JP2008239456A - Functional strontium titanate crystal, and method of producing the same - Google Patents

Functional strontium titanate crystal, and method of producing the same Download PDF

Info

Publication number
JP2008239456A
JP2008239456A JP2007086538A JP2007086538A JP2008239456A JP 2008239456 A JP2008239456 A JP 2008239456A JP 2007086538 A JP2007086538 A JP 2007086538A JP 2007086538 A JP2007086538 A JP 2007086538A JP 2008239456 A JP2008239456 A JP 2008239456A
Authority
JP
Japan
Prior art keywords
strontium titanate
titanate crystal
crystal
doped
sto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007086538A
Other languages
Japanese (ja)
Inventor
Shugo Kubo
衆伍 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University
Original Assignee
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane University filed Critical Shimane University
Priority to JP2007086538A priority Critical patent/JP2008239456A/en
Publication of JP2008239456A publication Critical patent/JP2008239456A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide inexpensively a strontium titanate crystal which is capable of adjusting an amount of doping by a metal or a semimetal and exhibits properties as a functional material. <P>SOLUTION: The strontium titanate crystal is doped by a metal or a semimetal having an atomic number of not greater than 79 (provided that Nb, In, and a lanthanoid are excluded). This is obtained by adhering or diffusing a metal element or a semimetal element vaporized or sublimated in a vacuum atmosphere at a temperature of 800-1,300°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、機能性チタン酸ストロンチウム結晶およびその製造方法に関する。   The present invention relates to a functional strontium titanate crystal and a method for producing the same.

従来、導電性のないチタン酸ストロンチウム(以下、チタン酸ストロンチウムをSTOと称することとする。)結晶にNbをドープすると導電性を発揮し、近年、半導体材料、熱電変換材料、光触媒材料、高温電極材料などの機能性材料として脚光を浴びている。   Conventionally, non-conductive strontium titanate (hereinafter, strontium titanate is referred to as STO) crystal exhibits conductivity when doped with Nb. In recent years, semiconductor materials, thermoelectric conversion materials, photocatalytic materials, high-temperature electrodes It is in the limelight as a functional material such as materials.

また、LaやNdなどのランタノイド、あるいはInを添加したSTOも同様な導電性を発揮することが知られている。   It is also known that lanthanoids such as La and Nd, or STO added with In exhibit similar conductivity.

C.S.Koonce, et al, 'Superconducting Transition Temperatures of Semiconducting SrTiO3' Physical Review Vol163, No.2(1967)C.S.Koonce, et al, 'Superconducting Transition Temperatures of Semiconducting SrTiO3' Physical Review Vol163, No.2 (1967)

しかしながら、従来の技術では以下の問題点があった。
すなわち、STO結晶にNbやNdなどをドープするにあたっては、原料にあらかじめこれらの元素を含ませて結晶成長させる必要があった。従って、ドープ量を任意に設定して結晶成長させるのが困難であり、実際、現状では、Nb0.5wt%−チタン酸ストロンチウム(ドープ量1020/cm程度)のものが提供されているのみである。したがって、機能性材料といっても広範な研究ができるわけではなく、材料研究、特に単結晶を用いた研究はピンポイントとならざるを得ないという問題点があった。また、いわば不純物を取り込みながら結晶成長させるため、その制御が困難であり、結果としてドープされたSTO結晶が高価にならざるを得ないという問題点もあった。
However, the conventional technique has the following problems.
That is, when doping Sb crystal with Nb, Nd or the like, it is necessary to grow the crystal by adding these elements to the raw material in advance. Therefore, it is difficult to grow a crystal by arbitrarily setting the doping amount. Actually, only Nb 0.5 wt% -strontium titanate (doping amount of about 10 20 / cm 3 ) is provided at present. It is. Therefore, even if it is called a functional material, extensive research cannot be performed, and there has been a problem that material research, particularly research using a single crystal, has to be pinpointed. In addition, since the crystal is grown while incorporating impurities, it is difficult to control the crystal, and as a result, the doped STO crystal has to be expensive.

本発明は上記に鑑みてなされたものであって、金属または半金属のドープ量が調整可能であって、機能性材料としての性質を発現するチタン酸ストロンチウム結晶を安価に提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a strontium titanate crystal that can adjust the doping amount of a metal or a semimetal and that exhibits properties as a functional material at low cost. To do.

上記の目的を達成するために、請求項1に記載のチタン酸ストロンチウム結晶は、原子番号79以下の金属元素または半金属元素(ただし、Nb,In,ランタノイドを除く)をドープしたことを特徴とする。   In order to achieve the above object, the strontium titanate crystal according to claim 1 is doped with a metal element or a metalloid element having an atomic number of 79 or less (excluding Nb, In, and lanthanoid). To do.

このチタン酸ストロンチウム結晶は、半導体材料、熱電変換材料、光触媒材料、高温電極材料といった機能性材料としての機能を発揮する。したがって、本発明は、チタン酸バリウムに、原子番号79以下の金属元素または半金属元素(ただし、Nb,In,ランタノイドを除く)をドープさせた半導体、熱電変換素材、光触媒、または、高温電極材、ということもできる。   This strontium titanate crystal exhibits a function as a functional material such as a semiconductor material, a thermoelectric conversion material, a photocatalytic material, or a high temperature electrode material. Therefore, the present invention provides a semiconductor, a thermoelectric conversion material, a photocatalyst, or a high temperature electrode material in which barium titanate is doped with a metal element or metalloid element having an atomic number of 79 or less (excluding Nb, In, and lanthanoid). It can also be said.

また、請求項2に記載のチタン酸ストロンチウム結晶は、請求項1に記載のチタン酸ストロンチウム結晶において、金属元素または半金属元素が、B,Si,Ti,Cr,Fe,Co,Ni,Cu,Ge,またはYであることを特徴とする。特にBである場合は、従来NbがドープされたSTO結晶と同程度の導電性を有する。   The strontium titanate crystal according to claim 2 is the strontium titanate crystal according to claim 1, wherein the metal element or metalloid element is B, Si, Ti, Cr, Fe, Co, Ni, Cu, It is characterized by being Ge or Y. In particular, in the case of B, it has a conductivity comparable to that of a conventional STO crystal doped with Nb.

また、請求項3に記載のチタン酸ストロンチウム結晶は、請求項1または2に記載のチタン酸ストロンチウム結晶金属元素または半金属元素のドープ量をチタン酸ストロンチウム結晶に対して1017cm−3〜1021cm−3(金属元素または半金属元素のドープ量をチタン酸ストロンチウム結晶の単位立方センチメートルあたり1017〜1021個)としたことを特徴とする。 Further, the strontium titanate crystal according to claim 3 has a strontium titanate crystal metal element or metalloid element doping amount of 10 17 cm −3 to 10 −10 with respect to the strontium titanate crystal. 21 cm −3 (the doping amount of the metal element or metalloid element is 10 17 to 10 21 per unit cubic centimeter of the strontium titanate crystal).

また、請求項4に記載の製造方法は、気化または昇華させた金属元素または半金属元素を800℃〜1300℃の温度の真空雰囲気下にてチタン酸ストロンチウム結晶に付着させて拡散させることにより、当該元素をドープしてチタン酸ストロンチウム結晶を得る方法である。   Moreover, the manufacturing method of Claim 4 attaches and diffuses the vaporized or sublimated metal element or metalloid element to the strontium titanate crystal | crystallization in the vacuum atmosphere of the temperature of 800 to 1300 degreeC, In this method, a strontium titanate crystal is obtained by doping the element.

これは、いわゆる真空蒸着法である。この方法により、金属元素または半金属元素がSTO中に拡散していく。このため、金属元素または半金属元素の蒸気濃度と加熱時間とによって、所望のドープ量のSTOを得ることができる。また、STOを結晶成長させる際にドープする方法ではないので、安価かつ簡便に製造することができる。なお、金属元素または半金属元素の蒸気圧が高いと再蒸発してSTO中に付着しないので、その蒸気圧は当該元素を付着させる温度において1×10−2Pa以下であるものが好ましい。 This is a so-called vacuum deposition method. By this method, the metal element or metalloid element diffuses into the STO. Therefore, a desired dope amount of STO can be obtained depending on the vapor concentration of metal element or metalloid element and the heating time. In addition, since it is not a method of doping when crystal growth of STO, it can be manufactured inexpensively and easily. If the vapor pressure of the metal element or metalloid element is high, it re-evaporates and does not adhere to the STO. Therefore, the vapor pressure is preferably 1 × 10 −2 Pa or less at the temperature at which the element is deposited.

本発明によれば、金属または半金属のドープ量が調整可能であって、機能性材料としての性質を発現するチタン酸ストロンチウム結晶を安価に提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the strontium titanate crystal | crystallization which can adjust the dope amount of a metal or a semimetal and express the property as a functional material at low cost.

<製造例>
ここでは、B(ホウ素)をドープしたSTOについて説明する。ドープは真空蒸着によりおこなった。詳しくは、(001)面STO単結晶基板(0.35mm厚)を900℃に保持し、電子ビーム蒸着によりBを0.1nm/sの速度で付着させ、積算で128nm付着させた。なお、これらの数値は基板横に設置した膜厚モニタの値である。組成を確認すると、Bドープ量は、蒸着面と裏面でほぼ差はなく(したがって、均一に拡散されたことが確認でき)、その値は約5×1019/cmであった。以降では、得られたものをBドープSTOと適宜称することとする。
<Production example>
Here, STO doped with B (boron) will be described. Doping was performed by vacuum deposition. Specifically, a (001) plane STO single crystal substrate (thickness: 0.35 mm) was held at 900 ° C., and B was deposited at a rate of 0.1 nm / s by electron beam evaporation, and a total of 128 nm was deposited. These numerical values are values of a film thickness monitor installed beside the substrate. When the composition was confirmed, there was almost no difference in the amount of B-doped between the vapor deposition surface and the back surface (thus, it was confirmed that it was uniformly diffused), and the value was about 5 × 10 19 / cm 3 . Hereinafter, the obtained one is referred to as B-doped STO as appropriate.

<物性>
得られたBドープSTOの物性は驚くべきことに、電気抵抗率の温度変化が金属的であり、キャリヤはn型であった。なお、室温における電気抵抗率は約60mΩ・cmであった。この値は、真空加熱によるSTOの酸素欠損に由来する導電性を遙かにしのぐものである。
<Physical properties>
The physical properties of the obtained B-doped STO were surprisingly that the temperature change in electrical resistivity was metallic and the carrier was n-type. The electrical resistivity at room temperature was about 60 mΩ · cm. This value far surpasses the conductivity derived from oxygen deficiency of STO by vacuum heating.

同様の真空蒸着の手法により、1×1018/cm〜5×1019/cmのBドープSTOを作成した。この導電性に関する検討結果を図1と図2に示す。図1は、2×1018/cmBドープSTOの電気抵抗率の温度依存性であり、図2は、室温(300K)と20Kにおける、電気抵抗率のBドープ量依存性を示すものである。いずれの場合も、電気抵抗率としては、半導体と金属の中間程度であり、その温度依存性は金属的である(温度が上がれば抵抗率も上昇する)ことを確認した。 A B-doped STO of 1 × 10 18 / cm 3 to 5 × 10 19 / cm 3 was prepared by the same vacuum deposition method. The examination result regarding this conductivity is shown in FIG. 1 and FIG. FIG. 1 shows the temperature dependence of the electrical resistivity of 2 × 10 18 / cm 3 B-doped STO, and FIG. 2 shows the dependence of the electrical resistivity on the B-doping amount at room temperature (300K) and 20K. is there. In any case, it was confirmed that the electrical resistivity is about the middle between the semiconductor and the metal, and the temperature dependency is metallic (the resistivity increases as the temperature rises).

図3は、Bドープ量とゼーベック係数との関係を示した図である。ゼーベック係数は、熱電変換素子への応用上重要な係数である。図から明らかな様に1018/cm台のBドープ量の場合、700μV/Kという、大きなゼーベック係数を示しており、熱電変換材料としての利用可能性があることが確認できた。 FIG. 3 is a diagram showing the relationship between the B doping amount and the Seebeck coefficient. The Seebeck coefficient is an important coefficient in application to thermoelectric conversion elements. As is apparent from the figure, in the case of the amount of B doped of 10 18 / cm 3 , a large Seebeck coefficient of 700 μV / K was shown, and it was confirmed that it could be used as a thermoelectric conversion material.

ドープされたSTOは、高温電極材料として用いることができるので、本発明によれば、燃料電池の電極としての利用が可能となる。   Since doped STO can be used as a high-temperature electrode material, according to the present invention, it can be used as an electrode of a fuel cell.

2×1018/cmBドープSTOの電気抵抗率の温度依存性を示した図である。It is the figure which showed the temperature dependence of the electrical resistivity of 2 * 10 < 18 > / cm < 3 > B dope STO. 室温(300K)と20Kにおける、電気抵抗率のBドープ量依存性を示した図である。It is the figure which showed the B dope amount dependence of the electrical resistivity in room temperature (300K) and 20K. Bドープ量とゼーベック係数との関係を示した図である。It is the figure which showed the relationship between B dope amount and Seebeck coefficient.

Claims (4)

原子番号79以下の金属元素または半金属元素(ただし、Nb,In,ランタノイドを除く)をドープしたチタン酸ストロンチウム結晶。   A strontium titanate crystal doped with a metal element or metalloid element having an atomic number of 79 or less (excluding Nb, In and lanthanoids). 金属元素または半金属元素が、B,Si,Ti,Cr,Fe,Co,Ni,Cu,Ge,またはYであることを特徴とする請求項1に記載のチタン酸ストロンチウム結晶。   2. The strontium titanate crystal according to claim 1, wherein the metal element or metalloid element is B, Si, Ti, Cr, Fe, Co, Ni, Cu, Ge, or Y. 金属元素または半金属元素のドープ量をチタン酸ストロンチウム結晶に対して1017cm−3〜1021cm−3としたことを特徴とする請求項1または2に記載のチタン酸ストロンチウム結晶。 3. The strontium titanate crystal according to claim 1, wherein a doping amount of the metal element or the metalloid element is 10 17 cm −3 to 10 21 cm −3 with respect to the strontium titanate crystal. 気化または昇華させた金属元素または半金属元素を800℃〜1300℃の温度の真空雰囲気下にてチタン酸ストロンチウム結晶に付着させて拡散させることにより当該元素をドープすることを特徴とする請求項1〜3のいずれか一つに記載のチタン酸ストロンチウム結晶製造方法。
The metal element or metalloid element vaporized or sublimated is doped with the element by adhering to the strontium titanate crystal and diffusing in a vacuum atmosphere at a temperature of 800 ° C to 1300 ° C. The method for producing strontium titanate crystals according to any one of?
JP2007086538A 2007-03-29 2007-03-29 Functional strontium titanate crystal, and method of producing the same Pending JP2008239456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086538A JP2008239456A (en) 2007-03-29 2007-03-29 Functional strontium titanate crystal, and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086538A JP2008239456A (en) 2007-03-29 2007-03-29 Functional strontium titanate crystal, and method of producing the same

Publications (1)

Publication Number Publication Date
JP2008239456A true JP2008239456A (en) 2008-10-09

Family

ID=39911233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086538A Pending JP2008239456A (en) 2007-03-29 2007-03-29 Functional strontium titanate crystal, and method of producing the same

Country Status (1)

Country Link
JP (1) JP2008239456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637694A (en) * 2018-12-21 2019-04-16 红河学院 A kind of A, B codope strontium titanates conductor material and preparation method thereof
CN115506025A (en) * 2021-06-23 2022-12-23 中国科学院苏州纳米技术与纳米仿生研究所 Hole type SrTiO 3 Material, preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188686A (en) * 1988-11-28 1991-08-16 Hitachi Ltd Oxide superconducting element
JP2000056343A (en) * 1998-06-05 2000-02-25 Fuji Xerox Co Ltd Optical waveguide element and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188686A (en) * 1988-11-28 1991-08-16 Hitachi Ltd Oxide superconducting element
JP2000056343A (en) * 1998-06-05 2000-02-25 Fuji Xerox Co Ltd Optical waveguide element and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012060100; 岡本 淳 他: 'BドープSrTiO3の電気的特性' 第54回応用物理学関係連合講演会講演予稿集 , 20070327, Page.282 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637694A (en) * 2018-12-21 2019-04-16 红河学院 A kind of A, B codope strontium titanates conductor material and preparation method thereof
CN115506025A (en) * 2021-06-23 2022-12-23 中国科学院苏州纳米技术与纳米仿生研究所 Hole type SrTiO 3 Material, preparation method and application thereof
CN115506025B (en) * 2021-06-23 2024-02-02 中国科学院苏州纳米技术与纳米仿生研究所 Hole type SrTiO 3 Material, preparation method and application thereof

Similar Documents

Publication Publication Date Title
Ngo-Duc et al. Vertical ZnO nanowire growth on metal substrates
Wang et al. Phase stabilization and phonon properties of single crystalline rhombohedral indium oxide
Kim et al. Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure
Jiang et al. Two-step fabrication of single-layer rectangular SnSe flakes
Scullin et al. Pulsed laser deposition-induced reduction of SrTiO3 crystals
CA2572959C (en) Silicon-rich nickel-silicide ohmic contacts for sic semiconductor devices
Zhou et al. Significant enhancement in the thermoelectric performance of aluminum-doped ZnO tuned by pore structure
Abutaha et al. Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3
Cai et al. Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film
Lien et al. Electrical conduction processes in ZnO in a wide temperature range 20–500 K
Liu et al. Ta doped SrSnO3 epitaxial films as transparent conductive oxide
Zhu et al. Effect of composition and strain on the electrical properties of LaNiO3 thin films
Liu et al. Electron scattering mechanisms in GZO films grown on a-sapphire substrates by plasma-enhanced molecular beam epitaxy
Liu et al. The electronic structures and work functions of (100) surface of typical binary and doped REB6 single crystals
Tynell et al. Deposition of thermoelectric strontium hexaboride thin films by a low pressure CVD method
JP6502193B2 (en) Silicon microcrystalline composite film, thermoelectric material and method for producing them
Pham et al. Dopants and induced residual stress-controlled thermoelectric properties of ZnO thin films
Morales et al. Growth and characterization of ZnO thin films at low temperatures: From room temperature to− 120 C
Thaowonkaew et al. Relaxation of residual stress-controlled thermopower factor in transparent-flexible Ti-doped ZnO thin films
Capan et al. Epitaxial Cr on n-SrTiO3 (001)—An ideal Ohmic contact
Lekshmi et al. The effect of strain on nonlinear temperature dependence of resistivity in SrMoO3 and SrMoO3− xNx films
Guélou et al. Rapid deposition and thermoelectric properties of ytterbium boride thin films using hybrid physical chemical vapor deposition
JP2008239456A (en) Functional strontium titanate crystal, and method of producing the same
Wei et al. Sodium Doping Effects on Layered Cobaltate Bi 2 Sr 2 Co 2 O y Thin Films
Wang et al. Tuning of electrical and structural properties of indium oxide films grown by metal organic chemical vapor deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20121108

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Effective date: 20130319

Free format text: JAPANESE INTERMEDIATE CODE: A02