to the conditional expressions (1) to (13).

波長450nm,550nm,650nmを順にλ1,λ2,λ3とする。   Wavelengths 450 nm, 550 nm, and 650 nm are sequentially set as λ1, λ2, and λ3.

波長λ1,λ2,λ3における回折効率を順にη(λ1),η(λ2),η(λ3)とする。   The diffraction efficiencies at wavelengths λ1, λ2, and λ3 are sequentially η (λ1), η (λ2), and η (λ3).

第1の材料の波長λ1,λ2,λ3における内部透過率を順にT1(λ1)、T1(λ2)、T1(λ3)とする。   The internal transmittances of the first material at wavelengths λ1, λ2, and λ3 are assumed to be T1 (λ1), T1 (λ2), and T1 (λ3) in this order.

第2の材料の波長λ1,λ2,λ3における内部透過率を順にT2(λ1)、T2(λ2)、T2(λ3)とする。   The internal transmittances at wavelengths λ1, λ2, and λ3 of the second material are sequentially set to T2 (λ1), T2 (λ2), and T2 (λ3).

このとき
(T1(λ1)*T2(λ1)*η(λ1)+ T1(λ2)*T2(λ2)*η(λ2)+T1(λ3)*T2(λ3)*η(λ3))/3≧0.70 ‥‥‥(14)
なる条件を満足するように各要素を設定している。
At this time
(T1 (λ1) * T2 (λ1) * η (λ1) + T1 (λ2) * T2 (λ2) * η (λ2) + T1 (λ3) * T2 (λ3) * η (λ3)) / 3 ≧ 0.70 ‥‥‥(14)
Each element is set to satisfy the following conditions.

ここで第1、第2の材料の波長λ1、λ2、λ3における内部透過率T(λ)は次のとおりである。   Here, the internal transmittance T (λ) of the first and second materials at wavelengths λ1, λ2, and λ3 is as follows.

第1及び第2の材料の波長λ1における吸収係数をK1(λ1)、K2(λ1)とする。   The absorption coefficients at the wavelength λ1 of the first and second materials are K1 (λ1) and K2 (λ1).

第1及び第2の材料の波長λ2における吸収係数をK1(λ2)、K2(λ2)とする。   The absorption coefficients at the wavelength λ2 of the first and second materials are K1 (λ2) and K2 (λ2).

第1及び第2の材料の波長λ3における吸収係数をK1(λ3)、K2(λ3)とする。   The absorption coefficients at the wavelength λ3 of the first and second materials are K1 (λ3) and K2 (λ3).

第1、第2の回折格子の格子ベース部の厚さを各々h1、h2とする。   The thicknesses of the grating base portions of the first and second diffraction gratings are h1 and h2, respectively.

第1、第2の回折格子の格子部の格子厚をdとする。このとき
T1(λ1) = exp(-K1(λ1)×(d+h1))
T2(λ1) = exp(-K2(λ1)×(d+h2))
T1(λ2) = exp(-K1(λ2)×(d+h1))
T2(λ2) = exp(-K2(λ2)×(d+h2))
T1(λ3) = exp(-K1(λ3)×(d+h1))
T2(λ3) = exp(-K2(λ3)×(d+h2))
である。
Let d be the grating thickness of the grating portions of the first and second diffraction gratings. At this time
T1 (λ1) = exp (-K1 (λ1) × (d + h1))
T2 (λ1) = exp (-K2 (λ1) × (d + h2))
T1 (λ2) = exp (-K1 (λ2) × (d + h1))
T2 (λ2) = exp (-K2 (λ2) × (d + h2))
T1 (λ3) = exp (-K1 (λ3) × (d + h1))
T2 (λ3) = exp (-K2 (λ3) × (d + h2))
It is.

条件式(14)は、材料1及び材料2の内部透過率について規定したものである。条件式(14)の下限を下回ると、透過率が低くなり過ぎ、後述する光学系及び光学機器に、回折光学素子を使用するのが好ましくなくなる。   Conditional expression (14) defines the internal transmittance of material 1 and material 2. If the lower limit of conditional expression (14) is not reached, the transmittance becomes too low, and it is not preferable to use a diffractive optical element in an optical system and an optical instrument to be described later.

さらに高い内部透過率を実現するためには、条件式(14)の数値範囲を次の如く設定するのが良い。   In order to achieve a higher internal transmittance, it is preferable to set the numerical range of conditional expression (14) as follows.

(T1(λ1)*T2(λ1)*η(λ1)+ T1(λ2)*T2(λ2)*η(λ2)+T1(λ3)*T2(λ3)*η(λ3))/3≧0.75 …(14a)
(T1(λ1)*T2(λ1)*η(λ1)+ T1(λ2)*T2(λ2)*η(λ2)+T1(λ3)*T2(λ3)*η(λ3))/3≧0.80 …(14b)
(T1(λ1)*T2(λ1)*η(λ1)+ T1(λ2)*T2(λ2)*η(λ2)+T1(λ3)*T2(λ3)*η(λ3))/3≧0.85 …(14c)
また、微粒子材料の平均粒子径は、回折光学素子への入射光の波長(使用波長又は設計波長)の1/4以下(200nm以下)であることが好ましい。これよりも粒子径が大きくなると、微粒子材料を樹脂材料に混合した際に、光の散乱が大きくなってくる。
(T1 (λ1) * T2 (λ1) * η (λ1) + T1 (λ2) * T2 (λ2) * η (λ2) + T1 (λ3) * T2 (λ3) * η (λ3)) / 3 ≧ 0.75 … (14a)
(T1 (λ1) * T2 (λ1) * η (λ1) + T1 (λ2) * T2 (λ2) * η (λ2) + T1 (λ3) * T2 (λ3) * η (λ3)) / 3 ≧ 0.80 … (14b)
(T1 (λ1) * T2 (λ1) * η (λ1) + T1 (λ2) * T2 (λ2) * η (λ2) + T1 (λ3) * T2 (λ3) * η (λ3)) / 3 ≧ 0.85 … (14c)
The average particle diameter of the fine particle material is preferably 1/4 or less (200 nm or less) of the wavelength (use wavelength or design wavelength) of light incident on the diffractive optical element. When the particle diameter is larger than this, light scattering increases when the fine particle material is mixed with the resin material.

上記微粒子材料を混合する樹脂材料としては、紫外線硬化樹脂であって、アクリル系、フッ素系、ビニル系、エポキシ系のいずれかの有機樹脂が良い。   The resin material to be mixed with the fine particle material is an ultraviolet curable resin and is preferably an acrylic, fluorine, vinyl, or epoxy organic resin.

本実施例では、アクリル系樹脂及びフッ素系樹脂を例として使用した。   In this example, acrylic resin and fluorine resin were used as examples.

回折光学素子は、図2に示す第1、第2の回折格子の格子部の格子ピッチをPとし、格子厚をdとしたときに、次の条件式を満足するのが好ましい。   The diffractive optical element preferably satisfies the following conditional expression where P is the grating pitch of the grating parts of the first and second diffraction gratings shown in FIG. 2 and d is the grating thickness.

d/P<1/7 …(15)
条件式(15)は、回折光学素子を構成する格子部の形状(格子ピッチ及び格子厚)を規定する。条件式(15)の上限値を上回ると、格子ピッチが細かくなり過ぎて、斜入射光に対する回折効率の低下を招く。
d / P <1/7… (15)
Conditional expression (15) defines the shape (grating pitch and grating thickness) of the grating part constituting the diffractive optical element. If the upper limit value of conditional expression (15) is exceeded, the grating pitch becomes too fine, leading to a decrease in diffraction efficiency for obliquely incident light.

また、条件式(15)を満足すると、回折光学素子を製造するための型に対して、格子部の格子形状を機械加工し易くなる。   Further, when the conditional expression (15) is satisfied, the grating shape of the grating portion can be easily machined with respect to the mold for manufacturing the diffractive optical element.

更に好ましくは
d/P<1/15 …(15a)
とするのが良い。
More preferably
d / P <1/15… (15a)
It is good to do.

以上のように本発明によれば、2つの回折格子を微粒子分散材料とガラス材料を適切な格子厚で用いることで、広い波長領域における特定次数(設計次数)の回折光に対する高い回折効率が得られる。そして、不要回折光を十分小さく抑制した回折光学素子を実現することができる。   As described above, according to the present invention, high diffraction efficiency for diffracted light of a specific order (design order) in a wide wavelength region is obtained by using two diffraction gratings with a fine particle dispersion material and a glass material with an appropriate grating thickness. It is done. And it is possible to realize a diffractive optical element that suppresses unnecessary diffracted light sufficiently small.

また、内部透過率に関しても、同レベルの性能及び形状(格子厚)を有する回折光学素子に比べ、改善される。   Also, the internal transmittance is improved as compared with a diffractive optical element having the same level of performance and shape (grating thickness).

更に、密着2層型DOEとして用いると、容易に製造することができる。そして、このような回折光学素子を用いれば、フレア光が少ない良好な光学性能を有する光学系及び光学機器を実現することができる。   Furthermore, when used as a close-contact two-layer DOE, it can be easily manufactured. If such a diffractive optical element is used, it is possible to realize an optical system and an optical apparatus having good optical performance with less flare light.

次に上記で示した関係を満足する構成の回折光学素子の具体的な実施例を説明する。   Next, specific examples of the diffractive optical element having a configuration satisfying the above relationship will be described.

まず実施例1について説明する。図2に示した回折光学素子10において、第1の回折格子16には、ガラスモールド用硝材( 住田光学ガラス社製K-VC79(nd=1.6097, νd=57.8))を用いる。また、第2の回折格子17には、フッ素系樹脂にITO微粒子(微粒子材料)を混合した材料(nd=1.5215, νd=14.6)を用いている。このとき、第1及び第2の回折格子16,17の格子部の格子厚dは6.65μmである。尚、この実施例は、図2に示した格子部16c、17cの格子ピッチP=200μm、入射光は第1の格子ベース部14に対し垂直の場合の設計例である。   First, Example 1 will be described. In the diffractive optical element 10 shown in FIG. 2, a glass material for glass mold (K-VC79 (nd = 1.6097, νd = 57.8) manufactured by Sumita Optical Glass Co., Ltd.) is used for the first diffraction grating 16. Further, the second diffraction grating 17 is made of a material (nd = 1.5215, νd = 14.6) in which ITO fine particles (fine particle material) are mixed with fluorine resin. At this time, the grating thickness d of the grating portions of the first and second diffraction gratings 16 and 17 is 6.65 μm. This embodiment is a design example in the case where the grating pitch P of the grating parts 16c and 17c shown in FIG. 2 is 200 μm and the incident light is perpendicular to the first grating base part 14.

図3Aには、本実施例の回折光学素子10の1次回折光の回折効率を示している。回折光学素子10の設計次数は1次である。また、図3Bには、設計次数1次に対する±1次(0次と2次)の回折光の回折効率を示している。尚、図3A及び3Bにおいて、縦軸は回折効率(%)、横軸は波長(nm)を表している。以下他の実施例についても、同様である。   FIG. 3A shows the diffraction efficiency of the first-order diffracted light of the diffractive optical element 10 of this example. The design order of the diffractive optical element 10 is first order. FIG. 3B shows the diffraction efficiency of the diffracted light of ± 1st order (0th order and 2nd order) with respect to the design order 1st order. 3A and 3B, the vertical axis represents diffraction efficiency (%) and the horizontal axis represents wavelength (nm). The same applies to other examples below.

これらの図から分かるように、本実施例の回折光学素子10は、特許文献4,5,7にて開示された回折光学素子に比べて、設計次数回折光である1次回折光の回折効率が改善されている。しかも、本実施例の回折光学素子10では、不要回折次数光である0次回折光と2次回折光の回折効率はより低減されており、フレア光がより発生しにくくなっている。   As can be seen from these drawings, the diffractive optical element 10 of the present example has a diffraction efficiency of the first-order diffracted light, which is the designed order diffracted light, as compared with the diffractive optical elements disclosed in Patent Documents 4, 5, and 7. It has been improved. In addition, in the diffractive optical element 10 of the present embodiment, the diffraction efficiencies of the zero-order diffracted light and the second-order diffracted light that are unnecessary diffraction orders are further reduced, and flare light is less likely to be generated.

また、本実施例の回折光学素子10は、特許文献6にて開示された回折光学素子と比べて、総格子厚(積層型DOEでは、2つの回折格子層と空気層の厚さの総和)が小さい。   In addition, the diffractive optical element 10 of this example has a total grating thickness (in the stacked DOE, the total thickness of two diffraction grating layers and an air layer) as compared with the diffractive optical element disclosed in Patent Document 6. Is small.

しかし、設計次数回折光(1次回折光)及び不要回折次数光(0次回折光及び2次回折光)に関して同等以上の性能を達成している。さらに、本実施例の回折光学素子10では、1次回折光の回折効率は、可視波長領域全域で99.8%以上得られ、不要回折次数光(0次回折光及び2次回折光)の回折効率も0.05%以下と十分に抑制されている。   However, the same or better performance is achieved with respect to the designed order diffracted light (first order diffracted light) and unnecessary diffraction order light (0th order diffracted light and second order diffracted light). Furthermore, in the diffractive optical element 10 of this example, the diffraction efficiency of the first-order diffracted light is 99.8% or more in the entire visible wavelength region, and the diffraction efficiency of unnecessary diffraction order light (0th-order diffracted light and second-order diffracted light) is also 0.05%. It is sufficiently suppressed as follows.

ここで、不要次数の回折光の回折効率については、設計次数1次に対する±1次の0次回折光と2次回折光についてのみ対象としているが、これは設計次数から離れた回折次数ほどフレアに寄与する割合が少ないためである。つまり、0次と2次の回折光であるフレア光が低減されれば、それ以外の回折次数光によるフレア光も同様に低減できる。このことは、設計次数の回折光が主に回折するように設計された回折光学素子では、設計次数から離れた次数の回折光ほど回折効率が低下し、設計次数から離れた次数の回折光により形成される像ほど結像面で大きくぼけ、フレアとして目立たないことに起因する。   Here, the diffraction efficiency of unwanted order diffracted light is only targeted for ± 1st order 0th order diffracted light and 2nd order diffracted light with respect to the designed first order, but this contributes to flare as the diffraction order is far from the designed order. This is because there is a small percentage of That is, if flare light that is 0th-order and second-order diffracted light is reduced, flare light by other diffracted order light can be similarly reduced. This is because, in a diffractive optical element designed so that the diffracted light of the designed order is mainly diffracted, the diffraction efficiency of the diffracted light far from the designed order decreases, and the diffracted light of the order far from the designed order This is due to the fact that the formed image is greatly blurred on the imaging surface and is not noticeable as a flare.

次に、特許文献5にて開示された材料と、本実施例にて用いられるガラスモールド硝材(K-VC79;材料1)及びフッ素系樹脂にITO微粒子を混合した材料(材料2)の可視波長領域での屈折率特性を図4に示す。ここで、特許文献5にて開示されている材料としては、アクリル系樹脂1(nd=1.523,νd=51.1)及びアクリル系樹脂2(nd=1.636,νd=23.0)である。   Next, the visible wavelength of the material disclosed in Patent Document 5, the glass mold glass material (K-VC79; Material 1) used in this example, and a material obtained by mixing ITO fine particles in a fluororesin (Material 2) FIG. 4 shows the refractive index characteristics in the region. Here, the materials disclosed in Patent Document 5 are acrylic resin 1 (nd = 1.523, νd = 51.1) and acrylic resin 2 (nd = 1.636, νd = 23.0).

図4において、本実施例の材料1及び材料2の屈折率特性グラフはその傾きが異なっているように見えるが、波長の変化に対する屈折率の変化はほぼ一定である。   In FIG. 4, the refractive index characteristic graphs of the material 1 and the material 2 of this example appear to have different slopes, but the change in refractive index with respect to the change in wavelength is almost constant.

一方、特許文献5のアクリル系樹脂1,2では、波長の変化に対する屈折率の変化がアクリル系樹脂2ではほぼ一定であるのに対し、アクリル系樹脂1では短波長側の変化の度合いが大きい特性となっている。   On the other hand, in the acrylic resins 1 and 2 of Patent Document 5, the change in the refractive index with respect to the change in wavelength is almost constant in the acrylic resin 2, whereas in the acrylic resin 1, the degree of change on the short wavelength side is large. It is a characteristic.

これは、材料の特性について、F線, d線, C線に対する屈折率をnF, nd, nCとして、νd=(nd-1)/(nF-nC)についてしか言及しておらず、アッベ数νdはd線付近の屈折率変化の平均的な傾きを定義した値に過ぎないためである。このアッベ数νd特性は、積層構造の回折光学素子においては格子部の格子厚を薄く保ちつつ回折効率を単層型DOEに比べて改善するのに適した評価特性である。   This refers only to νd = (nd-1) / (nF-nC), where the refractive index for the F-line, d-line, and C-line is nF, nd, nC, and the Abbe number. This is because νd is only a value defining an average inclination of the refractive index change in the vicinity of the d line. This Abbe number νd characteristic is an evaluation characteristic suitable for improving the diffraction efficiency as compared with a single-layer DOE while keeping the grating thickness thin in a diffractive optical element having a laminated structure.

しかし、本実施例は、特許文献5の回折光学素子よりもさらなる回折効率の改善を目的としている。このためには、平均的な屈折率変化を表したアッベ数νd特性を評価尺度とするだけでは不十分である。   However, the present embodiment aims to further improve the diffraction efficiency as compared with the diffractive optical element of Patent Document 5. For this purpose, it is not sufficient to use the Abbe number νd characteristic representing the average refractive index change as an evaluation scale.

そこで、g線及びF線に対する部分分散比θg,Fとg線及びd線に対する部分分散比θg,dを新たな評価尺度として用いる。部分分散比θg,Fは、nF, nC, ngをそれぞれF線, C線, g線に対する屈折率とした場合に、θg,F=(ng-nF)/(nF-nC)で表される。   Therefore, the partial dispersion ratio θg, F for the g line and the F line and the partial dispersion ratio θg, d for the g line and the d line are used as new evaluation measures. Partial dispersion ratio θg, F is expressed as θg, F = (ng-nF) / (nF-nC), where nF, nC, and ng are the refractive indices for F-line, C-line, and g-line, respectively. .

部分分散比θg,dは、nF, nd, nC, ngをそれぞれF線, d線, C線, g線に対する屈折率とした場合に、θg,d=(ng-nd)/(nF-nC)で表される。それぞれの式は、短波長側の屈折率変化と長波長側の屈折率変化の比を表している。   Partial dispersion ratio θg, d is θg, d = (ng-nd) / (nF-nC, where nF, nd, nC, ng is the refractive index for F-line, d-line, C-line, and g-line, respectively. ). Each expression represents a ratio between a change in refractive index on the short wavelength side and a change in refractive index on the long wavelength side.

本実施例の材料1はθg,F=0.54, θg,d = 1.24であり、材料2はθg,F=0.38,θg,d=1.00とそれぞれ小さい。   The material 1 of this example is θg, F = 0.54, θg, d = 1.24, and the material 2 is as small as θg, F = 0.38, θg, d = 1.00.

一方、特許文献5のアクリル系樹脂1はθg,F=0.58, θg,d =1.28であり、アクリル系樹脂2はθg,F=0.68, θg,d= 1.40である。アクリル系樹脂1のθg,Fとθg,dは、本実施例の材料1と大きな差はないが、アクリル系樹脂2のθg,Fとθg,dは、本実施例の材料2に比べて大きな値になっている。   On the other hand, the acrylic resin 1 of Patent Document 5 is θg, F = 0.58, θg, d = 1.28, and the acrylic resin 2 is θg, F = 0.68, θg, d = 1.40. The θg, F and θg, d of the acrylic resin 1 are not significantly different from the material 1 of this embodiment, but the θg, F and θg, d of the acrylic resin 2 are different from the material 2 of this embodiment. It is a big value.

したがって、本実施例の方が使用波長領域全域において、各材料の波長の変化に対する屈折率の変化が一定に保たれ、より高い回折効率が得られる材料の組合せになっていると言える。   Therefore, it can be said that the present embodiment is a combination of materials in which the change in refractive index with respect to the change in the wavelength of each material is kept constant and the higher diffraction efficiency is obtained in the entire use wavelength region.

ちなみに、従来の特許で提案されている通常のガラス硝材と樹脂材料との組合せでは、格子部の格子厚6.65μm程度で、可視域全域に渡り99.8%以上といった高い回折効率を達成することが難しい。   By the way, it is difficult to achieve high diffraction efficiency of 99.8% or more over the entire visible range with the combination of the normal glass glass material and resin material proposed in the conventional patent, with the grating thickness of about 6.65 μm. .

次に第1、第2の材料の内部透過率について説明する。   Next, the internal transmittance of the first and second materials will be described.

図5に本実施例1での第1、第2の材料(材料1、材料2)の内部透過率と回折効率の積の結果を示している。図5において、縦軸は(内部)透過率(%)、横軸は波長(nm)を表している。この時、計算条件として、格子部の格子厚d=6.65μm、材料1の格子ベース部の厚さh1=10mm、材料2の格子ベース部の厚さh2=5μmとしている。   FIG. 5 shows the result of the product of the internal transmittance and diffraction efficiency of the first and second materials (material 1 and material 2) in Example 1. In FIG. 5, the vertical axis represents (internal) transmittance (%), and the horizontal axis represents wavelength (nm). At this time, the calculation conditions are set such that the lattice thickness d of the lattice portion is 6.65 μm, the thickness h1 of the lattice base portion of the material 1 is 10 mm, and the thickness h2 of the lattice base portion of the material 2 is 5 μm.

図5から分かるように、可視域全域で約75%以上と良好な透過率となっている。尚、前記(14)式の各波長450nm,550nm,650nmの平均内部透過率も、約86.6%と良好な値となっている。   As can be seen from FIG. 5, the transmittance is about 75% or more over the entire visible range. Incidentally, the average internal transmittance of each wavelength of 450 nm, 550 nm, and 650 nm in the formula (14) is also a favorable value of about 86.6%.

また、本実施例は、特許文献4〜7とは異なり、前述した材質の上記材料1,2を使用することにより、高い回折効率を維持しながら第1及び第2の回折格子16,17の格子部が同一の格子パターンを有する格子面で接した密着2層型DOEとして実現している。   Further, in this embodiment, unlike Patent Documents 4 to 7, by using the above-described materials 1 and 2 of the above-described materials, the first and second diffraction gratings 16 and 17 are maintained while maintaining high diffraction efficiency. This is realized as a close-contact two-layer DOE in which the lattice portion is in contact with a lattice plane having the same lattice pattern.

これにより、第1及び第2の回折格子16,17を高い精度で位置合せする必要がなくなり、製造が容易になる。   This eliminates the need to align the first and second diffraction gratings 16 and 17 with high accuracy, and facilitates manufacture.

以上説明した実施例では、図1及び図2に示すように、平板に回折格子16,17を設けた回折光学素子について説明した。しかし、平板に代えて、レンズの凸面や凹面といった曲面に回折格子を設けても、本実施例と同様の効果を得ることができる。   In the embodiment described above, the diffractive optical element provided with the diffraction gratings 16 and 17 on the flat plate has been described as shown in FIGS. However, the same effects as in the present embodiment can be obtained by providing a diffraction grating on a curved surface such as a convex surface or a concave surface of the lens instead of the flat plate.

また、本実施例では、設計次数が1次である回折光学素子について説明したが、設計次数は1次に限定されない。2次や3次等、1次とは異なる次数の回折光であっても、各回折格子における光学光路長差の合成値を、所望の設計次数で所望の設計波長となるように設定すれば、本実施例と同様な効果が得られる。   In this embodiment, the diffractive optical element whose design order is the first order has been described, but the design order is not limited to the first order. Even if the diffracted light has a different order from the first order, such as the second order or the third order, the composite value of the optical optical path length difference in each diffraction grating can be set to a desired design wavelength with a desired design order. The same effects as in this embodiment can be obtained.

次に本発明の実施例2について説明する。本実施例の回折光学素子における断面形状は実施例1と基本的に同じである。   Next, Example 2 of the present invention will be described. The cross-sectional shape of the diffractive optical element of this example is basically the same as that of Example 1.

すなわち、本実施例の回折光学素子は図1及び図2に示した素子構成を有する。このため、本実施例では実施例1と同じ構成要素には実施例1と同符号を付してそれらの詳細な説明は省略し、異なる部分についてのみ詳しく説明する。   That is, the diffractive optical element of this example has the element configuration shown in FIGS. Therefore, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted, and only different portions will be described in detail.

本実施例の回折光学素子10において、図2に示す第1の回折格子16には、ガラスモールド用硝材( 住田光学ガラス社製K-LaFK60(nd=1.6325, νd=63.8))を用いる。また、第2の回折格子17には、アクリル系樹脂にITO微粒子(微粒子材料)を混合した材料(nd=1.5652, νd=19.7)を用いている。第1及び第2の回折格子16,17の格子部16c、17cの格子厚dは同じであり、格子厚dは8.75μmである。尚、この実施例についても、図2に示した格子部16c、17cの格子ピッチP=200μm、入射光は第1の格子ベース部14に対し垂直の場合の設計例である。   In the diffractive optical element 10 of the present embodiment, a glass material for glass mold (K-LaFK60 (nd = 1.6325, νd = 63.8) manufactured by Sumita Optical Glass Co., Ltd.) is used for the first diffraction grating 16 shown in FIG. The second diffraction grating 17 is made of a material (nd = 1.5652, νd = 19.7) in which ITO fine particles (fine particle material) are mixed with acrylic resin. The grating portions 16c and 17c of the first and second diffraction gratings 16 and 17 have the same grating thickness d, and the grating thickness d is 8.75 μm. This embodiment is also a design example in the case where the grating pitch 16 of the grating parts 16c and 17c shown in FIG. 2 is P = 200 μm and the incident light is perpendicular to the first grating base part 14.

図6Aには、本実施例2の回折光学素子10における1次回折光の回折効率を示す。設計次数は1次である。また、図6Bには、設計次数1次における±1次の回折光(0次回折光と2次回折光)の回折効率を示している。   FIG. 6A shows the diffraction efficiency of the first-order diffracted light in the diffractive optical element 10 of the second embodiment. The design order is first order. FIG. 6B shows the diffraction efficiencies of ± 1st order diffracted light (0th order diffracted light and 2nd order diffracted light) in the design order 1st order.

本実施例の回折光学素子10は、実施例1の回折光学素子10と同様に、設計次数の回折光である1次光回折光の回折効率が改善されているとともに、不要回折光である0次回折光及び2次回折光の回折効率も低減され、よりフレア光が発生しにくくなっている。   Similar to the diffractive optical element 10 of the first embodiment, the diffractive optical element 10 of the present embodiment is improved in the diffraction efficiency of the first-order light diffracted light that is the diffracted light of the designed order, and is an unnecessary diffracted light. The diffraction efficiency of the second-order diffracted light and the second-order diffracted light is also reduced, and flare light is less likely to be generated.

具体的には、1次回折光の回折効率は可視波長領域全域で99.7%以上であり、不要回折次数光(0次回折光及び2次回折光)の回折効率は0.09%以下と十分に抑制されている。ちなみに、従来の回折光学素子のように通常のガラス硝材と樹脂材料との組合せを用いたのでは、格子部の格子厚8.75μm程度で、可視域全域に渡り99.7%以上といった高い回折効率を達成することが難しい。   Specifically, the diffraction efficiency of the first-order diffracted light is 99.7% or more in the entire visible wavelength range, and the diffraction efficiency of unnecessary diffraction order light (0th-order diffracted light and second-order diffracted light) is sufficiently suppressed to 0.09% or less. . By the way, when using a combination of ordinary glass glass and resin materials as in the conventional diffractive optical element, a high diffraction efficiency of 99.7% or more is achieved over the entire visible range with a grating thickness of about 8.75 μm. Difficult to do.

図7に実施例2を用いた2種類の材料の内部透過率と回折効率の積の結果を示す。この時、計算条件として、格子部の格子厚d=8.75μm、材料1の格子ベース部の厚さh1=10mm、材料2の格子ベース部の厚さh2=5μmとしている。図7から分かるように、可視域全域で約75%以上と良好な透過率となっている。   FIG. 7 shows the result of the product of the internal transmittance and diffraction efficiency of two types of materials using Example 2. At this time, as calculation conditions, the lattice thickness d of the lattice portion is 8.75 μm, the thickness h1 of the lattice base portion of the material 1 is 10 mm, and the thickness h2 of the lattice base portion of the material 2 is 5 μm. As can be seen from FIG. 7, the transmittance is as good as about 75% or more in the entire visible range.

尚、前記(14)式の各波長450nm,550nm,650nmの平均内部透過率も、約88.4%と前記実施例1よりも更に良好な値となっている。   Note that the average internal transmittance of each wavelength of 450 nm, 550 nm, and 650 nm in the formula (14) is about 88.4%, which is a better value than that of the first embodiment.

次に本発明の実施例3について説明する。本実施例の回折光学素子における断面形状は実施例1及び実施例2と基本的に同じである。   Next, Embodiment 3 of the present invention will be described. The cross-sectional shape of the diffractive optical element of this example is basically the same as that of Example 1 and Example 2.

本実施例の回折光学素子は、すなわち、図1及び図2に示した素子構成を有する。このため、本実施例では、実施例1と同じ構成要素には実施例1と同符号を付してそれらの詳細な説明は省略し、異なる部分についてのみ詳しく説明する。   In other words, the diffractive optical element of the present example has the element configuration shown in FIGS. For this reason, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted, and only different portions will be described in detail.

本実施例の回折光学素子10において、図2に示す第1の回折格子16には、ガラスモールド用硝材(住田光学ガラス社製K-VC78(nd=1.6691, νd=55.4))を用いる。また、第2の回折格子17には、アクリル系樹脂にITO微粒子(微粒子材料)を混合した材料(nd=1.5836, νd=16.0)を用いている。第1及び第2の回折格子16,17の格子部16c、17cの格子厚dは同じであり、格子厚dは6.86μmである。尚、この実施例についても、図2に示した格子部の格子ピッチp=200μm、入射光は第1の格子ベース部14に対し垂直の場合の設計例である。   In the diffractive optical element 10 of the present embodiment, a glass material for glass mold (K-VC78 (nd = 1.6691, νd = 55.4) manufactured by Sumita Optical Glass Co., Ltd.) is used for the first diffraction grating 16 shown in FIG. The second diffraction grating 17 is made of a material (nd = 1.5836, νd = 16.0) in which ITO fine particles (fine particle material) are mixed with acrylic resin. The grating portions 16c and 17c of the first and second diffraction gratings 16 and 17 have the same grating thickness d, and the grating thickness d is 6.86 μm. This embodiment is also a design example in the case where the grating pitch p of the grating portion shown in FIG. 2 is 200 μm and the incident light is perpendicular to the first grating base portion 14.

図8Aには、本実施例3の回折光学素子10における1次回折光の回折効率を示す。設計次数は1次である。   FIG. 8A shows the diffraction efficiency of the first-order diffracted light in the diffractive optical element 10 of the third embodiment. The design order is first order.

また、図8Bには、設計次数1次に対する±1次の回折光(0次回折光と2次回折光)の回折効率を示している。本実施例の回折光学素子10は、実施例1の回折光学素子10と同様に、設計次数の回折光である1次光回折光の回折効率が改善されているとともに、不要回折光である0次回折光及び2次回折光の回折効率も低減され、よりフレア光が発生しにくくなっている。   FIG. 8B shows the diffraction efficiency of ± 1st order diffracted light (0th order diffracted light and 2nd order diffracted light) with respect to the designed first order. Similar to the diffractive optical element 10 of the first embodiment, the diffractive optical element 10 of the present embodiment is improved in the diffraction efficiency of the first-order diffracted light that is the diffracted light of the designed order, and is an unnecessary diffracted light. The diffraction efficiency of the second-order diffracted light and the second-order diffracted light is also reduced, and flare light is less likely to be generated.

具体的には、1次回折光の回折効率は可視波長領域全域で99.8%以上であり、不要回折次数光(0次回折光及び2次回折光)の回折効率は0.04%以下と十分に抑制されている。ちなみに、従来の回折光学素子のように通常のガラス硝材と樹脂材料との組合せを用いたのでは、格子部の格子厚6.86μm程度で、可視域全域に渡り99.8%以上といった高い回折効率を達成することが難しい。   Specifically, the diffraction efficiency of the first-order diffracted light is 99.8% or more in the entire visible wavelength region, and the diffraction efficiency of unnecessary diffraction order light (0th-order diffracted light and second-order diffracted light) is sufficiently suppressed to 0.04% or less. . By the way, when using a combination of ordinary glass glass material and resin material like the conventional diffractive optical element, high diffraction efficiency of 99.8% or more is achieved over the entire visible range with a grating thickness of about 6.86 μm. Difficult to do.

図9に本実施例3で用いた2種類の材料の内部透過率と回折効率の積の結果を示す。この時、計算条件として、格子部の格子厚d=6.86μm、材料1の格子ベース部の厚さh1=10mm、材料2の格子ベース部の厚さh2=5μmとしている。   FIG. 9 shows the result of the product of the internal transmittance and diffraction efficiency of the two types of materials used in Example 3. At this time, as calculation conditions, the lattice thickness d of the lattice portion is 6.86 μm, the thickness h1 of the lattice base portion of the material 1 is 10 mm, and the thickness h2 of the lattice base portion of the material 2 is 5 μm.

図9から分かるように、可視域全域で約73%以上と良好な透過率となっている。尚、前記(14)式の各波長450nm,550nm,650nmの平均内部透過率も、約85.3%と良好な値となっている。   As can be seen from FIG. 9, the transmittance is as good as about 73% or more in the entire visible range. In addition, the average internal transmittance of each wavelength of 450 nm, 550 nm, and 650 nm in the formula (14) is a good value of about 85.3%.

表1には、実施例1〜3にて説明した回折光学素子に関する前述の条件式(1)〜(15)の数値を示している。   Table 1 shows numerical values of the conditional expressions (1) to (15) regarding the diffractive optical elements described in Examples 1 to 3.

以上説明したように、上記各実施例では、g線及びF線に対する部分分散比θg,Fとg線及びd線に対する部分分散比θg,dを適切に設定した材料1及び材料2を用いて、密着2層型の回折光学素子を構成している。   As described above, in each of the above-described embodiments, the material 1 and the material 2 in which the partial dispersion ratio θg, F for the g line and the F line and the partial dispersion ratio θg, d for the g line and the d line are appropriately set are used. This constitutes a close-contact two-layer diffractive optical element.

これにより、入射光の波長(使用波長)領域の全域において、特定次数(設計次数)の回折光に対する回折効率を高くしつつ、フレア光となり得る不要回折光を十分に抑制することが可能な回折光学素子を実現している。   This makes it possible to sufficiently suppress unwanted diffracted light that can be flare light, while increasing the diffraction efficiency for diffracted light of a specific order (design order) throughout the wavelength (use wavelength) region of incident light. An optical element is realized.

また、内部透過率に関しても、同レベルの性能及び形状(格子厚)を有する回折光学素子に比べ、より改善される。更に、密着2層型の回折光学素子とすることで、製造が容易となる等の効果が得られる。   Further, the internal transmittance is further improved as compared with a diffractive optical element having the same level of performance and shape (grating thickness). Furthermore, effects such as easy manufacture can be obtained by using a two-layer diffractive optical element.

なお、図1及び図2に示した回折光学素子の形状、特に格子部の形状は一例に過ぎず、他の形状を採用することも可能である。   Note that the shape of the diffractive optical element shown in FIGS. 1 and 2, particularly the shape of the grating portion, is merely an example, and other shapes may be employed.

又、回折格子は2層に限らず、3層以上あっても良い。   Further, the diffraction grating is not limited to two layers, and may be three or more layers.

この場合、少なくとも一方の格子ベース部に回折格子を設けても良い。   In this case, a diffraction grating may be provided on at least one of the grating base portions.

又、第1、第2の素子部では全く独立に新たな回折格子より成る格子部を設けても良い。   In addition, the first and second element portions may be provided with a grating portion made of a new diffraction grating completely independently.

次に本発明の回折光学素子を用いた光学機器の実施例について説明する。   Next, examples of optical instruments using the diffractive optical element of the present invention will be described.

図13Aには、本発明の回折光学素子を含んだ光学系の要部断面図である。図13Aはスチルカメラやビデオカメラ等の撮影装置(光学機器)200において撮像光学系として用いられる光学系の構成を示している。   FIG. 13A is a cross-sectional view of a principal part of an optical system including the diffractive optical element of the present invention. FIG. 13A shows a configuration of an optical system used as an imaging optical system in a photographing apparatus (optical apparatus) 200 such as a still camera or a video camera.

図13Aにおいて、101は屈折光学素子(例えば、通常のレンズ素子)と回折光学素子を有する撮像光学系である。撮像光学系101の内部には、開口絞り102と本発明の回折光学素子10が設けられている。103は撮像光学系101の結像面に配置されたフィルムや撮像素子等の感光部材である。撮像素子としては、CCDセンサやCMOSセンサ等の光電変換素子が用いられる。   In FIG. 13A, reference numeral 101 denotes an imaging optical system having a refractive optical element (for example, a normal lens element) and a diffractive optical element. In the imaging optical system 101, an aperture stop 102 and the diffractive optical element 10 of the present invention are provided. Reference numeral 103 denotes a photosensitive member such as a film or an imaging element disposed on the imaging surface of the imaging optical system 101. As the image sensor, a photoelectric conversion element such as a CCD sensor or a CMOS sensor is used.

回折光学素子10は前述したようにレンズ機能を有する素子であり、撮像光学系101中の屈折光学素子で発生する色収差を補正する役割を果たす。そして、回折光学素子10は、実施例1〜3で説明したように、その回折効率特性が従来のものに比べて大幅に改善されている。このため、フレア光が少なく、低周波数での解像力も高い良好な光学性能を有した撮像光学系及び撮像装置が実現される。
また、実施例1〜3にて説明した回折光学素子10は、空気層を有さない密着2層型DOEであるので、製造が容易で、撮像光学系の量産性を高めることにも有効である。
As described above, the diffractive optical element 10 is an element having a lens function, and plays a role of correcting chromatic aberration generated by the refractive optical element in the imaging optical system 101. As described in Examples 1 to 3, the diffractive optical element 10 has greatly improved diffraction efficiency characteristics compared to the conventional one. For this reason, an imaging optical system and an imaging apparatus having good optical performance with less flare light and high resolving power at low frequencies are realized.
Further, since the diffractive optical element 10 described in Examples 1 to 3 is a close-contact two-layer DOE that does not have an air layer, it is easy to manufacture and effective in enhancing the mass productivity of the imaging optical system. is there.

図13Aでは、開口絞り102の近傍に配置された平板ガラス面に回折光学素子10を設けた例を示すが、回折光学素子10の配置形態はこれに限られない。前述したように、回折光学素子10をレンズ素子の凹面や凸面上に設けてもよい。また、撮像光学系内に回折光学素子10を複数個配置してもよい。   Although FIG. 13A shows an example in which the diffractive optical element 10 is provided on a flat glass surface arranged in the vicinity of the aperture stop 102, the arrangement form of the diffractive optical element 10 is not limited to this. As described above, the diffractive optical element 10 may be provided on the concave surface or convex surface of the lens element. A plurality of diffractive optical elements 10 may be arranged in the imaging optical system.

図13Aでは、撮像装置の撮影光学系に実施例1〜3の回折光学素子10を用いた場合について説明した。しかし、該回折光学素子10を、事務機(光学機器)であるイメージスキャナやデジタル複写機のリーダレンズ等、広い波長領域で使用される結像光学系に用いてもよい。この場合も、フレア光が少なく、低周波数での解像力も高い良好な光学性能を有する結像光学系及び事務機を実現することができる。   In FIG. 13A, the case where the diffractive optical element 10 of Examples 1 to 3 is used in the imaging optical system of the imaging apparatus has been described. However, the diffractive optical element 10 may be used in an imaging optical system that is used in a wide wavelength region, such as an image scanner as an office machine (optical equipment) or a reader lens of a digital copying machine. Also in this case, it is possible to realize an imaging optical system and an office machine that have good optical performance with little flare light and high resolving power at low frequencies.

図13Bには、本発明の回折光学素子を含んだ光学系の要部断面図である。図13Bは双眼鏡等の観察装置(光学機器)300に搭載される観察光学系120の構成を示している。
図13Bにおいて、104は対物レンズ、105は対物レンズ104により形成された倒立像を正立させるためのプリズムである。106は接眼レンズであり、107の評価面(瞳面)に眼を配置することで、観察者は接眼レンズ106を通して対象物を観察することができる。
FIG. 13B is a cross-sectional view of a principal part of an optical system including the diffractive optical element of the present invention. FIG. 13B shows a configuration of an observation optical system 120 mounted on an observation apparatus (optical apparatus) 300 such as binoculars.
In FIG. 13B, reference numeral 104 denotes an objective lens, and 105 denotes a prism for erecting an inverted image formed by the objective lens 104. Reference numeral 106 denotes an eyepiece lens, and an observer can observe the object through the eyepiece lens 106 by placing an eye on the evaluation surface (pupil surface) 107.

対物レンズ104は、本発明の回折光学素子10を有する。該回折光学素子10は、対物レンズ104の結像面103での色収差やその他の収差を補正する目的で設けられている。   The objective lens 104 has the diffractive optical element 10 of the present invention. The diffractive optical element 10 is provided for the purpose of correcting chromatic aberration and other aberrations on the imaging surface 103 of the objective lens 104.

回折光学素子10は、実施例1〜3で説明したように、その回折効率特性が従来のものに比べて大幅に改善されている。このため、フレア光が少なく、低周波数での解像力も高い良好な光学性能を有した観察光学系及び観察装置が実現される。   As described in Examples 1 to 3, the diffractive optical element 10 has greatly improved diffraction efficiency characteristics compared to the conventional one. For this reason, an observation optical system and an observation apparatus having good optical performance with little flare light and high resolving power at a low frequency are realized.

また、実施例1〜3にて説明した回折光学素子10は、空気層を有さない密着2層型DOEであるので、製造が容易で、結像光学系の量産性を高めることにも有効である。   In addition, since the diffractive optical element 10 described in Examples 1 to 3 is a close-contact two-layer DOE that does not have an air layer, it is easy to manufacture and effective in increasing the mass productivity of the imaging optical system. It is.

図13Bでは、対物レンズ104を構成するレンズ素子の近くに配置された平板ガラス面に回折光学素子10を設けた例を示すが、回折光学素子10の配置形態はこれに限られない。   FIG. 13B shows an example in which the diffractive optical element 10 is provided on a flat glass surface arranged near the lens element constituting the objective lens 104, but the arrangement form of the diffractive optical element 10 is not limited to this.

前述したように、回折光学素子10をレンズ素子の凹面や凸面上に設けてもよい。また、結像光学系内に回折光学素子10を複数個配置してもよい。   As described above, the diffractive optical element 10 may be provided on the concave surface or convex surface of the lens element. A plurality of diffractive optical elements 10 may be arranged in the imaging optical system.

また、図13Bでは、対物レンズ104内に回折光学素子10を設けた場合を示したが、プリズム105の光学面や接眼レンズ106内に設けることもでき、この場合も先に説明したのと同様の効果が得られる。   13B shows the case where the diffractive optical element 10 is provided in the objective lens 104, it can also be provided in the optical surface of the prism 105 or in the eyepiece lens 106, and this case is also the same as described above. The effect is obtained.

但し、回折光学素子10を結像面103よりも物体側に設けることで、対物レンズ104で発生する色収差の低減効果があるため、肉眼の観察系の場合は、少なくとも対物レンズ104内に設けることが望ましい。   However, providing the diffractive optical element 10 closer to the object side than the imaging surface 103 has an effect of reducing chromatic aberration generated in the objective lens 104. Therefore, in the case of a naked eye observation system, it should be provided at least in the objective lens 104. Is desirable.

さらに、図13Bに示した双眼鏡の観察光学系以外に、望遠鏡やカメラの光学ファインダといった観察光学系にも実施例1〜3にて説明した回折光学素子10を設けることができる。この場合も、先に説明したのと同様の効果が得られる。   Furthermore, in addition to the binocular observation optical system shown in FIG. 13B, the diffractive optical element 10 described in the first to third embodiments can be provided in an observation optical system such as a telescope or a camera optical finder. In this case, the same effect as described above can be obtained.

本発明の回折光学素子の要部正面図。The principal part front view of the diffractive optical element of this invention. 本発明の回折光学素子の部分断面図。The fragmentary sectional view of the diffractive optical element of the present invention. 実施例1の回折光学素子の設計次数での回折効率特性を示すグラフ図。FIG. 3 is a graph showing diffraction efficiency characteristics at the design order of the diffractive optical element of Example 1. 実施例1の回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。FIG. 2 is a graph showing diffraction efficiency characteristics in the design order ± 1st order of the diffractive optical element of Example 1. 実施例1の回折光学素子を構成する材料の屈折率特性(n−λ特性)を示すグラフ図。FIG. 3 is a graph showing the refractive index characteristics (n-λ characteristics) of materials constituting the diffractive optical element of Example 1. 実施例1の回折光学素子の(内部)透過率特性を示すグラフ図。FIG. 2 is a graph showing (internal) transmittance characteristics of the diffractive optical element of Example 1. 実施例2の回折光学素子の設計次数での回折効率特性を示すグラフ図。FIG. 5 is a graph showing diffraction efficiency characteristics at the design order of the diffractive optical element of Example 2. 実施例2の回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。FIG. 4 is a graph showing diffraction efficiency characteristics in the design order ± 1st order of the diffractive optical element of Example 2. 実施例2の回折光学素子の(内部)透過率特性を示すグラフ図。FIG. 4 is a graph showing (internal) transmittance characteristics of the diffractive optical element of Example 2. 実施例3の回折光学素子の設計次数での回折効率特性を示すグラフ図。FIG. 4 is a graph showing the diffraction efficiency characteristics at the design order of the diffractive optical element of Example 3. 実施例3の回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。FIG. 4 is a graph showing diffraction efficiency characteristics in the design order ± 1st order of the diffractive optical element of Example 3. 実施例3の回折光学素子の(内部)透過率特性を示すグラフ図。FIG. 6 is a graph showing (internal) transmittance characteristics of the diffractive optical element of Example 3. 実施例1〜3の回折光学素子を構成する材料の屈折率特性(nd-νd特性)を示すグラフ図。The graph which shows the refractive index characteristic (nd-νd characteristic) of the material which comprises the diffractive optical element of Examples 1-3. 実施例1〜3の回折光学素子を構成する材料の屈折率特性(θg,F-νd特性)を示すグラフ図。The graph which shows the refractive index characteristic ((theta) g, F- (nu) d characteristic) of the material which comprises the diffractive optical element of Examples 1-3. 実施例1〜3の回折光学素子を構成する材料の屈折率特性(θg,d-νd特性)を示すグラフ図。The graph which shows the refractive index characteristic ((theta) g, d- (nu) d characteristic) of the material which comprises the diffractive optical element of Examples 1-3. 実施例1〜3の回折光学素子を用いた撮影光学系とこれを備えた撮像装置の構成を示す図。FIG. 4 is a diagram illustrating a configuration of a photographing optical system using the diffractive optical elements of Examples 1 to 3 and an imaging apparatus including the photographing optical system. 実施例1〜3の回折光学素子を用いた観察光学系とこれを備えた観察装置の構成を示す図。The figure which shows the structure of the observation optical system using the diffractive optical element of Examples 1-3, and an observation apparatus provided with the same. 従来の単層型回折光学素子の部分断面図。The fragmentary sectional view of the conventional single layer type diffractive optical element. 従来の単層型回折光学素子の設計次数及び設計次数±1次の回折効率特性を示すグラフ図。The graph which shows the design efficiency of the conventional single layer type | mold diffractive optical element, and the diffraction efficiency characteristic of design order +/- 1st order. 従来の積層型回折光学素子の部分断面図。The fragmentary sectional view of the conventional laminated type diffractive optical element. 従来の積層型回折光学素子の設計次数での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order of the conventional lamination type diffractive optical element. 従来の積層型回折光学素子の部分断面図。The fragmentary sectional view of the conventional laminated type diffractive optical element. 従来の積層型回折光学素子の設計次数での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order of the conventional lamination type diffractive optical element. 従来の積層型回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order +/- 1st order of the conventional lamination type diffractive optical element. 従来の積層型回折光学素子の設計次数での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order of the conventional lamination type diffractive optical element. 従来の積層型回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order +/- 1st order of the conventional lamination type diffractive optical element. 従来の密着2層型回折光学素子の部分断面図。The fragmentary sectional view of the conventional adhesion two-layer type diffractive optical element.

符号の説明Explanation of symbols

10 回折光学素子
12 第1の素子部
13 第2の素子部
14 第1の格子ベース部
15 第2の格子ベース部
16 第1の回折格子
17 第2の回折格子
101 撮像光学系
102 絞り
103 結像面
104 対物レンズ
105 プリズム
108 接眼レンズ
107 評価面(瞳面)
108 回折格子
109 基板
110 第1の素子部
111 第2の素子部
112 第3の素子部
113 (積層型)回折光学素子
114 第1の素子部
115 第2の素子部
117 第1の素子部
118 第2の素子部
119 (密着2層型)回折光学素子
120 観察光学系
10 Diffractive optical element
12 First element
13 Second element section
14 First grid base
15 Second grid base
16 First diffraction grating
17 Second diffraction grating
101 Imaging optics
102 Aperture
103 Image plane
104 Objective lens
105 prism
108 eyepiece
107 Evaluation surface (pupil surface)
108 diffraction grating
109 substrate
110 First element
111 Second element
112 Third element
113 (Stacked) diffractive optical element
114 First element
115 Second element
117 First element
118 Second element
119 (Adherent two-layer type) diffractive optical element
120 Observation optical system

Claims (11)

第1の材料より成る第1の回折格子と第2の材料より成る第2の回折格子を各回折格子の格子部の格子面が互いに接するように積層した構造を有する回折光学素子であって、
該第2の材料は微粒子材料を樹脂材料に混合した材料より成り、
該第1の材料のd線に対する屈折率、アッベ数、g線とF線に対する部分分散比、g線とd線に対する部分分散比を順にnd1、νd1、θg,F1、θg,d1、
該第2の材料のd線に対する屈折率、アッベ数、g線とF線に対する部分分散比、g線とd線に対する部分分散比を順にnd2、νd2、θg,F2、θg,d2、
該微粒子材料のd線に対する屈折率、アッベ数を各々ndb2、νdb2とするとき
nd1≧1.48
νd1≧40
(-1.665E-07×νd1+5.213E-05×νd1‐5.656E-03×νd1+0.700) ≦θg,F1
≦(-1.665E-07×νd1+5.213E-05×νd1‐5.656E-03×νd1+0.662)
(-1.687E-07×νd1+5.702E-05×νd1‐6.603E-03×νd1+1.425) ≦θg,d1
≦(−1.687E−07×νd1+5.702E-05×νd1‐6.603E-03×νd1+1.513)
nd2≦1.6
νd2≦30
θg,F2≦(-1.665E-07×νd23+5.213E-05×νd22‐5.656E-03×νd2+0.675)
θg,d2≦(-1.687E-07×νd23+5.702E-05×νd22‐6.603E-03×νd2+1.400)
nd1-nd2>0
ndb2≧1.70
νdb2≦20
なる条件を満足することを特徴とする回折光学素子。
A diffractive optical element having a structure in which a first diffraction grating made of a first material and a second diffraction grating made of a second material are laminated so that the grating surfaces of the grating portions of each diffraction grating are in contact with each other,
The second material is made of a material obtained by mixing a fine particle material with a resin material,
The refractive index of the first material for d-line, Abbe number, partial dispersion ratio for g-line and F-line, and partial dispersion ratio for g-line and d-line are nd1, νd1, θg, F1, θg, d1,
The refractive index of the second material with respect to d-line, Abbe number, partial dispersion ratio with respect to g-line and F-line, and partial dispersion ratio with respect to g-line and d-line are nd2, νd2, θg, F2, θg, d2,
When the refractive index and Abbe number for the d-line of the fine particle material are ndb2 and νdb2, respectively.
nd1 ≧ 1.48
νd1 ≧ 40
(-1.665E-07 × νd1 3 + 5.213E-05 × νd1 2 -5.656E-03 × νd1 + 0.700) ≦ θg, F1
≦ (-1.665E-07 × νd1 3 + 5.213E-05 × νd1 2 -5.656E-03 × νd1 + 0.662)
(-1.687E-07 × νd1 3 + 5.702E-05 × νd1 2 -6.603E-03 × νd1 + 1.425) ≦ θg, d1
≦ (−1.687E−07 × νd1 3 + 5.702E-05 × νd1 2 −6.603E-03 × νd1 + 1.513)
nd2 ≦ 1.6
νd2 ≦ 30
θg, F2 ≦ (-1.665E-07 × νd2 3 + 5.213E-05 × νd2 2 ‐5.656E-03 × νd2 + 0.675)
θg, d2 ≦ (-1.687E-07 × νd2 3 + 5.702E-05 × νd2 2 -6.603E-03 × νd2 + 1.400)
nd1-nd2> 0
ndb2 ≧ 1.70
νdb2 ≦ 20
A diffractive optical element characterized by satisfying the following conditions:
F線,d線,C線の波長を各々λF,λd,λC、
F線,d線,C線の波長におけるm次の回折光に対する前記各回折格子の格子部の凸部と凹部での光学光路長の差をその波長で除した値を順に、m(λF), m(λd), m(λC)、前記回折格子の格子部の格子厚をd(μm)とするとき
d≦20(μm)
0.92≦{m(λF)+m(λd)+m(λC)}/3≦1.08
なる条件を満足することを特徴とする請求項1に記載の回折光学素子。
The wavelengths of F-line, d-line and C-line are λF, λd, λC,
The value obtained by dividing the difference in optical optical path length between the convex part and concave part of the grating part of each diffraction grating with respect to the m-th order diffracted light at the wavelengths of F-line, d-line, and C-line by m (λF) , m (λd), m (λC), and the grating thickness of the diffraction grating is d (μm)
d ≤ 20 (μm)
0.92 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.08
2. The diffractive optical element according to claim 1, wherein the following condition is satisfied.
前記第1の材料は、ガラス硝材であることを特徴とする請求項1又は2に記載の回折光学素子。   3. The diffractive optical element according to claim 1, wherein the first material is a glass glass material. 前記ガラス硝材は、屈伏点温度が600℃以下のガラス硝材であることを特徴とする請求項3に記載の回折光学素子。   4. The diffractive optical element according to claim 3, wherein the glass glass material is a glass glass material having a yield point temperature of 600 ° C. or lower. 波長450nm,550nm,650nmを順にλ1,λ2,λ3、
該波長λ1,λ2,λ3における回折効率を順にη(λ1),η(λ2),η(λ3)、
該第1の材料の波長λ1,λ2,λ3における内部透過率を順にT1(λ1)、T1(λ2)、T1(λ3)、
該第2の材料の波長λ1,λ2,λ3における内部透過率を順にT2(λ1)、T2(λ2)、T2(λ3)とするとき
(T1(λ1)*T2(λ1)*η(λ1)+ T1(λ2)*T2(λ2)*η(λ2)+T1(λ3)*T2(λ3)*η(λ3))/3≧0.70
なる条件を満足していることを特徴とする請求項1乃至4のいずれか1項に記載の回折光学素子。
Wavelength 450nm, 550nm, 650nm in order λ1, λ2, λ3,
The diffraction efficiencies at the wavelengths λ1, λ2, and λ3 are sequentially η (λ1), η (λ2), η (λ3),
The internal transmittances at the wavelengths λ1, λ2, and λ3 of the first material are sequentially expressed as T1 (λ1), T1 (λ2), T1 (λ3),
When the internal transmittances of the second material at wavelengths λ1, λ2, and λ3 are T2 (λ1), T2 (λ2), and T2 (λ3), respectively.
(T1 (λ1) * T2 (λ1) * η (λ1) + T1 (λ2) * T2 (λ2) * η (λ2) + T1 (λ3) * T2 (λ3) * η (λ3)) / 3 ≧ 0.70
The diffractive optical element according to claim 1, wherein the following condition is satisfied.
前記第2の材料はITO、Ti、Nr、Crのいずれか1つ又はこれらのうち少なくとも1つを含む酸化物、複合物、混合物のいずれか1つの無機微粒子を含んだ樹脂材料であることを特徴とする請求項1、2、5のいずれか1項に記載の回折光学素子。   The second material is a resin material containing inorganic fine particles of any one of ITO, Ti, Nr, and Cr, or an oxide, composite, or mixture containing at least one of them. 6. The diffractive optical element according to any one of claims 1, 2, and 5, wherein: 前記第2の材料の無機微粒子を混合する樹脂材料は、紫外線硬化樹脂で、かつアクリル系、フッ素系、ビニル系、エポキシ系のいずれかの有機樹脂であることを特徴とする請求項1、2、5、6のいずれか1項に記載の回折光学素子。   3. The resin material mixed with the inorganic fine particles of the second material is an ultraviolet curable resin, and is an organic resin of any of acrylic, fluorine, vinyl, and epoxy. 7. The diffractive optical element according to any one of 5, 6 and 6. 前記第2の材料に含まれる無機微粒子の平均粒子径は、200nm以下であることを特徴とする請求項1、2、5乃至7のいずれか1項に記載の回折光学素子。   8. The diffractive optical element according to claim 1, wherein an average particle size of the inorganic fine particles contained in the second material is 200 nm or less. 前記第1、第2の回折格子の格子部の格子ピッチと格子厚をそれぞれP、dとするとき
d/P<1/7
なる条件を満足することを特徴とする請求項1乃至8のいずれか1項に記載の回折光学素子。
When the grating pitch and grating thickness of the grating parts of the first and second diffraction gratings are P and d, respectively.
d / P <1/7
The diffractive optical element according to claim 1, wherein the following condition is satisfied.
請求項1乃至9のいずれか1項に記載の回折光学素子を有することを特徴する光学系。   10. An optical system comprising the diffractive optical element according to claim 1. 請求項10に記載の光学系を有することを特徴とする光学機器。   11. An optical apparatus comprising the optical system according to claim 10.
JP2007086843A 2007-03-23 2007-03-29 Diffractive optical element, optical system using the same, and optical instrument Expired - Fee Related JP5258204B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007086843A JP5258204B2 (en) 2007-03-29 2007-03-29 Diffractive optical element, optical system using the same, and optical instrument
US11/867,989 US7710651B2 (en) 2007-03-23 2007-10-05 Contacting two-layer diffractive optical element
DE602007004710T DE602007004710D1 (en) 2007-03-23 2007-10-12 Two-layer on periodic contact optical refractive element (DOE)
EP07020072A EP1972971B1 (en) 2007-03-23 2007-10-12 Contacting two-layer diffractive optical element (DOE)
CN2007101624746A CN101271168B (en) 2007-03-23 2007-10-15 Diffractive optical element, optical system and optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086843A JP5258204B2 (en) 2007-03-29 2007-03-29 Diffractive optical element, optical system using the same, and optical instrument

Publications (3)

Publication Number Publication Date
JP2008242391A true JP2008242391A (en) 2008-10-09
JP2008242391A5 JP2008242391A5 (en) 2010-05-06
JP5258204B2 JP5258204B2 (en) 2013-08-07

Family

ID=39913771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086843A Expired - Fee Related JP5258204B2 (en) 2007-03-23 2007-03-29 Diffractive optical element, optical system using the same, and optical instrument

Country Status (1)

Country Link
JP (1) JP5258204B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134223A (en) * 2007-12-03 2009-06-18 Canon Inc Diffractive optical device and optical system including the same
WO2011148579A1 (en) * 2010-05-24 2011-12-01 株式会社ニコン Telescope optical system and optical device provided therewith
JP2012018252A (en) * 2010-07-07 2012-01-26 Canon Inc Diffractive optical element and optical system having the same
WO2012067050A1 (en) * 2010-11-17 2012-05-24 Canon Kabushiki Kaisha Laminated diffractive optical element
JP2012108296A (en) * 2010-11-17 2012-06-07 Nikon Vision Co Ltd Eyepiece optical system and optical device
JP2012162595A (en) * 2011-02-03 2012-08-30 Canon Inc Organic-inorganic hybrid resin composition, organic-inorganic hybrid resin material, optical element, and stacked diffraction optical element
WO2012127929A1 (en) * 2011-03-18 2012-09-27 オリンパスメディカルシステムズ株式会社 Optical diffraction element and endoscope
US8508847B2 (en) 2009-12-28 2013-08-13 Panasonic Corporation Diffractive optical element and optical device
CN117406320A (en) * 2023-12-13 2024-01-16 长春理工大学 Double-layer two-dimensional grating structure with wide-spectrum wide-angle diffraction inhibition effect

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078166A (en) * 2002-06-17 2004-03-11 Canon Inc Diffraction optical element and optical system with same
JP2006308792A (en) * 2005-04-27 2006-11-09 Canon Inc Photosetting resin composition, and optical element, diffractive optical element and optical system formed with the photosetting resin composition
WO2007026597A1 (en) * 2005-08-29 2007-03-08 Matsushita Electric Industrial Co., Ltd. Diffractive optical element and method for manufacturing same, and imaging apparatus using such diffractive optical element
WO2007032217A1 (en) * 2005-09-16 2007-03-22 Matsushita Electric Industrial Co., Ltd. Composite material and optical component using the same
JP2008241734A (en) * 2007-03-23 2008-10-09 Canon Inc Diffractive optical element, optical system using the same, and optical equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078166A (en) * 2002-06-17 2004-03-11 Canon Inc Diffraction optical element and optical system with same
JP2006308792A (en) * 2005-04-27 2006-11-09 Canon Inc Photosetting resin composition, and optical element, diffractive optical element and optical system formed with the photosetting resin composition
WO2007026597A1 (en) * 2005-08-29 2007-03-08 Matsushita Electric Industrial Co., Ltd. Diffractive optical element and method for manufacturing same, and imaging apparatus using such diffractive optical element
WO2007032217A1 (en) * 2005-09-16 2007-03-22 Matsushita Electric Industrial Co., Ltd. Composite material and optical component using the same
JP2008241734A (en) * 2007-03-23 2008-10-09 Canon Inc Diffractive optical element, optical system using the same, and optical equipment

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134223A (en) * 2007-12-03 2009-06-18 Canon Inc Diffractive optical device and optical system including the same
US8508847B2 (en) 2009-12-28 2013-08-13 Panasonic Corporation Diffractive optical element and optical device
WO2011148579A1 (en) * 2010-05-24 2011-12-01 株式会社ニコン Telescope optical system and optical device provided therewith
US9097887B2 (en) 2010-05-24 2015-08-04 Nikon Corporation Telescope optical system and optical device provided therewith
JP5532456B2 (en) * 2010-05-24 2014-06-25 株式会社ニコン Telescope optical system and optical apparatus including the same
KR101373449B1 (en) 2010-05-24 2014-03-13 가부시키가이샤 니콘 Telescope optical system and optical device provided therewith
JP2012018252A (en) * 2010-07-07 2012-01-26 Canon Inc Diffractive optical element and optical system having the same
JP2012108296A (en) * 2010-11-17 2012-06-07 Nikon Vision Co Ltd Eyepiece optical system and optical device
JP2012108319A (en) * 2010-11-17 2012-06-07 Canon Inc Laminated diffractive optical element
US9086537B2 (en) 2010-11-17 2015-07-21 Canon Kabushiki Kaisha Laminated diffractive optical element
WO2012067050A1 (en) * 2010-11-17 2012-05-24 Canon Kabushiki Kaisha Laminated diffractive optical element
US9383487B2 (en) 2010-11-17 2016-07-05 Canon Kabushiki Kaisha Laminated diffractive optical element
JP2012162595A (en) * 2011-02-03 2012-08-30 Canon Inc Organic-inorganic hybrid resin composition, organic-inorganic hybrid resin material, optical element, and stacked diffraction optical element
JP5159998B2 (en) * 2011-03-18 2013-03-13 オリンパスメディカルシステムズ株式会社 Diffractive optical element and endoscope
WO2012127929A1 (en) * 2011-03-18 2012-09-27 オリンパスメディカルシステムズ株式会社 Optical diffraction element and endoscope
US8531511B2 (en) 2011-03-18 2013-09-10 Olympus Medical Systems Corp. Diffractive optical element and endoscope
CN117406320A (en) * 2023-12-13 2024-01-16 长春理工大学 Double-layer two-dimensional grating structure with wide-spectrum wide-angle diffraction inhibition effect
CN117406320B (en) * 2023-12-13 2024-02-13 长春理工大学 Double-layer two-dimensional grating structure with wide-spectrum wide-angle diffraction inhibition effect

Also Published As

Publication number Publication date
JP5258204B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5137432B2 (en) Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same
JP5258204B2 (en) Diffractive optical element, optical system using the same, and optical instrument
US7710651B2 (en) Contacting two-layer diffractive optical element
JP3472103B2 (en) Diffractive optical element and optical system using the same
JP5264223B2 (en) Diffractive optical element, optical system and optical instrument
JP5546217B2 (en) Diffractive optical element, optical system having the same, and imaging apparatus
JP4006362B2 (en) Diffractive optical element and optical system having the same
JP4944275B2 (en) Diffractive optical element
JP2011022255A (en) Diffraction optical element and optical system having the same
JP3472154B2 (en) Diffractive optical element and optical system having the same
JP4743607B2 (en) Fresnel lens and liquid crystal projector using the Fresnel lens
US6930833B2 (en) Diffractive optical element, and optical system and optical apparatus provide with the same
JP7071085B2 (en) Diffractive optical element, optical system, and image pickup device
JP2012247450A (en) Optical system
JP5459966B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JP2012018252A (en) Diffractive optical element and optical system having the same
JP2015203790A (en) Optical system and optical device having the same
JP2013105055A (en) Diffraction optical element, and optical system using the same
JP2013064858A (en) Optical system and optical element
JP2002071925A (en) Diffractive optical element and optical system using the same
JP6929350B2 (en) Diffractive optical element and its optical system, image pickup device, lens device
JP6192325B2 (en) Imaging optical system and imaging apparatus having the same
JP2017215478A (en) Diffraction optical element and optical system, imaging device and lens device having the same
JP2020106562A (en) Diffraction optical element and optical system having the same
JP6071262B2 (en) Diffractive optical element, optical system and optical instrument

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5258204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees