JP2008240915A - Rolling bearing device - Google Patents

Rolling bearing device Download PDF

Info

Publication number
JP2008240915A
JP2008240915A JP2007082819A JP2007082819A JP2008240915A JP 2008240915 A JP2008240915 A JP 2008240915A JP 2007082819 A JP2007082819 A JP 2007082819A JP 2007082819 A JP2007082819 A JP 2007082819A JP 2008240915 A JP2008240915 A JP 2008240915A
Authority
JP
Japan
Prior art keywords
axial direction
preload
rolling bearing
housing
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007082819A
Other languages
Japanese (ja)
Inventor
Kazuhisa Toda
一寿 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007082819A priority Critical patent/JP2008240915A/en
Publication of JP2008240915A publication Critical patent/JP2008240915A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing device capable of preventing an insufficient preload during a temperature rise and the occurrence of abnormal vibration and noise. <P>SOLUTION: The rolling bearing device is equipped with: a pressing member 51 having a male screw part 51a for being screwed to a female screw part 25d of a first housing 25 on the outer peripheral surface, for rotating to move in the axial direction by the male screw part 51a, pressing an outer ring 32 in the axial direction, and applying preload to a rolling bearing 11 in the axial direction; a sensor 52 for detecting a difference in thermal expansion between the first housing 25 and an output shaft 15; and a preload holding means 53 for rotating the pressing member 51 based on the detected result of the sensor 52. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、円錐ころ軸受、アンギュラ玉軸受などの予圧をかけて使用する転がり軸受装置に関する。   The present invention relates to a rolling bearing device that is used by applying a preload such as a tapered roller bearing or an angular ball bearing.

円錐ころ軸受やアンギュラ玉軸受は、軸方向の予圧をかけた状態で使用される。例えば、トランスミッションユニット等の自動車用のギア式駆動伝達ユニットには、その要所(例えばトランスミッションユニットでは終減速装置部分)に円錐ころ軸受が採用されている。図9(a)に示すように、前記の円錐ころ軸受111は、内輪133に回転軸115を圧入するとともに、トランスミッションケースの軸受用ハウジング125に外輪132を嵌合し、その後に軸方向一方側(矢印a)へ向けて予圧を付与している。このように予圧を与えると、外輪132は円錐ころ134の傾斜した転動面上での分力を受けて軸方向及び径方向に変位し、その左端面132cと外周面132bとがハウジング125の内端面125cと内周面125aとに押しつけられて予圧が支持される。   Tapered roller bearings and angular contact ball bearings are used with axial preload applied. For example, in a gear-type drive transmission unit for an automobile such as a transmission unit, a tapered roller bearing is adopted at its main point (for example, a final reduction gear portion in the transmission unit). As shown in FIG. 9A, in the tapered roller bearing 111, the rotary shaft 115 is press-fitted into the inner ring 133, and the outer ring 132 is fitted into the bearing housing 125 of the transmission case, and thereafter, one side in the axial direction. A preload is applied toward (arrow a). When the preload is applied in this manner, the outer ring 132 receives a component force on the inclined rolling surface of the tapered roller 134 and is displaced in the axial direction and the radial direction, and the left end surface 132 c and the outer peripheral surface 132 b are connected to the housing 125. The preload is supported by being pressed against the inner end face 125c and the inner peripheral face 125a.

一方、近年は軽量化の一環として、トランスミッションケースをAl合金などの軽金属で構成することが行なわれている。Alは構造材料中でも線膨張係数が高く(室温で約23.5×10−6/℃:以下、線膨張係数の単位はppm/℃と略記する))、回転軸や円錐ころ軸受を構成する鋼(Fe系材料)の線膨張係数(室温で約12ppm/℃)とは大きな差がある。 On the other hand, in recent years, as a part of weight reduction, a transmission case is made of a light metal such as an Al alloy. Al has a high linear expansion coefficient among structural materials (approximately 23.5 × 10 −6 / ° C. at room temperature, hereinafter, the unit of linear expansion coefficient is abbreviated as ppm / ° C.), and constitutes a rotating shaft and a tapered roller bearing. There is a large difference from the linear expansion coefficient of steel (Fe-based material) (about 12 ppm / ° C. at room temperature).

回転軸とハウジングとが同じ材料である場合、温度変化による寸法変化も同じであるので、円錐ころ軸受にかかる予圧に大きな変化はない。しかし、ハウジングのみを軽金属で構成すると、温度上昇によってハウジングが回転軸よりも大きく寸法変化し、予圧が抜けてしまうおそれがある。
具体的には、図9(b)に示すように、トランスミッションが昇温すると、ハウジング125及び回転軸115が膨張するが、その膨張による寸法変化の差によって、外輪132の内周軌道面132aが円錐ころ134の転動面から矢印b方向に離反する。つまり、円錐ころ軸受装置111における外輪132と円錐ころ134とのアキシャル方向及びラジアル方向の隙間が温度変化により発生し、予圧不足となる。このような予圧不足は、ギヤのガタツキを招き、騒音発生の原因となる。
When the rotating shaft and the housing are made of the same material, the dimensional change due to temperature change is the same, so there is no significant change in the preload applied to the tapered roller bearing. However, if only the housing is made of light metal, the housing may change in size more than the rotation shaft due to temperature rise, and the preload may be lost.
Specifically, as shown in FIG. 9B, when the temperature of the transmission rises, the housing 125 and the rotary shaft 115 expand, but due to the difference in dimensional change due to the expansion, the inner circumferential raceway surface 132a of the outer ring 132 changes. It moves away from the rolling surface of the tapered roller 134 in the direction of arrow b. That is, a gap in the axial direction and the radial direction between the outer ring 132 and the tapered roller 134 in the tapered roller bearing device 111 is generated due to a temperature change, resulting in insufficient preload. Such a shortage of preload causes gear rattle and causes noise.

かかる問題を解消し得るものとして、図10に示すように、スラストワッシャ141によって外輪132に予圧を加えるようにした円錐ころ軸受装置140が提案されている。この円錐ころ軸受装置140の基本的構造は図9と同じであり、同一部分には同一の参照符号を付している。具体的には、図10(a)に示すように、ハウジング125と外輪132の端部との間にスラストワッシャ141が介装されている。そして、このスラストワッシャ141は形状記憶合金からなり、低温時は扁平形状を成し(図10(a)参照)、一定温度まで昇温した時に低温時の幅より大きいテーパ形状に弾発的に変形する(図10(b)参照)。
この構成では、昇温して一定温度に達すると、前述したスラストワッシャ141の作用によって、外輪132を軸方向他方側(矢印e)に付勢し、外輪132と円錐ころ134とのアキシャル隙間及びラジアル隙間の発生を抑えて予圧不足を解消することが可能である。
実開平5−6250号公報
In order to solve this problem, as shown in FIG. 10, a tapered roller bearing device 140 in which a preload is applied to the outer ring 132 by a thrust washer 141 has been proposed. The basic structure of this tapered roller bearing device 140 is the same as in FIG. 9, and the same reference numerals are given to the same parts. Specifically, as shown in FIG. 10A, a thrust washer 141 is interposed between the housing 125 and the end of the outer ring 132. The thrust washer 141 is made of a shape memory alloy and has a flat shape at a low temperature (see FIG. 10A). When the temperature is raised to a certain temperature, the thrust washer 141 has a taper shape larger than the width at a low temperature. Deformation (see FIG. 10B).
In this configuration, when the temperature rises and reaches a certain temperature, the outer ring 132 is urged toward the other side in the axial direction (arrow e) by the action of the thrust washer 141 described above, and the axial gap between the outer ring 132 and the tapered roller 134 and It is possible to eliminate the insufficient preload by suppressing the generation of radial gaps.
Japanese Utility Model Publication No. 5-6250

しかしながら、前述した従来技術では、一定温度まで昇温しない限りスラストワッシャ141がテーパ形状に変形しないため、当該一定温度に達するまでは軸方向他方側(矢印e)に十分な予圧を外輪132に対し付与できなかった。このため、一定温度に昇温するまでの間は、ギヤのガタツキや騒音の発生を抑制することができないという問題点があった。   However, in the above-described prior art, the thrust washer 141 is not deformed into a tapered shape unless the temperature is raised to a certain temperature. Therefore, a sufficient preload is applied to the outer ring 132 on the other side in the axial direction (arrow e) until the certain temperature is reached. Could not grant. For this reason, there has been a problem that it is not possible to suppress gear rattle and noise generation until the temperature is raised to a certain temperature.

本発明は、このような事情に鑑みてなされたものであり、熱膨張に伴って予圧不足が生じるのを、リアルタイムに抑制することができ、装置のガタツキや騒音が発生するのをより効果的に防止することができる転がり軸受装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to suppress the occurrence of insufficient preload accompanying thermal expansion in real time, and it is more effective to generate rattling and noise of the device. It is an object of the present invention to provide a rolling bearing device that can be prevented.

本発明に係る転がり軸受装置は、第1の線膨張係数を有し、内周の一部に雌ネジ部が設けられているハウジングと、前記第1の線膨張係数よりも小さい第2の線膨張係数を有する回転軸と、内輪と外輪とこれら内外輪の間に介在している転動体とを有し、前記外輪が軸方向に移動可能として前記ハウジングの内周面に取り付けられ、前記内輪が前記回転軸の外周面に取り付けられ、前記回転軸を前記ハウジング内で回転自在に支持している転がり軸受と、を備えている転がり軸受装置であって、前記雌ネジ部に螺合する雄ネジ部を外周面に有し、回転することで前記雄ネジ部によって軸方向に移動して前記外輪を軸方向に押圧し前記転がり軸受に軸方向の予圧を付与する押圧部材と、前記ハウジングと前記回転軸との熱膨張差を検出するためのセンサと、このセンサの検出結果に基づいて前記押圧部材を回転させ、前記外輪を軸方向に押圧して前記転がり軸受の軸方向の予圧を保持する予圧保持手段と、を備えていることを特徴としている。   A rolling bearing device according to the present invention includes a housing having a first linear expansion coefficient and having a female screw portion provided on a part of an inner periphery thereof, and a second line smaller than the first linear expansion coefficient. A rotating shaft having an expansion coefficient; an inner ring; an outer ring; and a rolling element interposed between the inner and outer rings. The outer ring is attached to an inner peripheral surface of the housing so as to be movable in an axial direction. A rolling bearing device attached to the outer peripheral surface of the rotary shaft and rotatably supporting the rotary shaft within the housing, wherein the male screw portion is screwed into the female screw portion. A pressing member that has a threaded portion on an outer peripheral surface, moves in the axial direction by the male threaded portion by rotating, presses the outer ring in the axial direction, and applies axial preload to the rolling bearing; and the housing; To detect the difference in thermal expansion from the rotating shaft A preload holding means for holding the preload in the axial direction of the rolling bearing by rotating the pressing member based on a detection result of the sensor and pressing the outer ring in the axial direction. It is said.

このように構成された転がり軸受装置によれば、温度変化によってハウジングと回転軸との熱膨張差が生じて転がり軸受の予圧が低下しようとすると、ハウジングと回転軸との熱膨張差を検出するためのセンサによる検出結果に基づいて予圧保持手段が押圧部材を回転させることができ、これにより、押圧部材が前記外輪を軸方向に押圧して、転がり軸受装置の予圧の低下をリアルタイムに抑制することができる。   According to the rolling bearing device configured as described above, when a difference in thermal expansion occurs between the housing and the rotating shaft due to a temperature change and the preload of the rolling bearing is about to decrease, the difference in thermal expansion between the housing and the rotating shaft is detected. The preload holding means can rotate the pressing member based on the detection result by the sensor for this purpose, and the pressing member presses the outer ring in the axial direction, thereby suppressing the decrease in the preload of the rolling bearing device in real time. be able to.

また、本発明に係る転がり軸受装置は、第1の線膨張係数を有する外側部材と、前記第1の線膨張係数よりも小さい第2の線膨張係数を有し、外周の一部に雄ネジ部が設けられている固定軸と、内輪と外輪とこれら内外輪の間に介在している転動体とを有し、前記外輪が前記外側部材の内周面に取り付けられ、前記内輪が軸方向に移動可能として前記固定軸の外周面に取り付けられ、前記固定軸に対して前記外側部材を回転可能として支持している転がり軸受と、を備えている転がり軸受装置であって、前記雄ネジ部に螺合する雌ネジ部を内周面に有し、回転することで前記雌ネジ部によって軸方向に移動して前記内輪を軸方向に押圧し前記転がり軸受に軸方向の予圧を付与する押圧部材と、前記外側部材と前記固定軸との熱膨張差を検出するためのセンサと、このセンサの検出結果に基づいて前記押圧部材を回転させ、前記内輪を軸方向に押圧して前記転がり軸受の軸方向の予圧を保持する予圧保持手段と、を備えていることを特徴とするものである。   The rolling bearing device according to the present invention includes an outer member having a first linear expansion coefficient, a second linear expansion coefficient smaller than the first linear expansion coefficient, and a male screw at a part of the outer periphery. A fixed shaft provided with a portion, an inner ring, an outer ring, and a rolling element interposed between the inner and outer rings, the outer ring is attached to the inner peripheral surface of the outer member, and the inner ring is axially A rolling bearing device that is attached to an outer peripheral surface of the fixed shaft so as to be movable and supports the outer member so as to be rotatable with respect to the fixed shaft. The inner peripheral surface has a female screw portion that is screwed to the inner peripheral surface, and rotates to move in the axial direction by the female screw portion to press the inner ring in the axial direction, thereby applying an axial preload to the rolling bearing. Detecting the difference in thermal expansion between the member, the outer member and the fixed shaft And a preload holding means for rotating the pressing member based on the detection result of the sensor and pressing the inner ring in the axial direction to hold the axial preload of the rolling bearing. It is characterized by.

このように構成された転がり軸受装置によれば、温度変化によって外側部材と固定軸との熱膨張差が生じて転がり軸受の予圧が低下しようとすると、外側部材と固定軸との熱膨張差を検出するためのセンサによる検出結果に基づいて予圧保持手段が押圧部材を回転させることができ、これにより、押圧部材が前記内輪を軸方向に押圧して、転がり軸受装置の予圧の低下をリアルタイムに抑制することができる。   According to the rolling bearing device configured as described above, if a difference in thermal expansion occurs between the outer member and the fixed shaft due to a temperature change, and the preload of the rolling bearing decreases, the thermal expansion difference between the outer member and the fixed shaft is reduced. Based on the detection result by the sensor for detecting, the preload holding means can rotate the pressing member, whereby the pressing member presses the inner ring in the axial direction, and the decrease in the preload of the rolling bearing device is realized in real time. Can be suppressed.

また、前記予圧保持手段が、前記軸方向に直交する面に沿った直線方向に動作するアクチュエータと、このアクチュエータの直線方向の動作を前記押圧部材の回転方向の動作に変換する変換部と、を備えていてもよい。この場合、予圧保持手段によって押圧部材を容易且つスムーズに回転させることができる。また、アクチュエータが軸方向に直交する面に沿って直線方向に動作する構成としているため、アクチュエータを設けるための軸方向のスペースが小さくて済み、軸方向に動作する構成とした場合に比べ転がり軸受装置の軸方向のスペースを小さくすることができる。   The preload holding means includes an actuator that operates in a linear direction along a plane orthogonal to the axial direction, and a conversion unit that converts the linear operation of the actuator into an operation in the rotational direction of the pressing member. You may have. In this case, the pressing member can be easily and smoothly rotated by the preload holding means. In addition, since the actuator is configured to operate in a linear direction along a plane perpendicular to the axial direction, the axial space for providing the actuator can be reduced, and a rolling bearing compared to a configuration that operates in the axial direction. The axial space of the device can be reduced.

本発明の転がり軸受装置によれば、熱膨張に伴って予圧不足が生じるのを、リアルタイムに抑制することができるので、予圧不足に起因して装置のガタツキや騒音が発生するのをより効果的に防止することができる。   According to the rolling bearing device of the present invention, it is possible to suppress the occurrence of preload shortage due to thermal expansion in real time, so that it is more effective to cause rattling and noise of the device due to insufficient preload. Can be prevented.

以下、図面を参照しつつ、本発明の転がり軸受装置の実施の形態を説明する。
図1は、トランスミッションに本発明の実施形態に係る転がり軸受装置10を構成した場合を示す概略構成図である。この転がり軸受装置10は、トランスミッションのケース12と、ケース12の内部に組み込まれたギヤボックス13と、ギヤボックス13を貫通するように互いに平行に設けられた入力軸14及び出力軸(回転軸)15とを備えている。入力軸14及び出力軸15は、ギヤボックス13内の変速ギヤ16により連動して回転するようになっている。
Hereinafter, embodiments of the rolling bearing device of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram illustrating a case where a rolling bearing device 10 according to an embodiment of the present invention is configured in a transmission. The rolling bearing device 10 includes a transmission case 12, a gear box 13 incorporated in the case 12, and an input shaft 14 and an output shaft (rotating shaft) provided in parallel to each other so as to penetrate the gear box 13. 15. The input shaft 14 and the output shaft 15 are rotated in conjunction with a transmission gear 16 in the gear box 13.

変速ギヤ16は、例えば、マニュアルタイプとされており、入力軸14に互いに歯数の異なる複数枚の入力ギヤ18を設けるとともに、出力軸15に互いに歯数の異なる出力ギヤ19を設け、得るべき変速比又は前進及び後退の区別に応じて、入力軸14上のギヤ18と出力軸15上のギヤ19との噛み合いの組み合わせを切り替えることによって変速可能となっている。これら入力ギヤ18及び出力ギヤ19にはスパーギヤやヘリカルギヤが用いられる。また、変速ギヤ16は、遊星ギヤ機構等を用いたオートマチックタイプであってもよい。   The transmission gear 16 is, for example, a manual type, and the input shaft 14 is provided with a plurality of input gears 18 having different numbers of teeth, and the output shaft 15 is provided with output gears 19 having different numbers of teeth. Shifting is possible by switching the combination of the meshing of the gear 18 on the input shaft 14 and the gear 19 on the output shaft 15 according to the speed ratio or the distinction between forward and reverse. As the input gear 18 and the output gear 19, a spur gear or a helical gear is used. The transmission gear 16 may be an automatic type using a planetary gear mechanism or the like.

入力軸14の両端は、ケース12内の内側に固定された円筒ころ軸受21及び玉軸受22によりそれぞれ回転可能に支持されている。出力軸15の両端は、軸方向一方側(図1における左側)の第一円錐ころ軸受11及び軸方向他方側(図1における右側)の第二円錐ころ軸受23によりそれぞれ支持されている。第一円錐ころ軸受11は、ケース12と一体の第一ハウジング25に嵌合され、第二円錐ころ軸受23は、ケース12と一体の第二ハウジング26に嵌合されている。   Both ends of the input shaft 14 are rotatably supported by cylindrical roller bearings 21 and ball bearings 22 fixed inside the case 12. Both ends of the output shaft 15 are supported by a first tapered roller bearing 11 on one axial side (left side in FIG. 1) and a second tapered roller bearing 23 on the other axial side (right side in FIG. 1). The first tapered roller bearing 11 is fitted into a first housing 25 integral with the case 12, and the second tapered roller bearing 23 is fitted into a second housing 26 integral with the case 12.

図2は、本発明の転がり軸受装置10の要部の拡大構成図である。第一円錐ころ軸受11は、外輪32と、この外輪32と同軸に設置された内輪33と、外輪32及び内輪33の間に配置された複数の円錐ころ(転動体)34とを備えている。外輪32は、その外周面32bが第一ハウジング25の内周面25aと軸方向への相対移動が許容された状態で当該第一ハウジング25に取り付けられている。また、外輪32の内周面には、円錐ころ34が斜接して転動する内周軌道面32aが形成されている。内輪33の外周面には、円錐ころ34が斜接して転動する外周軌道面33aが形成されている。また、内輪33の一方側端面33cと出力軸15の段差面15aとは軸方向に対向した状態で配置されている。   FIG. 2 is an enlarged configuration diagram of a main part of the rolling bearing device 10 of the present invention. The first tapered roller bearing 11 includes an outer ring 32, an inner ring 33 disposed coaxially with the outer ring 32, and a plurality of tapered rollers (rolling elements) 34 disposed between the outer ring 32 and the inner ring 33. . The outer ring 32 is attached to the first housing 25 with its outer peripheral surface 32b allowed to move relative to the inner peripheral surface 25a of the first housing 25 in the axial direction. In addition, an inner circumferential raceway surface 32 a is formed on the inner circumferential surface of the outer ring 32 so that the tapered roller 34 rolls obliquely. On the outer peripheral surface of the inner ring 33, there is formed an outer peripheral raceway surface 33a on which the tapered rollers 34 roll in an oblique contact. Further, the one end surface 33c of the inner ring 33 and the step surface 15a of the output shaft 15 are arranged in a state of facing each other in the axial direction.

内輪33と円錐ころ34との接触角および円錐ころ34と外輪32との接触角は、軸方向他方側(図2における右側)から軸方向一方側(図2における左側)に向けて拡径するように設定されている。なお、ここで接触角は、JISB0104―991に規定された呼び接触角に準じる。   The contact angle between the inner ring 33 and the tapered roller 34 and the contact angle between the tapered roller 34 and the outer ring 32 are increased from the other side in the axial direction (right side in FIG. 2) toward one side in the axial direction (left side in FIG. 2). Is set to Here, the contact angle conforms to the nominal contact angle defined in JIS B0104-991.

第一円錐ころ軸受11が取り付けられた第一ハウジング25は、第1の線膨張係数を有している。これに対して、出力軸15は、第1の線膨張係数よりも小さい第2の線膨張係数を有している。
例えば、第一円錐ころ軸受11は、外輪32、内輪33及び転動体34が、いずれも鋼(例えば、軸受鋼、はだ焼鋼、浸炭鋼)にて製造され、第一ハウジング25は、軽金属(Al又はMgのいずれかを主成分(10質量%以上の含有率)とする金属)にて製造され、出力軸15は、鋼(例えば、機械構造用炭素鋼)にて製造されている。好ましくは、第一ハウジング25は、加工性及び耐食性の観点からAlまたはAl合金が使用され、Al合金としては、例えばダイキャスト用Al合金が使用される。本実施形態では、ケース12(図1参照)もAl合金製であり、第一ハウジング25はケース12の内面に一体化されている。
The first housing 25 to which the first tapered roller bearing 11 is attached has a first linear expansion coefficient. On the other hand, the output shaft 15 has a second linear expansion coefficient smaller than the first linear expansion coefficient.
For example, in the first tapered roller bearing 11, the outer ring 32, the inner ring 33, and the rolling element 34 are all made of steel (for example, bearing steel, case hardened steel, carburized steel), and the first housing 25 is made of light metal. (Metal containing either Al or Mg as a main component (content of 10% by mass or more)), and the output shaft 15 is made of steel (for example, carbon steel for mechanical structure). Preferably, Al or an Al alloy is used for the first housing 25 from the viewpoints of workability and corrosion resistance. As the Al alloy, for example, an Al alloy for die casting is used. In the present embodiment, the case 12 (see FIG. 1) is also made of an Al alloy, and the first housing 25 is integrated with the inner surface of the case 12.

第一ハウジング25の主成分であるAlの線膨張係数(第1の線膨張係数)は約23〜24ppm/℃、出力軸15及び第一円錐ころ軸受11の主成分であるFeの線膨張係数(第2の線膨張係数)は、約12〜13ppm/℃である。また、一般に、自動車のトランスミッションにおける軸受使用環境温度は−40℃以上110℃以下の範囲(寒冷地及び高速連続運転等を除いた通常到達温度は、10℃以上80℃以下)である。   The linear expansion coefficient (first linear expansion coefficient) of Al that is the main component of the first housing 25 is about 23 to 24 ppm / ° C., and the linear expansion coefficient of Fe that is the main component of the output shaft 15 and the first tapered roller bearing 11. The (second linear expansion coefficient) is about 12 to 13 ppm / ° C. In general, the bearing use environmental temperature in the automobile transmission is in the range of −40 ° C. or higher and 110 ° C. or lower (normally reached temperature excluding cold regions and high-speed continuous operation is 10 ° C. or higher and 80 ° C. or lower).

また、外輪32の軸方向一方側(図2における左側)には予圧調整手段50が設置されている。予圧調整手段50は、外輪32の一方側端面32cに当接する押圧部材51と、この押圧部材51の軸方向一方側に設けられた予圧保持手段53と、第一ハウジング25に取り付けられたセンサ52とを備えている。なお、予圧保持手段53は、一方側端面32cの周方向に沿って少なくとも1箇所設けられている。   Further, a preload adjusting means 50 is installed on one side in the axial direction of the outer ring 32 (left side in FIG. 2). The preload adjusting means 50 includes a pressing member 51 that contacts the one end surface 32 c of the outer ring 32, a preload holding means 53 provided on one axial side of the pressing member 51, and a sensor 52 attached to the first housing 25. And. Note that at least one preload holding means 53 is provided along the circumferential direction of the one side end face 32c.

図3は、予圧調整手段50の概略側面図である。図2及び図3に示すように、環状である押圧部材51は、外周に雄ネジ部51aを有し、第一ハウジング25の内周の一部に設けられた雌ネジ部25dに前記雄ネジ部51aを螺合した状態で当該第一ハウジング25に取り付けられている。また、押圧部材51は、外輪32と同素材(例えば、軸受鋼、はだ焼鋼、浸炭鋼)にて形成されており、その軸方向一方側面51dには円柱状の突出部51bが設けられている。   FIG. 3 is a schematic side view of the preload adjusting means 50. As shown in FIGS. 2 and 3, the annular pressing member 51 has a male screw part 51 a on the outer periphery, and the male screw part 25 d provided on a part of the inner periphery of the first housing 25 has the male screw part 51 a. The portion 51a is attached to the first housing 25 in a screwed state. The pressing member 51 is made of the same material as the outer ring 32 (for example, bearing steel, case hardened steel, carburized steel), and a columnar protrusion 51b is provided on one axial side surface 51d thereof. ing.

また、押圧部材51は、外輪32の一方側端面32cに当接し、外輪32に対して軸方向他方側(矢印j)へ向けて予圧を与えるようになっている。このように予圧を与えると、内輪33は円錐ころ34の傾斜した転動面上での分力を受けて軸方向及び径方向に変位し、その一方側端面33cと内周面33bとが出力軸15の段差面15aと段差外周面15bとにそれぞれ押しつけられて予圧が支持される。   The pressing member 51 is in contact with one end face 32c of the outer ring 32 and applies a preload to the outer ring 32 toward the other side in the axial direction (arrow j). When the preload is applied in this way, the inner ring 33 receives the component force on the inclined rolling surface of the tapered roller 34 and is displaced in the axial direction and the radial direction, and the one end face 33c and the inner peripheral face 33b are output. The preload is supported by being pressed against the step surface 15a and the step outer peripheral surface 15b of the shaft 15, respectively.

予圧保持手段53は、直線方向に動作する板状のアクチュエータ(掛止部材)53aと、アクチュエータ53aの直線方向の動作を押圧部材51の回転方向の動作に変換する変換部53kとを備えている。アクチュエータ53aは、駆動源である電動モータ53bからの動力が伝達されて軸方向に直交する面51dに沿った直線方向、すなわち水平且つラジアル方向(矢印g)に動作する。また、第一ハウジング25には歪みゲージ等のセンサ52が取り付けられており(図2参照)、第一ハウジング25の熱膨張に伴う軸方向の歪み(変位)を検出することができる。そして、このセンサ52からの検出信号(検出結果)が後述する制御手段Cに伝達され、この制御手段Cによって前記電動モータ53bが駆動し、この動力が前記アクチュエータ53aに伝達される。また、アクチュエータ53aの先端部には前記突出部51bを掛止するための凹状の凹溝部53gが形成されており、この凹溝部53gと前記突出部51bとで前記変換部53kを構成している。   The preload holding means 53 includes a plate-like actuator (holding member) 53 a that operates in a linear direction, and a conversion unit 53 k that converts the linear operation of the actuator 53 a into an operation in the rotational direction of the pressing member 51. . The actuator 53a operates in a linear direction along the surface 51d orthogonal to the axial direction, that is, in a horizontal and radial direction (arrow g) when power from the electric motor 53b as a drive source is transmitted. A sensor 52 such as a strain gauge is attached to the first housing 25 (see FIG. 2), and axial strain (displacement) accompanying thermal expansion of the first housing 25 can be detected. Then, a detection signal (detection result) from the sensor 52 is transmitted to the control means C described later, the electric motor 53b is driven by the control means C, and the power is transmitted to the actuator 53a. A concave groove 53g for hooking the protrusion 51b is formed at the tip of the actuator 53a. The groove 53g and the protrusion 51b constitute the converter 53k. .

例えば、電動モータ53bから伝達された動力よってアクチュエータ53aが前記矢印g方向に直線方向に動作すれば、前記突出部51bが前記凹溝部53gによって掛止されているため、アクチュエータ53aの矢印g方向への移動に伴って押圧部材51は周方向(矢印c)に回転する。なお、アクチュエータ53aが矢印gの逆方向に動作すれば、前記変換部53kの作用によって押圧部材51は矢印cの逆方向に回転することになる。   For example, if the actuator 53a moves linearly in the direction of the arrow g by the power transmitted from the electric motor 53b, the protruding portion 51b is hooked by the concave groove portion 53g, and therefore the direction of the actuator 53a in the arrow g direction. With the movement, the pressing member 51 rotates in the circumferential direction (arrow c). If the actuator 53a operates in the reverse direction of the arrow g, the pressing member 51 rotates in the reverse direction of the arrow c due to the action of the converting portion 53k.

押圧部材51が周方向(矢印c)に回転すれば、雄ネジ部51aと雌ネジ部25dとの相対回転によって押圧部材51が第一ハウジング25内を軸方向他方側(図2における矢印j)に移動する。この移動に伴い外輪32が押圧部材51によって同方向側に押圧され、転がり軸受装置10に予圧が付与されることになる。
なお、凹溝部53gの溝幅は突出部51bの直径と略同幅に設定され、また、凹溝部53gの溝高さは突出部51bの直径の略二倍の長さに設定されている。このため、押圧部材51の回転に伴って突出部51bの径方向位置が上下方向に移動しても、凹溝部53gが突出部51bを十分に掛止できるようになっている。
When the pressing member 51 rotates in the circumferential direction (arrow c), the pressing member 51 moves in the first housing 25 in the axial direction on the other side (arrow j in FIG. 2) by relative rotation between the male screw portion 51a and the female screw portion 25d. Move to. With this movement, the outer ring 32 is pressed in the same direction by the pressing member 51, and a preload is applied to the rolling bearing device 10.
The groove width of the recessed groove portion 53g is set to be approximately the same as the diameter of the protruding portion 51b, and the groove height of the recessed groove portion 53g is set to be approximately twice the diameter of the protruding portion 51b. For this reason, even if the radial position of the protrusion 51b moves in the vertical direction as the pressing member 51 rotates, the concave groove 53g can sufficiently hook the protrusion 51b.

制御手段Cは、図2に示すように、判別部C1と記憶部C2と制御部C3とから構成されている。前記センサ52は、単位時間(Δt)あたりの第一ハウジング25の熱膨張に伴う軸方向の歪み度合(Δε=(ε―0)/Δt)を検出し、この検出信号(検出結果)を判別部C1に伝達する。判別部C1は、伝達された検出信号に基づいて第一ハウジング25の軸方向の歪み度合の値が正、あるいは負であるかを判別する。また、記憶部C2は、予め第一ハウジング25及び出力軸15の線膨張係数や、前記単位時間あたりの第一ハウジング25の軸方向の歪み度合(Δε)と前記転がり軸受11の予圧調整のために必要な押圧部材51の移動量との相関関係に関する情報を記憶している。そして、前記判別部C1は、前記センサ52からの検出信号と前記記憶部C2の記憶情報から転がり軸受11の予圧調整のために必要な押圧部材51の移動量を算出し、この算出結果を制御部C3に伝達する。制御部C3は、この伝達された算出結果に基づいて押圧部材51の必要な回転量に応じて前記電動モータ53bを必要な分だけ駆動させる。   As shown in FIG. 2, the control means C includes a determination unit C1, a storage unit C2, and a control unit C3. The sensor 52 detects the degree of axial distortion (Δε = (ε−0) / Δt) accompanying the thermal expansion of the first housing 25 per unit time (Δt), and discriminates this detection signal (detection result). Transmitted to part C1. The determination unit C1 determines whether the value of the degree of distortion in the axial direction of the first housing 25 is positive or negative based on the transmitted detection signal. In addition, the storage unit C2 adjusts the linear expansion coefficients of the first housing 25 and the output shaft 15 in advance, the degree of axial strain of the first housing 25 per unit time (Δε), and the preload adjustment of the rolling bearing 11. The information regarding the correlation with the movement amount of the pressing member 51 necessary for the storage is stored. And the said discrimination | determination part C1 calculates the moving amount | distance of the press member 51 required for the preload adjustment of the rolling bearing 11 from the detection signal from the said sensor 52, and the memory | storage information of the said memory | storage part C2, and controls this calculation result To part C3. The control unit C3 drives the electric motor 53b by a necessary amount according to a necessary rotation amount of the pressing member 51 based on the transmitted calculation result.

例えば、第一ハウジング25の軸方向の歪み度合の値が正であれば当該第一ハウジング25が軸方向に伸長して転がり軸受11の予圧が抜けており、当該歪み度合の値が負であれば当該第一ハウジング25が軸方向に収縮して転がり軸受11の予圧が強くなっていることになる。判別部C1は、これら歪み度合の正負に応じて押圧部材51の回転方向及び必要な回転量を算出している。
また、第一ハウジング25の変動していた温度が一定となり、当該第一ハウジング25の軸方向の歪み度合が0となった場合、これを前記センサ52が検出し、この検出信号を前記判別部C1に伝達する。そして、前記判別部C1は制御部C3に押圧部材51の回転停止を指示する。これにより、転がり軸受11への予圧の付与、あるいは低減が停止し当該予圧が一定に保持される。
For example, if the value of the first housing 25 in the axial direction is positive, the first housing 25 extends in the axial direction and the preload of the rolling bearing 11 is released, and the value of the degree of distortion is negative. For example, the first housing 25 is contracted in the axial direction, and the preload of the rolling bearing 11 is increased. The determination unit C1 calculates the rotation direction and the necessary rotation amount of the pressing member 51 according to the sign of the degree of distortion.
Further, when the temperature of the first housing 25 that has fluctuated becomes constant and the degree of axial distortion of the first housing 25 becomes zero, the sensor 52 detects this, and the detection signal is sent to the determination unit. To C1. Then, the determination unit C1 instructs the control unit C3 to stop the rotation of the pressing member 51. As a result, the application or reduction of the preload to the rolling bearing 11 is stopped and the preload is held constant.

以下に前記実施形態に係る転がり軸受装置10の動作について説明する。
転がり軸受装置10の温度が比較的低温(常温)に保たれている場合、第一ハウジング25、外輪32、出力軸15の熱膨張による寸法変化の差はそれほど生じず、予圧は一定に保たれている。
The operation of the rolling bearing device 10 according to the embodiment will be described below.
When the temperature of the rolling bearing device 10 is maintained at a relatively low temperature (normal temperature), the difference in dimensional change due to thermal expansion of the first housing 25, the outer ring 32, and the output shaft 15 does not occur so much, and the preload is kept constant. ing.

転がり軸受装置10が稼働して昇温すると、出力軸15よりもケース12及び第一,第二ハウジング25,26の線膨張係数が大きいため、第一ハウジング25が軸方向及び径方向に大きく膨張し、外輪32が円錐ころ34から離反しようとする。つまり、予圧低下が生じようとする。   When the rolling bearing device 10 is operated and the temperature rises, the linear expansion coefficient of the case 12 and the first and second housings 25 and 26 is larger than that of the output shaft 15, so that the first housing 25 expands greatly in the axial direction and the radial direction. However, the outer ring 32 tends to be separated from the tapered roller 34. That is, a decrease in preload is about to occur.

すると、第一ハウジング25の軸方向の歪み度合がセンサ52によって検出され、この歪み度合に基づく検出信号が前記制御手段Cに伝達される。制御手段Cは、前述したようにこの検出信号に基づいて転がり軸受11に必要な予圧を付与するための押圧部材51の回転量を算出し、この回転量に応じて前記電動モータ53bを駆動させる。   Then, the degree of axial distortion of the first housing 25 is detected by the sensor 52, and a detection signal based on this degree of distortion is transmitted to the control means C. As described above, the control means C calculates the amount of rotation of the pressing member 51 for applying the necessary preload to the rolling bearing 11 based on this detection signal, and drives the electric motor 53b according to this amount of rotation. .

そして、駆動した電動モータ53bによって、アクチュエータ53aが予圧を付与するために必要な分だけ直線方向に動作する。これに応じて、前記押圧部材51が周方向一方側に回転し、第一ハウジング25の内周に設けられた雌ネジ部25dによって当該第一ハウジング25内を軸方向他方側(図2における矢印j)に移動する。この押圧部材51の軸方向への移動に伴って、外輪32が軸方向同側に押圧される。すなわち、予圧調整手段50によって、転がり軸受装置10の熱膨張に伴う予圧の低下がリアルタイムに抑制され、予圧不足に起因して転がり軸受装置10のガタツキや騒音が発生するのをより効果的に防止することができる。なお、アクチュエータ53aは、軸方向に直交する面51dに沿って直線方向(矢印g)に動作する構成としているため、軸方向に動作する構成とする場合に比べ転がり軸受装置10の軸方向のスペースを小さくすることができる。   The driven electric motor 53b operates in the linear direction as much as necessary for the actuator 53a to apply the preload. Accordingly, the pressing member 51 rotates to one side in the circumferential direction, and the inside of the first housing 25 is moved to the other side in the axial direction (arrow in FIG. 2) by the female screw portion 25d provided on the inner circumference of the first housing 25. Go to j). As the pressing member 51 moves in the axial direction, the outer ring 32 is pressed to the same side in the axial direction. That is, the preload adjusting means 50 suppresses a decrease in preload due to thermal expansion of the rolling bearing device 10 in real time, and more effectively prevents rattling and noise of the rolling bearing device 10 due to insufficient preload. can do. In addition, since the actuator 53a is configured to operate in a linear direction (arrow g) along a surface 51d orthogonal to the axial direction, the axial space of the rolling bearing device 10 is larger than that configured to operate in the axial direction. Can be reduced.

また、転がり軸受装置10がさらに昇温すると、この昇温による第一ハウジング25の軸方向への歪み度合が、前述と同様、前記センサ52によって検出される。この検出信号が前記制御手段Cに伝達され、前述と同様、アクチュエータ53aにより押圧部材51が予圧を調整するために必要な分だけさらに周方向に回転し、外輪32が軸方向他方側へさらに押圧移動する。これにより、さらなる熱膨張に伴う転がり軸受装置10の予圧の低下が防止される。   Further, when the temperature of the rolling bearing device 10 is further increased, the degree of distortion in the axial direction of the first housing 25 due to the increased temperature is detected by the sensor 52 as described above. This detection signal is transmitted to the control means C, and as described above, the pressing member 51 is further rotated in the circumferential direction by the actuator 53a as much as necessary to adjust the preload, and the outer ring 32 is further pressed toward the other side in the axial direction. Moving. Thereby, the fall of the preload of the rolling bearing apparatus 10 accompanying the further thermal expansion is prevented.

そして、トランスミッションの負荷が低下し、第一ハウジング25の温度が低下して当該第一ハウジング25が収縮すると、外輪32及び円錐ころ34を介して内輪33が軸方向他方側に押圧される。このとき、第一ハウジング25の軸方向への収縮度合が前記センサ52によって検出され、この検出信号が前記制御手段Cに伝達される。制御手段Cは、前述した判別部C1、記憶部C2、及び制御部C3の働きによって、転がり軸受11から抜くべき予圧量を算出し、それに応じて電動モータ53bを駆動させる。駆動した電動モータ53bによってアクチュエータ53aが昇温時と逆方向に必要な分だけ動作する。そして、押圧部材51が周方向他方側に回転して第一ハウジング25内を軸方向一方側(昇温時と逆方向)に移動し、転がり軸受装置10の予圧が適正に保持される。   When the load on the transmission decreases, the temperature of the first housing 25 decreases, and the first housing 25 contracts, the inner ring 33 is pressed to the other side in the axial direction via the outer ring 32 and the tapered rollers 34. At this time, the degree of contraction of the first housing 25 in the axial direction is detected by the sensor 52, and this detection signal is transmitted to the control means C. The control means C calculates the preload amount to be extracted from the rolling bearing 11 by the functions of the determination unit C1, the storage unit C2, and the control unit C3, and drives the electric motor 53b accordingly. The driven electric motor 53b causes the actuator 53a to operate in a direction opposite to that required when the temperature rises. Then, the pressing member 51 rotates to the other side in the circumferential direction and moves in the first housing 25 to one side in the axial direction (the direction opposite to that at the time of temperature increase), so that the preload of the rolling bearing device 10 is properly maintained.

その後、トランスミッションの温度が一定になり、第一ハウジング25の軸方向への歪みが無くなると、前記センサ52がこれを検出し、この検出信号を前記判別部C1に伝達する。すると、判別部C1は制御部C3に押圧部材51の回転停止の指示をする。これにより、転がり軸受11の予圧の抜けが停止され、当該予圧が一定に保持される。   Thereafter, when the temperature of the transmission becomes constant and the axial distortion of the first housing 25 disappears, the sensor 52 detects this and transmits this detection signal to the determination unit C1. Then, the determination unit C1 instructs the control unit C3 to stop the rotation of the pressing member 51. As a result, the release of the preload of the rolling bearing 11 is stopped, and the preload is held constant.

図4は、他の実施形態に係る予圧調整手段50を示す概略側面図である。この予圧調整手段50の基本的構造は、図3の予圧調整手段50と同じであり、同一部分に同一の参照符号を付している。この実施形態に係る予圧調整手段50が、図3の予圧調整手段50と相違する点は、押圧部材51の軸方向側にピニオン部51cが形成されている点と、アクチュエータ53aに前記ピニオン部51cに噛み合うラック部53hが形成されている点である。   FIG. 4 is a schematic side view showing a preload adjusting means 50 according to another embodiment. The basic structure of the preload adjusting means 50 is the same as that of the preload adjusting means 50 of FIG. 3, and the same reference numerals are given to the same portions. The preload adjusting means 50 according to this embodiment is different from the preload adjusting means 50 of FIG. 3 in that a pinion portion 51c is formed on the axial side of the pressing member 51, and the pinion portion 51c is provided on the actuator 53a. The rack part 53h which meshes with is formed.

ピニオン部51cは押圧部材51の外周に沿った環状または円弧状からなり、その外周には複数の歯部51eが形成されている。また、前記アクチュエータ53aには、前記ピニオン部51cの歯部51eに噛み合うラック部53hが形成されている。すなわち、これら歯部51eとラック部53hとが噛み合って、ピニオン部51cが回転する。   The pinion portion 51c has an annular shape or an arc shape along the outer periphery of the pressing member 51, and a plurality of tooth portions 51e are formed on the outer periphery. The actuator 53a is formed with a rack portion 53h that meshes with the tooth portion 51e of the pinion portion 51c. That is, the tooth part 51e and the rack part 53h mesh with each other, and the pinion part 51c rotates.

転がり軸受装置10の昇温又は冷却に伴う予圧の変化に応じた当該予圧の調整方法は、前述した図3の予圧調整手段50と概ね同様である。異なる点は、電動モータ53bからの動力が、前記ラック部53hを備えるアクチュエータ53a及びピニオン部51cを介して押圧部材51に伝達される点である。   The method for adjusting the preload according to the change in the preload accompanying the temperature rise or cooling of the rolling bearing device 10 is substantially the same as the preload adjusting means 50 of FIG. The difference is that power from the electric motor 53b is transmitted to the pressing member 51 via the actuator 53a and the pinion portion 51c including the rack portion 53h.

図5は、他の実施形態に係る予圧調整手段50を示す概略側面図である。この予圧調整手段50の基本的構造は、図3の予圧調整手段50と同じであり、同一部分に同一の参照符号を付している。この実施形態に係る予圧調整手段50が、図3の予圧調整手段50と相違する点は、アクチュエータ53aに動力を伝達する駆動源が油圧ポンプ53dである点である。   FIG. 5 is a schematic side view showing a preload adjusting means 50 according to another embodiment. The basic structure of the preload adjusting means 50 is the same as that of the preload adjusting means 50 of FIG. 3, and the same reference numerals are given to the same portions. The preload adjusting means 50 according to this embodiment is different from the preload adjusting means 50 of FIG. 3 in that the drive source for transmitting power to the actuator 53a is a hydraulic pump 53d.

油圧ポンプ53dは、前記制御手段Cを介して前記センサ52と接続されており、このセンサ52からの検出信号に基づいて稼働される。例えば、第一ハウジング25の熱膨張時には、軸方向の歪み度合を検出したセンサ52からの検出信号が前記制御手段Cに伝達される。そして、前述と同様、この制御手段Cによって油圧ポンプ53dが予圧を調整するために必要な分だけ稼働し、この油圧ポンプ53dから加圧室53fに供給路53iを経由して作動油が供給される。作動油が供給されると加圧室53fの内圧が上昇し、この内圧の上昇によってアクチュエータ53aが矢印g方向に直線方向に動作する。この結果、前述と同様、外輪32が軸方向他方側(図2における矢印j)に移動し、転がり軸受装置10の予圧が適正に保持される。   The hydraulic pump 53d is connected to the sensor 52 via the control means C, and is operated based on a detection signal from the sensor 52. For example, when the first housing 25 is thermally expanded, a detection signal from the sensor 52 that detects the degree of axial distortion is transmitted to the control means C. As described above, the control unit C operates as much as necessary for the hydraulic pump 53d to adjust the preload, and hydraulic oil is supplied from the hydraulic pump 53d to the pressurizing chamber 53f via the supply path 53i. The When the hydraulic oil is supplied, the internal pressure of the pressurizing chamber 53f increases, and the actuator 53a operates in the direction of the arrow g in a linear direction due to the increase of the internal pressure. As a result, as described above, the outer ring 32 moves to the other axial side (arrow j in FIG. 2), and the preload of the rolling bearing device 10 is properly maintained.

逆に、第一ハウジング25の収縮時には、この収縮に伴う第一ハウジング25の軸方向の歪み度合を検出したセンサ52からの検出信号が前記制御手段Cに伝達され、この制御手段Cの指示に従って圧力排出手段53eにより加圧室53f内の作動油が排出路53jを経由して予圧を調整するために必要な分だけ外部に排出される。作動油が排出されると加圧室53fの内圧が低下し、この内圧の低下によってアクチュエータ53aが矢印g方向の逆方向に直線方向に動作する。この結果、前述と同様、外輪32が軸方向一方側に移動し、転がり軸受装置10の予圧が適正に保持される。   Conversely, when the first housing 25 contracts, a detection signal from the sensor 52 that detects the degree of axial distortion of the first housing 25 due to the contraction is transmitted to the control means C, and the control means C follows the instruction. The pressure discharge means 53e discharges the hydraulic oil in the pressurizing chamber 53f to the outside through the discharge passage 53j as much as necessary for adjusting the preload. When the hydraulic oil is discharged, the internal pressure of the pressurizing chamber 53f decreases, and the actuator 53a operates in the linear direction in the direction opposite to the arrow g direction due to the decrease in the internal pressure. As a result, as described above, the outer ring 32 moves to one side in the axial direction, and the preload of the rolling bearing device 10 is properly maintained.

図6は、他の実施形態に係る予圧調整手段50を示す概略側面図である。この予圧調整手段50の基本的構造は、図5の予圧調整手段50と同じであり、同一部分に同一の参照符号を付している。この実施形態に係る予圧調整手段50が、図5の予圧調整手段50と相違する点は、押圧部材51の軸方向側にピニオン部51cが形成されている点と、アクチュエータ53aに前記ピニオン部51cに噛み合うラック部53hが形成されている点である。
また、これらピニオン部51c及びアクチュエータ53aの構造及び機能は、図4のピニオン部51c及びアクチュエータ53aと同じであるため説明は省略する。
FIG. 6 is a schematic side view showing a preload adjusting means 50 according to another embodiment. The basic structure of the preload adjusting means 50 is the same as that of the preload adjusting means 50 of FIG. 5, and the same reference numerals are given to the same portions. The preload adjusting means 50 according to this embodiment is different from the preload adjusting means 50 of FIG. 5 in that a pinion portion 51c is formed on the axial direction side of the pressing member 51 and the pinion portion 51c is provided on the actuator 53a. The rack part 53h which meshes with is formed.
The structure and function of the pinion portion 51c and the actuator 53a are the same as those of the pinion portion 51c and the actuator 53a in FIG.

図7は、他の実施形態に係る予圧調整手段50を示す概略側面図である。この予圧調整手段50の基本的構造は、図3の予圧調整手段50と同じであり、同一部分に同一の参照符号を付している。この実施形態に係る予圧調整手段50が、図3の予圧調整手段50と相違する点は、アクチュエータ53aの先端にバネ部材54が取り付けられている点である。   FIG. 7 is a schematic side view showing a preload adjusting means 50 according to another embodiment. The basic structure of the preload adjusting means 50 is the same as that of the preload adjusting means 50 of FIG. 3, and the same reference numerals are given to the same portions. The preload adjusting means 50 according to this embodiment is different from the preload adjusting means 50 of FIG. 3 in that a spring member 54 is attached to the tip of the actuator 53a.

第一ハウジング25の収縮時には、この収縮に伴う第一ハウジング25の軸方向の歪み度合が前記センサ52で検出され、この検出信号が前記制御手段Cに伝達される。そして、この制御手段Cによって電動モータ53bが予圧を調整するために必要な分だけ駆動し、アクチュエータ53aが昇温時と逆方向(矢印h)に動作する。この動作に併せて、圧縮コイルバネ等からなるバネ部材54が伸長し、このアクチュエータ53aを付勢して直線方向の動作をスムーズにさせる。これにより、押圧部材51が周方向他方側(矢印i)に回転して第一ハウジング25内を軸方向一方側(昇温時と逆方向)に移動し、転がり軸受装置10の予圧が適正に保持される。
また、トランスミッションの稼働が停止して転がり軸受装置10全体の電気系統が停止、すなわち前記制御手段C及び電動モータ53bが停止したとしても、これに影響を受けることなく前記バネ部材54は伸長するため、このバネ部材54により付勢されてアクチュエータ53aが直線方向に動作して転がり軸受装置10の過度に大きくなる予圧を逃がすことができる。
When the first housing 25 contracts, the degree of axial distortion of the first housing 25 that accompanies this contraction is detected by the sensor 52, and this detection signal is transmitted to the control means C. Then, the control means C drives the electric motor 53b as much as necessary to adjust the preload, and the actuator 53a operates in the reverse direction (arrow h) with respect to the temperature rise. Along with this operation, a spring member 54 made of a compression coil spring or the like is extended, and this actuator 53a is urged to smoothly perform the operation in the linear direction. As a result, the pressing member 51 rotates to the other side in the circumferential direction (arrow i) and moves in the first housing 25 to one side in the axial direction (in the opposite direction to the temperature rise), so that the preload of the rolling bearing device 10 is properly set. Retained.
Further, even if the operation of the transmission is stopped and the electrical system of the entire rolling bearing device 10 is stopped, that is, even if the control means C and the electric motor 53b are stopped, the spring member 54 extends without being affected by this. The preload, which is energized by the spring member 54 and the actuator 53a operates in the linear direction to excessively increase the rolling bearing device 10, can be released.

図8は、他の実施形態に係る転がり軸受装置70を示す概略構成図である。この転がり軸受装置70の基本的構造は、図2の転がり軸受装置10と同じであり、同一部分に同一の参照符号を付している。この実施形態に係る転がり軸受装置70が、図2の転がり軸受装置10と相違する点は、回転可能な外側部材(ハウジング)45に外輪32が嵌合されて外輪32とハウジング45との軸方向への相対移動が規制されている点、内輪33の内周面33bが固定軸35の外周面35bに嵌合されている点、及び予圧調整手段60がハウジング45の軸方向他方側(図8において右側)に設けられている点である。   FIG. 8 is a schematic configuration diagram showing a rolling bearing device 70 according to another embodiment. The basic structure of the rolling bearing device 70 is the same as that of the rolling bearing device 10 of FIG. 2, and the same reference numerals are given to the same portions. The rolling bearing device 70 according to this embodiment is different from the rolling bearing device 10 of FIG. 2 in that the outer ring 32 is fitted to a rotatable outer member (housing) 45 and the axial direction between the outer ring 32 and the housing 45. The relative movement of the inner ring 33 is restricted, the inner peripheral surface 33b of the inner ring 33 is fitted to the outer peripheral surface 35b of the fixed shaft 35, and the preload adjusting means 60 is on the other axial side of the housing 45 (FIG. 8). In the right side).

この実施の形態において、予圧調整手段60の環状である押圧部材61は、その内周に設けられた雌ネジ部61aを有し、固定軸35の外周に設けられた雄ネジ部35aに前記雌ネジ部61aを螺合させた状態で当該固定軸35に取り付けられている。また、押圧部材61は、内輪33と同素材(例えば、軸受鋼、はだ焼鋼、浸炭鋼)にて製造されており、その軸方向他方側面61dに円柱状の突出部61bが設けられている。なお、アクチュエータ53aは、ハウジング45の周方向に沿って少なくとも1箇所設けられている。   In this embodiment, the annular pressing member 61 of the preload adjusting means 60 has a female screw portion 61 a provided on the inner periphery thereof, and the female screw portion 35 a provided on the outer periphery of the fixed shaft 35 is connected to the female screw portion 35 a. It is attached to the fixed shaft 35 in a state where the screw portion 61a is screwed. The pressing member 61 is made of the same material as the inner ring 33 (for example, bearing steel, case hardened steel, carburized steel), and a columnar protrusion 61b is provided on the other side surface 61d in the axial direction. Yes. Note that at least one actuator 53 a is provided along the circumferential direction of the housing 45.

この実施形態においては、転がり軸受装置70が昇温してハウジング45が軸方向及び径方向に大きく膨張し、外輪32が円錐ころ34から離反しようとすると、つまり、予圧低下が生じようとすると、ハウジング45の軸方向の歪み度合が当該ハウジング45の端面と僅かな隙間を設けて対向するセンサ52によって検出され、この検出信号が前記制御手段Cに伝達される。すると、この制御手段Cによって電動モータ53bが予圧を付与するために必要な分だけ駆動し、これに応じてアクチュエータ53aが軸方向に直交する面61dに沿った直線方向、すなわち水平且つラジアル方向に動作する。これにより、固定軸35の外周にネジ部(雄ネジ部35a,雌ネジ部61a)によって螺合している前記押圧部材61が周方向一方側に必要な分だけ回転し、固定軸35内を軸方向一方側(矢印f)に移動する。この押圧部材61の軸方向への移動に伴って、内輪33が軸方向同側に押圧される。すなわち、予圧調整手段60によって、転がり軸受装置70の熱膨張に伴う予圧の低下がリアルタイムに抑制される。   In this embodiment, if the rolling bearing device 70 rises in temperature and the housing 45 expands greatly in the axial direction and the radial direction, and the outer ring 32 tries to move away from the tapered roller 34, that is, if the preload is reduced, A degree of distortion in the axial direction of the housing 45 is detected by a sensor 52 facing the end face of the housing 45 with a slight gap, and this detection signal is transmitted to the control means C. Then, the control means C drives the electric motor 53b as much as necessary to apply the preload, and in response, the actuator 53a moves in a linear direction along the surface 61d orthogonal to the axial direction, that is, in a horizontal and radial direction. Operate. As a result, the pressing member 61 screwed to the outer periphery of the fixed shaft 35 by the screw portions (male screw portion 35a, female screw portion 61a) rotates by a necessary amount on one side in the circumferential direction, and the inside of the fixed shaft 35 is rotated. Move to one side in the axial direction (arrow f). As the pressing member 61 moves in the axial direction, the inner ring 33 is pressed to the same side in the axial direction. That is, the preload adjusting means 60 suppresses the decrease in preload accompanying the thermal expansion of the rolling bearing device 70 in real time.

また、転がり軸受装置70がさらに昇温すると、この昇温によるハウジング45の軸方向への歪み度合がセンサ52によって検出される。この検出信号が前記制御手段Cに伝達され、前述と同様、アクチュエータ53aにより押圧部材61がさらに周方向へ予圧を付与するために必要な分だけ回転し、内輪33が軸方向一方側へさらに押圧移動される。これにより、さらなる熱膨張に伴う転がり軸受装置70の予圧の低下が防止される。   Further, when the temperature of the rolling bearing device 70 is further increased, the sensor 52 detects the degree of distortion in the axial direction of the housing 45 due to the increased temperature. This detection signal is transmitted to the control means C, and as described above, the pressing member 61 is further rotated by the actuator 53a as much as necessary to apply the preload in the circumferential direction, and the inner ring 33 is further pressed toward the one side in the axial direction. Moved. Thereby, the fall of the preload of the rolling bearing apparatus 70 accompanying the further thermal expansion is prevented.

そして、転がり軸受装置70の負荷が低下し、ハウジング45の温度が低下して当該ハウジング45が収縮すると、内輪33及び押圧部材61が軸方向他方側に押圧される。このとき、ハウジング45の軸方向の歪み度合がセンサ52によって検出され、この検出信号が前記制御手段Cに伝達される。すると、前述と同様、制御手段Cによって電動モータ53bが予圧を調整するために必要な分だけ駆動してアクチュエータ53aが昇温時と逆方向に動作する。そして、押圧部材61が周方向他方側に必要な分だけ回転して固定軸35上を軸方向他方側(昇温時と逆方向)に移動され、転がり軸受装置70の予圧が適正に保持される。   Then, when the load of the rolling bearing device 70 decreases and the temperature of the housing 45 decreases and the housing 45 contracts, the inner ring 33 and the pressing member 61 are pressed to the other side in the axial direction. At this time, the degree of axial distortion of the housing 45 is detected by the sensor 52, and this detection signal is transmitted to the control means C. Then, as described above, the control means C drives the electric motor 53b as much as necessary to adjust the preload, and the actuator 53a operates in the direction opposite to that when the temperature rises. Then, the pressing member 61 is rotated by the necessary amount on the other side in the circumferential direction and moved on the fixed shaft 35 to the other side in the axial direction (the direction opposite to the temperature rise), so that the preload of the rolling bearing device 70 is properly maintained. The

本発明は、前記実施形態に限定されることなく適宜設計変更可能である。例えばセンサ52はハウジングの軸方向の歪み度合を検出するものであったが、ハウジングと回転軸との熱膨張差を検出するものであればよく、例えばハウジングの径方向の歪み度合を検出するものや当該ハウジングの温度変化を検出するものであってもよい。この場合、当然制御手段Cの判別部C1は、センサ52が検出したハウジングの径方向の歪み度合や温度変化による検出信号に基づいて稼働するものである。
また、バネ部材54として圧縮コイルバネを示したが、例えば板バネであってもよい。
さらに、前記実施形態では、トランスミッションに用いられる転がり軸受装置を示しているが、四輪駆動車の駆動分配軸用のギヤユニット等、他の装置にも適用することができる。転がり軸受としては、円錐ころ軸受に限らずアンギュラ玉軸受、深みぞ玉軸受等の予圧を使用する他の転がり軸受であってもよい。
The present invention is not limited to the embodiment described above, and can be appropriately changed in design. For example, the sensor 52 detects the degree of distortion in the axial direction of the housing, but may be any sensor that detects a difference in thermal expansion between the housing and the rotating shaft. For example, the sensor 52 detects the degree of distortion in the radial direction of the housing. Alternatively, a change in temperature of the housing may be detected. In this case, naturally, the discriminating part C1 of the control means C operates based on a detection signal based on a degree of distortion in the radial direction of the housing detected by the sensor 52 or a temperature change.
Moreover, although the compression coil spring was shown as the spring member 54, a leaf | plate spring may be sufficient, for example.
Furthermore, although the rolling bearing device used for the transmission is shown in the above embodiment, the present invention can be applied to other devices such as a gear unit for a drive distribution shaft of a four-wheel drive vehicle. The rolling bearing is not limited to the tapered roller bearing, but may be another rolling bearing using preload such as an angular ball bearing or a deep groove ball bearing.

本発明の実施形態に係る転がり軸受装置を構成したトランスミッションを示す概略構成図である。It is a schematic block diagram which shows the transmission which comprised the rolling bearing apparatus which concerns on embodiment of this invention. 図1における転がり軸受装置の要部の概略構成図である。It is a schematic block diagram of the principal part of the rolling bearing apparatus in FIG. 図2における予圧調整手段の概略側面図である。It is a schematic side view of the preload adjusting means in FIG. 他の実施形態に係る予圧調整手段の概略側面図である。It is a schematic side view of the preload adjustment means which concerns on other embodiment. 他の実施形態に係る予圧調整手段の概略側面図である。It is a schematic side view of the preload adjustment means which concerns on other embodiment. 他の実施形態に係る予圧調整手段の概略側面図である。It is a schematic side view of the preload adjustment means which concerns on other embodiment. 他の実施形態に係る予圧調整手段の概略側面図である。It is a schematic side view of the preload adjustment means which concerns on other embodiment. 他の実施形態に係る転がり軸受装置の要部の概略構成図である。It is a schematic block diagram of the principal part of the rolling bearing apparatus which concerns on other embodiment. 従来例を示す要部断面図である。It is principal part sectional drawing which shows a prior art example. 他の従来例を示す要部断面図である。It is principal part sectional drawing which shows another prior art example.

符号の説明Explanation of symbols

10 転がり軸受装置
15 出力軸(回転軸)
25 第一ハウジング(ハウジング)
25a 内周面
25d 雌ネジ部
32 外輪
32b 外周面
33 内輪
34 円錐ころ(転動体)
35 固定軸
35a 雄ネジ部
35b 外周面
45 ハウジング(外側部材)
45a 内周面
51 押圧部材
51a 雄ネジ部
51b 突出部
51c ピニオン部
51d 側面
52 センサ
53 予圧保持手段
53a アクチュエータ(掛止部材)
53c アクチュエータ(ラック部材)
53g 凹溝部
53h ラック部
53k 変換部
61 押圧部材
61a 雌ネジ部
61b 突出部
61d 側面
70 転がり軸受装置
10 Rolling bearing device 15 Output shaft (Rotating shaft)
25 First housing (housing)
25a Inner peripheral surface 25d Female thread portion 32 Outer ring 32b Outer peripheral surface 33 Inner ring 34 Tapered roller (rolling element)
35 Fixed shaft 35a Male thread part 35b Outer peripheral surface 45 Housing (outer member)
45a Inner peripheral surface 51 Press member 51a Male thread part 51b Protrusion part 51c Pinion part 51d Side surface 52 Sensor 53 Preload holding means 53a Actuator (holding member)
53c Actuator (Rack member)
53g Concave groove portion 53h Rack portion 53k Conversion portion 61 Press member 61a Female thread portion 61b Protruding portion 61d Side surface 70 Rolling bearing device

Claims (3)

第1の線膨張係数を有し、内周の一部に雌ネジ部が設けられているハウジングと、
前記第1の線膨張係数よりも小さい第2の線膨張係数を有する回転軸と、
内輪と外輪とこれら内外輪の間に介在している転動体とを有し、前記外輪が軸方向に移動可能として前記ハウジングの内周面に取り付けられ、前記内輪が前記回転軸の外周面に取り付けられ、前記回転軸を前記ハウジング内で回転自在に支持している転がり軸受と、を備えている転がり軸受装置であって、
前記雌ネジ部に螺合する雄ネジ部を外周面に有し、回転することで前記雄ネジ部によって軸方向に移動して前記外輪を軸方向に押圧し前記転がり軸受に軸方向の予圧を付与する押圧部材と、
前記ハウジングと前記回転軸との熱膨張差を検出するためのセンサと、
このセンサの検出結果に基づいて前記押圧部材を回転させ、前記外輪を軸方向に押圧して前記転がり軸受の軸方向の予圧を保持する予圧保持手段と、を備えていることを特徴とする転がり軸受装置。
A housing having a first linear expansion coefficient and having a female screw portion provided on a part of the inner periphery;
A rotating shaft having a second linear expansion coefficient smaller than the first linear expansion coefficient;
An inner ring, an outer ring, and rolling elements interposed between the inner and outer rings; the outer ring is attached to the inner peripheral surface of the housing so as to be movable in the axial direction; and the inner ring is attached to the outer peripheral surface of the rotating shaft. A rolling bearing device mounted and a rolling bearing that rotatably supports the rotating shaft within the housing,
A male threaded portion that engages with the female threaded portion is provided on the outer peripheral surface, and when rotated, the male threaded portion moves in the axial direction to press the outer ring in the axial direction, thereby preloading the rolling bearing in the axial direction. A pressing member to be applied;
A sensor for detecting a thermal expansion difference between the housing and the rotating shaft;
Rolling means comprising: preload holding means for rotating the pressing member based on the detection result of the sensor and pressing the outer ring in the axial direction to hold the axial preload of the rolling bearing. Bearing device.
第1の線膨張係数を有する外側部材と、
前記第1の線膨張係数よりも小さい第2の線膨張係数を有し、外周の一部に雄ネジ部が設けられている固定軸と、
内輪と外輪とこれら内外輪の間に介在している転動体とを有し、前記外輪が前記外側部材の内周面に取り付けられ、前記内輪が軸方向に移動可能として前記固定軸の外周面に取り付けられ、前記固定軸に対して前記外側部材を回転可能として支持している転がり軸受と、を備えている転がり軸受装置であって、
前記雄ネジ部に螺合する雌ネジ部を内周面に有し、回転することで前記雌ネジ部によって軸方向に移動して前記内輪を軸方向に押圧し前記転がり軸受に軸方向の予圧を付与する押圧部材と、
前記外側部材と前記固定軸との熱膨張差を検出するためのセンサと、
このセンサの検出結果に基づいて前記押圧部材を回転させ、前記内輪を軸方向に押圧して前記転がり軸受の軸方向の予圧を保持する予圧保持手段と、を備えていることを特徴とする転がり軸受装置。
An outer member having a first coefficient of linear expansion;
A fixed shaft having a second linear expansion coefficient smaller than the first linear expansion coefficient and provided with a male screw part on a part of the outer periphery;
An inner ring, an outer ring, and rolling elements interposed between the inner and outer rings, the outer ring is attached to an inner peripheral surface of the outer member, and the outer ring is movable in the axial direction so that the outer ring is movable in the axial direction. A rolling bearing device mounted on the fixed shaft and supporting the outer member as being rotatable with respect to the fixed shaft,
A female threaded portion that engages with the male threaded portion is provided on the inner peripheral surface, and when rotated, the female threaded portion moves in the axial direction to press the inner ring in the axial direction, thereby preloading the rolling bearing in the axial direction. A pressing member for providing
A sensor for detecting a thermal expansion difference between the outer member and the fixed shaft;
Rolling means comprising: preload holding means for rotating the pressing member based on a detection result of the sensor and pressing the inner ring in the axial direction to hold the preload in the axial direction of the rolling bearing. Bearing device.
前記予圧保持手段が、前記軸方向に直交する面に沿った直線方向に動作するアクチュエータと、
このアクチュエータの直線方向の動作を前記押圧部材の回転方向の動作に変換する変換部と、を備えている請求項1又は2に記載の転がり軸受装置。
An actuator that operates in a linear direction along a plane perpendicular to the axial direction, the preload holding means;
The rolling bearing device according to claim 1, further comprising: a conversion unit that converts the linear motion of the actuator into the rotational motion of the pressing member.
JP2007082819A 2007-03-27 2007-03-27 Rolling bearing device Pending JP2008240915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082819A JP2008240915A (en) 2007-03-27 2007-03-27 Rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082819A JP2008240915A (en) 2007-03-27 2007-03-27 Rolling bearing device

Publications (1)

Publication Number Publication Date
JP2008240915A true JP2008240915A (en) 2008-10-09

Family

ID=39912512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082819A Pending JP2008240915A (en) 2007-03-27 2007-03-27 Rolling bearing device

Country Status (1)

Country Link
JP (1) JP2008240915A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195983A (en) * 2008-01-23 2009-09-03 Nippon Steel Corp Rolling mill equipped with rolling bearing, and method for controlling thickness of sheet
WO2012001517A1 (en) 2010-06-29 2012-01-05 Toyota Jidosha Kabushiki Kaisha Conical roller bearing device
EP3423724A4 (en) * 2016-03-01 2019-10-16 The Timken Company Apparatus and method for preloading bearing assemblies
CN110709611A (en) * 2017-05-30 2020-01-17 舍弗勒技术股份两合公司 Rolling bearing device for a transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195983A (en) * 2008-01-23 2009-09-03 Nippon Steel Corp Rolling mill equipped with rolling bearing, and method for controlling thickness of sheet
WO2012001517A1 (en) 2010-06-29 2012-01-05 Toyota Jidosha Kabushiki Kaisha Conical roller bearing device
US8882360B2 (en) 2010-06-29 2014-11-11 Toyota Jidosha Kabushiki Kaisha Conical roller bearing device
EP3423724A4 (en) * 2016-03-01 2019-10-16 The Timken Company Apparatus and method for preloading bearing assemblies
US10794421B2 (en) 2016-03-01 2020-10-06 The Timken Company Apparatus and method for preloading bearing assemblies
CN110709611A (en) * 2017-05-30 2020-01-17 舍弗勒技术股份两合公司 Rolling bearing device for a transmission

Similar Documents

Publication Publication Date Title
JP5914031B2 (en) Electric linear actuator
JP5592955B2 (en) Bearing device for driving system of automobile
JP6974364B2 (en) Disc brake actuators for vehicles
JP2008240915A (en) Rolling bearing device
JP5937334B2 (en) Electric linear actuator
US10344815B2 (en) Electric brake device
JP5855547B2 (en) Electric linear actuator
JP2005255121A (en) Electric power steering device
JP2008116037A (en) Electrically-operated actuator
JP5378919B2 (en) Rotary tablet machine
JP2006177268A (en) Rotatably supporting device for wind power generator
CN112334674B (en) Electrically driven clutch actuator
JP6312728B2 (en) Electric linear actuator
JP2007032703A (en) Electric linear actuator
JP2008196570A (en) Rolling bearing device
JP2007154967A (en) Rolling bearing device with preload adjusting mechanism
JP5939086B2 (en) Rolling bearing device
JP2008215589A (en) Rolling bearing device
JP2008185191A (en) Rolling bearing device
JP2008215590A (en) Rolling bearing device
JP4748076B2 (en) Rolling bearing device
JP2008249019A (en) Rolling bearing device
JP6121760B2 (en) Electric linear actuator
JP2005265094A (en) Double row obliquely contacting ball bearing and pinion shaft support bearing device
JP5360559B2 (en) Electric linear actuator and electric brake device