JP2008241425A - Photothermal conversion measuring device - Google Patents

Photothermal conversion measuring device Download PDF

Info

Publication number
JP2008241425A
JP2008241425A JP2007081545A JP2007081545A JP2008241425A JP 2008241425 A JP2008241425 A JP 2008241425A JP 2007081545 A JP2007081545 A JP 2007081545A JP 2007081545 A JP2007081545 A JP 2007081545A JP 2008241425 A JP2008241425 A JP 2008241425A
Authority
JP
Japan
Prior art keywords
light
measurement
photothermal conversion
optical system
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007081545A
Other languages
Japanese (ja)
Inventor
Akira Katayama
亮 片山
Hiroyuki Takamatsu
弘行 高松
Eiji Takahashi
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007081545A priority Critical patent/JP2008241425A/en
Priority to PCT/JP2008/051369 priority patent/WO2008117563A1/en
Publication of JP2008241425A publication Critical patent/JP2008241425A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform simultaneously measurements of photothermal conversion in a plurality of measuring areas by using a common light source. <P>SOLUTION: This device is equipped with an excitation light incidence optical system 18, a measuring light source 10, a measuring optical system 12, and a plurality of light receiving elements 24. The excitation light incidence optical system 18 allows excitation light to enter the plurality of measuring areas in a sample storage container 16. The measuring optical system 12 includes an element 26 for splitting light emitted from the measuring light source 10 or an element 38 for enlarging the light, transmits the split or enlarged light as measuring light simultaneously through each measuring area, and allows each light receiving element 24 to receive the light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、各種試料の含有物質の分析等に用いられる光熱変換測定装置に関するものである。   The present invention relates to a photothermal conversion measuring apparatus used for analyzing substances contained in various samples.

従来、各種試料の含有物質の分析等を行う手段として、光熱効果、すなわち、試料に励起光を照射したときにその照射部位が前記励起光を吸収して発熱する効果を利用した光熱変換測定が知られている。   Conventionally, as a means for performing analysis of substances contained in various samples, photothermal conversion measurement using a photothermal effect, that is, an effect that an irradiation site absorbs the excitation light and generates heat when the sample is irradiated with excitation light. Are known.

例えば、下記特許文献1には、液体の試料に励起光を照射して前記光熱効果を生じさせるとともに、その発熱量を光学的な測定装置により測定するものが開示されている。この測定装置は、前記の液体試料に前記励起光とは別の測定光を透過させ、この測定光の屈折率の変化から前記光熱効果による発熱量を測定するものである。ここで、前記屈折率は前記測定光の位相変化から求められ、その位相変化は光干渉法により測定される。
特開2004−301520号公報
For example, Patent Document 1 below discloses a liquid sample that is irradiated with excitation light to cause the photothermal effect, and the calorific value thereof is measured by an optical measuring device. This measuring apparatus transmits measurement light different from the excitation light to the liquid sample and measures the amount of heat generated by the photothermal effect from the change in the refractive index of the measurement light. Here, the refractive index is obtained from the phase change of the measurement light, and the phase change is measured by optical interferometry.
JP 2004-301520 A

前記の光熱変換測定装置では、一つの装置で同時に一つの測定しか行うことができない。換言すれば、複数の測定を同時に行うためには、それぞれが光源をもつ複数の装置を併用しなければならず、設備の著しいコストアップは免れ得ない。   In the photothermal conversion measuring apparatus, only one measurement can be performed simultaneously with one apparatus. In other words, in order to perform a plurality of measurements at the same time, a plurality of apparatuses each having a light source must be used in combination, and a significant increase in the cost of the equipment cannot be avoided.

本発明は、このような事情に鑑み、共通の光源を用いて複数の測定域についての測定を同時に行うことが可能な装置の提供を目的とする。   In view of such circumstances, an object of the present invention is to provide an apparatus capable of simultaneously measuring a plurality of measurement areas using a common light source.

前記課題を解決するための手段として、本発明は、試料が存在しかつ当該試料に光熱効果を生じさせるための励起光が当該試料に照射される複数の測定域に前記励起光とは別の測定光をそれぞれ透過させることにより、前記各測定域での前記光熱効果による前記試料の発熱量を測定するための光熱変換測定装置であって、前記各測定域に前記励起光を入射するための励起光入射光学系と、前記励起光とは別の光を発する測定用光源と、前記測定用光源から発せられた光を前記各測定域に前記測定光として導き、当該測定域を透過させるための測定用光学系と、前記各測定域を透過した後の前記測定光を受光してその位相変化をそれぞれ測定するための複数の受光素子と、を備える。さらに、前記測定用光学系は、前記測定用光源から発せられた光を、前記各測定域を同時に透過することが可能な光に変換するための光変換素子を含み、この光変換素子により変換された光を前記各測定域に前記測定光として導く。   As a means for solving the above-mentioned problem, the present invention is different from the excitation light in a plurality of measurement areas where the sample exists and the excitation light for generating the photothermal effect on the sample is irradiated on the sample. A photothermal conversion measurement device for measuring a calorific value of the sample due to the photothermal effect in each measurement region by transmitting measurement light, respectively, for entering the excitation light into each measurement region An excitation light incident optical system, a measurement light source that emits light different from the excitation light, and light emitted from the measurement light source as the measurement light in each measurement region and transmitted through the measurement region And a plurality of light receiving elements for receiving the measurement light after passing through each of the measurement areas and measuring the phase change thereof. Further, the measurement optical system includes a light conversion element for converting the light emitted from the measurement light source into light that can be transmitted through each measurement region simultaneously, and is converted by the light conversion element. The measured light is guided to the respective measurement areas as the measurement light.

この装置では、前記光変換素子により変換された光が測定光として複数の測定域を同時に透過する。このことは、共通の測定用光源を用いながら各測定域での測定を同時に行うことを可能にする。このような共通光源による複数域での同時測定は、装置のコストアップを抑えながら測定効率を高めることを可能にする。   In this apparatus, the light converted by the light conversion element passes through a plurality of measurement areas simultaneously as measurement light. This enables simultaneous measurement in each measurement area while using a common measurement light source. Such simultaneous measurement in a plurality of areas using a common light source makes it possible to increase measurement efficiency while suppressing an increase in the cost of the apparatus.

前記測定用光学系は、前記光変換素子として、前記測定用光源から発せられた光を、前記各測定域をそれぞれ透過することが可能な複数の光に分割するための分割素子を含むものが、好適である。この分割素子は、前記測定用光源からの光を分割するだけの簡単な構成でありながら、前記各測定域での同時測定を実現可能にする。   The measurement optical system includes, as the light conversion element, a splitting element for splitting light emitted from the measurement light source into a plurality of lights that can pass through the measurement areas. Is preferable. This splitting element has a simple configuration that only splits the light from the measurement light source, but enables simultaneous measurement in each of the measurement areas.

前記分割素子としては、例えば、ビームスプリッタや、前記測定用光源から発せられた光を回折させるための音響光学変調器及びこの音響光学変調器から出る特定の複数の光をそれぞれ特定方向に向けて反射する反射素子を含むものが、好適である。   As the splitting element, for example, a beam splitter, an acoustooptic modulator for diffracting light emitted from the measurement light source, and a plurality of specific light beams emitted from the acoustooptic modulator are respectively directed in a specific direction. What contains the reflective element which reflects is suitable.

前記測定光の位相変化は、例えば光干渉法により測定することが可能である。そのための構成として、前記測定用光学系は、前記測定用光源から発せられた光を前記測定光と参照光とに分光する分光素子と、前記参照光を前記測定域を透過する測定光と干渉させる干渉用光学系を含み、前記各受光素子は、前記干渉後の前記各測定光の強度をそれぞれ検出するものが、好適である。   The phase change of the measurement light can be measured by, for example, optical interferometry. As a configuration for this, the measurement optical system includes a spectroscopic element that separates light emitted from the measurement light source into the measurement light and reference light, and interference with measurement light that transmits the reference light through the measurement region. It is preferable that each of the light receiving elements includes an interference optical system that detects the intensity of the measurement light after the interference.

その場合、前記分光素子及び前記干渉用光学系は、前記分割素子により分割された後の複数の光についてそれぞれ設けられるものでもよいし、前記干渉用光学系は、前記分割素子として、分光された測定光をさらに複数の測定光に分割するための測定光用分割素子と、分光された干渉光をさらに複数の干渉光に分割するための干渉光用分割素子とを含み、その分割された複数の干渉光を、分割された複数の前記測定光のうち対応する測定光にそれぞれ干渉させるものであってもよい。   In that case, the spectroscopic element and the interference optical system may be provided respectively for a plurality of lights after being divided by the splitting element, or the interference optical system is split as the splitting element. A split element for measuring light for further dividing the measuring light into a plurality of measuring lights; and a splitting element for interference light for further splitting the split interference light into a plurality of interference lights. May interfere with the corresponding measurement light among the plurality of divided measurement lights.

また、前記測定用光学系は、前記光変換素子として、前記測定用光源から発せられた光を拡大する光拡大素子を含み、この光拡大素子により拡大された後の光を複数の測定域に同時に透過させるものであってもよい。この光拡大素子は、前記測定用光源から発せられる光を拡大するだけの簡単な構成で、当該光が測定光として複数の測定域を同時に透過することを可能にする。   Further, the measurement optical system includes, as the light conversion element, a light expansion element that expands the light emitted from the measurement light source, and the light expanded by the light expansion element is put into a plurality of measurement regions. You may permeate | transmit simultaneously. The light expanding element has a simple configuration that only expands the light emitted from the measurement light source, and allows the light to pass through a plurality of measurement areas simultaneously as measurement light.

この装置においても、光干渉法による測定が可能である。具体的には、前記測定用光源から発せられた光を前記測定光と参照光とに分光する分光素子と、その分光された測定光と参照光とを合成するための合成素子と、合成された測定光及び参照光のうちの測定光を前記測定域に透過させてその透過した測定光と参照光とを干渉させる干渉用光学系を含み、前記光拡大素子は、前記合成素子により合成された前記測定光及び前記干渉光を同時に拡大して前記干渉用光学系に導くものが、好適である。   Even in this apparatus, measurement by optical interferometry is possible. Specifically, a spectral element that splits the light emitted from the measurement light source into the measurement light and the reference light, and a synthesis element that synthesizes the spectral measurement light and the reference light are combined. An optical system for interference that transmits the measurement light of the measured light and the reference light to the measurement region and causes the transmitted measurement light and the reference light to interfere with each other, and the light expansion element is synthesized by the synthesis element. It is preferable that the measurement light and the interference light are simultaneously enlarged and led to the interference optical system.

この装置において、前記合成素子は、前記測定光及び参照光を合成してから前記光拡大素子に導くことにより、この光拡大素子が前記測定光及び参照光をまとめて拡大することを可能にし、その結果、拡大後の測定光が前記参照光と干渉することを可能にする。   In this apparatus, the combining element combines the measurement light and the reference light and then guides the light to the light expanding element, thereby enabling the light expanding element to collectively expand the measurement light and the reference light. As a result, the enlarged measurement light can interfere with the reference light.

本発明では、前記測定域ごとに互いに異なる複数の試料を収容するための試料収容器を備えてもよいし、複数の測定域に跨る領域で連続する試料を収容するための試料収容器を備えてもよい。前者の試料収容器は、互いに異なる試料の光熱効果の同時測定を可能にする。これに対し、後者の試料収容器は、共通の試料内の各部位における光熱効果の同時測定を可能にする。例えば、前記励起光入射光学系が、前記試料に含まれる全ての測定域に対し均一な周波数をもつ励起光を入射するものであれば、当該試料における光熱効果の分布特性を測定することが可能であり、前記励起光入射光学系が、前記試料に含まれる測定域毎に互いに異なる励起光を照射するものであれば、当該試料の吸収スペクトルを速やかに測定することが可能である。   In the present invention, each of the measurement areas may include a sample container for storing a plurality of different samples, or a sample container for storing a continuous sample in a region extending over the plurality of measurement areas. May be. The former sample container allows simultaneous measurement of photothermal effects of different samples. On the other hand, the latter sample container enables simultaneous measurement of the photothermal effect at each part in a common sample. For example, if the excitation light incident optical system allows excitation light having a uniform frequency to be incident on all the measurement areas included in the sample, the distribution characteristics of the photothermal effect in the sample can be measured. If the excitation light incident optical system emits different excitation light for each measurement region included in the sample, the absorption spectrum of the sample can be measured quickly.

本発明の好ましい実施の形態を、図面を参照しながら説明する。   Preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施の形態に係る光熱変換測定装置の例を示す。この装置は、単一の測定用光源10と、複数の測定部14と、前記測定用光源10から発せられる光を測定光として各測定部14に導くための測定用光学系12とを備える。   FIG. 1 shows an example of a photothermal conversion measuring apparatus according to the first embodiment of the present invention. This apparatus includes a single measurement light source 10, a plurality of measurement units 14, and a measurement optical system 12 for guiding light emitted from the measurement light source 10 to each measurement unit 14 as measurement light.

なお、この実施の形態に係る装置は4つの測定部14を具備するが、図1では便宜上、2つの測定部14のみが図示される。   Although the apparatus according to this embodiment includes four measuring units 14, only two measuring units 14 are shown in FIG. 1 for convenience.

前記各測定部14は、試料収容器16と、励起光入射光学系18と、受光素子アレイ20と、信号処理装置22とを備える。   Each measurement unit 14 includes a sample container 16, an excitation light incident optical system 18, a light receiving element array 20, and a signal processing device 22.

前記試料収容器16は、同一平面上に並ぶ複数の(図例では6つの)測定域を含む領域に試料(例えば色素水溶液やエタノール)を収容するためのものであり、例えば石英やPDMS(ポリジメチルシロサキン)のような透光材(特に紫外光透過性の高い材料)からなる。   The sample container 16 is for accommodating a sample (for example, an aqueous dye solution or ethanol) in a region including a plurality of (six in the illustrated example) measurement regions arranged on the same plane. It is made of a light-transmitting material (particularly a material having a high ultraviolet light transmission property) such as dimethyl siloxane.

前記励起光入射光学系18は、前記各測定域に励起光を下から入射するためのものであり、図略の励起光源と、適当な分光機構及び変調機構を含む。前記励起光源には、例えば白色光を出力するキセノンランプが用いられる。前記分光機構は、前記励起光源から発せられる光を分光し、前記変調機構は、その分光された光を周期的に変調して光熱効果の測定に好適な励起光を生成する。この励起光は、前記試料収容器16内の試料に照射されることにより、当該試料に周期的な光熱効果を生じさせる。すなわち、前記励起光が照射された試料は当該励起光を吸収することにより周期的に発熱する。この発熱による温度変化が当該試料の屈折率を周期的に変化させる。   The excitation light incident optical system 18 is used for making excitation light incident on the respective measurement areas from below, and includes an excitation light source (not shown), an appropriate spectral mechanism, and a modulation mechanism. For example, a xenon lamp that outputs white light is used as the excitation light source. The spectroscopic mechanism splits light emitted from the excitation light source, and the modulation mechanism periodically modulates the split light to generate excitation light suitable for photothermal effect measurement. This excitation light irradiates the sample in the sample container 16 to cause a periodic photothermal effect on the sample. That is, the sample irradiated with the excitation light periodically generates heat by absorbing the excitation light. The temperature change due to the heat generation periodically changes the refractive index of the sample.

前記受光素子アレイ20は、前記各測定域に対応する複数の(図例では6個の)受光素子24を有する。これらの受光素子24は、前記各測定域を透過した測定光をそれぞれ個別に受光することが可能な位置に配列され、その測定光の強度に対応する電気信号を出力する。   The light receiving element array 20 has a plurality of (six in the illustrated example) light receiving elements 24 corresponding to the respective measurement areas. These light receiving elements 24 are arranged at positions where the measurement lights transmitted through the respective measurement areas can be individually received, and output an electric signal corresponding to the intensity of the measurement light.

信号処理装置22は、励起光入射光学系18における励起光の変調周期と、前記各受光素子24が受光する測定光の強度変化とに基づき、前記試料の屈折率の変化を演算し(ロックイン検出)、その演算結果を図略の表示装置に表示させる。   The signal processing device 22 calculates a change in the refractive index of the sample based on the modulation period of the excitation light in the excitation light incident optical system 18 and the change in the intensity of the measurement light received by each light receiving element 24 (lock-in). Detection), and the calculation result is displayed on a display device (not shown).

前記測定用光源10は、前記試料の屈折率の変化を測定するための測定光の源となる光を発するものである。この測定用光源10には、例えば出力1mWのHe−Neレーザ発生器が用いられる。   The measurement light source 10 emits light serving as a measurement light source for measuring a change in the refractive index of the sample. For example, a He—Ne laser generator with an output of 1 mW is used as the measurement light source 10.

前記測定用光学系12は、前記測定用光源10から発せられた光を分割するための分割素子であるビームスプリッタ26と、このビームスプリッタ26により分割された光をそれぞれ各測定部14に導くための2つの分岐光学系30とを備える。   The measurement optical system 12 is a beam splitter 26 that is a splitting element for splitting the light emitted from the measurement light source 10, and guides the light split by the beam splitter 26 to each measurement unit 14. The two branch optical systems 30 are provided.

前記ビームスプリッタ26は、前記測定用光源10から発せられる光を、90°反射される反射光と、そのまま透過する透過光とに分割する。前記反射光は、一方の分岐光学系30によってさらに2つに分割され、前記4つの測定部14のうち図示されている2つの測定部14に導かれる。前記透過光は別のビームスプリッタ28によって反射されてから他方の分岐光学系30によって同様に図略の2つの測定部14に導かれる。   The beam splitter 26 divides the light emitted from the measurement light source 10 into reflected light that is reflected by 90 ° and transmitted light that is transmitted as it is. The reflected light is further divided into two by one branching optical system 30 and guided to two illustrated measurement units 14 out of the four measurement units 14. The transmitted light is reflected by another beam splitter 28 and then guided by the other branching optical system 30 to two measuring units 14 (not shown).

前記各分岐光学系30は、分光素子であるビームスプリッタ32と、測定光用光学系34M及び参照光用光学系34Rと、各測定部14に対応した偏向ビームスプリッタ36と、ビームエキスパンダ38と、干渉用光学系40とを備える。   Each of the branch optical systems 30 includes a beam splitter 32 that is a spectroscopic element, a measurement light optical system 34M and a reference light optical system 34R, a deflection beam splitter 36 corresponding to each measurement unit 14, and a beam expander 38. And an optical system 40 for interference.

前記ビームスプリッタ32は、前記ビームスプリッタ26から導かれる光を測定光と参照光とに分光する。   The beam splitter 32 splits the light guided from the beam splitter 26 into measurement light and reference light.

前記測定光用光学系34Mは、前記測定光をさらに2つの測定光に分割するための測定光用分割素子42Mと、その分割された測定光をそれぞれ前記各偏向ビームスプリッタ36に反射するためのミラー44Mと、これらのミラー44Mがそれぞれ反射した光の偏向面を回転させるためのλ/2波長板46Mとを備える。同様に、前記参照光用光学系36は、前記参照光をさらに2つの参照光に分割するための参照光用分割素子42Rと、その分割された測定光をそれぞれ前記各偏向ビームスプリッタ36に反射するためのミラー44Rと、これらのミラー44Rがそれぞれ反射した光の偏向面を回転させるためのλ/2波長板46Rとを備える。   The measurement light optical system 34M further includes a measurement light splitting element 42M for splitting the measurement light into two measurement lights, and reflecting the split measurement light to the deflecting beam splitters 36, respectively. The mirror 44M and a λ / 2 wavelength plate 46M for rotating the deflection surfaces of the light reflected by the mirrors 44M are provided. Similarly, the reference beam optical system 36 reflects the reference beam splitting element 42R for further dividing the reference beam into two reference beams and the divided measurement beams to the deflecting beam splitters 36, respectively. And a λ / 2 wave plate 46R for rotating the deflection surfaces of the light reflected by the mirrors 44R.

前記測定光用分割素子42M及び参照光用分割素子42Rは、いずれも、AOM(音響光学変調器)48と、プリズム50と、一対のミラー52とを含む。   Each of the measurement light splitting element 42M and the reference light splitting element 42R includes an AOM (acousto-optic modulator) 48, a prism 50, and a pair of mirrors 52.

前記AOM48は、前記ビームスプリッタ32で分光された光を回折させ、適当な周波数に変換する。その回折光のうち、+1次光と−1次光とが測定光(または参照光)として採用される。   The AOM 48 diffracts the light split by the beam splitter 32 and converts it to an appropriate frequency. Of the diffracted light, + 1st order light and −1st order light are employed as measurement light (or reference light).

前記プリズム50は、前記+1次光及び前記−1次光をそれぞれ両外側に反射する2枚の反射面を有する。各反射面は前記プリズム50に適当なコーティングを施すことにより形成される。前記各ミラー52は、前記プリズム50により反射された+1次光及び−1次光をそれぞれ前記AOM48への入光方向と平行な方向に反射する。これにより、周波数f1をもつ2本の測定光、及び周波数f2をもつ2本の参照光が生成される。   The prism 50 has two reflecting surfaces that reflect the + 1st order light and the −1st order light to both outer sides. Each reflecting surface is formed by applying an appropriate coating to the prism 50. Each of the mirrors 52 reflects the + 1st order light and the −1st order light reflected by the prism 50 in directions parallel to the light incident direction to the AOM 48, respectively. As a result, two measurement lights having the frequency f1 and two reference lights having the frequency f2 are generated.

前記AOM48による回折光のうち、測定光あるいは参照光として採用される回折光はラマンナース効果による±n次光に限られない。例えば1次光と2次光がそれぞれ採用されてもよい。   Of the diffracted light by the AOM 48, the diffracted light employed as measurement light or reference light is not limited to ± n order light due to the Raman nurse effect. For example, primary light and secondary light may be employed, respectively.

前記プリズム50に対する前記各ミラー52の配置は適宜設定可能である。例えば図2に示されるように前記プリズム50及び前記各ミラー52が前記AOM48からの光を多重反射するものであってもよい。   The arrangement of the mirrors 52 with respect to the prism 50 can be set as appropriate. For example, as shown in FIG. 2, the prism 50 and the mirrors 52 may multiplexly reflect the light from the AOM 48.

前記各偏向ビームスプリッタ36は、合成素子に相当するもので、前記測定光用光学系34Mにより導かれる測定光と前記参照光用光学系34Rにより導かれる参照光とを合成し、前記各ビームエキスパンダ38に導く。詳しくは、一方の偏向ビームスプリッタ36により合成された光はそのまま一方のビームエキスパンダ38に導かれ、他方の偏向ビームスプリッタ36により合成された光はミラー53,54で反射されることにより他方のビームエキスパンダ38に導かれる。   Each of the deflecting beam splitters 36 corresponds to a combining element, and combines the measurement light guided by the measurement light optical system 34M and the reference light guided by the reference light optical system 34R, and outputs the beam extracts. Guide to panda 38. More specifically, the light synthesized by one deflection beam splitter 36 is directly guided to one beam expander 38, and the light synthesized by the other deflection beam splitter 36 is reflected by mirrors 53 and 54, so that the other Guided to the beam expander 38.

前記各ビームエキスパンダ38は、光拡大素子に相当するもので、前記偏向ビームスプリッタ36から入射される測定光及び参照光を構成するビームの口径を拡大する。その拡大率は、拡大後の測定光が前記試料収容器16における全ての測定域を通過することが可能となる程度に設定される。   Each of the beam expanders 38 corresponds to a light expanding element, and expands the diameter of the beam constituting the measurement light and the reference light incident from the deflection beam splitter 36. The enlargement ratio is set to such an extent that the enlarged measurement light can pass through all the measurement areas in the sample container 16.

前記各干渉用光学系40は、前記ビームエキスパンダ38により拡大された測定光及び参照光のうちの測定光のみを前記測定域に透過させ、かつ、その透過後の測定光を前記参照光と干渉させてから前記受光素子アレイ20に導くためのものであり、偏向ビームスプリッタ56と、測定光用λ/4波長板58Mと、測定光用ミラー60Mと、参照光用λ/4波長板58Rと、参照光用ミラー60Rとを備える。   Each of the interference optical systems 40 transmits only the measurement light of the measurement light and the reference light expanded by the beam expander 38 to the measurement area, and transmits the measurement light after the transmission as the reference light. The light beam is guided to the light receiving element array 20 after being interfered, and includes a deflecting beam splitter 56, a measuring light λ / 4 wavelength plate 58M, a measuring light mirror 60M, and a reference light λ / 4 wavelength plate 58R. And a reference light mirror 60R.

前記偏向ビームスプリッタ56は、前記ビームエキスパンダ38と前記試料収容器16との間でかつ前記受光素子アレイ20の各受光素子24に対向する位置に設けられ、前記測定光をそのまま透過させて前記試料収容器16に導く一方、前記参照光を前記受光素子アレイ20と反対の側(図1では左側)に90°反射させる。   The deflecting beam splitter 56 is provided between the beam expander 38 and the sample container 16 and at a position facing each light receiving element 24 of the light receiving element array 20, and transmits the measurement light as it is. While being guided to the sample container 16, the reference light is reflected by 90 ° on the side opposite to the light receiving element array 20 (left side in FIG. 1).

前記測定光用λ/4波長板58Mは、前記偏向ビームスプリッタ56と前記試料収容器16との間に介在し、この測定光用λ/4波長板58Mを前記測定光が通過する度に当該測定光の偏向面を45°回転させる。前記測定光用ミラー60Mは、前記試料収容器16を挟んで前記測定光用λ/4波長板58Mと反対の側に配置され、前記励起光の透過は許容する一方、前記試料収容器16における各測定域を透過した測定光を180°反射することにより当該試料収容器16及び前記測定光用λ/4波長板58Mを往復させる。   The λ / 4 wavelength plate 58M for measurement light is interposed between the deflecting beam splitter 56 and the sample container 16, and each time the measurement light passes through the λ / 4 wavelength plate 58M for measurement light. The measurement light deflection surface is rotated by 45 °. The measurement light mirror 60M is disposed on the opposite side of the measurement light λ / 4 wavelength plate 58M across the sample container 16, and allows the excitation light to pass therethrough, while in the sample container 16. The sample container 16 and the measurement light λ / 4 wavelength plate 58M are reciprocated by reflecting the measurement light transmitted through each measurement region by 180 °.

前記参照光用λ/4波長板58Rは、前記偏向ビームスプリッタ56で前記参照光が反射される側に配置され、この参照光が通過する度に当該参照光の偏向面を45°回転させる。前記参照光用ミラー60Rは、前記試料収容器16を挟んで前記参照光用λ/4波長板58Rと反対の側に配置され、前記参照光用λ/4波長板58Rを通過した参照光を180°反射することにより当該参照光用λ/4波長板58Rを往復させる。   The reference light λ / 4 wavelength plate 58R is disposed on the side where the reference light is reflected by the deflection beam splitter 56, and rotates the reference light deflection surface by 45 ° each time the reference light passes. The reference light mirror 60R is disposed on the opposite side of the reference light λ / 4 wavelength plate 58R with the sample container 16 in between, and the reference light that has passed through the reference light λ / 4 wavelength plate 58R. The reference light λ / 4 wavelength plate 58R is reciprocated by reflecting 180 °.

前記偏向ビームスプリッタ56は、後述のように、前記測定光用ミラー60Mにより反射されて前記試料収容器16を往復した測定光と前記参照光用ミラー60Rにより反射された参照光とを干渉させ、その干渉光を前記受光素子アレイ20の各受光素子24に受光させる。   As will be described later, the deflecting beam splitter 56 causes the measurement light reflected by the measurement light mirror 60M and reciprocating the sample container 16 to interfere with the reference light reflected by the reference light mirror 60R. The interference light is received by each light receiving element 24 of the light receiving element array 20.

この光熱変換測定装置の具体的作用は次のとおりである。   The specific operation of this photothermal conversion measuring device is as follows.

4つの測定部14においては、それぞれ、試料収容器16に収容された試料に含まれる全ての測定域(図では1つの測定部14あたりに6つの測定域)に対し、励起光入射光学系18が周期的に変調した励起光を試料に入射する。試料は、この励起光を吸収することにより発熱する(光熱効果)。この発熱による試料の温度変化は前記変調の周期に対応するので、当該周期で当該試料の屈折率が変化する。この試料の屈折率の変化が、前記測定光と前記参照光との干渉を利用して計測される。   In each of the four measurement units 14, the excitation light incident optical system 18 for all measurement regions (six measurement regions per measurement unit 14 in the figure) included in the sample accommodated in the sample container 16. Enters the sample with periodically modulated excitation light. The sample generates heat by absorbing the excitation light (photothermal effect). Since the temperature change of the sample due to the heat generation corresponds to the modulation period, the refractive index of the sample changes in the period. The change in the refractive index of the sample is measured using interference between the measurement light and the reference light.

具体的に、前記測定用光源10は、4つの測定部14に導かれる測定光及び参照光の源となる光(ビーム)を発する。この光は、まず、分割素子であるビームスプリッタ26により2つの光に分割される。具体的には、当該ビームスプリッタ26により90°反射される反射光と、当該ビームスプリッタ26を透過する透過光とに分割される。前記反射光はそのまま一方の分岐光学系30に導かれ、前記透過光はビームスプリッタ28により90°反射されてから他方の分岐光学系30に導かれる。   Specifically, the measurement light source 10 emits light (beam) that is a source of measurement light and reference light guided to the four measurement units 14. This light is first split into two lights by a beam splitter 26 which is a splitting element. Specifically, the light is divided into reflected light that is reflected by 90 ° by the beam splitter 26 and transmitted light that passes through the beam splitter 26. The reflected light is directly guided to one branch optical system 30, and the transmitted light is reflected by 90 ° by the beam splitter 28 and then guided to the other branch optical system 30.

各分岐光学系30では、まず、前記ビームスプリッタ26から導かれる光が分光素子であるビームスプリッタ32により測定光と参照光とに分光される。このうち測定光は、測定光用分割素子42MのAOM48により周波数変換(周波数f1に変換)されながらさらに2つの測定光に分割される。これらの測定光はそれぞれミラー44Mで反射され、さらにλ/2波長板46Mにより偏向面の調節を受けてから、対応する偏向ビームスプリッタ36にそれぞれ導かれる。   In each branch optical system 30, first, the light guided from the beam splitter 26 is split into measurement light and reference light by a beam splitter 32 which is a spectroscopic element. Of these, the measurement light is further divided into two measurement lights while being frequency-converted (converted to frequency f1) by the AOM 48 of the measurement-light splitting element 42M. Each of these measurement lights is reflected by the mirror 44M, further subjected to adjustment of the deflection surface by the λ / 2 wavelength plate 46M, and then guided to the corresponding deflection beam splitter 36.

同様に、参照光は参照光用分割素子42RのAOM48により周波数変換(周波数f2に変換)されながら前記各測定光に対応する2つの参照光に分割される。これらの参照光はそれぞれミラー44Rで反射され、さらにλ/2波長板46Rにより偏向面の調節を受けてから、対応する偏向ビームスプリッタ36にそれぞれ導かれる。   Similarly, the reference light is divided into two reference lights corresponding to the respective measurement lights while being frequency-converted (converted to the frequency f2) by the AOM 48 of the reference light dividing element 42R. Each of these reference lights is reflected by the mirror 44R, further subjected to adjustment of the deflection surface by the λ / 2 wavelength plate 46R, and then guided to the corresponding deflection beam splitter 36.

前記各偏向ビームスプリッタ36は、この偏向ビームスプリッタ36に入射される前記測定光及び前記参照光を合成し、光拡大素子であるビームエキスパンダ38に導く。ビームエキスパンダ38は、前記測定光及び前記参照光の口径を同時に拡大する。その拡大後の測定光及び参照光は干渉用光学系40の偏向ビームスプリッタ56に入射される。   Each of the deflecting beam splitters 36 combines the measurement light and the reference light incident on the deflecting beam splitter 36 and guides them to a beam expander 38 that is an optical expansion element. The beam expander 38 simultaneously enlarges the diameters of the measurement light and the reference light. The enlarged measurement light and reference light are incident on the deflecting beam splitter 56 of the interference optical system 40.

偏向ビームスプリッタ56は、前記合成光のうちの参照光を受光素子アレイ20と反対の側に90°反射する。この参照光は、参照光用ミラー60Rによって180°反射されることにより、参照光用λ/4波長板58Rを往復してから前記偏向ビームスプリッタ56に戻る。この参照光が前記参照光用λ/4波長板58Rを往復する際、当該参照光の偏向面が計90°回転するために、前記偏向ビームスプリッタ56に戻った参照光はそのまま当該偏向ビームスプリッタ56を透過する。   The deflection beam splitter 56 reflects the reference light of the combined light by 90 ° on the side opposite to the light receiving element array 20. The reference light is reflected by 180 ° by the reference light mirror 60R, and then returns to the deflection beam splitter 56 after reciprocating the reference light λ / 4 wavelength plate 58R. When this reference light reciprocates on the reference light λ / 4 wavelength plate 58R, the deflection surface of the reference light rotates 90 ° in total, so that the reference light returned to the deflection beam splitter 56 remains as it is. 56 is transmitted.

一方、前記偏向ビームスプリッタ56は、前記測定光をそのまま透過させて測定光用λ/4波長板58M及び試料収容器16に導く。この測定光は、前記試料収容器16に収容される試料に含まれる全ての測定域を通過した後、測定光用ミラー60Mによって180°反射される。この反射により、前記測定光は前記測定光用λ/4波長板58M及び前記試料収容器16を往復してから前記偏向ビームスプリッタ56に戻る。   On the other hand, the deflection beam splitter 56 transmits the measurement light as it is and guides it to the measurement light λ / 4 wavelength plate 58M and the sample container 16. The measurement light passes through all the measurement areas included in the sample accommodated in the sample container 16 and is then reflected by 180 ° by the measurement light mirror 60M. Due to this reflection, the measurement light returns to the deflecting beam splitter 56 after reciprocating between the measurement light λ / 4 wavelength plate 58M and the sample container 16.

このとき、前記測定光の位相は、前記各測定域における試料の屈折率の変化分だけ、変化する。さらに、この測定光の偏向面は、当該測定光が前記測定光用λ/4波長板58Mを往復することによって計90°回転する。このため、当該測定光は前記偏向ビームスプリッタ56にて90°反射され、前記参照光と干渉しながら前記受光素子アレイ20の各受光素子24に受光される。   At this time, the phase of the measurement light changes by the amount of change in the refractive index of the sample in each measurement region. Further, the deflecting surface of the measurement light rotates 90 ° in total as the measurement light reciprocates the measurement light λ / 4 wavelength plate 58M. Therefore, the measurement light is reflected by 90 ° by the deflection beam splitter 56 and received by each light receiving element 24 of the light receiving element array 20 while interfering with the reference light.

前記各受光素子24は、前記干渉光を受光し、その強度に対応する電気信号を信号処理装置22に出力する。この電気信号は、前記測定光と前記参照光の周波数差(=|f1−f2|)に相当するうねり周波数をもつ信号となる。信号処理装置22は、前記電気信号と、前記励起光入射光学系18における励起光の変調周期とに基づき、前記測定光の位相変化を演算する。すなわち、光干渉法による位相変化の測定を実行する。   Each of the light receiving elements 24 receives the interference light and outputs an electric signal corresponding to the intensity to the signal processing device 22. This electrical signal is a signal having a swell frequency corresponding to the frequency difference (= | f1-f2 |) between the measurement light and the reference light. The signal processing device 22 calculates the phase change of the measurement light based on the electric signal and the modulation period of the excitation light in the excitation light incident optical system 18. That is, the phase change is measured by optical interferometry.

具体的に、前記干渉光の強度S1は、次の(1)式で表される。   Specifically, the intensity S1 of the interference light is expressed by the following equation (1).

S1=C1+C2・cos(2π・fb・t+φ) …(1)
同式において、C1、C2は前記偏光ビームスプリッタ等の光学素子の特性や試料の透過率により定まる定数、φは前記測定光と前記参照光の光路長差による位相差、fbは前記測定光と前記参照光の周波数差(=f1−f2)である。この(1)式は、干渉後の測定光の強度S1の変化(前記励起光を照射しないとき或いはその光強度が小さいときとその光強度が大きいときとの差)から、前記位相差φの変化を求めることが可能であることを示している。信号処理装置22は、この(1)式を利用して前記位相差φの変化を算出する。
S1 = C1 + C2 · cos (2π · fb · t + φ) (1)
In the equation, C1 and C2 are constants determined by the characteristics of the optical element such as the polarizing beam splitter and the transmittance of the sample, φ is a phase difference due to the optical path length difference between the measurement light and the reference light, and fb is the measurement light. It is a frequency difference (= f1-f2) of the reference light. This equation (1) is obtained from the change in the intensity S1 of the measurement light after interference (difference between when the excitation light is not irradiated or when the light intensity is low and when the light intensity is high). It shows that it is possible to seek change. The signal processing device 22 calculates the change in the phase difference φ using the equation (1).

例えば、前記励起光Leの強度がチョッパの回転により周波数fで周期的に強度変調された場合、試料の屈折率も前記周波数fで変化する。測定光の光路長も前記周波数fで変化し(参照光の光路長は一定)、前記位相差φも周波数fで変化する。従って、前記位相差φの変化を前記周波数fの成分(前記励起信号の強度変調周期と同周期成分)について測定(算出)することが、周波数fの成分を有しないノイズの影響を除去しつつ試料の屈折率変化のみを精度良く測定することを可能にする。すなわち、この測定は、前記位相差φの測定のS/N比を向上させる。   For example, when the intensity of the excitation light Le is periodically modulated at the frequency f by the rotation of the chopper, the refractive index of the sample also changes at the frequency f. The optical path length of the measurement light also changes at the frequency f (the optical path length of the reference light is constant), and the phase difference φ also changes at the frequency f. Therefore, measuring (calculating) the change in the phase difference φ with respect to the component of the frequency f (the same period component as the intensity modulation period of the excitation signal) while eliminating the influence of noise having no component of the frequency f. Only the refractive index change of the sample can be accurately measured. That is, this measurement improves the S / N ratio of the measurement of the phase difference φ.

以上示した光熱変換測定装置では、測定用光学系12に含まれる分割素子(ビームスプリッタ26並びに測定光用分割素子42M及び参照光用分割素子42R)が、測定用光源10から発する光を分割することにより、単一の測定用光源10を用いて計4つの試料収容器16に収容される試料の測定を同時に行うことを可能にする。このことは、装置のコストアップを抑えながら効率の高い測定を行うことを可能にする。   In the photothermal conversion measuring apparatus described above, the splitting elements (the beam splitter 26, the measuring light splitting element 42M, and the reference light splitting element 42R) included in the measuring optical system 12 split the light emitted from the measuring light source 10. Thus, it is possible to simultaneously measure the samples accommodated in the four sample containers 16 using the single measurement light source 10. This makes it possible to perform highly efficient measurement while suppressing an increase in the cost of the apparatus.

さらに、前記測定用光学系12に含まれる光拡大素子であるビームエキスパンダ38は、分割された後の各測定光及び各参照光を拡大することにより、当該測定光が各試料に含まれる複数の測定域を同時に透過することを可能にする。そして、それぞれの測定域を透過した測定光の干渉後の強度が各受光素子24により個別に検出される。従って、前記試料収容器16が全ての測定域に跨って連続するように試料を収容するものである場合、前記励起光入射光学系18が前記試料に含まれる全ての測定域に対し均一な周波数をもつ励起光を入射することにより、前記試料における光熱効果の分布特性を測定することを可能にする。この場合、各受光素子24が当該受光素子24に対応する測定域についての位置情報を含んでおればよい。   Furthermore, the beam expander 38, which is a light expansion element included in the measurement optical system 12, expands each measurement light and each reference light after being divided, so that a plurality of measurement lights are included in each sample. It is possible to transmit through the measurement area simultaneously. And the intensity | strength after the interference of the measurement light which permeate | transmitted each measurement area is detected by each light receiving element 24 separately. Therefore, when the sample container 16 accommodates the sample so as to be continuous over all the measurement areas, the excitation light incident optical system 18 has a uniform frequency for all the measurement areas included in the sample. It is possible to measure the distribution characteristic of the photothermal effect in the sample by injecting excitation light having. In this case, each light receiving element 24 only needs to include position information regarding the measurement area corresponding to the light receiving element 24.

励起光入射光学系18は、例えば第2の実施の形態として図3に示すように、光源からの光を互いに波長の異なる複数の励起光に分光する機能を有しており、それぞれの励起光を試料収容器16内の各測定域に照射するものであってもよい。このような複数種の励起光の照射は、前記試料の吸収スペクトルを速やかに測定することを可能にする。   For example, as shown in FIG. 3 as the second embodiment, the excitation light incident optical system 18 has a function of splitting light from a light source into a plurality of excitation lights having different wavelengths from each other. May be irradiated to each measurement area in the sample container 16. Such irradiation with a plurality of types of excitation light makes it possible to quickly measure the absorption spectrum of the sample.

前記試料収容器16は、例えば図4に示されるように測定域ごとに区画された複数の試料収容部16aを有するものであってもよい。これらの試料収容部16aにそれぞれ異なる試料が個別に収容された状態で全試料収容部16aを拡大後の測定光が透過すると、当該測定光すなわち共通の測定光を用いて複数の試料の測定を同時に行うことが可能である。   The sample container 16 may have, for example, a plurality of sample containers 16a partitioned for each measurement region as shown in FIG. When the enlarged measurement light passes through all the sample storage portions 16a in a state where different samples are individually stored in the sample storage portions 16a, a plurality of samples are measured using the measurement light, that is, the common measurement light. It is possible to do it at the same time.

本発明では、前記分割素子、前記光拡大素子の一方が省略されてもよい。また、分割素子を具備する場合、第3の実施の形態として図5に示されるように、試料収容器16の直前で測定光及び参照光がそれぞれ分割されてもよい。   In the present invention, one of the dividing element and the light expanding element may be omitted. Further, when the splitting element is provided, the measurement light and the reference light may be split immediately before the sample container 16 as shown in FIG. 5 as the third embodiment.

この第3の実施の形態に係る装置は、共通の光源から発せられる光を測定光と参照光とに分割する分光素子であるビームスプリッタ32と、測定光周波数変換用のAOM49M及び参照光周波数変換用のAOM49Rのほか、前記分割のためのビームスプリッタユニット70を備える。   The apparatus according to the third embodiment includes a beam splitter 32 that is a spectroscopic element that splits light emitted from a common light source into measurement light and reference light, an AOM 49M for measuring light frequency conversion, and reference light frequency conversion. In addition to the AOM 49R, a beam splitter unit 70 for the division is provided.

前記ビームスプリッタユニット70は、前記AOM49Mにより周波数変換された測定光を分割するための測定光分割部72Mと、前記AOM49Mにより周波数変換された参照光を分割するための参照光分割部72Rとを併有する。各分割部72M,72Rには測定域の個数(図では4個)と同数のビームスプリッタ74が直列に配される。   The beam splitter unit 70 includes a measurement beam splitting unit 72M for splitting the measurement beam frequency-converted by the AOM 49M and a reference beam splitting unit 72R for splitting the reference beam frequency-converted by the AOM 49M. Have. In each of the division units 72M and 72R, the same number of beam splitters 74 as the number of measurement areas (four in the figure) are arranged in series.

測定光分割部72Mにより分割された各測定光は、互いに平行な状態を維持しながら試料収容器16における各測定域を透過した後、干渉用光学系40を構成する偏向ビームスプリッタ76によってそれぞれ90°反射され、レンズ78によって受光素子アレイ20に集光される。参照光分割部72Rにより分割された各参照光は、互いに平行なままミラー80で90°反射され、前記各偏向ビームスプリッタ76を透過した後にレンズ78によって受光素子アレイ20に集光される。   Each measurement light split by the measurement light splitting unit 72M passes through each measurement region in the sample container 16 while maintaining a state parallel to each other, and then 90 by the deflecting beam splitter 76 constituting the interference optical system 40, respectively. The light is reflected and condensed on the light receiving element array 20 by the lens 78. The respective reference beams divided by the reference beam splitting unit 72R are reflected by the mirror 80 while being parallel to each other, are transmitted through the respective deflection beam splitters 76, and are then condensed on the light receiving element array 20 by the lens 78.

従って、この装置においても、各測定域に対応して測定光及び参照光が分割され、各測定光は対応する測定域を透過した後に対応する参照光と干渉させられる。この干渉が、前記測定光の位相変化の検出を可能にする。   Therefore, also in this apparatus, the measurement light and the reference light are divided corresponding to each measurement area, and each measurement light is allowed to interfere with the corresponding reference light after passing through the corresponding measurement area. This interference makes it possible to detect a phase change of the measuring light.

本発明の第1の実施の形態に係る光熱変換測定装置の全体構成図である。It is a whole lineblock diagram of a photothermal conversion measuring device concerning a 1st embodiment of the present invention. 前記光熱変換測定装置に含まれる分割素子の変形例を示す図である。It is a figure which shows the modification of the splitting element contained in the said photothermal conversion measuring apparatus. 本発明の第2の実施の形態に係る光熱変換測定装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the photothermal conversion measuring apparatus which concerns on the 2nd Embodiment of this invention. 本発明に係る試料収容器の例を示す平面図である。It is a top view which shows the example of the sample container which concerns on this invention. 本発明の第3の実施の形態に係る光熱変換測定装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the photothermal conversion measuring apparatus which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

10 測定用光源
12 測定用光学系
14 測定部
16 試料収容器
16a 試料収容部
18 励起光入射光学系
20 受光素子アレイ
22 信号処理装置
24 受光素子
26 ビームスプリッタ(分割素子)
30 分岐光学系
32 ビームスプリッタ(分光素子)
34M 測定光用光学系
34R 参照光用光学系
36 偏向ビームスプリッタ(合成素子)
38 ビームエキスパンダ(光拡大素子)
40 干渉用光学系
42M 測定光用分割素子
42R 参照光用分割素子
48 AOM(音響光学変調器)
50 プリズム(反射素子)
52 ミラー(反射素子)
56 偏向ビームスプリッタ
70 ビームスプリッタユニット
72M 測定光分割部
72R 参照光分割部
74 ビームスプリッタ
76 偏向ビームスプリッタ
DESCRIPTION OF SYMBOLS 10 Measuring light source 12 Measuring optical system 14 Measuring part 16 Sample container 16a Sample accommodating part 18 Excitation light incident optical system 20 Light receiving element array 22 Signal processing device 24 Light receiving element 26 Beam splitter (dividing element)
30 Branching optical system 32 Beam splitter (spectral element)
34M Optical system for measurement light 34R Optical system for reference light 36 Deflection beam splitter (combining element)
38 Beam expander (light expansion element)
40 Optical system for interference 42M Splitting element for measurement light 42R Splitting element for reference light 48 AOM (acousto-optic modulator)
50 Prism (reflective element)
52 Mirror (reflective element)
56 deflection beam splitter 70 beam splitter unit 72M measurement beam splitting unit 72R reference beam splitting unit 74 beam splitter 76 deflection beam splitter

Claims (14)

試料が存在しかつ当該試料に光熱効果を生じさせるための励起光が当該試料に照射される複数の測定域に前記励起光とは別の測定光をそれぞれ透過させることにより、前記各測定域での前記光熱効果による前記試料の発熱量を測定するための光熱変換測定装置であって、
前記各測定域に前記励起光を入射するための励起光入射光学系と、
前記励起光とは別の光を発する測定用光源と、
前記測定用光源から発せられた光を前記各測定域に前記測定光として導き、当該測定域を透過させるための測定用光学系と、
前記各測定域を透過した後の前記測定光を受光してその位相変化をそれぞれ測定するための複数の受光素子と、を備え、
前記測定用光学系は、前記測定用光源から発せられた光を、前記各測定域を同時に透過することが可能な光に変換するための光変換素子を含み、この光変換素子により変換された光を前記各測定域に前記測定光として導くものであることを特徴とする光熱変換測定装置。
By passing measurement light different from the excitation light through a plurality of measurement areas where the sample is present and excitation light for causing the photothermal effect on the sample is irradiated to the sample, A photothermal conversion measuring device for measuring the calorific value of the sample due to the photothermal effect of
An excitation light incidence optical system for making the excitation light incident on each measurement area;
A light source for measurement that emits light different from the excitation light;
A measurement optical system for guiding the light emitted from the measurement light source to the measurement areas as the measurement light and transmitting the measurement areas;
A plurality of light receiving elements for receiving the measurement light after passing through each of the measurement areas and measuring the phase change thereof, and
The measurement optical system includes a light conversion element for converting light emitted from the measurement light source into light that can simultaneously pass through the measurement areas, and is converted by the light conversion element. A photothermal conversion measurement apparatus characterized in that light is guided to the respective measurement areas as the measurement light.
請求項1記載の光熱変換測定装置において、
前記測定用光学系は、前記光変換素子として、前記測定用光源から発せられた光を、前記各測定域をそれぞれ透過することが可能な複数の光に分割するための分割素子を含むことを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 1,
The measurement optical system includes, as the light conversion element, a splitting element for splitting light emitted from the measurement light source into a plurality of lights that can pass through the measurement areas. A photothermal conversion measuring device.
請求項2記載の光熱変換測定装置において、
前記測定用光学系は、前記測定用光源から発せられた光を前記測定光と参照光とに分光する分光素子と、前記参照光を前記測定域を透過する測定光と干渉させる干渉用光学系を含み、
前記各受光素子は、前記干渉後の前記各測定光の強度をそれぞれ検出することを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 2,
The measurement optical system includes a spectroscopic element that separates light emitted from the measurement light source into the measurement light and reference light, and an interference optical system that causes the reference light to interfere with measurement light that passes through the measurement area. Including
Each light receiving element detects the intensity of each measurement light after the interference, respectively.
請求項3記載の光熱変換測定装置において、
前記分光素子及び前記干渉用光学系は、前記分割素子により分割された後の複数の光についてそれぞれ設けられることを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 3,
The photothermal conversion measuring apparatus, wherein the spectroscopic element and the interference optical system are respectively provided for a plurality of lights after being divided by the dividing element.
請求項3または4記載の光熱変換測定装置において、
前記干渉用光学系は、前記分割素子として、分光された測定光をさらに複数の測定光に分割するための測定光用分割素子と、分光された干渉光をさらに複数の干渉光に分割するための干渉光用分割素子とを含み、その分割された複数の干渉光を、分割された複数の前記測定光のうち対応する測定光にそれぞれ干渉させることを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 3 or 4,
The interference optical system, as the splitting element, is a splitting element for measuring light for further splitting the split measuring light into a plurality of measuring lights, and for splitting the split interference light into a plurality of interference lights. And a splitting element for interference light, and the plurality of split interference lights are caused to interfere with corresponding measurement light among the plurality of split measurement lights, respectively.
請求項2〜5のいずれかに記載の光熱変換測定装置において、
前記測定用光学系は、前記分割素子としてビームスプリッタを含むことを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to any one of claims 2 to 5,
The photothermal conversion measurement apparatus, wherein the measurement optical system includes a beam splitter as the splitting element.
請求項2〜6のいずれかに記載の光熱変換測定装置において、
前記測定用光学系は、前記分割素子として、前記測定用光源から発せられた光を回折させるための音響光学変調器と、この音響光学変調器から出る特定の複数の光をそれぞれ特定方向に向けて反射する反射素子とを含むことを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to any one of claims 2 to 6,
The measuring optical system has an acousto-optic modulator for diffracting the light emitted from the measuring light source as the splitting element, and a plurality of specific lights emitted from the acousto-optic modulator in a specific direction, respectively. And a reflection element that reflects light.
請求項2〜7のいずれかに記載の光熱変換測定装置において、
前記測定用光学系は、前記分割素子により分割された光のうちの少なくとも一部の光を拡大する光拡大素子を含み、この光拡大素子により拡大された後の光を複数の測定域に同時に透過させるものであることを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to any one of claims 2 to 7,
The measuring optical system includes a light expanding element that expands at least a part of the light divided by the dividing element, and the light expanded by the light expanding element is simultaneously applied to a plurality of measurement areas. A photothermal conversion measuring device characterized by being transmitted.
請求項1記載の光熱変換測定装置において、
前記測定用光学系は、前記光変換素子として、前記測定用光源から発せられた光を拡大する光拡大素子を含み、この光拡大素子により拡大された後の光を複数の測定域に同時に透過させるものであることを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 1,
The measurement optical system includes, as the light conversion element, a light expansion element that expands light emitted from the light source for measurement, and transmits light expanded by the light expansion element simultaneously to a plurality of measurement regions. A photothermal conversion measuring device characterized in that
請求項9記載の光熱変換測定装置において、
前記測定用光源から発せられた光を前記測定光と参照光とに分光する分光素子と、その分光された測定光と参照光とを合成するための合成素子と、合成された測定光及び参照光のうちの測定光を前記測定域に透過させてその透過した測定光と参照光とを干渉させる干渉用光学系を含み、
前記光拡大素子は、前記合成素子により合成された前記測定光及び前記干渉光を同時に拡大して前記干渉用光学系に導くことを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 9,
A spectroscopic element that splits light emitted from the measurement light source into the measurement light and reference light, a synthesizing element for synthesizing the spectroscopic measurement light and reference light, a combined measurement light and reference Including an interference optical system that transmits the measurement light of the light to the measurement area and interferes with the transmitted measurement light and the reference light;
The photothermal conversion measuring device, wherein the light expanding element simultaneously expands the measurement light and the interference light combined by the combining element and guides them to the interference optical system.
請求項1〜10のいずれかに記載の光熱変換測定装置において、
前記測定域ごとに互いに異なる複数の試料を収容するための試料収容器を備えることを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to any one of claims 1 to 10,
A photothermal conversion measuring apparatus comprising a sample container for storing a plurality of different samples for each measurement region.
請求項1〜10のいずれかに記載の光熱変換測定装置において、
複数の測定域に跨る領域で連続する試料を収容するための試料収容器を備えることを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to any one of claims 1 to 10,
A photothermal conversion measurement apparatus comprising a sample container for storing a sample that is continuous in a region extending over a plurality of measurement regions.
請求項12記載の光熱変換測定装置において、
前記励起光入射光学系は、前記試料に含まれる全ての測定域に対し均一な周波数をもつ励起光を入射することを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 12,
The photothermal conversion measurement apparatus, wherein the excitation light incident optical system makes excitation light having a uniform frequency incident on all measurement regions included in the sample.
請求項12記載の光熱変換測定装置において、
前記励起光入射光学系は、前記試料に含まれる測定域毎に互いに異なる励起光を照射することを特徴とする光熱変換測定装置。
In the photothermal conversion measuring device according to claim 12,
The photothermal conversion measuring apparatus, wherein the excitation light incident optical system irradiates different excitation light for each measurement region included in the sample.
JP2007081545A 2007-03-27 2007-03-27 Photothermal conversion measuring device Pending JP2008241425A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007081545A JP2008241425A (en) 2007-03-27 2007-03-27 Photothermal conversion measuring device
PCT/JP2008/051369 WO2008117563A1 (en) 2007-03-27 2008-01-30 Photothermal conversion measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081545A JP2008241425A (en) 2007-03-27 2007-03-27 Photothermal conversion measuring device

Publications (1)

Publication Number Publication Date
JP2008241425A true JP2008241425A (en) 2008-10-09

Family

ID=39788303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081545A Pending JP2008241425A (en) 2007-03-27 2007-03-27 Photothermal conversion measuring device

Country Status (2)

Country Link
JP (1) JP2008241425A (en)
WO (1) WO2008117563A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2892075B2 (en) * 1990-01-31 1999-05-17 末三 中楯 Measuring method of refractive index distribution and transmitted wavefront and measuring device used for this method
FR2784189B3 (en) * 1998-10-05 2000-11-03 Commissariat Energie Atomique BIOCHIP AND DEVICE FOR READING A BIOCHIP COMPRISING A PLURALITY OF MOLECULAR RECOGNITION AREAS
JP2003130852A (en) * 2001-10-25 2003-05-08 Hitachi Ltd Photo-thermal displacement image detecting method and device
JP4119411B2 (en) * 2004-09-17 2008-07-16 株式会社神戸製鋼所 Photothermal conversion measuring apparatus and method

Also Published As

Publication number Publication date
WO2008117563A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
KR100830548B1 (en) Spatial and spectral wavefront analysis and measurement
US10635049B2 (en) Ellipsometry device and ellipsometry method
US10330462B2 (en) System for analyzing optical properties of an object
JP7184700B2 (en) Dispersion measurement device, pulse light source, dispersion measurement method, and dispersion compensation method
JP2009541770A (en) Optical frequency domain tomography apparatus with adjustment system, optical frequency domain tomography apparatus adjustment system, method for adjusting optical frequency domain tomography apparatus, and object imaging method
US8049885B1 (en) Method and apparatus for large spectral coverage measurement of volume holographic gratings
US11906281B2 (en) Device and method for measuring thickness and refractive index of multilayer thin film by using angle-resolved spectral reflectometry
JP2008292939A (en) Quantitative phase microscope
US20220236416A1 (en) Optical measurement device and optical measurement method
JP2006138734A (en) Optical spectrum analyzer
JP5428538B2 (en) Interfering device
JP4290142B2 (en) Photothermal conversion measuring apparatus and method
JP2007303954A (en) Interferometers sensor, optical measuring apparatus using it, and optical measuring method
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
US20140160490A1 (en) Interference measuring apparatus and interference measuring method
US10649405B2 (en) Digital holographic imaging apparatus and illumination apparatus
JP2008241425A (en) Photothermal conversion measuring device
JP5740701B2 (en) Interferometer
KR101198013B1 (en) Multi-wavelength heterodyne interferometer using AOTF
US20230333007A1 (en) Dispersion measurement device and dispersion measurement method
JP2010008328A (en) Optical inteterferometer and film thickness measuring method using it
JP2005257414A (en) Photothermal conversion measurement device, method and cell
JPH075101A (en) Absorptiometric system for light scattering medium
JP4740792B2 (en) Photothermal conversion measuring device
WO2023163105A1 (en) Spectroscopic analysis device and interference light formation mechanism