JP2008235036A - Adjustment method for nickel hydrogen storage battery - Google Patents

Adjustment method for nickel hydrogen storage battery Download PDF

Info

Publication number
JP2008235036A
JP2008235036A JP2007073769A JP2007073769A JP2008235036A JP 2008235036 A JP2008235036 A JP 2008235036A JP 2007073769 A JP2007073769 A JP 2007073769A JP 2007073769 A JP2007073769 A JP 2007073769A JP 2008235036 A JP2008235036 A JP 2008235036A
Authority
JP
Japan
Prior art keywords
storage battery
negative electrode
reserve
nickel
hydride storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007073769A
Other languages
Japanese (ja)
Other versions
JP5047659B2 (en
Inventor
Toshihiro Yamada
敏弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Panasonic EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic EV Energy Co Ltd filed Critical Panasonic EV Energy Co Ltd
Priority to JP2007073769A priority Critical patent/JP5047659B2/en
Publication of JP2008235036A publication Critical patent/JP2008235036A/en
Application granted granted Critical
Publication of JP5047659B2 publication Critical patent/JP5047659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adjustment method for a nickel hydrogen storage battery capable of appropriately increasing the negative electrode capacity of discharge reserve. <P>SOLUTION: The adjustment method for the nickel hydrogen storage battery comprises a negative electrode reserve adjustment process (step S2) for increasing the capacity of the discharge reserve DR by over-charging the nickel hydrogen storage battery 100 equipped with a positive electrode 151 and a negative electrode 152 and by exhausting at least a part of oxygen gas O<SB>2</SB>generated from the positive electrode 151 to the outside of the nickel hydrogen storage battery 100. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ニッケル水素蓄電池の調整方法に関する。   The present invention relates to a method for adjusting a nickel metal hydride storage battery.

近年、ポータブル機器や携帯機器などの電源として、また、電気自動車やハイブリッド自動車などの電源として、様々なニッケル水素蓄電池が提案されている。一般に、ニッケル水素蓄電池では、負極の容量を正極の容量よりも大きくしている。これにより、電池の放電容量は、正極の容量によって制限される(以下、これを正極規制ともいう)。このように、正極規制とすることにより、過充電時及び過放電時における内圧の上昇を抑制することができる。なお、負極を正極と対比して、充電可能な過剰な未充電部分を充電リザーブと呼び、放電可能な過剰な充電部分を放電リザーブと呼んでいる。   In recent years, various nickel metal hydride storage batteries have been proposed as power sources for portable devices and portable devices, and as power sources for electric vehicles and hybrid vehicles. Generally, in a nickel metal hydride storage battery, the capacity of the negative electrode is made larger than the capacity of the positive electrode. As a result, the discharge capacity of the battery is limited by the capacity of the positive electrode (hereinafter also referred to as positive electrode regulation). Thus, by making positive electrode regulation, it is possible to suppress an increase in internal pressure during overcharge and overdischarge. In addition, the negative electrode is compared with the positive electrode, an excessively uncharged portion that can be charged is called a charge reserve, and an excessively charged portion that can be discharged is called a discharge reserve.

ところで、近年の調査により、ニッケル水素蓄電池には、微量の水素ガスが、電池ケースを透過して外部に漏れ続けるものがあることがわかっている。このように、水素ガスが外部に漏出すると、ケース内の水素分圧の平衡を保つべく、水素漏出量に応じて負極の水素吸蔵合金から水素が排出される。これにより、負極の放電リザーブが減少する。この水素の漏出は、非常にゆっくりと進行するため、比較的短い使用期間では問題とならない。 しかしながら、使用期間が長期にわたると、正極と負極の容量のバランスが悪くなると共に負極の容量が減少し、放電リザーブが消滅してしまう。その結果、ニッケル水素蓄電池が負極規制(電池の放電容量が、負極の容量によって制限されることをいう)となり、放電容量が減少してしまい、電池特性が大きく低下してしまう問題があった。ニッケル水素蓄電池を、電気自動車やハイブリッド自動車などの電源として用いる場合には、長期間の寿命が要求されるため、上記のような電池特性の低下が問題となり易い。   By the way, according to recent research, it is known that some nickel-metal hydride storage batteries continue to leak a small amount of hydrogen gas through the battery case. As described above, when hydrogen gas leaks to the outside, hydrogen is discharged from the hydrogen storage alloy of the negative electrode in accordance with the amount of hydrogen leakage in order to maintain the equilibrium of the hydrogen partial pressure in the case. This reduces the negative electrode discharge reserve. This hydrogen leakage proceeds very slowly and is not a problem for relatively short periods of use. However, when the service period is long, the balance between the positive electrode capacity and the negative electrode capacity is deteriorated, the capacity of the negative electrode is decreased, and the discharge reserve disappears. As a result, the nickel-metal hydride storage battery has negative electrode regulation (which means that the discharge capacity of the battery is limited by the capacity of the negative electrode), and the discharge capacity is reduced, resulting in a problem that the battery characteristics are greatly deteriorated. When a nickel metal hydride storage battery is used as a power source for an electric vehicle, a hybrid vehicle, or the like, a long life is required, and the above-described deterioration in battery characteristics tends to be a problem.

このような課題を解決すべく、放電リザーブの減少(消滅)により電池容量が低下したニッケル水素蓄電池を再生する方法が提案されている(特許文献1参照)。特許文献1では、電池ケース内に水素ガスを導入し、この水素ガスを負極の水素吸蔵合金に吸蔵させることで、電池容量を回復する技術が開示されている。導入した水素ガスを負極の水素吸蔵合金に吸蔵させることで、減少した放電リザーブを増加させることができると考えられる。また、特許文献1には、他の再生方法として、電池ケース内に、アルカリ金属やアルカリ金属水素化物を導入して、これを電解液と反応させることで水素ガスを発生させ、この水素ガスを負極の水素吸蔵合金に吸蔵させる技術も開示されている。
特開2004−319336号
In order to solve such a problem, a method for regenerating a nickel-metal hydride storage battery having a reduced battery capacity due to reduction (disappearance) of the discharge reserve has been proposed (see Patent Document 1). Patent Document 1 discloses a technique for recovering battery capacity by introducing hydrogen gas into a battery case and storing the hydrogen gas in a hydrogen storage alloy of a negative electrode. It is considered that the reduced discharge reserve can be increased by storing the introduced hydrogen gas in the hydrogen storage alloy of the negative electrode. Further, in Patent Document 1, as another regeneration method, an alkali metal or an alkali metal hydride is introduced into a battery case and reacted with an electrolytic solution to generate hydrogen gas. A technique for storing the hydrogen storage alloy in the negative electrode is also disclosed.
JP 2004-319336 A

ところが、特許文献1の水素ガスを導入する手法では、電池ケースの内圧が高いために、電池ケース内に水素ガスを導入することが容易でない。さらに、水素吸蔵合金に水素ガスを吸蔵させるためには、例えば、水素ガスに高圧力をかけなければならず、装置が大がかりとなりコスト高になると共に、危険であった。また、アルカリ金属やアルカリ金属水素化物を導入する手法では、導入したアルカリ金属の成分が電解液に加わるため、電解液の成分構成及び成分比が大きく変動することになる。これが原因で、ニッケル水素蓄電池の特性が大きく低下する虞があった。   However, in the method of introducing hydrogen gas in Patent Document 1, it is not easy to introduce hydrogen gas into the battery case because the internal pressure of the battery case is high. Further, in order to store hydrogen gas in the hydrogen storage alloy, for example, high pressure must be applied to the hydrogen gas, which is dangerous as the apparatus becomes large and the cost increases. Moreover, in the method of introducing an alkali metal or an alkali metal hydride, the introduced alkali metal component is added to the electrolytic solution, so that the component configuration and the component ratio of the electrolytic solution vary greatly. Due to this, the characteristics of the nickel-metal hydride storage battery may be greatly deteriorated.

本発明は、かかる現状に鑑みてなされたものであって、放電リザーブの容量を適切に増加させることができる、ニッケル水素蓄電池の調整方法を提供することを目的とする。   This invention is made | formed in view of this present condition, Comprising: It aims at providing the adjustment method of the nickel hydride storage battery which can increase the capacity | capacitance of discharge reserve appropriately.

その解決手段は、正極及び負極を備えるニッケル水素蓄電池を過充電して、上記正極から発生させた酸素ガスの少なくとも一部を上記ニッケル水素蓄電池の外部に排出して、上記負極の放電リザーブの容量を増加させる負極リザーブ調整工程を備えるニッケル水素蓄電池の調整方法である。   The solution includes overcharging a nickel metal hydride storage battery including a positive electrode and a negative electrode, and discharging at least a part of the oxygen gas generated from the positive electrode to the outside of the nickel metal hydride storage battery, and the capacity of the discharge reserve of the negative electrode. It is the adjustment method of the nickel hydride storage battery provided with the negative electrode reserve adjustment process which increases this.

ニッケル水素蓄電池では、過充電すると、正極から電子が放出されると共に、電解液の分解により酸素ガスが発生する。一方、負極では、水の分解により発生した水素が、水素吸蔵合金に吸蔵される。正極から発生した酸素ガスは、通常、水素吸蔵合金に吸蔵された水素との反応により消費される(水が生成される)ため、電池の内圧の上昇は抑制される。   In a nickel metal hydride storage battery, when overcharged, electrons are released from the positive electrode, and oxygen gas is generated due to decomposition of the electrolytic solution. On the other hand, in the negative electrode, hydrogen generated by the decomposition of water is stored in the hydrogen storage alloy. Since the oxygen gas generated from the positive electrode is normally consumed by the reaction with hydrogen stored in the hydrogen storage alloy (water is generated), an increase in the internal pressure of the battery is suppressed.

これに対し、本発明の負極リザーブ調整工程では、ニッケル水素蓄電池を過充電して、正極から発生させた酸素ガスの少なくとも一部を、ニッケル水素蓄電池の外部に排出する。これにより、電池内部では、過充電に伴って負極の水素吸蔵合金に吸蔵された水素が、酸素ガスに対し過剰となる。この結果、過充電して負極の水素吸蔵合金に吸蔵された水素の少なくとも一部を、発生した酸素ガスと反応させることなく水素吸蔵合金に吸蔵されたまま残存させる(これが放電リザーブとなる)ことができる。従って、本発明のニッケル水素蓄電池の調整方法によれば、適切に、放電リザーブの容量を増加させることができる。   On the other hand, in the negative electrode reserve adjusting step of the present invention, the nickel metal hydride storage battery is overcharged, and at least a part of the oxygen gas generated from the positive electrode is discharged to the outside of the nickel metal hydride storage battery. Thereby, in the battery, hydrogen stored in the hydrogen storage alloy of the negative electrode due to overcharge becomes excessive with respect to the oxygen gas. As a result, at least a portion of the hydrogen stored in the hydrogen storage alloy of the negative electrode after being overcharged remains in the hydrogen storage alloy without being reacted with the generated oxygen gas (this becomes a discharge reserve). Can do. Therefore, according to the method for adjusting a nickel metal hydride storage battery of the present invention, the capacity of the discharge reserve can be appropriately increased.

さらに、上記のニッケル水素蓄電池の調整方法であって、調整前の前記負極は、放電リザーブの初期値より小さな容量の前記放電リザーブを有し、上記負極リザーブ調整工程は、上記放電リザーブの容量を上記初期値に近づけるニッケル水素蓄電池の調整方法とすると良い。   Furthermore, in the method for adjusting the nickel-metal hydride storage battery, the negative electrode before adjustment has the discharge reserve having a capacity smaller than an initial value of discharge reserve, and the negative electrode reserve adjustment step includes adjusting the capacity of the discharge reserve. A method for adjusting the nickel-metal hydride storage battery close to the initial value is preferable.

本発明の負極リザーブ調整工程では、初期値より小さな容量の放電リザーブとなった負極を備えるニッケル水素蓄電池を過充電して、正極から発生させた酸素ガスの少なくとも一部をニッケル水素蓄電池の外部に排出することで、放電リザーブの容量を増加させて初期値に近づける。これにより、放電リザーブの容量と充電リザーブの容量とのバランスを整えることができる。   In the negative electrode reserve adjusting step of the present invention, the nickel metal hydride storage battery including the negative electrode whose discharge reserve is smaller than the initial value is overcharged, and at least a part of the oxygen gas generated from the positive electrode is transferred to the outside of the nickel metal hydride storage battery. By discharging, the capacity of the discharge reserve is increased to approach the initial value. This makes it possible to balance the capacity of the discharge reserve and the capacity of the charge reserve.

なお、放電リザーブの初期値とは、使用前(新品)または使用初期の段階での放電リザーブの容量をいう。
また、「初期値より小さな容量の放電リザーブ」とは、初期値より小さな容量の放電リザーブが残存している場合のほか、放電リザーブが消滅した場合(放電リザーブが0の場合)、さらには、放電リザーブの容量がマイナスの場合(放電容量が負極規制となる場合)も含む。
また、「放電リザーブの容量を初期値に近づける」とは、放電リザーブの容量を調整する前に比べて、放電リザーブの容量を初期値に近い値にすることであり、初期値との大小関係は問わない。
The initial value of the discharge reserve refers to the capacity of the discharge reserve before use (new product) or at the initial stage of use.
“Discharge reserve with a capacity smaller than the initial value” means not only when the discharge reserve with a capacity smaller than the initial value remains, but also when the discharge reserve disappears (when the discharge reserve is 0), This includes the case where the capacity of the discharge reserve is negative (when the discharge capacity becomes negative electrode regulation).
“Making the discharge reserve capacity close to the initial value” means that the discharge reserve capacity is closer to the initial value than before adjusting the discharge reserve capacity. Does not matter.

さらに、上記のニッケル水素蓄電池の調整方法であって、前記負極リザーブ調整工程は、調整後の前記放電リザーブが前記初期値以下となる範囲で、前記ニッケル水素蓄電池を過充電するニッケル水素蓄電池の調整方法とすると良い。   Furthermore, in the method for adjusting a nickel-metal hydride storage battery, the negative-electrode reserve adjustment step includes adjusting the nickel-metal hydride storage battery that overcharges the nickel-metal hydride storage battery in a range where the adjusted discharge reserve is equal to or less than the initial value. It would be better to do it.

放電リザーブを初期値より大きくすると、負極の充電リザーブを減少させることになる。このように調整されたニッケル水素蓄電池は、過充電すると、負極から大量の水素ガス等が発生して、内圧上昇を引き起こし易くなるので好ましくない。これに対し、本発明の調整方法では、調整後の放電リザーブが初期値以下となる範囲でニッケル水素蓄電池を過充電するので、上記のような状態になるのを防止できる。   If the discharge reserve is made larger than the initial value, the charge reserve for the negative electrode is reduced. When the nickel-metal hydride storage battery thus adjusted is overcharged, a large amount of hydrogen gas or the like is generated from the negative electrode, which tends to increase the internal pressure, which is not preferable. On the other hand, in the adjustment method of the present invention, since the nickel-metal hydride storage battery is overcharged in a range where the adjusted discharge reserve is equal to or less than the initial value, it is possible to prevent the state as described above.

さらに、上記いずれかのニッケル水素蓄電池の調整方法であって、前記負極リザーブ調整工程に先立って、前記正極から発生する酸素ガスの少なくとも一部を前記ニッケル水素蓄電池の外部に排出するガス排出孔を形成する排出孔形成工程と、上記負極リザーブ調整工程の後に、上記ガス排出孔を閉塞する排出孔閉塞工程と、を備えるニッケル水素蓄電池の調整方法とすると良い。   Further, in any one of the above-described methods for adjusting a nickel metal hydride storage battery, a gas discharge hole for discharging at least a part of oxygen gas generated from the positive electrode to the outside of the nickel metal hydride storage battery prior to the negative electrode reserve adjusting step. A method for adjusting the nickel-metal hydride storage battery may include a discharge hole forming step to be formed and a discharge hole closing step for closing the gas discharge hole after the negative electrode reserve adjustment step.

本発明の調整方法では、負極リザーブ調整工程に先立って、正極から発生する酸素ガスの少なくとも一部をニッケル水素蓄電池の外部に排出するガス排出孔を形成する。これにより、過充電により発生した酸素ガスの少なくとも一部を、適切に、ガス排出孔を通じて外部に排出することができる。さらに、負極リザーブ調整工程の後に、形成したガス排出孔を閉塞するので、放電リザーブを調整したニッケル水素蓄電池を、適切に使用することができる。   In the adjustment method of the present invention, prior to the negative electrode reserve adjustment step, a gas discharge hole for discharging at least a part of the oxygen gas generated from the positive electrode to the outside of the nickel metal hydride storage battery is formed. Thereby, at least a part of the oxygen gas generated by overcharging can be appropriately discharged to the outside through the gas discharge hole. Furthermore, since the formed gas discharge hole is closed after the negative electrode reserve adjusting step, the nickel metal hydride storage battery in which the discharge reserve is adjusted can be used appropriately.

さらに、請求項1〜請求項3のいずれか一項に記載のニッケル水素蓄電池の調整方法であって、前記ニッケル水素蓄電池は、通気孔を封止する安全弁であって、当該ニッケル水素蓄電池の内圧が所定値を超えると、上記安全弁を開放して上記通気孔を通じて当該ニッケル水素蓄電池の内部のガスを排出し、上記内圧を低減させる安全弁を備え、前記負極リザーブ調整工程は、上記ニッケル水素蓄電池を過充電する前に、または過充電している途中で、上記安全弁による上記通気孔の封止を強制的に開放させる安全弁開放工程と、上記ニッケル水素蓄電池を過充電した後に、上記安全弁を復帰させて、上記安全弁により上記通気孔を封止する安全弁復帰工程と、を含むニッケル水素蓄電池の調整方法とするのが好ましい。   Furthermore, it is the adjustment method of the nickel hydride storage battery as described in any one of Claims 1-3, Comprising: The said nickel hydride storage battery is a safety valve which seals a vent hole, Comprising: The internal pressure of the said nickel hydride storage battery When the pressure exceeds a predetermined value, the safety valve is opened, the gas inside the nickel-metal hydride storage battery is discharged through the vent, and the internal pressure is reduced. Before overcharging or during overcharging, a safety valve opening process for forcibly opening the sealing of the vent hole by the safety valve, and after overcharging the nickel metal hydride storage battery, the safety valve is returned. Thus, it is preferable to provide a method for adjusting a nickel-metal hydride storage battery, including a safety valve return step of sealing the vent hole with the safety valve.

この調整方法では、ニッケル水素蓄電池を過充電する前に、または過充電している途中で、安全弁による通気孔の封止を強制的に開放させ、ニッケル水素蓄電池を過充電した後に、安全弁を復帰させて安全弁により通気孔を封止する。これにより、過充電して正極から発生させた酸素ガスの少なくとも一部を、通気孔を通じて、ニッケル水素蓄電池の外部に排出することができる。このように、初めから形成されている通気孔を利用して酸素ガスを排出するので、電池ケースに別途ガス排出孔を形成し、酸素ガスを排出後、そのガス排出孔を別途閉塞部材で閉塞する等の手間がない。このため、低コストで且つ簡易に、負極の放電リザーブを調整することができる。   In this adjustment method, before overcharging the nickel-metal hydride storage battery or in the middle of overcharging, the vent of the safety valve is forcibly opened, and after the nickel-metal hydride storage battery is overcharged, the safety valve is restored. The vent is sealed with a safety valve. Thereby, at least a part of the oxygen gas generated from the positive electrode by overcharging can be discharged to the outside of the nickel metal hydride storage battery through the vent hole. As described above, since oxygen gas is discharged using the vent hole formed from the beginning, a separate gas discharge hole is formed in the battery case, and after the oxygen gas is discharged, the gas discharge hole is closed with a separate blocking member. There is no hassle to do. For this reason, the discharge reserve of the negative electrode can be adjusted easily at low cost.

(実施形態)
次に、本発明の実施形態について、図面を参照しつつ説明する。
まず、本実施形態にかかるニッケル水素蓄電池100を用意した。このニッケル水素蓄電池100は、図1,図2に示すように、電槽102及び蓋体103を有する電池ケース101を備える、角形密閉式のニッケル水素蓄電池である。
(Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings.
First, the nickel metal hydride storage battery 100 according to the present embodiment was prepared. As shown in FIGS. 1 and 2, the nickel hydride storage battery 100 is a prismatic sealed nickel hydride storage battery including a battery case 101 having a battery case 102 and a lid 103.

蓋体103は、樹脂からなり、矩形略板形状を有している。この蓋体103には、安全弁装置120が設けられている。安全弁装置120は、図3に示すように、通気孔105を封止するゴム製の安全弁122を有している。この安全弁装置120は、ニッケル水素蓄電池100(電池ケース101)の内圧が所定値を超えると、その圧力で安全弁122の底部122cが押し上げられることで、通気孔105の封止を開放する。これにより、通気孔105を通じてニッケル水素蓄電池100(電池ケース101)の内部のガスを排出することができる。電槽102は、樹脂からなり、矩形略箱形状を有している。   The lid 103 is made of resin and has a substantially rectangular plate shape. The lid 103 is provided with a safety valve device 120. As shown in FIG. 3, the safety valve device 120 includes a rubber safety valve 122 that seals the vent hole 105. When the internal pressure of the nickel metal hydride storage battery 100 (battery case 101) exceeds a predetermined value, the safety valve device 120 pushes up the bottom 122c of the safety valve 122 with the pressure, thereby opening the sealing of the vent hole 105. Thereby, the gas inside the nickel metal hydride storage battery 100 (battery case 101) can be discharged through the vent hole 105. The battery case 102 is made of resin and has a substantially rectangular box shape.

電池ケース101(電槽102)の内部は、図3に示すように、隔壁部130によって、6つのセル110に仕切られている。それぞれのセル110内には、極板群150と、電解液(図示しない)とが配置されている。
極板群150は、正極151と負極152と袋状のセパレータ153とを備えている。このうち、正極151は袋状のセパレータ153内に挿入されており、セパレータ153内に挿入された正極151と、負極152とが交互に積層されている。各セル110内に位置する正極151及び負極152は、それぞれ集電されて、これらが直列に接続されると共に、正極端子141及び負極端子142に接続されている。
As shown in FIG. 3, the interior of the battery case 101 (the battery case 102) is partitioned into six cells 110 by a partition wall 130. In each cell 110, an electrode plate group 150 and an electrolyte (not shown) are arranged.
The electrode plate group 150 includes a positive electrode 151, a negative electrode 152, and a bag-like separator 153. Among these, the positive electrode 151 is inserted into a bag-like separator 153, and the positive electrode 151 and the negative electrode 152 inserted into the separator 153 are alternately stacked. The positive electrode 151 and the negative electrode 152 located in each cell 110 are respectively collected and connected in series, and are connected to the positive electrode terminal 141 and the negative electrode terminal 142.

正極151としては、例えば、水酸化ニッケルを含む活物質と、発泡ニッケルなどの活物質支持体とを備える電極板を用いることができる。負極152としては、例えば、水素吸蔵合金を負極構成材として含む電極板を用いることができる。セパレータ153としては、例えば、親水化処理された合成繊維からなる不織布を用いることができる。電解液としては、例えば、KOHを含む比重1.2〜1.4のアルカリ水溶液を用いることができる。   As the positive electrode 151, for example, an electrode plate including an active material containing nickel hydroxide and an active material support such as foamed nickel can be used. As the negative electrode 152, for example, an electrode plate containing a hydrogen storage alloy as a negative electrode constituent material can be used. As the separator 153, for example, a non-woven fabric made of synthetic fibers subjected to a hydrophilic treatment can be used. As the electrolytic solution, for example, an alkaline aqueous solution containing KOH and having a specific gravity of 1.2 to 1.4 can be used.

なお、本実施形態のニッケル水素蓄電池100では、正極容量を6.5Ah、負極容量を11Ahとしている。従って、本実施形態のニッケル水素蓄電池100は、正極規制の状態であり、電池容量を6.5Ahとしている。すなわち、SOC(State Of Charge)100%=6.5Ahである。   In the nickel metal hydride storage battery 100 of this embodiment, the positive electrode capacity is 6.5 Ah and the negative electrode capacity is 11 Ah. Therefore, the nickel metal hydride storage battery 100 of this embodiment is in a state of positive electrode regulation, and the battery capacity is set to 6.5 Ah. That is, SOC (State Of Charge) 100% = 6.5 Ah.

(放電リザーブ容量の初期値の測定)
まず、未使用のニッケル水素蓄電池100を用意し、このニッケル水素蓄電池100について、負極152の放電リザーブDRの容量の初期値を測定した。具体的には、電池電圧が1Vになるまで放電した後、電池上部(例えば、蓋体103)に孔を空け、この孔から電解液を補充して電解液が過剰に存在する状態とした。次いで、各セル110内の電解液中に、図示しないHg/HgO参照極を配設して、放電容量を測定しながら過放電させた。
(Measurement of initial value of discharge reserve capacity)
First, an unused nickel metal hydride storage battery 100 was prepared, and the initial value of the capacity of the discharge reserve DR of the negative electrode 152 was measured for the nickel metal hydride storage battery 100. Specifically, after discharging until the battery voltage reached 1 V, a hole was formed in the upper part of the battery (for example, the lid 103), and the electrolyte solution was replenished through this hole so that the electrolyte solution was excessively present. Next, an Hg / HgO reference electrode (not shown) was disposed in the electrolyte solution in each cell 110 and overdischarged while measuring the discharge capacity.

ここで、放電リザーブDRの容量は、次式に基づいて算出した。(放電リザーブDRの容量)=(参照極の電位に対する負極152の電位が−0.7Vになるまでの放電容量)−(参照極に対する正極151の電位が−0.5Vになるまでの放電容量)。このようにして測定したところ、各セル110内の負極152の放電リザーブDRの初期値は、平均して約2.5Ahであった(図4参照)。   Here, the capacity of the discharge reserve DR was calculated based on the following equation. (Capacity of the discharge reserve DR) = (Discharge capacity until the potential of the negative electrode 152 becomes −0.7 V with respect to the potential of the reference electrode) − (Discharge capacity until the potential of the positive electrode 151 with respect to the reference electrode becomes −0.5 V) ). When measured in this way, the initial value of the discharge reserve DR of the negative electrode 152 in each cell 110 was about 2.5 Ah on average (see FIG. 4).

なお、図4では、正極151及び負極152の容量を、それぞれ、縦長の帯の長さで示しており、このうち充電部分の容量をハッチングで示している(白抜き部分は、未充電部分の容量を示す)。また、図4〜図8では、放電リザーブDRの容量を、ゼロ基準線B1(正極151の下端、すなわち正極151が完全放電する位置に対応した位置)より下方をプラス方向、上方をマイナス方向として矢印で示しており、放電リザーブDRの容量が正の値である場合は、DR(+)と表記し(図4参照)、負の値である場合はDR(−)と表記している(図5参照)。また、放電リザーブ容量の初期値を測定した、未使用のニッケル水素蓄電池100は、図4にハッチングで示すように、SOC50%としている。   In FIG. 4, the capacities of the positive electrode 151 and the negative electrode 152 are indicated by the lengths of the vertically long bands, and among these, the capacity of the charged part is indicated by hatching (the white part indicates the uncharged part). Capacity). 4 to 8, the capacity of the discharge reserve DR is defined as a positive direction below the zero reference line B1 (a position corresponding to the lower end of the positive electrode 151, that is, a position where the positive electrode 151 is completely discharged), and a negative direction above. It is indicated by an arrow, and when the capacity of the discharge reserve DR is a positive value, it is expressed as DR (+) (see FIG. 4), and when it is a negative value, it is expressed as DR (-) ( (See FIG. 5). Moreover, the unused nickel metal hydride storage battery 100 which measured the initial value of the discharge reserve capacity | capacitance is set to SOC50%, as shown by hatching in FIG.

(高温放置)
次に、未使用のニッケル水素蓄電池100を、SOC60%まで充電した後、65℃の恒温槽内に6ヶ月間放置した。なお、恒温槽内の温度を65℃と比較的高温としたのは、負極の水素吸蔵合金の腐食を促進させると共に、水素漏出量を増加させるためである。また、恒温槽内に放置している間は、電池の深放電を防止するため(電池電圧が1Vを下回り劣化するのを防止するため)に、1ヶ月ごとに、SOC60%まで再充電している。
(High temperature storage)
Next, the unused nickel metal hydride storage battery 100 was charged to 60% SOC and then left in a constant temperature bath at 65 ° C. for 6 months. The reason why the temperature in the thermostatic chamber was set to a relatively high temperature of 65 ° C. is to promote corrosion of the hydrogen storage alloy of the negative electrode and increase the amount of hydrogen leakage. In order to prevent deep discharge of the battery while it is left in the thermostat (to prevent the battery voltage from deteriorating below 1V), it is recharged to SOC 60% every month. Yes.

その後、このニッケル水素蓄電池100について、前述のようにして、負極152の放電リザーブDRの容量を測定したところ、各セル110内の負極152の放電リザーブDRの容量は、図5に示すように、平均して約−3.0Ahであった。すなわち、この高温放置により、放電リザーブDRがマイナス容量となり、放電容量が負極規制となっていた。   Thereafter, when the capacity of the discharge reserve DR of the negative electrode 152 was measured for the nickel metal hydride battery 100 as described above, the capacity of the discharge reserve DR of the negative electrode 152 in each cell 110 was as shown in FIG. The average was about -3.0 Ah. In other words, the discharge reserve DR becomes a negative capacity and the discharge capacity becomes a negative electrode regulation due to this high temperature standing.

次に、本実施形態のニッケル水素蓄電池の調整方法について説明する。
(排出孔形成工程)
まず、図9に示すように、ステップS1(排出孔形成工程)において、上述のように高温放置したニッケル水素蓄電池100に、ニッケル水素蓄電池100(電池ケース101)の内部のガスを外部に排出するガス排出孔107を形成した。具体的には、図10に示すように、注液口108を閉塞する樹脂製の閉塞蓋106に、これを貫通する1.5cm×3cmの矩形状のガス排出孔107を形成した。これにより、図10に矢印で示すように、ニッケル水素蓄電池100の各セル110内で発生したガスを、注液口108を経由してガス排出孔107を通じて、外部に排出することができる。
Next, the adjustment method of the nickel metal hydride storage battery of this embodiment is demonstrated.
(Discharge hole forming process)
First, as shown in FIG. 9, in step S <b> 1 (discharge hole forming step), the gas inside the nickel hydride storage battery 100 (battery case 101) is discharged to the nickel hydride storage battery 100 left at a high temperature as described above. A gas discharge hole 107 was formed. Specifically, as shown in FIG. 10, a 1.5 cm × 3 cm rectangular gas discharge hole 107 penetrating through the resin-made closing lid 106 that closes the liquid injection port 108 was formed. As a result, as shown by arrows in FIG. 10, the gas generated in each cell 110 of the nickel-metal hydride storage battery 100 can be discharged to the outside through the gas injection hole 108 through the liquid injection port 108.

(負極リザーブ調整工程)
次に、図9に示すように、ステップS2(負極リザーブ調整工程)に進み、ガス排出孔107を形成したニッケル水素蓄電池100を過充電して、正極151から酸素ガスO2を発生させた。なお、ニッケル水素蓄電池100を過充電すると、通常は、次のような反応が生じる。
(正極)OH- → 1/4O2+1/2H2O+e- …(1)
(負極)M+H2O+e- → MH+OH- …(2)
MH+1/4O2 → M+1/2H2O …(3)
(Negative electrode reserve adjustment process)
Next, as shown in FIG. 9, the process proceeds to step S <b> 2 (negative electrode reserve adjusting step), and the nickel metal hydride storage battery 100 in which the gas discharge hole 107 is formed is overcharged to generate oxygen gas O 2 from the positive electrode 151. In addition, when the nickel metal hydride storage battery 100 is overcharged, the following reaction usually occurs.
(Positive electrode) OH → 1/4 O 2 + 1 / 2H 2 O + e (1)
(Negative electrode) M + H 2 O + e → MH + OH (2)
MH + 1 / 4O 2 → M + 1 / 2H 2 O (3)

ところが、本実施形態では、前述のように、ステップS2(負極リザーブ調整工程)に先立って、ステップS1においてガス排出孔107を形成しているので、式(1)の正極151から発生した酸素ガスO2を、ガス排出孔107を通じて電池外部に排出することができる(図10参照)。これにより、負極152では、式(2)の反応が進行して水素Hが吸蔵される一方、式(3)の反応が抑制されることで水素Hの放出を抑制することができる。従って、図6に破線のハッチングで示すように、過充電すると、負極152の充電部分の容量を増加させることができる。 However, in the present embodiment, as described above, since the gas discharge hole 107 is formed in step S1 prior to step S2 (negative electrode reserve adjustment step), oxygen gas generated from the positive electrode 151 of the formula (1) is formed. O 2 can be discharged outside the battery through the gas discharge hole 107 (see FIG. 10). Thereby, in the negative electrode 152, the reaction of the formula (2) proceeds and the hydrogen H is occluded, while the reaction of the formula (3) is suppressed, so that the release of the hydrogen H can be suppressed. Therefore, as indicated by the hatched area in FIG. 6, when the battery is overcharged, the capacity of the charged portion of the negative electrode 152 can be increased.

本実施形態では、正極端子141及び負極端子142を通じて、電流値2A(約1/3Cの電流値)で、SOC100%まで充電した後、さらに続けて、11Ahの電気量を過剰に充電(過充電)した。これにより、図7に示すように、各セル110内の負極152の放電リザーブDRの容量を増加させることができ、放電リザーブDRの容量を平均して約2.0Ahにまで回復させることができた。すなわち、本実施形態の負極リザーブ調整工程において、放電リザーブDRの容量を増加させて、初期値(本実施形態では、2.5Ah)に近づけることができた。これにより、図7に示すように、放電リザーブDRの容量と充電リザーブCRの容量とのバランスを整えることができた。   In this embodiment, after charging to SOC 100% at a current value of 2A (current value of about 1 / 3C) through the positive electrode terminal 141 and the negative electrode terminal 142, the electric amount of 11 Ah is excessively charged (overcharge). )did. As a result, as shown in FIG. 7, the capacity of the discharge reserve DR of the negative electrode 152 in each cell 110 can be increased, and the capacity of the discharge reserve DR can be restored to about 2.0 Ah on average. It was. That is, in the negative electrode reserve adjustment process of the present embodiment, the capacity of the discharge reserve DR can be increased to approach the initial value (2.5 Ah in the present embodiment). As a result, as shown in FIG. 7, the balance between the capacity of the discharge reserve DR and the capacity of the charge reserve CR could be adjusted.

なお、図7では、充電リザーブCRの容量を、ゼロ基準線B2(正極151の上端、すなわち正極151が満充電する位置に対応した位置)より上方をプラス方向、下方をマイナス方向として矢印で示している。図7では、充電リザーブCRの容量が正の値であるため、これをCR(+)と表記している。   In FIG. 7, the capacity of the charge reserve CR is indicated by an arrow with a positive direction above the zero reference line B2 (the position corresponding to the upper end of the positive electrode 151, that is, the position where the positive electrode 151 is fully charged) and a negative direction below. ing. In FIG. 7, since the capacity of the charge reserve CR is a positive value, this is expressed as CR (+).

ところで、放電リザーブDRを初期値より大きくすると、充電リザーブCRを減少させることになる。このように調整されたニッケル水素蓄電池は、過充電すると、負極152から大量の水素ガス等が発生して、内圧上昇を引き起こし易くなるので好ましくない。
これに対し、本実施形態の負極リザーブ調整工程では、前述のように、調整後の放電リザーブDRの容量が初期値以下となる範囲で、ニッケル水素蓄電池100を過充電しているので、上記のような状態になるのを防止できる。
By the way, if the discharge reserve DR is made larger than the initial value, the charge reserve CR is reduced. When the nickel hydride storage battery adjusted in this way is overcharged, a large amount of hydrogen gas or the like is generated from the negative electrode 152, which is likely to cause an increase in internal pressure.
On the other hand, in the negative electrode reserve adjustment step of the present embodiment, as described above, the nickel hydride storage battery 100 is overcharged in the range where the capacity of the adjusted discharge reserve DR is equal to or less than the initial value. It is possible to prevent such a situation.

また、ニッケル水素蓄電池100を過充電する際の電流値が小さいと、酸素ガスO2の発生速度が小さくなるため、負極152の水素吸蔵合金に吸蔵された水素Hと反応し易くなる。すなわち、式(3)の反応が進行し易くなる。これにより、正極151から発生した酸素ガスO2を、ニッケル水素蓄電池100の外部に排出し難くなるので、放電リザーブDRの容量を増加させ難くなる(放電リザーブDRを増加させるのに時間がかかる)。 In addition, when the current value at the time of overcharging the nickel-metal hydride storage battery 100 is small, the generation rate of the oxygen gas O 2 is small, so that it is easy to react with the hydrogen H stored in the hydrogen storage alloy of the negative electrode 152. That is, the reaction of formula (3) is likely to proceed. This makes it difficult to discharge the oxygen gas O 2 generated from the positive electrode 151 to the outside of the nickel metal hydride storage battery 100, and thus makes it difficult to increase the capacity of the discharge reserve DR (it takes time to increase the discharge reserve DR). .

これに対し、本実施形態では、ニッケル水素蓄電池100を過充電する際の電流値を、2A(約1/3C)と比較的大きくしている。これにより、酸素ガスO2の発生速度が大きくなり、電池外部に排出される酸素ガスO2の割合が大きくなるので、酸素ガスO2と負極152の水素吸蔵合金に吸蔵された水素Hとの反応の割合を抑制することができる。すなわち、式(3)の反応を抑制することができる。このため、放電リザーブDRの容量を、効率良く増加させることができた。 On the other hand, in this embodiment, the current value at the time of overcharging the nickel-metal hydride storage battery 100 is relatively large as 2A (about 1 / 3C). Thus, generation rate of oxygen gas O 2 is increased, the proportion of oxygen gas O 2 to be discharged to the outside of the battery is increased, the oxygen gas O 2 and hydrogen H occluded in the hydrogen storage alloy of the negative electrode 152 The rate of reaction can be suppressed. That is, the reaction of formula (3) can be suppressed. For this reason, the capacity of the discharge reserve DR could be increased efficiently.

(排出孔閉塞工程)
次に、ステップS3(排出孔閉塞工程)に進み、ガス排出孔107を閉塞した。具体的には、図11に示すように、矩形板状の樹脂からなる閉塞部材109を、ガス排出孔107を穿孔した閉塞蓋106に対し、ガス排出孔107を閉塞する位置で熱溶着した。これにより、ニッケル水素蓄電池100を密閉することができた。このため、負極152の放電リザーブDRの容量が回復したニッケル水素蓄電池100を、適切に使用することができる。
(Discharge hole closing process)
Next, it progressed to step S3 (discharge hole obstruction | occlusion process), and the gas exhaust hole 107 was obstruct | occluded. Specifically, as shown in FIG. 11, a closing member 109 made of a rectangular plate-shaped resin was thermally welded to a closing lid 106 having a gas discharging hole 107 in a position where the gas discharging hole 107 was closed. Thereby, the nickel metal hydride storage battery 100 was able to be sealed. For this reason, the nickel metal hydride storage battery 100 in which the capacity of the discharge reserve DR of the negative electrode 152 is recovered can be used appropriately.

(変形形態)
本変形形態のニッケル水素蓄電池200は、実施形態のニッケル水素蓄電池100と比較して、安全弁装置の構造が異なり、その他の部分は同様である。具体的には、図12に示すように、本変形形態の安全弁装置220は、実施形態の安全弁装置120と異なり、安全弁122の上方に位置する環状の通気口125の中心軸の位置に、貫通孔226が穿孔されている。さらに、本変形形態の安全弁222は、実施形態の安全弁122と比較して、中心軸の位置にねじ孔223が形成されている点のみが異なっている。なお、ねじ孔223と貫通孔226とは、同一軸線C1上に配置されている。
(Deformation)
The nickel-metal hydride storage battery 200 of this modification is different from the nickel-hydrogen storage battery 100 of the embodiment in the structure of the safety valve device, and the other parts are the same. Specifically, as shown in FIG. 12, the safety valve device 220 of the present modified example is different from the safety valve device 120 of the embodiment in that it penetrates at the position of the central axis of the annular vent 125 located above the safety valve 122. A hole 226 is drilled. Furthermore, the safety valve 222 of this modification is different from the safety valve 122 of the embodiment only in that a screw hole 223 is formed at the position of the central axis. The screw hole 223 and the through hole 226 are arranged on the same axis C1.

さらに、本変形形態の調整方法は、実施形態の調整方法と比較して、過充電して正極151から発生させた酸素ガスを、ニッケル水素蓄電池200の外部に排出する手法が異なり、その他については同様である。
具体的には、実施形態では、過充電して正極151から発生させた酸素ガスを、ニッケル水素蓄電池100の外部に排出するために、負極リザーブ調整工程に先立って、排出孔形成工程においてガス排出孔107を穿孔した。さらに、負極リザーブ調整工程の後、排出孔閉塞工程において、閉塞部材109によりガス排出孔107を閉塞した。
Furthermore, the adjustment method of this modification differs from the adjustment method of the embodiment in the method of discharging oxygen gas generated from the positive electrode 151 by overcharging to the outside of the nickel metal hydride storage battery 200. It is the same.
Specifically, in the embodiment, in order to discharge the oxygen gas generated from the positive electrode 151 by overcharging to the outside of the nickel metal hydride storage battery 100, the gas discharge is performed in the discharge hole forming step prior to the negative electrode reserve adjustment step. Hole 107 was drilled. Further, after the negative electrode reserve adjusting step, the gas discharge hole 107 was closed by the closing member 109 in the discharge hole closing step.

これに対し、本変形形態では、ガス排出孔107を穿孔することなく(排出孔形成工程を設けることなく)、負極リザーブ調整工程内の安全弁開放工程において、ニッケル水素蓄電池200を過充電する前に、安全弁222による通気孔105の封止を強制的に開放させる。具体的には、図13に示すように、安全弁装置220の上方から、先端側にねじ部231を有するボルト230を、ねじ部231側から貫通孔226内に進入させ、さらに、ねじ部231をねじ孔223に螺挿する。次いで、図13に矢印で示すように、ボルト230を、図中上方に引き上げる。   On the other hand, in this modified embodiment, before the nickel hydride storage battery 200 is overcharged in the safety valve opening process in the negative electrode reserve adjustment process without drilling the gas discharge hole 107 (without providing the discharge hole forming process). The sealing of the vent hole 105 by the safety valve 222 is forcibly opened. Specifically, as shown in FIG. 13, from the upper side of the safety valve device 220, a bolt 230 having a screw portion 231 on the tip side is caused to enter the through hole 226 from the screw portion 231 side, and the screw portion 231 is further inserted. Screw into the screw hole 223. Next, as shown by an arrow in FIG. 13, the bolt 230 is pulled upward in the drawing.

すると、図14に示すように、安全弁222の上端部222bが弾性的に圧縮するので、安全弁222の底面222cが安全弁装置220の底部228から離間する。これにより、安全弁222による通気孔105の封止を開放することができる。従って、その後、実施形態と同様にしてニッケル水素蓄電池200を過充電すれば、図14に矢印で示すように、正極151から発生した酸素ガスO2を、通気孔105及び通気口125を通じて、ニッケル水素蓄電池200の外部に排出することができる。 Then, as shown in FIG. 14, the upper end portion 222 b of the safety valve 222 is elastically compressed, so that the bottom surface 222 c of the safety valve 222 is separated from the bottom portion 228 of the safety valve device 220. Thereby, sealing of the vent hole 105 by the safety valve 222 can be opened. Therefore, if the nickel metal hydride storage battery 200 is then overcharged in the same manner as in the embodiment, oxygen gas O 2 generated from the positive electrode 151 passes through the vent hole 105 and the vent hole 125 as shown by arrows in FIG. It can be discharged outside the hydrogen storage battery 200.

さらに、本変形形態では、負極リザーブ調整工程内の安全弁復帰工程において、ニッケル水素蓄電池200を過充電した後に、安全弁222を復帰させて、安全弁222により通気孔105を封止する。具体的には、上方に引き上げているボルト230に加えている力を開放して、引き上げる前の自然状態(図13に示す状態)に戻す。これにより、弾性的に圧縮していた安全弁222が元の状態に復元して、底面222cが安全弁装置220の底部228に当接するので、通気孔105を封止することができる。これにより、ニッケル水素蓄電池200を密閉することができる。その後、ねじ孔223に螺挿しているボルト230を取り外せば、負極152の放電リザーブDRの容量が回復したニッケル水素蓄電池200を得ることができる。   Furthermore, in this modified embodiment, in the safety valve return step in the negative electrode reserve adjustment step, after the nickel metal hydride storage battery 200 is overcharged, the safety valve 222 is returned and the vent hole 105 is sealed by the safety valve 222. Specifically, the force applied to the bolt 230 pulled upward is released to return to the natural state (the state shown in FIG. 13) before being pulled up. Accordingly, the safety valve 222 that has been elastically compressed is restored to its original state, and the bottom surface 222c comes into contact with the bottom portion 228 of the safety valve device 220, so that the vent hole 105 can be sealed. Thereby, the nickel metal hydride storage battery 200 can be sealed. Thereafter, if the bolt 230 screwed into the screw hole 223 is removed, the nickel hydride storage battery 200 in which the capacity of the discharge reserve DR of the negative electrode 152 is recovered can be obtained.

本変形形態では、実施形態と異なり、初めから形成されている通気孔105を利用して酸素ガスを排出するので、電池ケース101に別途ガス排出孔107を形成し、酸素ガスを排出後、そのガス排出孔107を別途閉塞部材109で閉塞する等の手間がない。このため、低コストで且つ簡易に、負極152の放電リザーブDRを調整することができる。   In this modified embodiment, unlike the embodiment, oxygen gas is discharged using the vent hole 105 formed from the beginning. Therefore, a separate gas discharge hole 107 is formed in the battery case 101, and after the oxygen gas is discharged, There is no need to separately close the gas discharge hole 107 with the closing member 109. For this reason, the discharge reserve DR of the negative electrode 152 can be adjusted easily at low cost.

以上において、本発明を実施形態及び変形形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施形態等では、樹脂製の電池ケースを備えるニッケル水素蓄電池100,200について、放電リザーブDRの容量を調整した。しかしながら、本発明の調整方法は、いずれの材質の電池ケースを備えるニッケル水素蓄電池にも適用することができる。
In the above, the present invention has been described with reference to the embodiments and modifications. However, the present invention is not limited to the above-described embodiments and the like, and can be applied with appropriate modifications without departing from the gist thereof. Not too long.
For example, in the embodiment and the like, the capacity of the discharge reserve DR is adjusted for the nickel metal hydride storage batteries 100 and 200 having a resin battery case. However, the adjustment method of the present invention can be applied to a nickel metal hydride storage battery including a battery case of any material.

実施形態にかかる二次電池100の上面図である。1 is a top view of a secondary battery 100 according to an embodiment. 実施形態にかかる二次電池100の側面図である。1 is a side view of a secondary battery 100 according to an embodiment. 実施形態にかかる二次電池100の内部を示す図であり、図1のA−A断面図に相当する。It is a figure which shows the inside of the secondary battery 100 concerning embodiment, and is equivalent to AA sectional drawing of FIG. 負極152の放電リザーブDRを説明する説明図である。It is explanatory drawing explaining the discharge reserve DR of the negative electrode 152. FIG. 負極152の放電リザーブDRを説明する説明図である。It is explanatory drawing explaining the discharge reserve DR of the negative electrode 152. FIG. 負極152の放電リザーブDRを説明する説明図である。It is explanatory drawing explaining the discharge reserve DR of the negative electrode 152. FIG. 負極152の放電リザーブDRを説明する説明図である。It is explanatory drawing explaining the discharge reserve DR of the negative electrode 152. FIG. 負極152の放電リザーブDRを説明する説明図である。It is explanatory drawing explaining the discharge reserve DR of the negative electrode 152. FIG. 実施形態にかかるニッケル水素蓄電池の調整方法のフローチャートである。It is a flowchart of the adjustment method of the nickel hydride storage battery concerning embodiment. 実施形態にかかる負極リザーブ調整工程を説明する説明図である。It is explanatory drawing explaining the negative electrode reserve adjustment process concerning embodiment. 実施形態にかかる負極リザーブ調整工程を説明する説明図である。It is explanatory drawing explaining the negative electrode reserve adjustment process concerning embodiment. 変形形態にかかる二次電池200の安全弁装置220の拡大断面図である。It is an expanded sectional view of the safety valve apparatus 220 of the secondary battery 200 concerning a modification. 変形形態にかかる負極リザーブ調整工程を説明する説明図である。It is explanatory drawing explaining the negative electrode reserve adjustment process concerning a deformation | transformation form. 変形形態にかかる負極リザーブ調整工程を説明する説明図である。It is explanatory drawing explaining the negative electrode reserve adjustment process concerning a deformation | transformation form.

符号の説明Explanation of symbols

100,200 ニッケル水素蓄電池
105 通気孔
107 ガス排出孔
109 閉塞部材
120,220 安全弁装置
122,222 安全弁
151 正極
152 負極
DR 放電リザーブ
100, 200 Nickel metal hydride storage battery 105 Vent hole 107 Gas exhaust hole 109 Closure member 120, 220 Safety valve device 122, 222 Safety valve 151 Positive electrode 152 Negative electrode DR Discharge reserve

Claims (4)

正極及び負極を備えるニッケル水素蓄電池を過充電して、上記正極から発生させた酸素ガスの少なくとも一部を上記ニッケル水素蓄電池の外部に排出して、上記負極の放電リザーブの容量を増加させる負極リザーブ調整工程を備える
ニッケル水素蓄電池の調整方法。
A negative electrode reserve that increases the capacity of the negative electrode discharge reserve by overcharging a nickel metal hydride storage battery including a positive electrode and a negative electrode, and discharging at least a part of the oxygen gas generated from the positive electrode to the outside of the nickel metal hydride battery. The adjustment method of a nickel-metal hydride storage battery provided with an adjustment process.
請求項1に記載のニッケル水素蓄電池の調整方法であって、
調整前の前記負極は、放電リザーブの初期値より小さな容量の前記放電リザーブを有し、
上記負極リザーブ調整工程は、上記放電リザーブの容量を上記初期値に近づける
ニッケル水素蓄電池の調整方法。
It is the adjustment method of the nickel metal hydride storage battery of Claim 1, Comprising:
The negative electrode before adjustment has the discharge reserve of a capacity smaller than the initial value of the discharge reserve,
The negative electrode reserve adjusting step is a method for adjusting a nickel metal hydride storage battery in which the capacity of the discharge reserve is brought close to the initial value.
請求項2に記載のニッケル水素蓄電池の調整方法であって、
前記負極リザーブ調整工程は、
調整後の前記放電リザーブが前記初期値以下となる範囲で、前記ニッケル水素蓄電池を過充電する
ニッケル水素蓄電池の調整方法。
A method for adjusting a nickel-metal hydride storage battery according to claim 2,
The negative electrode reserve adjustment step includes:
The adjustment method of the nickel hydride storage battery which overcharges the said nickel hydride storage battery in the range in which the said discharge reserve after adjustment becomes below the said initial value.
請求項1〜請求項3のいずれか一項に記載のニッケル水素蓄電池の調整方法であって、
前記負極リザーブ調整工程に先立って、前記正極から発生する酸素ガスの少なくとも一部を前記ニッケル水素蓄電池の外部に排出するガス排出孔を形成する排出孔形成工程と、
上記負極リザーブ調整工程の後に、上記ガス排出孔を閉塞する排出孔閉塞工程と、を備える
ニッケル水素蓄電池の調整方法。
It is the adjustment method of the nickel hydride storage battery as described in any one of Claims 1-3,
Prior to the negative electrode reserve adjusting step, a discharge hole forming step for forming a gas discharge hole for discharging at least part of the oxygen gas generated from the positive electrode to the outside of the nickel metal hydride storage battery,
A method for adjusting a nickel-metal hydride storage battery comprising: a discharge hole closing step for closing the gas discharge hole after the negative electrode reserve adjustment step.
JP2007073769A 2007-03-21 2007-03-21 Adjustment method of nickel metal hydride storage battery Active JP5047659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073769A JP5047659B2 (en) 2007-03-21 2007-03-21 Adjustment method of nickel metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073769A JP5047659B2 (en) 2007-03-21 2007-03-21 Adjustment method of nickel metal hydride storage battery

Publications (2)

Publication Number Publication Date
JP2008235036A true JP2008235036A (en) 2008-10-02
JP5047659B2 JP5047659B2 (en) 2012-10-10

Family

ID=39907602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073769A Active JP5047659B2 (en) 2007-03-21 2007-03-21 Adjustment method of nickel metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP5047659B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572731B1 (en) * 2013-03-22 2014-08-13 プライムアースEvエナジー株式会社 Adjustment method of nickel metal hydride storage battery
WO2014167971A1 (en) * 2013-04-12 2014-10-16 プライムアースEvエナジー株式会社 Method for restoring battery capacity, method for restoring battery assembly capacity, device for restoring battery capacity, and device for restoring battery assembly capacity
JP2014207789A (en) * 2013-04-12 2014-10-30 プライムアースEvエナジー株式会社 Method and device for recovering negative electrode discharge capacity
JP2018028967A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Method for manufacturing battery pack
JP2020136198A (en) * 2019-02-25 2020-08-31 プライムアースEvエナジー株式会社 Regeneration process of nickel hydrogen secondary battery and regenerator of nickel hydrogen secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9413041B2 (en) 2013-03-22 2016-08-09 Primearth Ev Energy Co., Ltd. Method for adjusting nickel-metal hydride storage battery
JP5572731B1 (en) * 2013-03-22 2014-08-13 プライムアースEvエナジー株式会社 Adjustment method of nickel metal hydride storage battery
CN104919643B (en) * 2013-04-12 2017-05-24 朴力美车辆活力股份有限公司 Method for restoring battery capacity, method for restoring battery assembly capacity, device for restoring battery capacity, and device for restoring battery assembly capacity
JP2014207789A (en) * 2013-04-12 2014-10-30 プライムアースEvエナジー株式会社 Method and device for recovering negative electrode discharge capacity
CN104919643A (en) * 2013-04-12 2015-09-16 朴力美车辆活力股份有限公司 Method for restoring battery capacity, method for restoring battery assembly capacity, device for restoring battery capacity, and device for restoring battery assembly capacity
JP2014207151A (en) * 2013-04-12 2014-10-30 プライムアースEvエナジー株式会社 Method for recovering battery capacity, method for recovering battery pack capacity, battery capacity recovery device, and battery pack capacity recovery device
WO2014167971A1 (en) * 2013-04-12 2014-10-16 プライムアースEvエナジー株式会社 Method for restoring battery capacity, method for restoring battery assembly capacity, device for restoring battery capacity, and device for restoring battery assembly capacity
US9692088B2 (en) 2013-04-12 2017-06-27 Primearth Ev Energy Co., Ltd Method for restoring battery capacity, method for restoring battery pack capacity, device for restoring battery capacity, and device for restoring battery pack capacity
DE112014001940B4 (en) * 2013-04-12 2020-10-15 Primearth Ev Energy Co., Ltd. A method for restoring a battery capacity, a method for restoring the capacity of a battery pack, an apparatus for restoring a battery capacity and an apparatus for restoring the capacity of a battery pack
JP2018028967A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Method for manufacturing battery pack
CN107768761A (en) * 2016-08-15 2018-03-06 丰田自动车株式会社 The manufacture method of battery pack
US10466306B2 (en) 2016-08-15 2019-11-05 Toyota Jidosha Kabushiki Kaisha Method of manufacturing battery pack
CN107768761B (en) * 2016-08-15 2020-03-27 丰田自动车株式会社 Method for manufacturing battery pack
JP2020136198A (en) * 2019-02-25 2020-08-31 プライムアースEvエナジー株式会社 Regeneration process of nickel hydrogen secondary battery and regenerator of nickel hydrogen secondary battery
JP7036757B2 (en) 2019-02-25 2022-03-15 プライムアースEvエナジー株式会社 Nickel-metal hydride secondary battery regeneration method and nickel-metal hydride secondary battery regeneration device

Also Published As

Publication number Publication date
JP5047659B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5728520B2 (en) Battery capacity recovery method, battery pack capacity recovery method, battery capacity recovery device, and battery pack capacity recovery device
DK2833469T3 (en) REVERSIBLE FUEL CELLS AND REVERSIBLE FUEL CELL SYSTEM
US20100033138A1 (en) Charging methods for nickel-zinc battery packs
JP5572731B1 (en) Adjustment method of nickel metal hydride storage battery
JP5047659B2 (en) Adjustment method of nickel metal hydride storage battery
JP5925755B2 (en) Battery module adjustment method and battery module adjustment apparatus
JP5972209B2 (en) Negative electrode discharge capacity recovery method and negative electrode discharge capacity recovery device
US6669742B2 (en) Method for producing a nickel metal-hydride storage battery
JP7036757B2 (en) Nickel-metal hydride secondary battery regeneration method and nickel-metal hydride secondary battery regeneration device
JP2016091824A (en) Manufacturing method of battery and alkali storage battery
JP4639641B2 (en) Sealed alkaline storage battery
JP6699390B2 (en) Battery system
EP0907216B1 (en) Open and maintenance free accumulator of industrial type
JP5034156B2 (en) Nickel metal hydride storage battery
JPH10294125A (en) Non-sealed industrial storage battery with alkaline electrolyte that requires no maintenance
US10218037B2 (en) Method and device for regenerating nickel metal hydride battery
JP2015041445A (en) Regeneration method of alkaline secondary battery
Buengeler et al. Lead-Acid–Still the Battery Technology with the Largest Sales
US20230044496A1 (en) Method for replacing rechargeable battery
JP2022151160A (en) Method of controlling alkaline secondary battery
JP2023117796A (en) Control method and control device for nickel-metal hydride storage battery
Imhof Silver-Zinc batteries for AUV applications
JP2001076753A (en) Nickel-hydrogenized metal sealed storage battery
JP2021009824A (en) Control valve type lead-acid battery
JP2021009823A (en) Control valve type lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250