JP2008239059A - Marine vessel - Google Patents

Marine vessel Download PDF

Info

Publication number
JP2008239059A
JP2008239059A JP2007084887A JP2007084887A JP2008239059A JP 2008239059 A JP2008239059 A JP 2008239059A JP 2007084887 A JP2007084887 A JP 2007084887A JP 2007084887 A JP2007084887 A JP 2007084887A JP 2008239059 A JP2008239059 A JP 2008239059A
Authority
JP
Japan
Prior art keywords
bow
ship
water
line
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007084887A
Other languages
Japanese (ja)
Other versions
JP5091518B2 (en
Inventor
Etsuo Yamazaki
江津雄 山▲崎▼
Koyu Kimura
校優 木村
Akihiko Fujii
昭彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2007084887A priority Critical patent/JP5091518B2/en
Publication of JP2008239059A publication Critical patent/JP2008239059A/en
Application granted granted Critical
Publication of JP5091518B2 publication Critical patent/JP5091518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a marine vessel which reduces wave-making resistance at an ordinary water level, in a marine vessel with a large degree in enlargement of a hull form. <P>SOLUTION: In the marine vessel, the block coefficient Cbf of a bow front half part is 0.88 to 0.96, and a water head calculated by (0.5×Vs×Vs)/g is identified as H, where Vs represents the sea speed of the marine vessel, and g represents gravitational acceleration. On a water plane of at least a part within the range of the H above and below a designed load draft, an angle β is set to be not less than (30-α×2/5) and nor more than (100-α×5/4) where α° represents an angle where a hull center line is formed by a line segment connecting the position of a water line behind length Lpp between perpendiculars of a fore perpendicular by 1% to the fore perpendicular, and β° represents an angle formed by the hull center line and a line segment connecting the position of the water line behind the length Lpp between perpendiculars by 10% from the fore perpendicular to the position of the water line behind the length Lpp between perpendiculars by 15% from the fore perpendicular. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、満載状態における推進性能を向上できる船舶に関し、より詳細には、船首部における平水中の造波抵抗を減少できる船首部の形状を有する船舶に関する。   The present invention relates to a ship that can improve propulsion performance in a full load state, and more particularly, to a ship having a bow shape that can reduce wave-making resistance in plain water at the bow.

船舶の船首形状に関しては、波浪中造波抵抗の減少を目的とするものが多いが、波浪中抵抗の増加量は、平水中の造波抵抗量の10%〜30乃至40%程度であるので、全体から見ると、波浪中抵抗増加量を減少させることよりも、平水中の造波抵抗量を減少させることの方が効果が大きい。   As for the bow shape of a ship, there are many things aiming at the reduction of wave-making resistance in waves, but the amount of increase in wave resistance is about 10% to 30-40% of the amount of wave-making resistance in plain water. From the overall perspective, reducing the wave resistance in plain water is more effective than reducing the resistance increase in waves.

また、船舶の水槽実験や実船の航海の様子を観察した結果では、船首部の淀み点付近を中心した水面上昇分を考慮することが重要である。船舶の航走中は、図10に示すように、船首部と水とは相対的に航走速度Vsを持っており、船舶側に固定した座標系で見た場合には、船首部に水が流速Vsで流入してくることになる。従って、船首部がブラントな肥大船では、船首部の船体中心線(センターライン:C.L.)上の淀み点Oで水流速度Voがゼロとなるので、水の密度をρとし、重力加速度をgとすると、淀み点Oに於ける水頭Hと遠方の水頭Hsとの関係は、ベルヌーイの定理により、ρ×g×H+ρ×Vo2 /2=ρ×g×Hs+ρ×Vs2 /2となり、淀み点Oに於ける水頭Hは、H=Vs2 /(2×g)−Vo2 /(2×g)+Hsとなる。ここで、Vo=0,Hs=0とすると、H=Vs2 /(2×g)となる。 In addition, it is important to consider the rise in the water surface around the stagnation point of the bow in the results of observing the state of the vessel's aquarium experiment and the actual ship's voyage. While the ship is sailing, as shown in FIG. 10, the bow and water have a sailing speed Vs relatively, and when viewed in a coordinate system fixed on the ship side, Will flow in at a flow velocity Vs. Therefore, in an enlarged ship with a blunt bow, the water velocity Vo becomes zero at the stagnation point O on the hull center line (center line: CL) of the bow, so the density of water is ρ, and the gravitational acceleration When the the g, the relationship between the water head Hs of at water head H and far to the stagnation point O, the Bernoulli's theorem, ρ × g × H + ρ × Vo 2/2 = ρ × g × Hs + ρ × Vs 2/2 next The water head H at the stagnation point O is H = Vs 2 / (2 × g) −Vo 2 / (2 × g) + Hs. Here, when Vo = 0 and Hs = 0, H = Vs 2 / (2 × g).

つまり、船首部の淀み点Oで水面が上昇する量を示す水頭Hは、Vs2 /(2×g)となり、船首部の先端では、航走時には、この水頭H(Z1のライン)程度まで上昇することになる。従って、実際の水没部分は船首近傍では、満載喫水Z0よりも水頭H分だけ高い位置Z1の近傍までとなる。例えば、船速が15kt(ノット)の船舶では、Vs=7.72m/sとなり、この水頭Hは3.0mとなる。 In other words, the head H indicating the amount of water rising at the stagnation point O of the bow is Vs 2 / (2 × g), and at the tip of the bow, up to about this head H (Z1 line) at the time of cruising. Will rise. Therefore, the actual submerged portion is in the vicinity of the position Z1 that is higher by the head H than the full draft D0 near the bow. For example, in a ship having a boat speed of 15 kt (knots), Vs = 7.72 m / s, and the head H is 3.0 m.

この水面の盛り上がりを考慮して、平水中の造波抵抗量を減少させるものの一つとして、比較的速度の速い、フルード数Fn=0.18〜0.23程度の中速船において、船首造波抵抗を大幅に低減すべく、船首最先端ラインを、少なくとも計画速力において計画満載喫水船の少し下方付近から水面の盛り上がりにより水に接する部分の水線面を含む高さまで略鉛直上方に延ばし、かつ、当該範囲の水線面形状を先鋭にした船舶の船首形状が提案されている(例えば、特許文献1参照。)。   Considering this rise of the water surface, one of the ways to reduce the amount of wave resistance in plain water is to create a bow in a medium speed ship with a relatively fast Froude number Fn = 0.18 to 0.23. In order to significantly reduce the wave resistance, the bow leading edge line is extended almost vertically upward from a slightly lower part of the planned full-loading draft ship to a height including the water line surface of the part in contact with the water due to the rise of the water surface at the planned speed, And the bow shape of the ship which sharpened the water line surface shape of the said range is proposed (for example, refer patent document 1).

また、最大喫水よりも上の部分に関して、すべての水線面形状において、船首形状を船首水線から0.02×Lov(船舶の全長)後方を50°以内に収めて、船首をできるだけ前方に尖らせて、この船首での前方への波反射、波崩れ現象を緩和し、波浪中抵抗増加を減少するた肥大船が提案されている(例えば、特許文献2参照。)。   In addition, with regard to the portion above the maximum draft, in all waterline surface shapes, the bow shape should be within 0.02 × Lov (the total length of the ship) behind the bow waterline within 50 °, and the bow should be as far forward as possible. There has been proposed a hypertrophic ship that is sharpened to alleviate the wave reflection and wave breaking phenomenon at the bow and reduce the increase in resistance in waves (for example, see Patent Document 2).

これらの船舶の船首形状では、航行中の水面盛り上がり部分の船首先端部を尖鋭化して、水切りを良くして、船首波崩れを抑制して、大幅な造波抵抗及び砕破抵抗の減少を図っている。   In the bow shape of these ships, sharpening the tip of the bow of the rising water surface during navigation improves the drainage, suppresses the collapse of the bow wave, and significantly reduces wave resistance and breakage resistance. Yes.

しかしながら、この船首の先端部を尖鋭化した船首形状においては、船首部における水きりを良くして、船首波崩れを減少させることができる一方で、船首部を尖らせているため、船首の肩部が膨らむ傾向となり、細部から発生する波が顕著となり、船舶全体の造波抵抗は必ずしも減少しない。   However, in the bow shape with a sharpened tip of the bow, it is possible to improve the drainage of the bow and reduce the bow wave collapse, while the bow of the bow is sharpened. The wave generated from the details becomes prominent, and the wave resistance of the entire ship does not necessarily decrease.

本発明者らは、水槽実験や数値計算により、この肩部の形状と平水中の造波抵抗の関係を考慮することにより、より平水中の造波抵抗を減少することができるとの知見を得て、本発明に至った。
特開2003−160090号公報 特開2000−335477号公報
The present inventors have found that the wave resistance in plain water can be further reduced by taking into account the relationship between the shape of the shoulder and the wave resistance in plain water, through water tank experiments and numerical calculations. The present invention has been obtained.
JP 2003-160090 A JP 2000-335477 A

本発明の目的は、船型の肥大度が大きい船舶において、平水中の造波抵抗を減少することができる船舶を提供することにある。   The objective of this invention is providing the ship which can reduce the wave-making resistance in a plain water in the ship with a large ship size enlargement.

上記の目的を達成するための本発明の船舶は、船首前半部の方形係数Cbfが0.88〜0.96の船舶において、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭をHとしたときに、計画満載喫水の上下Hの範囲内における少なくとも一部の水線面において、船首垂線(F.P.)の垂線間長(Lpp)の1%後方の水線の位置と船首垂線(F.P.)とを結ぶ線分が船体中心線となす角度をα°とし、船首垂線(F.P.)より垂線間長(Lpp)の10%後方の水線の位置と、船首垂線(F.P.)より垂線間長(Lpp)の15%後方の水線の位置とを結ぶ線分と船体中心線(C.L)とがなす角度をβ°としたときに、この角度βが(100−α×5/4)以下で、かつ、(30−α×2/5)以上であるように構成される。この航海速力は、計画航海速力等、船舶が満載喫水に近い喫水で通常の航行を行う時の速力のことを言う。   In order to achieve the above object, the ship of the present invention is a ship having a square coefficient Cbf of the front half of the bow of 0.88 to 0.96, where Vs is the navigation speed of the ship and g is the acceleration of gravity. 0.5 × Vs × Vs) / g, where H is the head of water calculated at 0.5 × Vs × Vs) / g. The angle formed by the line connecting the position of the water line 1% behind the length between the vertical lines (Lpp) and the bow perpendicular (FP) to the hull center line is α °, and from the bow perpendicular (FP) A line segment connecting the position of the water line 10% behind the length between the vertical lines (Lpp) and the position of the water line 15% behind the length (Lpp) between the vertical lines (FP) and the center line of the hull When the angle formed by (CL) is β °, this angle β is (100−α × 5/4) or less and (30− × configured to be 2/5) above. This voyage speed refers to the speed at which a ship sails normally at a draft close to a full draft, such as a planned voyage speed.

この本発明の対象の船舶を船首前半部の方形係数Cbfが0.88〜0.96の船舶とするのは、船首前半部が太っているに場合において、本発明の効果が特に大きいからである。船首前半部の方形係数Cbfが0.88より小さいと船首部付近の丸みが少なく本発明の効果が少なくなり、また、船首前半部の方形係数Cbfが0.96より大きいと実用的な船型にならないからである。   The reason why the ship according to the present invention is a ship having a square coefficient Cbf of the front half of the bow of 0.88 to 0.96 is that the effect of the present invention is particularly large when the front half of the bow is thick. is there. If the square coefficient Cbf in the front half of the bow is smaller than 0.88, the roundness in the vicinity of the bow is small and the effect of the present invention is reduced. If the square coefficient Cbf in the front half of the bow is larger than 0.96, a practical ship shape is obtained. Because it will not be.

また、この限定する水線面の高さを計画満載喫水より上方と下方に水頭(H=(0.5×Vs×Vs)/g)の1.0倍の範囲(±H)内としているのは、船首部正面では水面が盛り上がるので、この上下範囲内の水線面形状が最も平水中の抵抗に影響があるためであり、航海時における実際の水面位置の多少の上下変化に対しても抵抗減少効果を確実に得られるようにするためである。   In addition, the height of the limited water line surface is within the range (± H) of 1.0 times the head (H = (0.5 × Vs × Vs) / g) above and below the planned full draft. This is because the water surface rises in front of the bow, and the shape of the waterline within this vertical range has the greatest effect on resistance in plain water. This is because a resistance reduction effect can be obtained with certainty.

また、角度αは船首部先端の脹らみ具合、言い換えれば、丸み具合を示す指標であり、角度βは肩波が発生する場所である肩部の形状を示す指標である。図9に示すように、船首前半部の方形係数Cbfが0.88以上の肥大船では、この肩部は船首垂線(F.P.)の後方の垂線間長(Lpp)の10%〜15%の範囲付近となり、肩波を減少するという本発明の効果を奏することができる。特に、船首前半部の方形係数Cbfが0.90以上の時にこの効果は大きい。一方、船首前半部の方形係数Cbfが0.88よりも小さいような痩せた船の場合は、この肩部は更に後方になり、例えば20%等となる。   Further, the angle α is an index indicating the degree of swelling at the tip of the bow, in other words, the degree of roundness, and the angle β is an index indicating the shape of the shoulder where the shoulder wave is generated. As shown in FIG. 9, in the case of an enlarged ship having a square coefficient Cbf of 0.88 or more in the front half of the bow, this shoulder is 10% to 15% of the length between the vertical lines (Lpp) behind the bow perpendicular (FP) %, The effect of the present invention of reducing shoulder waves can be achieved. In particular, this effect is significant when the square coefficient Cbf in the front half of the bow is 0.90 or more. On the other hand, in the case of a thin ship whose square coefficient Cbf in the front half of the bow is smaller than 0.88, the shoulder portion is further rearward, for example, 20%.

次に、この船型について説明する。船首部の排水量を一定とする条件下では、船首先端部が太くなると、肩部は細くなり、逆に、船首先端部が細くなると、肩部が張り出すという関係にある。そして、船首先端部を太くすると、船首波が盛り上がる範囲が広くなり、造波抵抗が増加する。一方、肩部を張らせた形状にすると、肩部での流速が増加するので、水面の凹みが大きくなり、その後方で盛り上がる肩波が大きくなる。そのため造波抵抗が増加する。   Next, this hull form will be described. Under the condition that the amount of drainage at the bow portion is constant, the shoulder portion becomes thin when the bow tip portion becomes thick, and conversely, when the bow tip portion becomes thin, the shoulder portion protrudes. And if the bow tip part is thickened, the range which a bow wave will rise becomes wide, and wave-making resistance will increase. On the other hand, when the shoulder portion is stretched, the flow velocity at the shoulder portion increases, so that the dent on the water surface increases and the shoulder wave that rises behind it increases. Therefore, wave resistance increases.

本発明は、このような船首先端部と肩部との関係を考慮して、平水中の造波抵抗が極小になるような範囲を与えて、平水中の推進抵抗を減少させるものである。つまり、上記の構成によれば、船首形状において、船首先端部は太く、肩部(10%Lpp〜15%Lpp)を細く形成したので、平水中では、船首部における造波抵抗が減少して平水中の推進抵抗が減少する。   In consideration of the relationship between the bow tip and the shoulder, the present invention provides a range in which the wave-making resistance in the plain water is minimized, thereby reducing the propulsion resistance in the plain water. That is, according to the above configuration, in the bow shape, the bow tip portion is thick and the shoulder portion (10% Lpp to 15% Lpp) is formed thin. Propulsion resistance in flat water decreases.

また、上記の船舶は、方形係数(Cb)が0.84〜0.95で、航海速力がフルード数(Fn)換算で0.12〜0.20の船舶である場合や垂線間長(Lpp)が50m〜400m等の大きな船舶の場合に特に大きな効果を奏することができる。   The above-mentioned ship has a rectangular coefficient (Cb) of 0.84 to 0.95 and a voyage speed of 0.12 to 0.20 in terms of Froude number (Fn). ) Can be particularly effective in the case of a large ship of 50 m to 400 m or the like.

この方形係数Cbは、船舶の排水容積をVとし、船の垂線間長をLpp、型幅をB、型喫水をdとした時に、Cb=V/(Lpp×B×d)となる無次元の値であり、この方形係数の値が大きいと肥大の度合いが大きいので、本発明の効果はより大きくなる。   This square coefficient Cb is a dimensionless which becomes Cb = V / (Lpp × B × d), where V is the drainage volume of the ship, Lpp is the length between the vertical lines of the ship, B is the mold width, and d is the mold draft. If the value of the square coefficient is large, the degree of enlargement is large, and the effect of the present invention is further increased.

また、船首前半部の方形係数Cbfは、船舶の前半部の排水容積をVfとし、船の垂線間長をLpp、型幅をB、型喫水をdとした時に、Cbf=Vf/(0.5×Lpp×B×d)となる無次元の値であり、この船首前半部の方形係数の値が大きいと船首部の肥大の度合いが大きい。   In addition, the square coefficient Cbf of the front half of the bow is Cbf = Vf / (0...) When the drainage volume of the front half of the ship is Vf, the length between the normals of the ship is Lpp, the mold width is B, and the draft is d. 5 × Lpp × B × d), which is a dimensionless value. When the value of the square coefficient in the front half of the bow is large, the degree of enlargement of the bow is large.

フルード数Fnは、船速Vs(m/s)に関する無次元表示であり、船の垂線間長をLpp(m),重力加速度をg(m/s2 )とした時に、Fn=Vs/(g×Lpp)1/2 となる無次元の値である。船速がこの範囲であると、船首正面部分における水面の上昇が比較的高くなるが、推進抵抗は極端に大きくならないので、本発明の効果が占める割合も比較的大きくなる。なお、航海速力Vsは、計画速力等と呼ばれることもあるので、ここでも、航海速力の中に計画速力を含むものとする。 The Froude number Fn is a dimensionless display with respect to the ship speed Vs (m / s). When the length between the normals of the ship is Lpp (m) and the gravitational acceleration is g (m / s 2 ), Fn = Vs / ( g × Lpp) A dimensionless value of 1/2 . When the boat speed is within this range, the rise of the water surface in the front portion of the bow becomes relatively high, but since the propulsion resistance does not become extremely large, the ratio of the effect of the present invention becomes relatively large. Note that the navigation speed Vs is sometimes referred to as the planned speed, etc., and therefore it is assumed here that the planned speed is included in the navigation speed.

更に、船長(垂線間長Lpp)が50m〜400m程度の船舶になると、比較的大きく肥大化し、船速も比較的遅い船舶となり、本発明の効果が大きくなる。   Furthermore, when the ship length (inter-perpendicular length Lpp) becomes a ship of about 50 m to 400 m, the ship becomes relatively large and the ship speed becomes relatively slow, and the effect of the present invention is enhanced.

本発明の船舶によれば、船型の肥大度が大きい船型で、最大喫水付近の船首形状を、船首先端部(F.P.〜1%Lpp)は太く、肩部(10%Lpp〜15%Lpp)を細く形成したので、肩波を大きく減らすことができ、船首部における平水中の造波抵抗を減少して平水中の推進抵抗を減少することができる。   According to the ship of the present invention, it is a hull shape with a large hull size, the bow shape near the maximum draft, the bow tip (FP-1% Lpp) is thick, and the shoulder (10% Lpp-15%) Since the Lpp) is formed thin, the shoulder wave can be greatly reduced, and the wave-making resistance in the plain water at the bow can be reduced, and the propulsion resistance in the plain water can be reduced.

以下図面を参照して本発明に係る船舶の実施の形態について説明する。本発明に係る第1の実施の形態の船舶Aは、図1及び図2に示すように、船首バルブが無い船型の場合である。図1及び図2の船舶Xは従来技術の船舶を示す。また、第2の実施の形態の船舶Bは、図3及び図4に示すように船首バルブ2を有している船型の場合である。図3及び図4の船舶Yは従来技術の船舶を示す。   Hereinafter, embodiments of a ship according to the present invention will be described with reference to the drawings. The ship A according to the first embodiment of the present invention is a ship type having no bow valve as shown in FIGS. 1 and 2. The ship X of FIG.1 and FIG.2 shows the ship of a prior art. Moreover, the ship B of 2nd Embodiment is a case of the ship type which has the bow valve 2 as shown in FIG.3 and FIG.4. 3 and 4 show a prior art ship.

これらの第1及び第2の実施の形態の船舶A,Bは、船首前半部の方形係数Cbfが0.88〜0.96の船舶であり、これらの船舶A,Bでは、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭をHとしたときに、最大喫水の上下Hの範囲内における少なくとも一部の水線面において、次のように構成される。   Ships A and B of the first and second embodiments are ships having a square coefficient Cbf of the front half of the bow of 0.88 to 0.96, and in these ships A and B, the voyage speed of the ship Where Vs is Vs and gravitational acceleration is g, where H is the water head calculated by (0.5 × Vs × Vs) / g, In terms of surface, it is configured as follows.

図5の水線図に示すように、船首垂線(F.P.)の垂線間長(Lpp)の1%後方の水線の位置(1%Lpp)と船首垂線(F.P.)とを結ぶ線分が船体中心線(C.L.)となす角度をα°とする。図5のC船型ではαc°であり、D船型ではαd°である。この部分が船首先端部となる。   As shown in the water line diagram of FIG. 5, the position of the water line (1% Lpp) 1% behind the length (Lpp) between the vertical lines of the bow perpendicular (FP) and the bow perpendicular (FP) The angle between the line segment connecting the two and the hull center line (CL) is α °. In FIG. 5, C type is αc °, and D type is αd °. This part is the bow tip.

また、船首垂線(F.P.)より垂線間長(Lpp)の10%後方の水線の位置と、船首垂線(F.P.)より垂線間長(Lpp)の15%後方の水線の位置とを結ぶ線分と船体中心線(C.L)とがなる角度をβ°とする。図5のC船型ではβc°であり、D船型ではβd°である。この部分が肩部となる。   Also, the position of the water line 10% behind the length between the vertical lines (Lpp) from the bow perpendicular (FP) and the water line 15% behind the length between the perpendiculars (FP) to the vertical line (Lpp) The angle between the line segment connecting the positions of the hull and the hull center line (CL) is β °. In FIG. 5, the ship C is βc °, and in the ship D, βd °. This part becomes the shoulder.

そして、本発明においては、この角度βが(100−α×5/4)以下で、かつ、(30−α×2/5)以上であるように形成される。図6に、この上記の条件を満たす中間船型Fの水線の例を、上記の条件を満たさない肩張船型Eと肩落船型Gとの比較で示す。   In the present invention, the angle β is formed to be (100−α × 5/4) or less and (30−α × 2/5) or more. FIG. 6 shows an example of a water line of an intermediate hull form F that satisfies the above-mentioned conditions by comparing a shoulder-type ship E that does not satisfy the above-mentioned conditions and a shoulder-fall type G.

この「(100−α×5/4)≧β≧(30−α×2/5)」の範囲は、これらの水線形状をもつ船型に対してシリーズの数値計算を行って造波抵抗を算出した結果から求めている。例えば、船種としてバルク運搬船を想定し、垂線間長Lppを220mとし、lcb=−2.0%の船型に関して、方形係数Cbを0.84、0.87、0.90、0.93に変更して、フルード数Fnを0.16(図7)と0.18(図8)にして計算した。この計算結果を、第1の角度α(°)を横軸とし、第2の角度β(°)を縦軸として、平水中の造波抵抗を無次元化した造波抵抗係数(rW)を円の大きさで示した。   This range of “(100−α × 5/4) ≧ β ≧ (30−α × 2/5)” is a range of numerical calculations of series for these waterline shapes, and the wave resistance is reduced. It is obtained from the calculated result. For example, assuming a bulk carrier as the ship type, the vertical length Lpp is 220 m, and the square coefficient Cb is set to 0.84, 0.87, 0.90, 0.93 for a hull form with lcb = −2.0%. The calculation was performed by changing the fluid number Fn to 0.16 (FIG. 7) and 0.18 (FIG. 8). The calculation result is obtained by using a first angle α (°) as a horizontal axis and a second angle β (°) as a vertical axis, and the wave resistance coefficient (rW) obtained by making the wave resistance in plain water dimensionless. Shown in circle size.

これらのシリーズ計算の結果から、造波抵抗係数の大きさを示す円が小さくなる範囲を求め、β=(100−α×5/4)の線と、β=(30−α×2/5)の線との間とした。なお、造波抵抗は船体前半部(ST(ステアステーション)5から船首先端)の造波成分のみを計算して算出している。   From the results of these series calculations, a range where the circle indicating the magnitude of the wave resistance coefficient is reduced is obtained, and a line β = (100−α × 5/4) and β = (30−α × 2/5). ) Between the lines. The wave-making resistance is calculated by calculating only the wave-forming component in the first half of the hull (from ST (steer station) 5 to the bow tip).

なお、上記の船舶としては、方形係数Cbが0.84〜0.95で、航海速力Vsがフルード数Fn換算で0.12〜0.20の船舶である場合や垂線間長(Lpp)が50m〜400m等の大きな船舶の場合に特に効果が大きい。   In addition, as said ship, when the square coefficient Cb is 0.84-0.95 and the voyage speed Vs is 0.12-0.20 in terms of Froude number Fn, or the length between perpendiculars (Lpp). The effect is particularly great in the case of a large ship such as 50 m to 400 m.

本発明に係る第1の実施の形態の船舶の船首部の形状を示す部分側面図である。It is a partial side view which shows the shape of the bow part of the ship of 1st Embodiment which concerns on this invention. 図1の船舶の船首部の形状を示す部分正面図である。It is a partial front view which shows the shape of the bow part of the ship of FIG. 本発明に係る第2の実施の形態の船舶の船首部の形状を示す部分側面図である。It is a partial side view which shows the shape of the bow part of the ship of 2nd Embodiment which concerns on this invention. 図3の船舶の船首部の形状を示す部分正面図である。It is a partial front view which shows the shape of the bow part of the ship of FIG. 本発明の第1の角度αと第2の角度βを説明するための水線図である。It is a water line diagram for demonstrating the 1st angle (alpha) and 2nd angle (beta) of this invention. 本発明に係る線型の水線面の例を示す図である。It is a figure which shows the example of the linear water line surface which concerns on this invention. 本発明に係わる船舶のフルード数が0.16における第1の角度αと第2の角度βと造波抵抗係数rWとの関係を示す図である。It is a figure which shows the relationship between 1st angle (alpha), 2nd angle (beta), and the wave-making resistance coefficient rW in case the fluid number of the ship concerning this invention is 0.16. 本発明に係わる船舶のフルード数が0.18における第1の角度αと第2の角度βと造波抵抗係数rWとの関係を示す図である。It is a figure which shows the relationship between 1st angle (alpha), 2nd angle (beta), and the wave-making resistance coefficient rW in case the fluid number of the ship concerning this invention is 0.18. 船首前半部の方形係数と肩部との関係を説明するための水線図である。It is a water line figure for demonstrating the relationship between the square coefficient of the bow first half part, and a shoulder part. 船首先端部における水面上昇と肩部における水面低下を説明するための図である。It is a figure for demonstrating the water surface rise in a bow front-end | tip part, and the water surface fall in a shoulder part.

符号の説明Explanation of symbols

A,B,C,D,E,F,G,X,Y 船舶
Cb 方形係数
Cbf 船首前半部の方形係数
C.L. 船体中央線(センターライン)
D 型深さ
F.P. 船首垂線
Fn フルード数
g 重力加速度
H 淀み点における水頭
hs 船首から遠方に離れた位置での水頭
O 淀み点
Vs 航海速力
Vo 淀み点の流速
α 第1の角度
β 第2の角度
2 船首バルブ
A, B, C, D, E, F, G, X, Y Ship Cb Square factor Cbf Square factor of the fore half of the bow L. Hull Chuo Line (Center Line)
D type depth P. Bow perpendicular Fn Froude number g Gravity acceleration H Head at the stagnation point hs Head at a position far away from the bow O Stagnation point
Vs Navigation speed Vo Stagnation point flow rate α First angle
β Second angle 2 Bow valve

Claims (2)

船首前半部の方形係数Cbfが0.88〜0.96の船舶において、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭をHとしたときに、計画満載喫水の上下Hの範囲内における少なくとも一部の水線面において、船首垂線(F.P.)の垂線間長(Lpp)の1%後方の水線の位置と船首垂線(F.P.)とを結ぶ線分が船体中心線となす角度をα°とし、船首垂線(F.P.)より垂線間長(Lpp)の10%後方の水線の位置と、船首垂線(F.P.)より垂線間長(Lpp)の15%後方の水線の位置とを結ぶ線分と船体中心線(C.L)とがなす角度をβ°としたときに、この角度βが(100−α×5/4)以下で、かつ、(30−α×2/5)以上であることを特徴とする船舶。   Calculated as (0.5 × Vs × Vs) / g when the ship's navigation speed is Vs and the gravitational acceleration is g in a ship having a square coefficient Cbf of 0.88 to 0.96 in the first half of the bow. When the head is H, at least a part of the waterline surface within the range of upper and lower H of the planned full draft of the waterline 1% behind the length of the vertical line (Lpp) of the bow perpendicular (FP) The angle between the line connecting the position and the bow perpendicular (FP) to the hull center line is α °, and the water line 10% behind the length of the perpendicular (Lpp) from the bow perpendicular (FP) The angle between the line segment connecting the position and the position of the water line 15% behind the length between the perpendiculars (Lpp) from the bow perpendicular (FP) and the hull center line (CL) is β ° Sometimes the angle β is (100−α × 5/4) or less and (30−α × 2/5) or more. 前記船舶が、方形係数が0.84〜0.95で、航海速力がフルード数換算で0.12〜0.20の船舶であることを特徴とする請求項1記載の船舶。   The ship according to claim 1, wherein the ship has a square coefficient of 0.84 to 0.95 and a voyage speed of 0.12 to 0.20 in terms of fluid number.
JP2007084887A 2007-03-28 2007-03-28 Ship Active JP5091518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084887A JP5091518B2 (en) 2007-03-28 2007-03-28 Ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084887A JP5091518B2 (en) 2007-03-28 2007-03-28 Ship

Publications (2)

Publication Number Publication Date
JP2008239059A true JP2008239059A (en) 2008-10-09
JP5091518B2 JP5091518B2 (en) 2012-12-05

Family

ID=39910892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084887A Active JP5091518B2 (en) 2007-03-28 2007-03-28 Ship

Country Status (1)

Country Link
JP (1) JP5091518B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178334A (en) * 2010-03-03 2011-09-15 Universal Shipbuilding Corp Enlarged ship
CN103274015A (en) * 2013-06-13 2013-09-04 重庆长航东风船舶工业公司 Novel bow linear inland river ship
RU2561186C1 (en) * 2014-06-04 2015-08-27 Открытое акционерное общество Конструкторское бюро по проектированию судов "Вымпел" Combination navigation ship fore
WO2018123031A1 (en) * 2016-12-28 2018-07-05 ジャパン マリンユナイテッド株式会社 Bow shape
WO2020262250A1 (en) * 2019-06-25 2020-12-30 ゴールドウィン シッピング リミティッド Ship
CN113609578A (en) * 2021-07-21 2021-11-05 上海外高桥造船有限公司 Heading angular velocity estimation method, energy efficiency detection method and energy efficiency detection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069834A (en) * 2005-09-09 2007-03-22 Mitsui Eng & Shipbuild Co Ltd Vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069834A (en) * 2005-09-09 2007-03-22 Mitsui Eng & Shipbuild Co Ltd Vessel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178334A (en) * 2010-03-03 2011-09-15 Universal Shipbuilding Corp Enlarged ship
CN103274015A (en) * 2013-06-13 2013-09-04 重庆长航东风船舶工业公司 Novel bow linear inland river ship
RU2561186C1 (en) * 2014-06-04 2015-08-27 Открытое акционерное общество Конструкторское бюро по проектированию судов "Вымпел" Combination navigation ship fore
WO2018123031A1 (en) * 2016-12-28 2018-07-05 ジャパン マリンユナイテッド株式会社 Bow shape
CN110114266A (en) * 2016-12-28 2019-08-09 日本日联海洋株式会社 Bow shape
JPWO2018123031A1 (en) * 2016-12-28 2019-10-31 ジャパンマリンユナイテッド株式会社 Bow shape
CN110114266B (en) * 2016-12-28 2021-09-14 日本日联海洋株式会社 Bow shape
JP7002474B2 (en) 2016-12-28 2022-01-20 ジャパンマリンユナイテッド株式会社 Bow shape
WO2020262250A1 (en) * 2019-06-25 2020-12-30 ゴールドウィン シッピング リミティッド Ship
CN112437739A (en) * 2019-06-25 2021-03-02 金威船务有限公司 Ship with a detachable cover
CN113609578A (en) * 2021-07-21 2021-11-05 上海外高桥造船有限公司 Heading angular velocity estimation method, energy efficiency detection method and energy efficiency detection system
CN113609578B (en) * 2021-07-21 2023-12-08 上海外高桥造船有限公司 Method for estimating angular velocity of turning head, energy efficiency detection method and system

Also Published As

Publication number Publication date
JP5091518B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
EP2530008B1 (en) A vessel with an improved foreship arrangement
JP5091518B2 (en) Ship
JP2008260445A (en) Vessel
JP2014054878A (en) Commercial cargo ship
JP4744329B2 (en) Ship
JP4889238B2 (en) Ship with bow fin
JP2002347688A (en) Enlarged ship
EP0866763B1 (en) Propeller configuration for sinusoidal waterline ships
CN202827987U (en) Perpendicular stem post transport ship type
JP2015098214A (en) Fin device and craft
CN114670984B (en) Ship damage GZ curve calculation method in liquid cargo ship loading instrument
JP2008247050A (en) Vessel drag reducing device and vessel
RU2527244C1 (en) Aft end of two-shaft vessel
JP4721836B2 (en) Ship
JP4216858B2 (en) Ship
JP5028000B2 (en) Ship
JP5896598B2 (en) Ship
JP2006008091A (en) Vessel shape for small high speed vessel
CN110062734B (en) Fin device and ship
TWI772675B (en) A hull in particular for a container ship, a bulk carrier or a tanker
JP2007238007A (en) Bilge keel for ship
WO2020262250A1 (en) Ship
JP5819764B2 (en) Ship and design method of the ship
EP3154850B1 (en) Hull for low drag boats
JP2024006713A (en) Energy saving device for vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350