JP2008240104A - High-strength non-oriented electromagnetic steel sheet and method for producing the same - Google Patents

High-strength non-oriented electromagnetic steel sheet and method for producing the same Download PDF

Info

Publication number
JP2008240104A
JP2008240104A JP2007084724A JP2007084724A JP2008240104A JP 2008240104 A JP2008240104 A JP 2008240104A JP 2007084724 A JP2007084724 A JP 2007084724A JP 2007084724 A JP2007084724 A JP 2007084724A JP 2008240104 A JP2008240104 A JP 2008240104A
Authority
JP
Japan
Prior art keywords
mass
less
steel
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007084724A
Other languages
Japanese (ja)
Other versions
JP5119710B2 (en
Inventor
Masaaki Kono
雅昭 河野
Yoshihiko Oda
善彦 尾田
Tomoyuki Okubo
智幸 大久保
Takeshi Omura
大村  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007084724A priority Critical patent/JP5119710B2/en
Publication of JP2008240104A publication Critical patent/JP2008240104A/en
Application granted granted Critical
Publication of JP5119710B2 publication Critical patent/JP5119710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-Cr high-Si non-oriented electromagnetic steel sheet which has a high-strength and low high-frequency iron loss and is desirable for use in high-speed rotating machines, and to provide a method for producing the same. <P>SOLUTION: The high-strength non-oriented electromagnetic steel sheet contains more than 0.0050 to 0.020 mass% C, not more than 0.01 mass% N, not more than 0.030 mass% (C+N), more than 4.0 to 10.0 mass% Si, 2.0 to 10.0 mass% Cr, and not more than 0.04 mass% P, further contains Ti in an amount satisfying the relationships, -0.02≤Ti-4(C+N)≤0.04, with the balance including Fe and unavoidable impurities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高強度無方向性電磁鋼板とその製造方法に関し、特に高速回転機のロータやステータコアに用いて好適な、高周波鉄損が低い高強度無方向性電磁鋼板とその製造方法に関するものである。   The present invention relates to a high-strength non-oriented electrical steel sheet and a manufacturing method thereof, and more particularly to a high-strength non-oriented electrical steel sheet having a low high-frequency iron loss and a manufacturing method suitable for use in a rotor and a stator core of a high-speed rotating machine. is there.

近年、モータの駆動制御システムが発達し、駆動電源の周波数制御が可能となったことから、可変速運転や商用周波数域以上で使用される高速回転モータが増加している。回転体に作用する遠心力は、回転半径に比例し、回転速度の2乗に比例して大きくなる。そのため、斯かる高速回転モータ、特に、中・大型の高速回転するモータのロータ材に用いられる電磁鋼板は、高強度であることが必要となる。   In recent years, motor drive control systems have been developed, and frequency control of drive power supply has become possible, and therefore, high-speed motors used in variable speed operation and commercial frequency ranges have increased. The centrifugal force acting on the rotating body is proportional to the radius of rotation and increases in proportion to the square of the rotational speed. Therefore, the electrical steel sheet used for the rotor material of such a high-speed rotating motor, in particular, a medium or large-sized motor that rotates at high speed, needs to have high strength.

また、近年、ハイブリッド自動車の駆動モータやコンプレッサモータなどへの採用が増加している埋め込み磁石型DCインバータ制御モータでは、ロータ部にスリットを設けて磁石を埋設している。そのため、モータ回転時には、狭いブリッジ部(ロータ外周とスリットの間部)に応力が集中するため、ロータに使用されるコア材は高強度であることが要求される。   Further, in recent years, in an embedded magnet type DC inverter control motor, which is increasingly used in a drive motor, a compressor motor, and the like of a hybrid vehicle, a magnet is embedded by providing a slit in a rotor portion. For this reason, when the motor rotates, stress concentrates on a narrow bridge portion (between the outer periphery of the rotor and the slit), so that the core material used for the rotor is required to have high strength.

さらに、モータや発電機などの回転機器は、電磁気現象を利用するものであるため、その鉄心(コア)の素材には、当然のことながら磁気特性に優れることも求められる。特に、高速回転するモータでは、高周波磁束により渦電流が発生し、モータ効率低下の原因となるため、高周波域での鉄損が低いことが重要となる。   Furthermore, since rotating devices such as motors and generators use electromagnetic phenomena, the material of the core (core) is naturally required to have excellent magnetic properties. In particular, in a motor that rotates at high speed, an eddy current is generated by high-frequency magnetic flux and causes a reduction in motor efficiency. Therefore, it is important that the iron loss in a high-frequency region is low.

モータのロータコアには、通常、打ち抜きプレスした無方向性電磁鋼板を積層したものが用いられるが、その鋼板強度が、高速回転するモータに求められる機械強度を満たさない場合には、より高強度な鋳鋼製ロータなどを使用せざるを得ない。しかし、鋳物製ロータは一体物であるため、発生する渦電流損が、電磁鋼板を積層したロータよりも大幅に上昇するという問題がある。従って、高速回転するロータ用素材として、磁気特性に優れかつ高強度な電磁鋼板の開発が望まれている。   For the rotor core of a motor, a laminate of non-oriented electrical steel sheets that have been punched and pressed is usually used.If the steel sheet strength does not meet the mechanical strength required for a motor that rotates at high speed, a higher strength is required. A cast steel rotor must be used. However, since the cast rotor is a single piece, the eddy current loss generated is significantly higher than that of a rotor in which electromagnetic steel sheets are laminated. Accordingly, it is desired to develop a magnetic steel sheet having excellent magnetic properties and high strength as a rotor material that rotates at high speed.

上記要求に応えるため、今日までに高強度無方向性電磁鋼板がいくつか検討され、提案されている。例えば、特許文献1には、Si含有量を3.5〜7.0mass%に高め、さらに固溶強化元素としてTi,W,Mo,Mn,Ni,Co,Alなどを添加して高強度化を図る方法が提案されている。また、特許文献2には、上記強化法に加えて、仕上げ焼鈍条件を工夫することにより、平均結晶粒径を0.01〜5.0mmとして磁気特性を改善する方法が提案されている。   In order to meet the above requirements, several high-strength non-oriented electrical steel sheets have been studied and proposed to date. For example, in Patent Document 1, the Si content is increased to 3.5 to 7.0 mass%, and further strengthened by adding Ti, W, Mo, Mn, Ni, Co, Al, etc. as solid solution strengthening elements. A method for achieving this has been proposed. Patent Document 2 proposes a method of improving the magnetic characteristics by setting the average crystal grain size to 0.01 to 5.0 mm by devising the finish annealing condition in addition to the above-described strengthening method.

しかしながら、これらの方法は、これを電磁鋼板の実生産に適用した場合には、熱間圧延後の製造ラインで、板破断などのトラブルが発生し易く、歩留まりの低下やラインの生産性の低下を招くなどの問題があった。この問題に対しては、例えば、冷間圧延の場合には、板温を数百℃に昇温制御して温間圧延することにより板破断を軽減することはできるが、温間圧延のための設備が必要となること、製造上の制約が大きいことなどの問題も多い。   However, when these methods are applied to the actual production of electromagnetic steel sheets, troubles such as sheet breakage are likely to occur in the production line after hot rolling, resulting in lower yields and lower line productivity. There was a problem such as inviting. For this problem, for example, in the case of cold rolling, the plate breakage can be reduced by warm-rolling by controlling the temperature of the plate to several hundred degrees Celsius. There are also many problems such as the need for such equipment and the large restrictions on manufacturing.

また、特許文献3には、Siを2.0mass%以上4.0mass%未満含有する鋼に、Mn,Niを添加して固溶強化する方法が、特許文献4には、Siを2.0mass%以上4.0mass%未満含有する鋼に、Mn,Niを添加して固溶強化し、さらにNb,Zr,Ti,V等の炭窒化物形成元素を添加して、高強度と磁気特性の両立を図る技術が提案されている。しかし、特許文献3の方法では、十分な強度が得られず、また、特許文献4の方法では、高い強度を得られるものの、磁気特性の低下が大きいという問題がある。   Patent Document 3 discloses a method of solid solution strengthening by adding Mn and Ni to a steel containing 2.0 mass% or more and less than 4.0 mass% of Si, and Patent Document 4 discloses 2.0 mass of Si. % To less than 4.0 mass%, Mn and Ni are added to strengthen the solution, and carbonitride-forming elements such as Nb, Zr, Ti, and V are added to achieve high strength and magnetic properties. Techniques for achieving both have been proposed. However, the method of Patent Document 3 cannot obtain a sufficient strength, and the method of Patent Document 4 has a problem that although the strength is high, the magnetic property is greatly deteriorated.

一方、発明者らは、高Si鋼の加工性を改善するための検討を別途行ってきた。その結果、特許文献5に開示したように、無方向性電磁鋼板の基本組成であるFe−Si合金やFe−Si−Al合金の加工性(加工性は、ほぼ、靭性によって評価することができる)の向上を図るためには、鋼自体を十分に高純度化し、鋼中のC,Nを合計量で100massppm以下に低減した上で、さらに、一定量以上のCrを添加することが有効であることを見出した。また、磁気特性に関しても、CrとSiまたはAlを同時に含有させることにより、電気抵抗の増大に相乗的な効果が現れること、その結果、渦電流損が低減し、特に高周波域での鉄損を、Crを含有しないFe−Si合金やFe−Al合金、Fe−Si−Al合金に比べて格段に低減できることを見出している。
特開昭60−238421号公報 特開昭62−112723号公報 特開平02−022442号公報 特開平02−008346号公報 特許第3758425号公報
On the other hand, the inventors have made separate studies for improving the workability of high-Si steel. As a result, as disclosed in Patent Document 5, the workability (workability of the Fe—Si alloy or Fe—Si—Al alloy, which is the basic composition of the non-oriented electrical steel sheet, can be evaluated almost by toughness. It is effective to sufficiently purify the steel itself, reduce the total amount of C and N in the steel to 100 massppm or less, and then add a certain amount or more of Cr. I found out. In addition, with regard to magnetic properties, the simultaneous inclusion of Cr and Si or Al produces a synergistic effect in increasing electrical resistance. As a result, eddy current loss is reduced, and iron loss particularly in the high frequency region is reduced. It has been found that it can be remarkably reduced as compared with Fe-Si alloys, Fe-Al alloys, and Fe-Si-Al alloys not containing Cr.
JP 60-238421 A JP-A-62-112723 Japanese Patent Laid-Open No. 02-022442 Japanese Patent Laid-Open No. 02-008346 Japanese Patent No. 3758425

上記特許文献5の技術によれば、鋼中のSi濃度を高めることで、高強度でかつ磁気特性にも優れた電磁鋼板を安定して製造することが可能となる。しかし、この技術は、鋼の高純度化を必須の要件としており、特に鋼中のCとNは、合計量で0.01mass%以下とする必要がある。   According to the technique disclosed in Patent Document 5, an electromagnetic steel sheet having high strength and excellent magnetic properties can be stably manufactured by increasing the Si concentration in the steel. However, this technique requires the high purity of the steel as an essential requirement, and in particular, C and N in the steel need to be 0.01 mass% or less in total amount.

しかしながら、Cr添加鋼を溶製する場合、添加するCr源(フェロクロムや金属Cr)には、不純物としてCが多量に含まれているため、通常のFe−Si系の電磁鋼板よりもC混入量が多くなる。しかも、Crは強力な酸化物形成元素であるため、現在の一貫製鉄所で高純度鋼の大量生産に使われているRH(Ruhrstahl−Hausen)真空脱ガス装置やLF(Ladle Furnace)などの2次精錬設備では、Cr添加後に、Crの酸化損失を防止しながら極低炭素域まで脱炭するのは難しいという問題がある。例えば、2次精錬装置としてRHを用いた場合、2〜5mass%のCr添加鋼で得られる純度は、Cが0.005〜0.01mass%、Nが0.002〜0.005mass%程度であり、CとNの合計量で0.01mass%以下を安定的に達成するのは難しい。   However, when melting Cr-added steel, the added Cr source (ferrochrome or metallic Cr) contains a large amount of C as an impurity, so the amount of mixed C is higher than that of a normal Fe-Si based electromagnetic steel sheet. Will increase. Moreover, since Cr is a strong oxide-forming element, 2 such as RH (Ruhrstahl-Hausen) vacuum degassing equipment and LF (Laddle Furnace), which are used for mass production of high-purity steel at the present integrated steelworks. In the next refining equipment, there is a problem that it is difficult to decarburize to an extremely low carbon region while preventing oxidation loss of Cr after addition of Cr. For example, when RH is used as a secondary refining device, the purity obtained with 2-5 mass% Cr-added steel is about 0.005-0.01 mass% for C and about 0.002-0.005 mass% for N. In addition, it is difficult to stably achieve 0.01 mass% or less in the total amount of C and N.

なお、Cr存在下で炭素の優先脱炭を進行させるには、精錬雰囲気中の一酸化炭素分圧を下げることが有効であり、そのためには、ステンレス鋼の製造に用いられているVOD炉(Vacuum Oxygen Decarburization)やAOD炉(ArgoNo.xygen Decarburization)のような特殊な脱ガス精錬設備を用いて長時間の精錬を必要とするため、製造設備が限定されまた生産性が劣るため、製造コストが上昇するといった問題がある。   In order to advance the preferential decarburization of carbon in the presence of Cr, it is effective to lower the partial pressure of carbon monoxide in the refining atmosphere. For that purpose, the VOD furnace (used for the production of stainless steel ( Since long-time refining is required using special degassing refining equipment such as Vacuum Oxygen Decarburization) and AOD furnace (ArgoNo. There is a problem of rising.

上記のように、高強度の無方向性電磁鋼板に関する提案は幾つかなされてはいるものの、現状では、高速回転機器に必要とされる高強度と磁気特性を確保した電磁鋼板を、通常の鋼板製造設備を用いて工業的に安定して製造することは達成できていないのが実情である。   As mentioned above, although several proposals regarding high-strength non-oriented electrical steel sheets have been made, at present, electromagnetic steel sheets that ensure the high strength and magnetic properties required for high-speed rotating equipment are used as ordinary steel sheets. Actually, it has not been possible to achieve industrially stable production using production equipment.

そこで、本発明の目的は、高速回転機器のロータ材等に用いて好適な、高強度で高周波鉄損の低いCr添加高Si無方向性電磁鋼板を提供すること、およびその鋼板を、ステンレス鋼で用いられているような特殊な2次精錬設備での長時間処理を必要とすることなく、RHやLFといった通常の2次精錬設備を用いて、工業的に安定して高い生産性のもとで製造する方法を提案することにある。   Accordingly, an object of the present invention is to provide a Cr-added high-Si non-oriented electrical steel sheet that is suitable for use as a rotor material of a high-speed rotating device and has a high strength and a low high-frequency iron loss. Without the need for long-time processing in special secondary refining equipment used in the industry, using ordinary secondary refining equipment such as RH and LF, industrially stable and high productivity And to propose a method of manufacturing.

発明者らは、上記課題の解決に向けて、Crを添加した高Si鋼の製造方法に関して種々の実験を行い、検討を重ねた。その結果、Cr添加とともに一定量のTiを添加すれば、通常のRH脱ガス設備で低減できるレベルのCやNの純度でも、その後の鋼板製造を安定的に行える加工性(靭性)を付与できること、高強度化と優れた磁気特性を両立させるためには、固溶強化が有効であり、中でもSiの添加による固溶強化が有効であることを見出した。そして、上記技術を用いることにより、従来技術では安定製造が難しかった4mass%を超える高Si鋼を、通常の無方向性電磁鋼板の製造設備を用いて安定的に製造することが可能であることを知見し、本発明を開発するに至った。   In order to solve the above-mentioned problems, the inventors conducted various experiments and repeated studies on a method for producing Cr-added high-Si steel. As a result, if a certain amount of Ti is added together with Cr addition, the workability (toughness) can be imparted so that the subsequent steel plate production can be stably performed even with the purity of C and N that can be reduced by ordinary RH degassing equipment. In order to achieve both high strength and excellent magnetic properties, it has been found that solid solution strengthening is effective, and in particular, solid solution strengthening by adding Si is effective. And by using the said technique, it is possible to manufacture stably the high Si steel exceeding 4 mass% which was difficult to manufacture stably by the conventional technique using the manufacturing equipment of a normal non-oriented electrical steel sheet. As a result, the present invention has been developed.

すなわち、本発明は、C:0.0050mass%超0.020mass%以下、N:0.01mass%以下、(C+N):0.030mass%以下、Si:4.0mass%超10.0mass%以下、Cr:2.0〜10.0mass%、P:0.04mass%以下を含有し、さらに、Tiを下記(1)式;
−0.02≦Ti−4(C+N)≦0.04 ・・・(1)
を満たして含有し、残部がFeおよび不可避的不純物である高強度無方向性電磁鋼板である。
That is, the present invention is C: more than 0.0050 mass% 0.020 mass% or less, N: 0.01 mass% or less, (C + N): 0.030 mass% or less, Si: more than 4.0 mass%, 10.0 mass% or less, Cr: 2.0-10.0 mass%, P: 0.04 mass% or less is contained, and further Ti is represented by the following formula (1);
−0.02 ≦ Ti-4 (C + N) ≦ 0.04 (1)
Is a high-strength non-oriented electrical steel sheet that contains and balances Fe and unavoidable impurities.

本発明の電磁鋼板は、上記成分組成に加えてさらに、下記A群〜C群のうちの少なくとも1群の成分を含有することを特徴とする請求項1に記載の高強度無方向性電磁鋼板。

A群:SbおよびSnのいずれか1種または2種を合計で0.1mass%以下、
B群:Al,Mn,Cu,Mo,Ni,Coのいずれか1種または2種以上を合計で5.0mass%以下、
C群:Ca,希土類元素(REM)およびBのいずれか1種または2種以上を合計で0.01mass%以下
The high strength non-oriented electrical steel sheet according to claim 1, wherein the electrical steel sheet of the present invention further contains at least one component of the following groups A to C in addition to the above component composition. .
Group A: Any one or two of Sb and Sn in total 0.1 mass% or less,
Group B: Any one or more of Al, Mn, Cu, Mo, Ni and Co in a total of 5.0 mass% or less,
Group C: 0.01 mass% or less of one or more of Ca, rare earth elements (REM) and B in total

また、本発明は、C:0.0050mass%超0.020mass%以下、N:0.01mass%以下、(C+N):0.030mass%以下、Si:4.0mass%超10.0mass%以下、Cr:2.0〜10.0mass%、P:0.04mass%以下を含有し、さらに、Tiを下記(1)式;
−0.02≦Ti−4(C+N)≦0.04 ・・・(1)
を満たして含有し、残部がFeおよび不可避的不純物からなるスラブを熱間圧延し、熱延板焼鈍を施した後あるいは施すことなく酸洗し、1回の冷間圧延または中間焼鈍を挟んで2回以上の冷間圧延し、下記(2)式;
min(℃)=3000×(C+N)+750 ・・・(2)
で表されるTmin℃以上、1050℃以下の温度で仕上焼鈍することを特徴とする高強度無方向性電磁鋼板の製造方法を提案する。
Further, the present invention is C: more than 0.0050 mass%, 0.020 mass% or less, N: 0.01 mass% or less, (C + N): 0.030 mass% or less, Si: more than 4.0 mass%, 10.0 mass% or less, Cr: 2.0-10.0 mass%, P: 0.04 mass% or less is contained, and further Ti is represented by the following formula (1);
−0.02 ≦ Ti-4 (C + N) ≦ 0.04 (1)
The slab containing Fe and the inevitable impurities is hot-rolled, pickled after or without hot-rolled sheet annealing, and sandwiched by one cold rolling or intermediate annealing. Cold-rolled twice or more, the following formula (2);
T min (° C.) = 3000 × (C + N) +750 (2)
In represented by T min ° C. or higher, we propose a method of producing a high strength non-oriented electrical steel sheet characterized by annealing finishing at 1050 ° C. or lower.

本発明の製造方法は、上記成分組成に加えてさらに、下記A群〜C群のうちの少なくとも1群の成分を含有することを特徴とする。

A群:SbおよびSnのいずれか1種または2種を合計で0.1mass%以下、
B群:Al,Mn,Cu,Mo,Ni,Coのいずれか1種または2種以上を合計で5.0mass%以下、
C群:Ca,希土類元素(REM)およびBのいずれか1種または2種以上を合計で0.01mass%以下
In addition to the above component composition, the production method of the present invention further includes at least one component of the following groups A to C.
Group A: Any one or two of Sb and Sn in total 0.1 mass% or less,
Group B: Any one or more of Al, Mn, Cu, Mo, Ni and Co in a total of 5.0 mass% or less,
Group C: 0.01 mass% or less of one or more of Ca, rare earth elements (REM) and B in total

本発明によれば、ロータの高速回転に耐え得る高強度を有しかつ磁気特性にも優れた無方向性電磁鋼板を、通常の電磁鋼板製造設備、例えば、RHやLFといった一貫製鉄所で高純度鋼の大量生産に使用される一般的な2次精錬設備を用いて、しかも、温間圧延のような特殊な圧延設備を用いることなく、工業的に安定して高い生産性で製造することができる。   According to the present invention, a non-oriented electrical steel sheet having high strength that can withstand high-speed rotation of a rotor and excellent magnetic properties can be obtained at a normal electrical steel sheet manufacturing facility, for example, an integrated steelworks such as RH and LF. Producing industrially stable and highly productive using general secondary refining equipment used for mass production of pure steel, and without using special rolling equipment such as warm rolling. Can do.

まず、本発明を開発する契機となった実験について説明する。
Si,Crをそれぞれ5mass%ずつ含有し、残部は実質的にFeからなり、C,Nの合計含有量を0.003〜0.04mass%の範囲で変化させた種々の鋼を実験室的に溶製し、鋼塊とし、次いで、これらの鋼塊を熱間圧延して板厚2.0mmの熱延板とし、1000℃で熱延板焼鈍した。次いで、この熱延板の圧延方向から厚さ2mm×幅30mm×長さ100mmの試験片を切り出し、室温(25℃)にて、曲げ半径15mm、曲げ角度90度の繰り返し曲げ試験を行い、亀裂が発生するまでの曲げ回数を求めることにより熱延板の靭性を評価した。なお、この繰り返し曲げ回数が10回に満たない材料の場合、製造ラインでの破断頻度が高いことがわかっている。
First, an experiment that triggered the development of the present invention will be described.
Various steels each containing 5 mass% of Si and Cr, the balance being substantially made of Fe, and the total content of C and N being varied in the range of 0.003 to 0.04 mass% are experimentally used. These steel ingots were hot-rolled into hot rolled sheets having a plate thickness of 2.0 mm and annealed at 1000 ° C. Next, a test piece having a thickness of 2 mm, a width of 30 mm, and a length of 100 mm was cut out from the rolling direction of the hot-rolled sheet, and a repeated bending test was performed at room temperature (25 ° C.) with a bending radius of 15 mm and a bending angle of 90 degrees. The toughness of the hot-rolled sheet was evaluated by obtaining the number of bendings until the occurrence of the crack. In addition, in the case of a material in which the number of times of repeated bending is less than 10, it is known that the frequency of fracture on the production line is high.

図1は、上記測定の結果を、CとNの合計量と破断までの繰り返し曲げ回数との関係として示したものである。図1から、熱延板の靭性は、(C+N)量と明らかな相関が見られ、(C+N)量の増加によって靭性は急激に低下するが、(C+N)≦0.01mass%であれば、曲げ回数20回以上が得られ、十分な靭性を有することがわかる。   FIG. 1 shows the result of the above measurement as a relationship between the total amount of C and N and the number of repeated bendings until breakage. From FIG. 1, the toughness of the hot-rolled sheet has a clear correlation with the (C + N) amount, and the toughness rapidly decreases with an increase in the (C + N) amount, but if (C + N) ≦ 0.01 mass%, It can be seen that the number of times of bending is 20 times or more, and that it has sufficient toughness.

そこで、この靭性の改善の原因は、C,Nの存在状態が影響しているものと考え、良好な靭性を示した(C+N)量が0.0056mass%の試料と、靭性が劣っていた(C+N)量が0.0138mass%の試料について、電子顕微鏡を用いて組織観察を行った。その結果、靭性が劣っていた試料では、良好な靭性を示した試料と比較して、粒界上にCr炭窒化物の析出が多く存在していることが確認された。この結果から、Crは、高Si鋼の加工性を改善する元素ではあるものの、鋼中C,Nの低減が不充分であると、結晶粒界にCr系炭窒化物を形成して析出し、これが曲げ変形の際の破壊起点となるものと推定された。   Therefore, the cause of this improvement in toughness is considered to be due to the presence of C and N, and the toughness was inferior to the sample having a good (C + N) amount of 0.0056 mass% ( With respect to the sample having an amount of C + N) of 0.0138 mass%, the structure was observed using an electron microscope. As a result, it was confirmed that in the sample having poor toughness, more Cr carbonitride precipitates exist on the grain boundaries than in the sample having good toughness. From this result, although Cr is an element that improves the workability of high-Si steel, if the reduction of C and N in the steel is insufficient, it forms Cr-based carbonitrides at the grain boundaries and precipitates. It was estimated that this would be the starting point for fracture during bending deformation.

そこで、Cr以外の元素でC,Nを固定することによって、Cr系炭窒化物の粒界析出を抑制することを検討した。(C+N)の量を、RH真空脱ガス装置による2次精錬で大量かつ高効率な生産が可能なレベルである0.01〜0.02mass%の範囲とし、これにTiの添加量を変化させた鋼を実験室的に溶製し、上記実験と同様にして熱延板を作製し、繰り返し曲げ試験を行い、靭性を評価した。   Therefore, it was studied to suppress grain boundary precipitation of Cr-based carbonitrides by fixing C and N with elements other than Cr. The amount of (C + N) is in the range of 0.01 to 0.02 mass%, which is a level that enables large-scale and highly efficient production by secondary refining with an RH vacuum degassing device, and the amount of Ti added is changed. The steel was melted in the laboratory, hot-rolled sheets were produced in the same manner as the above experiment, repeated bending tests were performed, and toughness was evaluated.

図2は、上記曲げ試験の結果を、TiとC,N量との関係において示したものであり、この図から、Ti−4(C+N)が−0.02〜0.04mass%となる範囲で、靭性が大きく改善されることがわかる。また、電子顕微鏡による組織観察によって、靭性が改善した範囲では、主としてTi系の炭窒化物が結晶粒内に析出しており、Cr系の粒界析出物は大幅に減少していることが確認された。なお、Tiを上記範囲より過剰に添加した試料では、粒界上のCr析出物が少ないにもかかわらず、靭性の改善が見られなかった。この理由は、明らかとはなっていないが、固溶した過剰Tiが靭性を低下させたものと考えている。
以上の結果より、通常用いられるRHで製造可能な高純度レベルでも、Cr添加高Si鋼の製造性を大幅に改善できることがわかった。
FIG. 2 shows the results of the bending test in relation to Ti and the amount of C and N. From this figure, the range where Ti-4 (C + N) is −0.02 to 0.04 mass%. It can be seen that the toughness is greatly improved. In addition, by observation of the structure with an electron microscope, it was confirmed that, in the range where toughness was improved, mainly Ti-based carbonitrides were precipitated in the crystal grains, and Cr-based grain boundary precipitates were greatly reduced. It was done. In addition, in the sample in which Ti was added excessively from the above range, improvement in toughness was not observed despite the small amount of Cr precipitates on the grain boundaries. The reason for this is not clear, but it is considered that the excessive Ti dissolved in the solid solution lowered the toughness.
From the above results, it was found that the productivity of Cr-added high-Si steel can be greatly improved even at a high purity level that can be produced by commonly used RH.

次に、本発明の電磁鋼板の成分組成を上記範囲に限定する理由について説明する。
C:0.0050mass%超0.020mass%以下、N:0.01mass%以下
CおよびNは、Cr添加高Si鋼の靱性を劣化させる成分であるため、できる限り低減するのが好ましいが、従来技術では、高純度化するには精錬設備や操業性の面からの制約があった。しかし、上述したように、本発明では、Tiを適量添加することによって、RHやLFといった一貫製鉄所で高純度鋼の大量生産に通常使用している2次精錬設備を用いて溶製可能なレベルのC,N含有量でも許容することができる。
Next, the reason why the component composition of the electrical steel sheet of the present invention is limited to the above range will be described.
C: more than 0.0050 mass% and 0.020 mass% or less, N: 0.01 mass% or less Since C and N are components that deteriorate the toughness of Cr-added high Si steel, it is preferable to reduce as much as possible. In terms of technology, there were restrictions in terms of refining facilities and operability for high purity. However, as described above, in the present invention, by adding an appropriate amount of Ti, it can be melted by using a secondary refining facility that is usually used for mass production of high-purity steel at integrated steelworks such as RH and LF. Even levels of C and N content are acceptable.

本発明は、通常の製鋼設備を用いてCr添加高Si鋼の靱性を安定生産すること目的としているが、2次精錬装置としてRHを用いた場合、通常の操業条件での脱炭能力には限界があり、2〜5mass%Cr添加鋼の脱炭下限は0.005mass%程度である。そこで、本発明では、Cの許容範囲を、RHでも十分達成可能な0.005mass%超0.020mass%以下とする。また、N含有量は、同様に、RHでも十分達成可能な0.01mass%以下とする。   The purpose of the present invention is to stably produce the toughness of Cr-added high-Si steel using ordinary steelmaking equipment, but when RH is used as a secondary refining device, the decarburization capacity under normal operating conditions is There is a limit, and the lower decarburization lower limit of 2-5 mass% Cr added steel is about 0.005 mass%. Therefore, in the present invention, the allowable range of C is set to more than 0.005 mass% and 0.020 mass% or less that can be sufficiently achieved even by RH. Similarly, the N content is set to 0.01 mass% or less that can be sufficiently achieved by RH.

(C+N):0.030mass%以下
熱延板の曲げ性(靭性)に代表される製造性は、CとNの合計量にも依存し、また、(C+N)量が増すほど添加するTi量も増加するので好ましくない。よって、(C+N)量は、0.030mass%以下、好ましくは0.02mass%以下、より好ましくは0.015mass%以下とする。なお、通常の製鋼設備による高純度化能力は、添加するCr源の純度にも依存するところが大きいが、C:0.008mass%程度、N:0.005mass%程度、従って、(C+N):0.013mass%程度までであれば、通常電磁鋼板の製造に用いられるRHタイプの脱ガス精錬設備でも、問題なく製造することが可能である。
(C + N): 0.030 mass% or less Manufacturability typified by bendability (toughness) of a hot-rolled sheet depends on the total amount of C and N, and the amount of Ti added as the amount of (C + N) increases. Is also undesirable. Therefore, the amount of (C + N) is 0.030 mass% or less, preferably 0.02 mass% or less, more preferably 0.015 mass% or less. In addition, although the high-purification capability by a normal steelmaking facility largely depends on the purity of the Cr source to be added, C is about 0.008 mass%, N is about 0.005 mass%, and therefore (C + N): 0. If it is up to about .013 mass%, it is possible to manufacture without problems even in the RH type degassing refining equipment usually used for the manufacture of electrical steel sheets.

Si:4.0mass%超え10.0mass%以下
Siは、脱酸剤として添加される他、鋼の電気抵抗を高めて鉄損を低減する効果を有するため、無方向性電磁鋼板を構成する重要な元素である。また、Siは、高い固溶強化能を有する元素でもあり、無方向性電磁鋼板に添加される他のMn,Al,Ni等の固溶強化元素と比較して、高強度化、耐疲労特性の改善および鉄損低減の3つを最もバランスよく両立させることができる元素である。そこで、本発明では、Siを、4.0mass%を超えて積極的に添加する。一方、10mass%を超えると、Crを添加しても、圧延可能な靱性を十分に確保することができなくなる。よって、本発明では、Siの範囲を4.0mass%超え10.0mass%以下とする。なお、強度、磁気特性の改善効果と製造性とを両立させる観点からは、Si含有量は4.2〜7.0mass%の範囲が好ましく、より好ましくは4.5〜6.5mass%の範囲である。
Si: more than 4.0 mass% and less than 10.0 mass% Si is added as a deoxidizer and has the effect of reducing the iron loss by increasing the electrical resistance of steel, so it is important to constitute a non-oriented electrical steel sheet Element. In addition, Si is an element having a high solid solution strengthening ability, and has higher strength and fatigue resistance than other solid solution strengthening elements such as Mn, Al, and Ni added to non-oriented electrical steel sheets. It is an element that can achieve the balance between improvement of iron and reduction of iron loss in the most balanced manner. Therefore, in the present invention, Si is positively added exceeding 4.0 mass%. On the other hand, if it exceeds 10 mass%, sufficient toughness capable of rolling cannot be ensured even if Cr is added. Therefore, in the present invention, the range of Si is set to 4.0 mass% and 10.0 mass% or less. The Si content is preferably in the range of 4.2 to 7.0 mass%, more preferably in the range of 4.5 to 6.5 mass%, from the viewpoint of achieving both strength and magnetic property improvement effects and manufacturability. It is.

Cr:2.0〜10.0mass%
Crは、高Si鋼の加工性を向上するのに有効な元素であり、さらに、Siおよび/またはAlとの相乗効果によって、電気抵抗を大幅に向上して高周波域での鉄損を低減する他、耐食性を向上する効果を有する基本的な合金成分である。よって、Siを4mass%以上含有する本発明鋼では、Crを2.0mass%以上添加する必要である。一方、10mass%を超えると、靱性向上の効果が飽和し、コストの上昇を招くだけである。よって、Crの含有量は、2.0〜10mass%、好ましくは3.0〜7.0mass%の範囲とする。
Cr: 2.0-10.0 mass%
Cr is an element effective for improving the workability of high-Si steel, and further, by synergistic effects with Si and / or Al, the electric resistance is greatly improved and the iron loss in the high frequency region is reduced. In addition, it is a basic alloy component having an effect of improving the corrosion resistance. Therefore, in the steel of the present invention containing 4 mass% or more of Si, it is necessary to add 2.0 mass% or more of Cr. On the other hand, if it exceeds 10 mass%, the effect of improving toughness is saturated and only the cost is increased. Therefore, the Cr content is in the range of 2.0 to 10 mass%, preferably 3.0 to 7.0 mass%.

P:0.04mass%以下
Pは、鋼の電気抵抗を高める元素であるが、結晶粒界に偏析して鋼を脆化させる元素でもあるため、0.04mass%以下、好ましくは0.03mass%以下とする。
P: 0.04 mass% or less P is an element that increases the electrical resistance of steel, but is also an element that segregates at the grain boundaries and embrittles the steel, and is therefore 0.04 mass% or less, preferably 0.03 mass%. The following.

Ti−4(C+N):−0.02〜0.04mass%
Tiは、鋼中に存在する固溶C,Nを固定して、Cr炭窒化物の粒界への析出を抑制し、Cr添加高Si鋼の製造性(靭性)を改善する効果を有する。この効果を発現させるためには、C,Nとの関係において、Ti−4(C+N)を−0.02mass%以上とすることが必要である。さらに、C,Nの固定に消費されない過飽和分は、固溶強化元素としても作用し、高強度化にも寄与する。しかしながら、Tiが過剰となり過ぎると、逆に鋼の靭性を低下させるので、Ti−4(C+N)の上限は0.04mass%とする。
Ti-4 (C + N): -0.02 to 0.04 mass%
Ti fixes solute C and N present in the steel, suppresses precipitation of Cr carbonitrides at grain boundaries, and has an effect of improving the productivity (toughness) of the Cr-added high-Si steel. In order to develop this effect, Ti-4 (C + N) needs to be set to −0.02 mass% or more in relation to C and N. Furthermore, the supersaturated component that is not consumed for fixing C and N also acts as a solid solution strengthening element, contributing to an increase in strength. However, if Ti becomes excessive, the toughness of the steel is reduced, so the upper limit of Ti-4 (C + N) is set to 0.04 mass%.

本発明の電磁鋼板は、上記成分組成に加えてさらに、下記の群から選ばれる1種または2種以上の成分を添加することができる。
Sn,Sb:合計で0.1mass%以下
SbおよびSnは、いずれも集合組織を改善する作用を有し、高周波鉄損特性の向上に寄与する。しかし、Sb,Snは、鋼の結晶粒界や表層に偏析し、粒界を脆化させる作用があり、特に、Sb,Snの添加量が0.1mass%を超えると、材料が脆くなり熱延板の靭性を低下させる。したがって、SbおよびSnの添加量は、その1種または2種の合計で0.1mass%以下とするのが好ましい。なお、Sb,Snの添加量の下限は、特に限定しないが、前述したSb,Sn添加による特性改善効果を発現させるためには、0.01mass%以上添加することが好ましい。
In addition to the above component composition, the electrical steel sheet of the present invention may further contain one or more components selected from the following group.
Sn, Sb: 0.1 mass% or less in total Sb and Sn both have the effect of improving the texture and contribute to the improvement of the high-frequency iron loss characteristics. However, Sb and Sn segregate in the grain boundaries and surface layers of steel and have the effect of embrittlement of the grain boundaries. In particular, when the amount of Sb and Sn added exceeds 0.1 mass%, the material becomes brittle and heat Reduce the toughness of the rolled sheet. Therefore, the addition amount of Sb and Sn is preferably 0.1 mass% or less in total of one or two of them. In addition, although the minimum of the addition amount of Sb and Sn is not specifically limited, in order to express the characteristic improvement effect by Sb and Sn addition mentioned above, it is preferable to add 0.01 mass% or more.

Al,Mn,Cu,Mo,Ni,Co:合計で5.0mass%以下
Alは、Siと同様、Crとの相乗効果によって電気抵抗を高めて、高周波域での鉄損を低減するのに有効な成分である。Mnは、鋼の熱間加工性を改善する元素であるとともに、鋼の電気抵抗を高めて高周波域での鉄損を改善する効果を有する。Cu,Moも、鋼の電気抵抗を高めて鉄損を改善する効果を有する。Ni,Coは、電気抵抗を高めて鉄損を改善するとともに、鋼の飽和磁束密度を高める効果を有する。しかし、これらの元素は、いずれもSiと比較すると強度を高める効果が小さく、添加量が過剰になると、熱延板の靭性を低下させるため、高強度特性を重視する場合には、Si量を高める方が効果的である。また、本発明では、高強度を得るために、Si含有量を4.0mass%以上とするため、上記元素を合計で5.0mass%超え添加すると、CrやTiを含有させても十分な熱延板の靭性を確保できなくなる場合がある。そこで、Al,Mn,Cu,Mo,Ni,Coの含有量は合計で5.0mass%以下とするのが好ましい。
Al, Mn, Cu, Mo, Ni, Co: 5.0 mass% or less in total Al, like Si, is effective in increasing the electrical resistance by the synergistic effect with Cr and reducing iron loss in the high frequency range Is an essential ingredient. Mn is an element that improves the hot workability of steel and has the effect of improving the iron loss in the high frequency range by increasing the electrical resistance of the steel. Cu and Mo also have the effect of improving iron loss by increasing the electrical resistance of steel. Ni and Co have the effect of increasing the saturation magnetic flux density of steel while increasing the electrical resistance to improve the iron loss. However, all of these elements have a small effect of increasing the strength compared to Si, and if the addition amount is excessive, the toughness of the hot-rolled sheet is reduced. It is more effective to increase it. Further, in the present invention, in order to obtain high strength, the Si content is set to 4.0 mass% or more. Therefore, if the above elements are added in total exceeding 5.0 mass%, sufficient heat can be contained even if Cr or Ti is contained. The toughness of the rolled sheet may not be ensured. Accordingly, the total content of Al, Mn, Cu, Mo, Ni, and Co is preferably 5.0 mass% or less.

Ca,希土類元素(REM),B:合計で0.01mass%以下
Ca,希土類元素(REM)は、鋼中の不純物であるSを固定することで、また、Bは、結晶粒界に偏析して粒界を強化することで、鋼の加工性を改善する作用のある元素である。しかし、これらの元素は、過剰に添加すると、酸化物、窒化物として鋼中に残存し、磁気特性を劣化させる。よって、本発明では、これらの元素を合計で0.01mass%以下添加するのが好ましい。
Ca, rare earth elements (REM), B: 0.01 mass% or less in total Ca, rare earth elements (REM) are segregated at grain boundaries by fixing S, which is an impurity in steel. It is an element that has the effect of improving the workability of steel by strengthening the grain boundaries. However, if these elements are added excessively, they remain in the steel as oxides and nitrides, deteriorating the magnetic properties. Therefore, in this invention, it is preferable to add these elements in 0.01 mass% or less in total.

次に、本発明に係る高強度無方向性電磁鋼板の製造方法について説明する。
鋼の溶解は、転炉法、電炉法等、通常公知の方法で行うことができる。また、2次精錬は、従来技術では、高SiのCrSi鋼を製造する場合には、鋼中のC,Nをできる限り低減する必要があったため、ステンレス鋼や高純度鋼の精錬に用いられているVOD炉やAOD炉を用いて長時間の処理が必要であったが、本発明では、一貫製鉄所で高純度鋼の生産に通常用いているRHやLF等の2次精錬設備を用いることができる。なお、VOD炉やAOD炉を用いることは勿論可能であり、その場合には、従来よりも精錬時間を短くした効率的な生産が可能となる。
Next, the manufacturing method of the high intensity | strength non-oriented electrical steel sheet which concerns on this invention is demonstrated.
The melting of steel can be performed by a generally known method such as a converter method or an electric furnace method. Also, secondary refining is used for refining stainless steel and high-purity steel in the prior art because when producing high-Si CrSi steel, it was necessary to reduce C and N in the steel as much as possible. However, in the present invention, secondary refining equipment such as RH and LF, which are usually used for production of high-purity steel at an integrated steelworks, is used. be able to. Of course, it is possible to use a VOD furnace or an AOD furnace. In this case, efficient production with a shorter refining time than before can be achieved.

上記の方法で、前述した成分組成範囲に調整した溶鋼は、その後、連続鋳造法または造塊−分塊圧延法によりスラブとする。また、薄スラブ連続鋳造法を用いて、薄スラブを製造してもよい。上記のようにして得たスラブは、その後、均熱炉で加熱保持したのち熱間圧延に供するか、あるいは、CC−DR法やHCR法のように、連続鋳造時の顕熱を保持したまま加熱することなく熱間圧延に供することもできる。熱間圧延条件については、特に制限はないが、省エネルギーの観点から、スラブ加熱温度は1200℃以下とするのが望ましい。   The molten steel adjusted to the above-described component composition range by the above method is then made into a slab by a continuous casting method or an ingot-bundling rolling method. Moreover, you may manufacture a thin slab using a thin slab continuous casting method. The slab obtained as described above is then heated and held in a soaking furnace and then subjected to hot rolling, or, as in the CC-DR method and the HCR method, while maintaining the sensible heat during continuous casting. It can also be subjected to hot rolling without heating. Although there is no restriction | limiting in particular about hot rolling conditions, From a viewpoint of energy saving, it is desirable that slab heating temperature shall be 1200 degrees C or less.

熱間圧延後の熱延板は、必要に応じて熱延板焼鈍を行う。この熱延板焼鈍によって、熱間圧延により形成された集合組織が改善され、鉄損特性が向上する。また、熱延板焼鈍を行うことにより、圧延素材を軟化できるため、引き続いて行う冷間圧延性を改善することができる。熱延板焼鈍の条件は、温度が700〜1100℃、均熱時間が1秒〜2時間の範囲で適宜決定することができる。上記範囲より焼鈍温度が高い場合や焼鈍時間が長い場合には、鉄損特性の改善効果が飽和してしまい、コスト上昇の原因となる。一方、上記範囲より焼鈍温度が低い場合や焼鈍時間が短い場合には、鉄損特性の向上効果が小さい。   The hot-rolled sheet after hot rolling is subjected to hot-rolled sheet annealing as necessary. This hot-rolled sheet annealing improves the texture formed by hot rolling and improves the iron loss characteristics. Moreover, since a rolling raw material can be softened by performing hot-rolled sheet annealing, the cold rolling property performed subsequently can be improved. The conditions for hot-rolled sheet annealing can be appropriately determined within the range of 700 to 1100 ° C. and soaking time of 1 second to 2 hours. When the annealing temperature is higher than the above range or when the annealing time is long, the effect of improving the iron loss characteristic is saturated, which causes an increase in cost. On the other hand, when the annealing temperature is lower than the above range or when the annealing time is short, the effect of improving the iron loss characteristics is small.

熱延板または熱延焼鈍板は、その後、酸洗もしくはショットブラスト等で熱延スケールを除去した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚(製品板厚)とする。上記中間焼鈍は、冷延材の集合組織の改善を通じて鉄損特性の向上に有利に作用するとともに、冷間圧延性や温間圧延性を改善する効果がある。中間焼鈍の条件は、例えば、温度が600〜1100℃で均熱時間が1秒〜10分の範囲で適宜決めればよい。焼鈍温度が低い場合や焼鈍時間が短い場合には、鉄損特性の向上効果が小さく、一方、焼鈍温度が高い場合や焼鈍時間が長い場合には、焼鈍による鉄損向上効果が飽和し、コスト上昇要因となる。なお、上記冷間圧延に代えて、温間圧延を行ってもよいことは勿論である。   The hot-rolled sheet or hot-rolled annealed sheet is then stripped by pickling or shot blasting, and then the hot-rolled scale is removed, and then the final sheet thickness (product sheet thickness) is obtained by cold rolling at least once with intermediate annealing. And The intermediate annealing has an effect of improving the cold loss property and the warm rolling property as well as beneficially improving the iron loss property through the improvement of the texture of the cold rolled material. The conditions for the intermediate annealing may be appropriately determined, for example, in the range of a temperature of 600 to 1100 ° C. and a soaking time of 1 second to 10 minutes. When the annealing temperature is low or when the annealing time is short, the effect of improving the iron loss characteristics is small.On the other hand, when the annealing temperature is high or when the annealing time is long, the effect of improving the iron loss due to annealing is saturated and the cost is low. Increase factor. Of course, warm rolling may be performed instead of the cold rolling.

冷間圧延後の板厚(製品板厚)は、高周波磁気特性、鋼板の製造性および電気機器の加工工数に大きく影響する。すなわち、高周波鉄損を低減するには、板厚は薄い方が有利であり、板厚は0.5mm以下、好ましくは0.30mm以下とするのが望ましい。一方、鋼板製造性および電気機器の加工工数の観点からは、板厚は厚い方が好ましく、特に、板厚を0.05mmよりも薄くすることは、現在の鋼板製造技術および加工技術では、著しいコストの増加を招くので、板厚は0.05mm以上とするのが望ましい。   The sheet thickness after cold rolling (product sheet thickness) greatly affects the high-frequency magnetic characteristics, the productivity of the steel sheet, and the processing man-hours of the electrical equipment. That is, in order to reduce the high-frequency iron loss, it is advantageous that the plate thickness is thin, and the plate thickness is 0.5 mm or less, preferably 0.30 mm or less. On the other hand, from the viewpoint of steel plate manufacturability and the number of man-hours for processing electrical equipment, it is preferable that the plate thickness is thicker. In particular, in the present steel plate manufacturing technology and processing technology, it is remarkable that the plate thickness is made thinner than 0.05 mm. Since the cost increases, it is desirable that the plate thickness be 0.05 mm or more.

圧延後の鋼板は、仕上焼鈍を施し、さらに必要に応じて絶縁被膜を被成して製品とする。鋼の再結晶挙動は、その成分組成に依存する。発明者らの調査の結果、本発明条件を満たす成分系の場合、鋼の再結晶挙動は、主としてCとNの合計量に依存し、電磁鋼板の製造に一般的に用いられている均熱時間が1秒から2分程度の連続焼鈍設備を用いて再結晶を完了させるためには、均熱温度を下記(2)式;
min(℃)=3000×(C+N)+750 ・・・(2)
で表されるTmin以上とすることが必要であることがわかった。一方、焼鈍温度が1050℃を超えると、結晶粒が粗大化し、強度低下や高周波鉄損特性の劣化を招くので好ましくない。
The steel sheet after rolling is subjected to finish annealing, and an insulating coating is formed as necessary to obtain a product. The recrystallization behavior of steel depends on its component composition. As a result of the inventors' investigation, in the case of a component system that satisfies the present invention conditions, the recrystallization behavior of steel mainly depends on the total amount of C and N, and soaking is generally used in the manufacture of electrical steel sheets. In order to complete recrystallization using a continuous annealing facility with a time of about 1 second to 2 minutes, the soaking temperature is expressed by the following equation (2):
T min (° C.) = 3000 × (C + N) +750 (2)
It was found that it was necessary to make it Tmin or more represented by On the other hand, if the annealing temperature exceeds 1050 ° C., the crystal grains are coarsened, leading to a decrease in strength and deterioration of high-frequency iron loss characteristics, which is not preferable.

表1に示す成分組成を有する鋼を実験室的に溶製して鋳塊とし、この鋳塊を1100℃に加熱後、熱間圧延し、板厚2.0mmの熱延板とした。この熱延板から、あるいは、表2に記載した条件で熱延板焼鈍を施した熱延板から、圧延方向に平行に、板厚2.0mm×幅30mm×長さ100mmの試験片を切り出し、室温(25℃)にて、曲げ半径15mm、曲げ角度90度の条件で繰り返し曲げ試験を行い、亀裂発生までの曲げ回数を求めることにより、熱延板の靭性を評価した。次いで、上記熱延板あるいは熱延板焼鈍後の熱延板を酸洗し、最終板厚を0.20mmとする冷間圧延を施した。この際、割れ、破断などの発生を調査し、冷間圧延性の面から製造性を評価した。さらに、0.20mmまで冷間圧延が可能であった試料については、表2に記載の条件で仕上焼鈍を行った。   Steel having the component composition shown in Table 1 was melted in the laboratory to form an ingot, which was heated to 1100 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.0 mm. From this hot-rolled sheet or a hot-rolled sheet subjected to hot-rolled sheet annealing under the conditions described in Table 2, a test piece having a thickness of 2.0 mm × width 30 mm × length 100 mm was cut out in parallel to the rolling direction. The toughness of the hot-rolled sheet was evaluated by repeatedly conducting a bending test at room temperature (25 ° C.) under the conditions of a bending radius of 15 mm and a bending angle of 90 degrees, and obtaining the number of bendings until the occurrence of cracks. Next, the hot-rolled sheet or the hot-rolled sheet after hot-rolled sheet annealing was pickled and cold-rolled to a final thickness of 0.20 mm. At this time, the occurrence of cracks and breaks was investigated, and the manufacturability was evaluated from the viewpoint of cold rollability. Further, the samples that could be cold-rolled to 0.20 mm were subjected to finish annealing under the conditions shown in Table 2.

Figure 2008240104
Figure 2008240104

上記のようにして得た冷延焼鈍板より、エプスタイン試験片を採取して周波数1kHz、磁束密度1.0Tにおける鉄損値を測定した。また、圧延方向と平行にJIS 5号引張試験片を採取し、引張速度10mm/minの引張速度で引張試験を行った。上記測定の結果を表2に示した。   From the cold-rolled annealed plate obtained as described above, an Epstein test piece was collected and the iron loss value at a frequency of 1 kHz and a magnetic flux density of 1.0 T was measured. Further, a JIS No. 5 tensile test piece was taken in parallel with the rolling direction, and a tensile test was performed at a tensile speed of 10 mm / min. The measurement results are shown in Table 2.

Figure 2008240104
Figure 2008240104

表2から、以下のことがわかる。
従来の高Si無方向性電磁鋼板レベルのSiを3.11mass%含有するNo.1の鋼板は、引張強さ(TS)が485MPaしかなく、高速回転用ロータ材料としては不充分である。また、3.05mass%Siに、Mn,Niを加えて固溶強化を図り、さらにNb,Tiで析出強化したNo.2の鋼板は、No.1の鋼板と比較して高い強度が得られるものの、熱延板の靭性が低下し、冷間圧延でも割れが生じた。また、1kHzでの鉄損も60W/kgを超えている。5.1mass%のSiとともに5.1mass%のCrを含有し、かつ(C+N)量を0.0033mass%に低減したNo.3の鋼板は、熱延焼鈍板の曲げ回数は50回以上でかつ良好な冷間圧延性を有し、さらに高強度と50W/kg以下の低鉄損を実現しているが、C,Nを上記レベルまで工業的に安定して低減するには専用設備と長時間の精錬が必要となる。No.3の鋼板より(C+N)量が高いNo.4の鋼板は、熱延板の靭性が大幅に低下している。一方、No.4の鋼板とほぼ同じSi,Cr,(C+N)量であるが、Tiを適量添加した本発明のNo.5の鋼板は、良好な熱延板の靭性と冷間圧延性を示し、仕上げ焼鈍後の特性についても高強度で低鉄損が得られている。さらに、本発明の条件を満たすNo.6,8〜10および13〜16の鋼板についても同様である。一方、Ti添加量が不足しているNo.7の鋼板、Si添加量が10mass%を超えているNo.11の鋼板、Ti添加量が過剰なNo.12の鋼板は、いずれも熱延板の靭性が低く、冷間圧延時には割れも発生した。特にNo.7および11の鋼板は、圧延初期から激しい板割れが発生し、少量のサンプルを採取する圧延も不可能であった。
Table 2 shows the following.
A conventional high Si non-oriented electrical steel sheet No. containing 3.11% by mass of Si. Steel plate No. 1 has a tensile strength (TS) of only 485 MPa, which is insufficient as a rotor material for high-speed rotation. In addition, Mn and Ni were added to 3.05 mass% Si for solid solution strengthening, and precipitation strengthening with Nb and Ti was further performed. No. 2 steel is No. 2. Although high strength was obtained as compared with Steel No. 1, the toughness of the hot-rolled sheet was lowered, and cracking occurred even in cold rolling. Also, the iron loss at 1 kHz exceeds 60 W / kg. No. 5 containing 5.1 mass% of Cr together with 5.1 mass% of Si and having a (C + N) content reduced to 0.0033 mass%. The steel plate No. 3 has a number of bendings of the hot-rolled annealed plate of 50 times or more and has a good cold rolling property, and further achieves high strength and low iron loss of 50 W / kg or less. Dedicated equipment and long-term refining are required to reduce the above to the above level in an industrially stable manner. No. No. 3 with a higher (C + N) amount than the No. 3 steel plate. In the steel plate No. 4, the toughness of the hot-rolled plate is greatly reduced. On the other hand, no. No. 4 of the present invention with the same amount of Si, Cr and (C + N) as the steel plate No. 4 but with an appropriate amount of Ti added. Steel plate No. 5 exhibits good hot-rolled sheet toughness and cold rollability, and also has high strength and low iron loss with respect to the properties after finish annealing. Furthermore, No. satisfying the conditions of the present invention. The same applies to 6, 8 to 10 and 13 to 16 steel plates. On the other hand, no. No. 7 steel sheet, No. in which Si addition amount exceeds 10 mass%. No. 11 steel, No. with excessive addition of Ti. All the 12 steel plates had low toughness of hot-rolled plates, and cracks occurred during cold rolling. In particular, no. In the steel plates 7 and 11, severe plate cracking occurred from the beginning of rolling, and rolling to collect a small sample was impossible.

転炉による1次精錬およびRH脱ガスによる2次精錬によって、C:0.0096mass%、N:0.0036mass%、(C+N):0.0132mass%、Si:6.32mass%、Cr:4.03mass%、Mn:0.007mass%、P:0.011mass%、Al:0.001mass%、Ti:0.042mass%、Ti−4(C+N):−0.0108mass%、残部がFeおよび不可避的不純物からなる鋼を溶製し、連続鋳造して鋼スラブとし、このスラブを1100℃に加熱後、熱間圧延し、板厚1.5mmの熱延板とした。この熱延板について、実施例1と同様にして、繰り返し曲げ試験を実施したところ、割れ発生までの曲げ回数が37回と十分な靭性を示した。   By primary refining by a converter and secondary refining by RH degassing, C: 0.0096 mass%, N: 0.0036 mass%, (C + N): 0.0132 mass%, Si: 6.32 mass%, Cr: 4. 03 mass%, Mn: 0.007 mass%, P: 0.011 mass%, Al: 0.001 mass%, Ti: 0.042 mass%, Ti-4 (C + N): -0.0108 mass%, the balance being Fe and inevitable Steel made of impurities was melted and continuously cast into a steel slab. The slab was heated to 1100 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 1.5 mm. When this hot-rolled sheet was repeatedly subjected to a bending test in the same manner as in Example 1, the number of bendings until the occurrence of cracking was 37, indicating sufficient toughness.

次いで、上記熱延板を、冷間圧延して板厚が0.15mmまたは0.35mmの冷延板とし、表3に示す焼鈍温度で30秒の仕上焼鈍を施したのち絶縁被膜をコーティングし、製品(電磁鋼板)とした。この電磁鋼板について、実施例1と同様の条件で、磁気特性および機械的特性を評価した。   Next, the hot-rolled sheet is cold-rolled to form a cold-rolled sheet having a thickness of 0.15 mm or 0.35 mm, and after finishing annealing at the annealing temperature shown in Table 3 for 30 seconds, an insulating film is coated. The product (magnetic steel sheet). With respect to this electromagnetic steel sheet, magnetic properties and mechanical properties were evaluated under the same conditions as in Example 1.

上記結果を表3に示した。仕上げ焼鈍温度が750℃のNo.17の鋼板は、高い強度が得られるものの、一部に未再結晶組織が残存しており、やや鉄損が高い。これに対して、本発明の製造条件を満たすNo.18〜20の鋼板は、いずれも製造性に優れ、かつ、鉄損、強度がともに良好である。また、仕上げ焼鈍温度が1100℃と高いNo.21の鋼板は、発明例のNo.20の鋼板に対して、ほぼ同等の鉄損であるものの、強度がやや低下する傾向にある。   The results are shown in Table 3. No. with a final annealing temperature of 750 ° C. Although the steel plate No. 17 can obtain high strength, an unrecrystallized structure remains in part, and the iron loss is somewhat high. On the other hand, No. satisfying the production conditions of the present invention. The 18-20 steel plates are all excellent in manufacturability and have good iron loss and strength. In addition, the finish annealing temperature is as high as 1100 ° C. No. 21 steel plate is No. of the invention example. Although the iron loss is almost the same as that of 20 steel plates, the strength tends to decrease slightly.

Figure 2008240104
Figure 2008240104

Cr添加高Si熱延板の脆性におよぼす(C+N)量の影響を示すグラフである。It is a graph which shows the influence of the amount of (C + N) on the brittleness of Cr addition high Si hot-rolled sheet. Cr添加高Si熱延板の脆性におよぼすTiと(C+N)の影響を示すグラフである。It is a graph which shows the influence of Ti and (C + N) on the brittleness of Cr addition high Si hot-rolled sheet.

Claims (4)

C:0.0050mass%超0.020mass%以下、N:0.01mass%以下、(C+N):0.030mass%以下、Si:4.0mass%超10.0mass%以下、Cr:2.0〜10.0mass%、P:0.04mass%以下を含有し、さらに、Tiを下記(1)式を満たして含有し、残部がFeおよび不可避的不純物である高強度無方向性電磁鋼板。

−0.02≦Ti−4(C+N)≦0.04 ・・・(1)
C: more than 0.0050 mass%, 0.020 mass% or less, N: 0.01 mass% or less, (C + N): 0.030 mass% or less, Si: more than 4.0 mass%, 10.0 mass% or less, Cr: 2.0 to A high-strength non-oriented electrical steel sheet containing 10.0 mass%, P: 0.04 mass% or less, further containing Ti satisfying the following formula (1), and the balance being Fe and inevitable impurities.
−0.02 ≦ Ti-4 (C + N) ≦ 0.04 (1)
上記成分組成に加えてさらに、下記A群〜C群のうちの少なくとも1群の成分を含有することを特徴とする請求項1に記載の高強度無方向性電磁鋼板。

A群:SbおよびSnのいずれか1種または2種を合計で0.1mass%以下、
B群:Al,Mn,Cu,Mo,Ni,Coのいずれか1種または2種以上を合計で5.0mass%以下、
C群:Ca,希土類元素(REM)およびBのいずれか1種または2種以上を合計で0.01mass%以下
The high-strength non-oriented electrical steel sheet according to claim 1, further comprising at least one component of the following group A to group C in addition to the component composition.
Group A: Any one or two of Sb and Sn in total 0.1 mass% or less,
Group B: Any one or more of Al, Mn, Cu, Mo, Ni and Co in a total of 5.0 mass% or less,
Group C: 0.01 mass% or less of one or more of Ca, rare earth elements (REM) and B in total
C:0.0050mass%超0.020mass%以下、N:0.01mass%以下、(C+N):0.030mass%以下、Si:4.0mass%超10.0mass%以下、Cr:2.0〜10.0mass%、P:0.04mass%以下を含有し、さらに、Tiを下記(1)式を満たして含有し、残部がFeおよび不可避的不純物からなるスラブを熱間圧延し、熱延板焼鈍を施した後あるいは施すことなく酸洗し、1回の冷間圧延または中間焼鈍を挟んで2回以上の冷間圧延し、下記(2)式で表されるTmin℃以上、1050℃以下の温度で仕上焼鈍することを特徴とする高強度無方向性電磁鋼板の製造方法。

−0.02≦Ti−4(C+N)≦0.04 ・・・(1)
min(℃)=3000×(C+N)+750 ・・・(2)
C: more than 0.0050 mass%, 0.020 mass% or less, N: 0.01 mass% or less, (C + N): 0.030 mass% or less, Si: more than 4.0 mass%, 10.0 mass% or less, Cr: 2.0 to Hot rolled a slab containing 10.0 mass%, P: 0.04 mass% or less, further containing Ti satisfying the following formula (1), the balance being Fe and inevitable impurities, Pickling after or without annealing, and cold-rolling twice or more with one cold rolling or intermediate annealing, and T min ° C or higher represented by the following formula (2): 1050 ° C A method for producing a high-strength non-oriented electrical steel sheet, characterized by performing finish annealing at the following temperature.
−0.02 ≦ Ti-4 (C + N) ≦ 0.04 (1)
T min (° C.) = 3000 × (C + N) +750 (2)
上記成分組成に加えてさらに、下記A群〜C群のうちの少なくとも1群の成分を含有することを特徴とする請求項3に記載の高強度無方向性電磁鋼板の製造方法。

A群:SbおよびSnのいずれか1種または2種を合計で0.1mass%以下、
B群:Al,Mn,Cu,Mo,Ni,Coのいずれか1種または2種以上を合計で5.0mass%以下、
C群:Ca,希土類元素(REM)およびBのいずれか1種または2種以上を合計で0.01mass%以下
The method for producing a high-strength non-oriented electrical steel sheet according to claim 3, further comprising at least one component of the following groups A to C in addition to the component composition.
Group A: Any one or two of Sb and Sn in total 0.1 mass% or less,
Group B: Any one or more of Al, Mn, Cu, Mo, Ni and Co in a total of 5.0 mass% or less,
Group C: 0.01 mass% or less of one or more of Ca, rare earth elements (REM) and B in total
JP2007084724A 2007-03-28 2007-03-28 High strength non-oriented electrical steel sheet and manufacturing method thereof Active JP5119710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084724A JP5119710B2 (en) 2007-03-28 2007-03-28 High strength non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084724A JP5119710B2 (en) 2007-03-28 2007-03-28 High strength non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008240104A true JP2008240104A (en) 2008-10-09
JP5119710B2 JP5119710B2 (en) 2013-01-16

Family

ID=39911786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084724A Active JP5119710B2 (en) 2007-03-28 2007-03-28 High strength non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5119710B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084847A1 (en) 2009-01-26 2010-07-29 新日本製鐵株式会社 Non-oriented electromagnetic steel sheet
JP2011046997A (en) * 2009-08-26 2011-03-10 Jfe Steel Corp Non-oriented magnetic steel sheet and method for manufacturing the same
WO2012114383A1 (en) * 2011-02-24 2012-08-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
JP2016104902A (en) * 2014-11-19 2016-06-09 Jfeスチール株式会社 High silicon steel sheet
RU2618992C2 (en) * 2011-10-05 2017-05-11 Сентро Свилуппо Материали С.П.А. Method for production of texturized magnetic sheet having high reduction ratio in cold state
RU2692136C1 (en) * 2016-02-22 2019-06-21 ДжФЕ СТИЛ КОРПОРЕЙШН Method for manufacturing of textured electrical steel sheet
RU2697115C1 (en) * 2016-03-09 2019-08-12 ДжФЕ СТИЛ КОРПОРЕЙШН Method for production of textured steel sheet from electrical steel
WO2021029014A1 (en) 2019-08-13 2021-02-18 日産自動車株式会社 Electromagnetic steel sheet
US11254997B2 (en) 2016-12-19 2022-02-22 Posco Non-oriented electrical steel sheet and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032054A (en) * 1999-07-22 2001-02-06 Kawasaki Steel Corp Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
JP2001185413A (en) * 1999-12-27 2001-07-06 Kawasaki Steel Corp Flat rolled electromagnetic steel sheet having superior insulation characteristic and magnetic characteristic in high frequency region
JP2001262289A (en) * 2000-03-15 2001-09-26 Kawasaki Steel Corp NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN >=1 kHz FREQUENCY REGION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032054A (en) * 1999-07-22 2001-02-06 Kawasaki Steel Corp Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
JP2001185413A (en) * 1999-12-27 2001-07-06 Kawasaki Steel Corp Flat rolled electromagnetic steel sheet having superior insulation characteristic and magnetic characteristic in high frequency region
JP2001262289A (en) * 2000-03-15 2001-09-26 Kawasaki Steel Corp NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN >=1 kHz FREQUENCY REGION

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084847A1 (en) 2009-01-26 2010-07-29 新日本製鐵株式会社 Non-oriented electromagnetic steel sheet
JP2011046997A (en) * 2009-08-26 2011-03-10 Jfe Steel Corp Non-oriented magnetic steel sheet and method for manufacturing the same
WO2012114383A1 (en) * 2011-02-24 2012-08-30 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
CN103392021A (en) * 2011-02-24 2013-11-13 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
KR101412363B1 (en) * 2011-02-24 2014-06-25 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet and method for manufacturing the same
RU2618992C2 (en) * 2011-10-05 2017-05-11 Сентро Свилуппо Материали С.П.А. Method for production of texturized magnetic sheet having high reduction ratio in cold state
JP2016104902A (en) * 2014-11-19 2016-06-09 Jfeスチール株式会社 High silicon steel sheet
RU2692136C1 (en) * 2016-02-22 2019-06-21 ДжФЕ СТИЛ КОРПОРЕЙШН Method for manufacturing of textured electrical steel sheet
RU2697115C1 (en) * 2016-03-09 2019-08-12 ДжФЕ СТИЛ КОРПОРЕЙШН Method for production of textured steel sheet from electrical steel
US11254997B2 (en) 2016-12-19 2022-02-22 Posco Non-oriented electrical steel sheet and manufacturing method therefor
WO2021029014A1 (en) 2019-08-13 2021-02-18 日産自動車株式会社 Electromagnetic steel sheet

Also Published As

Publication number Publication date
JP5119710B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101011965B1 (en) Highly strong, non-oriented electrical steel sheet and method for manufacture thereof
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP5884153B2 (en) High strength electrical steel sheet and manufacturing method thereof
JP5223190B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2012114383A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP5076510B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP7054074B2 (en) Manufacturing method of non-oriented electrical steel sheet, manufacturing method of motor core and motor core
WO2007007423A1 (en) Non-oriented electromagnetic steel sheet and process for producing the same
JP2007016278A (en) Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
JPWO2003002777A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007039721A (en) Method for producing non-oriented electrical steel sheet for rotor
JP5194535B2 (en) High strength non-oriented electrical steel sheet
CN113166823A (en) Non-oriented electromagnetic steel sheet
JP4710465B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP5939190B2 (en) Electrical steel sheet
JP5130637B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP5333415B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP2007162096A (en) Non-oriented electrical steel sheet for rotor, and its manufacturing method
JP4929484B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007162062A (en) Method for producing non-oriented magnetic steel sheet for rotor
WO2024080140A1 (en) Nonoriented electromagnetic steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250