JP2008234838A - Nonaqueous electrolyte and nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008234838A
JP2008234838A JP2007067998A JP2007067998A JP2008234838A JP 2008234838 A JP2008234838 A JP 2008234838A JP 2007067998 A JP2007067998 A JP 2007067998A JP 2007067998 A JP2007067998 A JP 2007067998A JP 2008234838 A JP2008234838 A JP 2008234838A
Authority
JP
Japan
Prior art keywords
sulfonate
battery
general formula
molecule
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007067998A
Other languages
Japanese (ja)
Other versions
JP5150928B2 (en
Inventor
Kaneyasu Chiyou
金保 趙
Yuzo Ishigaki
友三 石垣
Motosuke Yamanaka
基資 山中
Hiroyuki Fukuda
博行 福田
Keigo Aoi
啓悟 青井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Maxell Holdings Ltd
Original Assignee
Nagoya University NUC
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Hitachi Maxell Ltd filed Critical Nagoya University NUC
Priority to JP2007067998A priority Critical patent/JP5150928B2/en
Priority to PCT/JP2008/054776 priority patent/WO2008114739A1/en
Priority to KR1020097017001A priority patent/KR101113192B1/en
Priority to CN2008800043118A priority patent/CN101606267B/en
Publication of JP2008234838A publication Critical patent/JP2008234838A/en
Application granted granted Critical
Publication of JP5150928B2 publication Critical patent/JP5150928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having suitable high-temperature storage performance even in a high-voltage charged state, and also to provide a nonaqueous electrolyte for forming the nonaqueous electrolyte secondary battery. <P>SOLUTION: The nonaqueous electrolyte secondary battery has nonaqueous electrolyte containing a nonaqueous solvent, electrolyte salt, and sulfonate, in which the sulfonate is a compound having a branched type ether frame in a molecule, a positive electrode, a negative electrode, a separator, and the nonaqueous electrolyte. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エーテル骨格とスルホン酸金属塩基の両者を分子内に有する分岐型化合物を含有する非水電解液と、上記非水電解液を用いてなり、高電圧下においても高温貯蔵性に優れた非水電解質二次電池に関するものである。   The present invention uses a non-aqueous electrolyte containing a branched compound having both an ether skeleton and a metal sulfonate group in the molecule, and the non-aqueous electrolyte, and is excellent in high-temperature storage even under high voltage. The present invention also relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池は、高電圧(作動電圧4.2V)、高エネルギー密度という特徴を持つことから、携帯情報機器分野などにおいて広く利用され、その需要が急速に拡大しており、現在では、携帯電話、ノート型パソコンを始めとするモバイル情報化機器用の標準電池としてのポジションが確立されている。当然ながら、携帯機器などの高性能化と多機能化に伴い、その電源としてのリチウムイオン二次電池に対しても更なる高性能化(例えば、高容量化と高エネルギー密度化)が求められている。この要求に応えるために種々の方法、例えば、電極の充填率の向上による高密度化、現行の活物質(特に負極)の充電深度の拡大、高容量の新規活物質の開発などが検討されている。そして、現実に、これらの方法によってリチウムイオン二次電池は確実に高容量化されている。   Lithium ion secondary batteries are characterized by high voltage (operating voltage 4.2V) and high energy density, so they are widely used in the field of portable information devices, and their demand is rapidly expanding. A position as a standard battery for mobile information devices such as mobile phones and notebook computers has been established. Naturally, along with the high performance and multi-functionality of portable devices, there is a need for higher performance (for example, higher capacity and higher energy density) for lithium-ion secondary batteries as power sources. ing. In order to meet this demand, various methods such as increasing the density by increasing the filling rate of the electrodes, increasing the charging depth of the current active material (especially the negative electrode), and developing a new active material with a high capacity have been studied. Yes. In reality, the capacity of the lithium ion secondary battery is reliably increased by these methods.

このリチウムイオン二次電池は、電解液(電解質)として、電解質塩を非水性溶媒(有機溶媒)に溶解させた非水電解液を用いているが、非水性溶媒としては、これまで、エチレンカーボネートなどの環状エステルと、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピオン酸メチルなどの鎖状エステルとを混合して用いてきた。   In this lithium ion secondary battery, a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent (organic solvent) is used as the electrolyte solution (electrolyte). And cyclic esters such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propionate have been mixed and used.

しかしながら、これらのエステル系溶媒(特に鎖状カーボネートエステル)は、電極との酸化または還元反応によりガスなどを発生させるため、このようなエステル系溶媒を用いた電解液を有するリチウムイオン二次電池では、高温貯蔵(特に60℃以上の貯蔵)において電池膨れが生じ易い。現在の作動電圧が4.2Vのリチウムイオン二次電池では、上記の電池膨れによる問題は、さほど深刻なものではないものの、かかる点において改善の余地がある。   However, since these ester solvents (especially chain carbonate esters) generate gas or the like by oxidation or reduction reaction with the electrode, in a lithium ion secondary battery having an electrolytic solution using such an ester solvent. In addition, battery swelling tends to occur during high-temperature storage (particularly storage at 60 ° C. or higher). In the lithium ion secondary battery having a current operating voltage of 4.2 V, although the problem due to the battery swelling is not so serious, there is room for improvement in this respect.

他方、今後、更なる高容量化を図るために、正極活物質の利用率の向上や高電圧材料の開発が求められている中で、特に充電電圧の上昇による正極活物質の充電深度の拡大が注目されている。例えば、作動電圧が4.2V級のリチウムイオン二次電池の活物質であるコバルト複合酸化物(LiCoO)は、現在採用されている充電条件であるLi基準で4.3Vまで充電すると、充電容量が約155mAh/gであるのに対し、4.50Vまで充電すると約190mAh/g以上である。このように充電電圧の向上で正極活物質の利用率が大きくなる。 On the other hand, in order to further increase the capacity in the future, it is required to improve the utilization rate of the positive electrode active material and to develop a high voltage material. In particular, the charging depth of the positive electrode active material is increased by increasing the charging voltage. Is attracting attention. For example, a cobalt composite oxide (LiCoO 2 ), which is an active material of a lithium ion secondary battery having an operating voltage of 4.2 V class, is charged when charged to 4.3 V on the basis of Li, which is a currently used charging condition. While the capacity is about 155 mAh / g, it is about 190 mAh / g or more when charged to 4.50V. Thus, the utilization rate of a positive electrode active material becomes large by the improvement of a charging voltage.

しかし、電池の高電圧化に伴って、電池の容量やエネルギー密度が向上する一方で、電池の安全性や充放電サイクル特性の低下だけではなく、高温貯蔵時における膨れなどが大きな問題となる。   However, as the voltage of the battery increases, the capacity and energy density of the battery improve. On the other hand, not only the safety of the battery and the charge / discharge cycle characteristics decrease, but also the swelling during high-temperature storage becomes a serious problem.

ところで、従来から、電池の安全性や充放電サイクルの低下、電池の膨れなどの問題を解決する技術の提案もある。例えば、既に実用化されているリチウムイオン二次電池には、上記の通り、エチレンカーボネートなどの環状エステルと、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状エステルとの混合溶媒を有する非水電解液が用いられているが、これに特定の環状硫酸エステルなどの添加剤を加えて、上記の問題を解決する技術が提案されている(例えば、特許文献1〜8参照)。このような添加剤が添加された非水電解液を有するリチウムイオン二次電池を充電すると、負極表面に上記添加剤由来の緻密な皮膜が形成され、この皮膜により非水電解液中の非水性溶媒と負極との反応が継続的に抑制される。そのため、その後の充放電サイクルの進行に伴う電池容量の低下やガス発生による電池の膨れを抑制することができ、電池の充放電サイクル特性などを改善することができると考えられている。   By the way, conventionally, there is also a proposal of a technique for solving problems such as battery safety, a decrease in charge / discharge cycle, and battery swelling. For example, as described above, a lithium ion secondary battery that has already been put into practical use includes a non-aqueous solution having a mixed solvent of a cyclic ester such as ethylene carbonate and a chain ester such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Although an electrolytic solution is used, a technique for solving the above problem by adding an additive such as a specific cyclic sulfate to the electrolyte has been proposed (for example, see Patent Documents 1 to 8). When a lithium ion secondary battery having a non-aqueous electrolyte to which such an additive is added is charged, a dense film derived from the additive is formed on the negative electrode surface, and this film forms a non-aqueous electrolyte in the non-aqueous electrolyte. The reaction between the solvent and the negative electrode is continuously suppressed. For this reason, it is considered that the battery capacity can be prevented from decreasing and the battery is swollen due to gas generation with the progress of the subsequent charge / discharge cycle, and the charge / discharge cycle characteristics of the battery can be improved.

特許第3760540号公報Japanese Patent No. 3760540 特開2003−151623号公報JP 2003-151623 A 特開2003−308875号公報JP 2003-308875 A 特開2004−22523号公報JP 2004-22523 A 特許第3658506号公報Japanese Patent No. 3658506 特許第3213459号公報Japanese Patent No. 3213459 特許第3438636号公報Japanese Patent No. 3438636 特開平9−245834号公報Japanese Patent Laid-Open No. 9-245834

ところが、上記特許文献1〜8の技術では、形成した皮膜のイオン伝導性が不足するため、電池の特性が低下し、また、上記皮膜は構造的に不安定で、皮膜の溶解と成長を繰り返すため、高温貯蔵時における膨れの抑制効果は必ずしも十分ではない。また、電池の充電完了時における正極の電位が、例えばLi基準で4.35V以上のような高電圧となる場合には、これらの技術を適用するだけでは、充放電サイクル特性の低下抑制や高温貯蔵時における膨れ抑制を十分に達成できるものではない。   However, in the techniques of Patent Documents 1 to 8, since the ion conductivity of the formed film is insufficient, the characteristics of the battery are deteriorated, and the film is structurally unstable and repeats dissolution and growth of the film. For this reason, the effect of suppressing swelling during high-temperature storage is not always sufficient. In addition, when the potential of the positive electrode at the completion of charging of the battery becomes a high voltage of, for example, 4.35 V or more on the basis of Li, it is possible to suppress deterioration in charge / discharge cycle characteristics or to increase the Swelling suppression during storage cannot be sufficiently achieved.

本発明は上記事情に鑑みてなされたものであり、その目的は、高電圧の充電状態であっても高温貯蔵特性の良好な非水電解液二次電池と、該非水電解液二次電池を構成し得る非水電解液を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having good high-temperature storage characteristics even in a high-voltage charged state, and the non-aqueous electrolyte secondary battery. The object is to provide a non-aqueous electrolyte that can be configured.

上記目的を達成し得た本発明の非水電解液は、非水性溶媒と電解質塩とスルホン酸塩とを含有する非水電解液であって、上記スルホン酸塩が、分子内に分岐型エーテル骨格を有する化合物であることを特徴とするものである。   The non-aqueous electrolyte of the present invention that has achieved the above object is a non-aqueous electrolyte containing a non-aqueous solvent, an electrolyte salt, and a sulfonate, and the sulfonate is branched ether in the molecule. It is a compound having a skeleton.

また、本発明の非水電解液二次電池は、正極、負極、セパレータ、および本発明の非水電解液を有することを特徴とするものである。   The non-aqueous electrolyte secondary battery of the present invention is characterized by having a positive electrode, a negative electrode, a separator, and the non-aqueous electrolyte of the present invention.

一般に、充電された非水電解液二次電池では、正極活物質である金属酸化物が高電位状態で非常に強い酸化性を示すため、正極表面において非水電解液の溶媒として用いた非水性溶媒と反応し、これを分解する。特に高電圧で充電された場合、この分解反応は激しくなる。このような非水性溶媒の分解反応は、高電圧で充電された非水電解液二次電池を高温で貯蔵した際の膨れ発生の原因となる。   In general, in a charged nonaqueous electrolyte secondary battery, the metal oxide as the positive electrode active material exhibits a very strong oxidizing property in a high potential state. Therefore, the nonaqueous electrolyte used as a solvent for the nonaqueous electrolyte solution on the positive electrode surface Reacts with solvent and decomposes. Particularly when charged at a high voltage, this decomposition reaction becomes violent. Such a decomposition reaction of the non-aqueous solvent causes swelling when a non-aqueous electrolyte secondary battery charged at a high voltage is stored at a high temperature.

本発明者らは、種々の化合物の中から特異な構造のエーテル結合を有する分岐型化合物に注目し、詳しく検討を重ねた結果、エーテル結合を有する短いセグメントを、スルホン酸金属塩基と共に一つの分子内に導入した分岐型化合物(スルホン酸塩)を含有させた非水電解液を用いて構成した電池では、充電(特に高電圧で充電)した場合に、上記分岐型化合物が正極と反応して正極表面に皮膜を形成すること、該皮膜の有する分岐型化合物由来のエーテル結合は安定であり、その酸化が抑制されること、スルホン酸金属塩基を構成するカチオンが電離し易くなって皮膜のイオン伝導度の向上を図り得ること、エーテル結合からなる分岐構造が高いイオン伝導性を有すること、および分子構造の制御によって分岐型化合物自身の粘度などを制御できることを見出し、本発明を完成するに至った。   The present inventors paid attention to a branched compound having an ether bond having a unique structure among various compounds, and as a result of repeated detailed studies, a short segment having an ether bond was converted into one molecule together with a metal sulfonate group. In a battery constructed using a non-aqueous electrolyte containing a branched compound (sulfonate) introduced into the battery, the charged compound reacts with the positive electrode when charged (especially charged at a high voltage). Forming a film on the surface of the positive electrode, the ether bond derived from the branched compound in the film is stable, its oxidation is suppressed, and the cations constituting the sulfonic acid metal base are easily ionized, resulting in ionization of the film The conductivity can be improved, the branched structure consisting of ether bonds has high ionic conductivity, and the viscosity of the branched compound itself is controlled by controlling the molecular structure. It found that can be, and have completed the present invention.

本発明によれば、高電圧の充電状態であっても高温貯蔵特性の良好な非水電解液二次電池と、該非水電解液二次電池を構成し得る非水電解液を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having good high-temperature storage characteristics even in a high-voltage charged state, and a non-aqueous electrolyte that can constitute the non-aqueous electrolyte secondary battery. it can.

本発明の非水電解液では、分子内に分岐型エーテル骨格を有するスルホン酸塩が用いられる。このような構造を有する化合物は、高い酸化電位を有しており、また、エーテル結合を有するセグメントを分岐型の構造を有する分子の枝に導入することによって、イオン伝導度の向上を図ることができる。上記非水電解液を用いて電池を構成すると、上記スルホン酸塩が正極活物質と反応して、正極表面に保護皮膜が形成される。形成された保護皮膜は、構造的に安定であるため、正極と非水電解液との反応を防止して電池の膨れを抑制する。また、上記保護皮膜はイオン伝導性が高いため、これが形成されても電池の負荷特性などへの影響は小さく、電池の性能に悪影響を及ぼし難い。なお、上記スルホン酸塩は負極でも反応する。   In the nonaqueous electrolytic solution of the present invention, a sulfonate having a branched ether skeleton in the molecule is used. A compound having such a structure has a high oxidation potential, and the ion conductivity can be improved by introducing a segment having an ether bond into a branch of a molecule having a branched structure. it can. When a battery is constructed using the non-aqueous electrolyte, the sulfonate reacts with the positive electrode active material to form a protective film on the positive electrode surface. Since the formed protective film is structurally stable, the reaction between the positive electrode and the nonaqueous electrolytic solution is prevented to suppress the swelling of the battery. In addition, since the protective film has high ion conductivity, even if it is formed, the influence on the load characteristics of the battery is small, and it is difficult to adversely affect the performance of the battery. The sulfonate salt also reacts with the negative electrode.

上記スルホン酸塩の分岐型エーテル骨格には、下記一般式(1)で表されるエーテル結合が含まれることが好ましい。   The branched ether skeleton of the sulfonate preferably includes an ether bond represented by the following general formula (1).

Figure 2008234838
Figure 2008234838

ここで、上記一般式(1)におけるRは、水素がフッ素で置換されていてもよい炭素数2〜4のアルキレンであり、エチレン(−CHCH−)が特に好ましい。非水電解液溶媒に溶解した上記スルホン酸塩が皮膜を形成するが、Rの炭素数が5以上の場合には、スルホン酸塩の非水電解液溶媒への溶解性が低下して、皮膜が形成され難くなることがあり、また、Rの炭素数は形成される皮膜のイオン伝導度に影響するため、炭素数は4以下であることが好ましい。また、上記一般式(1)におけるR’は、水素がフッ素で置換されていてもよい炭素数1〜6のアルキル基であり、特にメチル基(−CH)、エチル基(−CHCH)、またはプロピル基(−CHCHCH)が好ましい。R’の炭素数が7以上の場合には、スルホン酸塩の非水電解液溶媒への溶解性が低下して、皮膜が形成され難くなることがあり、また、Rの炭素数は形成される皮膜のイオン伝導度に影響するため、炭素数は6以下であることが好ましい。 Here, R in the general formula (1) is alkylene having 2 to 4 carbon atoms in which hydrogen may be substituted with fluorine, and ethylene (—CH 2 CH 2 —) is particularly preferable. The sulfonate dissolved in the non-aqueous electrolyte solvent forms a film. However, when the carbon number of R is 5 or more, the solubility of the sulfonate in the non-aqueous electrolyte solvent decreases, and the film May be difficult to form, and since the carbon number of R affects the ionic conductivity of the film to be formed, the carbon number is preferably 4 or less. R ′ in the general formula (1) is an alkyl group having 1 to 6 carbon atoms in which hydrogen may be substituted with fluorine, and in particular, a methyl group (—CH 3 ), an ethyl group (—CH 2 CH 3 ) or a propyl group (—CH 2 CH 2 CH 3 ) is preferred. When the carbon number of R ′ is 7 or more, the solubility of the sulfonate in the non-aqueous electrolyte solvent may be reduced, and it may be difficult to form a film, and the carbon number of R may not be formed. The number of carbon atoms is preferably 6 or less.

上記一般式(1)において、mは上記エーテル骨格の長さを表すが、この値が10より大きくなると、スルホン酸塩が結晶として析出し易くなったり、溶媒への溶解性が低下してしまうことがあるため、mの値は1〜10の整数であることが好ましい。   In the general formula (1), m represents the length of the ether skeleton. When this value is larger than 10, the sulfonate is likely to be precipitated as a crystal or the solubility in a solvent is lowered. Therefore, the value of m is preferably an integer of 1 to 10.

また、上記スルホン酸塩におけるスルホン酸金属塩基に関わる部分の構造としては、下記一般式(2)で表される構造であることが好ましい。   Moreover, as a structure of the part in connection with the sulfonate metal base in the sulfonate, a structure represented by the following general formula (2) is preferable.

Figure 2008234838
Figure 2008234838

上記一般式(2)中、Mはアルカリ金属(例えば、Li、Na、Kなど)を表し、Rは、水素がフッ素で置換されていてもよい炭素数1〜8のアルキレンまたは2価の芳香族残基を表している。 In the general formula (2), M represents an alkali metal (for example, Li, Na, K, etc.), and R 1 is an alkylene having 1 to 8 carbon atoms in which hydrogen may be substituted with fluorine or a divalent group. Represents an aromatic residue.

更に、上記スルホン酸塩は、下記一般式(3)で表されるエーテル結合を有することが好ましく、具体的には、下記一般式(4)で表されるデンドロンであることがより好ましい。ここで、デンドロンは、一方向へのみ伸びている形の分岐型化合物または扇状の形をした分岐型化合物を表すものである。   Furthermore, it is preferable that the sulfonate has an ether bond represented by the following general formula (3), and more specifically, a dendron represented by the following general formula (4) is more preferable. Here, dendron represents a branched compound having a shape extending only in one direction or a fan-shaped branched compound.

Figure 2008234838
Figure 2008234838

Figure 2008234838
Figure 2008234838

ここで、上記一般式(3)および(4)中、Rは炭素数1〜3のアルキレンであり、RおよびRは、水素がフッ素で置換されていてもよい炭素数2〜4のアルキレンで、同一でもよく、また異なっていてもよく、RおよびRは、水素がフッ素で置換されていてもよい炭素数1〜6のアルキル基で、同一でもよく、また異なっていてもよく、nは1〜4の整数であり、oおよびpは、同一でもよく、また異なってもよい0〜10の整数を表す。また、上記一般式(3)中、Mはアルカリ金属(例えば、Li、Na、Kなど)であり、Rは、水素がフッ素で置換されていてもよい炭素数1〜8のアルキレンまたは2価の芳香族残基である。なお、上記oおよびpの少なくとも一方は、0であってもよく、上記一般式(3)および(4)において、−R−O−または−R−O−で表される構造は含まれていなくてもよいが、oおよびpは1以上であること、すなわち、上記一般式(3)および(4)には、上記構造が含まれることが好ましい。 Here, in the above general formula (3) and (4), R 2 is alkylene of 1 to 3 carbon atoms, R 3 and R 4, 2-4 carbon atoms which may be substituted hydrogen by fluorine And may be the same or different, and R 5 and R 6 are alkyl groups having 1 to 6 carbon atoms in which hydrogen may be substituted with fluorine, and may be the same or different. N is an integer of 1 to 4, and o and p represent an integer of 0 to 10 which may be the same or different. In the general formula (3), M is an alkali metal (for example, Li, Na, K, etc.), and R 1 is an alkylene having 1 to 8 carbon atoms in which hydrogen may be substituted with fluorine, or 2 Valent aromatic residue. Note that at least one of the above o and p may be 0, and the structure represented by —R 3 —O— or —R 4 —O— in the general formulas (3) and (4) is included. However, o and p are preferably 1 or more, that is, it is preferable that the above general formulas (3) and (4) include the above structure.

上記一般式(3)および(4)において、nは、括弧内の分岐構造の繰り返しを表しており、例えば、上記一般式(3)においてn=2の場合、上記一般式(3)の表す構造は、下記構造式のようになる。   In the above general formulas (3) and (4), n represents the repetition of the branched structure in parentheses. For example, when n = 2 in the above general formula (3), it represents the above general formula (3). The structure is as shown in the following structural formula.

Figure 2008234838
Figure 2008234838

上記構造式中、R2a、R2bおよびR2cは、それぞれ炭素数1〜3のアルキレンで、互いに異なっていてもよく、R3a、R3b、R4aおよびR4bは、それぞれ水素がフッ素で置換されていてもよい炭素数2〜4のアルキレンで、同一でもよく、また互いに異なっていてもよく、R5a、R5b、R6aおよびR6bは、それぞれ水素がフッ素で置換されていてもよい炭素数1〜6のアルキル基で、同一でもよく、また互いに異なっていてもよい。また、o、o、pおよびpはそれぞれ0〜10の整数を表し、同一でもよく、また互いに異なっていてもよい。上記一般式(3)で表されるエーテル結合および上記一般式(4)で表されるスルホン酸塩において、nが3または4の場合も上記と同様に考えればよく、分子中でエーテル結合に関する構造の分岐の数が増えていく。 In the above structural formulas, R 2a , R 2b and R 2c are each alkylene having 1 to 3 carbon atoms and may be different from each other. R 3a , R 3b , R 4a and R 4b are each hydrogen in fluorine. R 2a , R 5b , R 6a, and R 6b may be the same or different from each other, and may be the same or different from each other. The alkyl group having 1 to 6 carbon atoms may be the same or different from each other. O 1 , o 2 , p 1 and p 2 each represent an integer of 0 to 10, and may be the same or different from each other. In the ether bond represented by the general formula (3) and the sulfonate salt represented by the general formula (4), the case where n is 3 or 4 can be considered in the same manner as above, and the ether bond in the molecule is related to the ether bond. The number of branches in the structure increases.

上記一般式(3)で表されるエーテル結合および上記一般式(4)で表されるスルホン酸塩において、nが4より大きくなるとスルホン酸塩の合成が難しくなるため、nは4以下であることが好ましい。また、非水性溶媒と電解質塩に対する親和性や、イオン伝導度の点から、nが1または2であるものが特に好ましい。   In the ether bond represented by the above general formula (3) and the sulfonate represented by the above general formula (4), when n is larger than 4, synthesis of the sulfonate becomes difficult, so n is 4 or less. It is preferable. Moreover, the thing whose n is 1 or 2 is especially preferable from the point of the affinity with respect to a nonaqueous solvent and electrolyte salt, or the point of ionic conductivity.

本発明に係るスルホン酸塩において、分岐型エーテル骨格部分の構造としては、下記一般式(5)で表される構造がより好ましく、より具体的には、下記一般式(6)で表される構造を有するスルホン酸塩が特に好ましい。   In the sulfonate according to the present invention, the structure of the branched ether skeleton portion is more preferably a structure represented by the following general formula (5), and more specifically, represented by the following general formula (6). Particularly preferred are sulfonates having a structure.

Figure 2008234838
Figure 2008234838

Figure 2008234838
Figure 2008234838

上記一般式(5)および(6)中、qは1または2であり、rは1〜10の整数を表している。また、上記一般式(6)中、Mはアルカリ金属(例えば、Li、Na、Kなど)であり、Rは水素がフッ素で置換されていてもよい炭素数1〜8のアルキレンまたは2価の芳香族残基である。なお、上記一般式(5)および(6)におけるqも、上記一般式(3)および(4)におけるnと同様に、括弧内の分岐構造の繰り返し回数を表す数値である。 In the general formulas (5) and (6), q is 1 or 2, and r represents an integer of 1 to 10. In the general formula (6), M is an alkali metal (for example, Li, Na, K, etc.), and R 1 is alkylene having 1 to 8 carbon atoms in which hydrogen may be substituted with fluorine or divalent. Is an aromatic residue. In addition, q in the general formulas (5) and (6) is also a numerical value representing the number of repetitions of the branched structure in parentheses, similarly to n in the general formulas (3) and (4).

本発明の非水電解液における上記スルホン酸塩の含有量は、上記スルホン酸塩の作用をより有効に発揮させる観点から、非水電解液全量中、0.05質量%以上とすることが好ましく、0.1質量%以上とすることがより好ましい。なお、非水電解液における上記スルホン酸塩の含有量が多すぎると、非水電解液の粘度が高くなりすぎて電池の負荷特性が低下する可能性があり、また、非水電解液のコストも高くなることから、その含有量は10質量%以下であることが好ましく、3質量%以下であることがより好ましい。   The content of the sulfonate in the non-aqueous electrolyte of the present invention is preferably 0.05% by mass or more in the total amount of the non-aqueous electrolyte from the viewpoint of more effectively exerting the action of the sulfonate. More preferably, the content is 0.1% by mass or more. If the content of the sulfonate in the non-aqueous electrolyte is too large, the viscosity of the non-aqueous electrolyte may become too high and the load characteristics of the battery may be reduced. Therefore, the content is preferably 10% by mass or less, and more preferably 3% by mass or less.

エーテル骨格とスルホン酸金属塩基の両者を分子内に有する本発明に係るスルホン酸塩は、短いエーテルセグメントと分岐構造とを有するため、高分子量にも拘らず室温で液体状態を示すものであり、実質的にイオン液体の一種である。また、このスルホン酸塩は、非水性溶媒および電解質塩に対する親和性が高く、より高イオン伝導度の保護皮膜の、正極表面での形成を実現できる。   Since the sulfonate according to the present invention having both an ether skeleton and a metal sulfonate group in the molecule has a short ether segment and a branched structure, it exhibits a liquid state at room temperature regardless of the high molecular weight. It is a kind of ionic liquid substantially. In addition, this sulfonate has a high affinity for a non-aqueous solvent and an electrolyte salt, and a protective film having a higher ion conductivity can be formed on the positive electrode surface.

すなわち、本発明に係るスルホン酸塩を有する非水電解液を用いた電池において、スルホン酸塩のスルホン酸金属塩基が先に正極活物質と反応し、これによりエーテル結合からなる分岐構造を含む保護皮膜を正極表面に形成する。この保護皮膜はイオン伝導性が高く、また、構造的に安定であるため、正極と非水電解液との反応を防止して電池の膨れを抑制でき、これにより電池の高温貯蔵特性(特に高電圧充電状態での高温貯蔵特性)を効果的に改善できる。   That is, in the battery using the non-aqueous electrolyte having a sulfonate according to the present invention, the sulfonate metal base of the sulfonate first reacts with the positive electrode active material, thereby protecting the branched structure composed of an ether bond. A film is formed on the positive electrode surface. Since this protective film has high ion conductivity and is structurally stable, it can prevent the reaction between the positive electrode and the non-aqueous electrolyte and suppress the swelling of the battery. High-temperature storage characteristics in a voltage charged state) can be effectively improved.

上記スルホン酸塩の合成方法については特に制限はなく、1つの分子内に、分岐型のエーテル結合とスルホン酸金属塩基とを有する化合物を合成できる方法であればよい。例えば、スルホン酸金属塩基を有する脂肪族オリゴエーテルデンドロンの場合、先に水酸基を有する脂肪族オリゴエーテルデンドロンを、対応するアルコールとエピクロロヒドリンを出発原料として2段階で合成し、その後、上記の水酸基を有する脂肪族オリゴエーテルデンドロンをスルトンと反応させることで合成できる。   There is no restriction | limiting in particular about the synthesis | combining method of the said sulfonate, What is necessary is just a method which can synthesize | combine the compound which has a branched ether bond and a sulfonate metal base in one molecule | numerator. For example, in the case of an aliphatic oligoether dendron having a sulfonic acid metal base, an aliphatic oligo ether dendron having a hydroxyl group is synthesized in two steps using the corresponding alcohol and epichlorohydrin as starting materials, and then It can be synthesized by reacting an aliphatic oligoether dendron having a hydroxyl group with sultone.

本発明の非水電解液に用いる非水性溶媒(有機溶媒)としては、高誘電率のものが好ましく、カーボネート類を含むエステル類がより好ましい。中でも、誘電率が30以上のエステルを使用することが推奨される。このような高誘電率のエステルとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、イオウ系エステル(エチレングリコールサルファイトなど)などが挙げられる。これらの中でも環状エステルが好ましく、エチレンカーボネート、ビニレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネートが特に好ましい。上記以外にも、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどに代表される低粘度の極性の鎖状カーボネート、脂肪族の分岐型のカーボネート系化合物を用いることができる。環状カーボネートのエチレンカーボネートと鎖状カーボネートとの混合溶媒が特に好ましい。   As a non-aqueous solvent (organic solvent) used for the non-aqueous electrolyte of the present invention, a high dielectric constant is preferable, and esters containing carbonates are more preferable. Among them, it is recommended to use an ester having a dielectric constant of 30 or more. Examples of such high dielectric constant esters include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfur-based esters (such as ethylene glycol sulfite) and the like. Among these, cyclic esters are preferable, and cyclic carbonates such as ethylene carbonate, vinylene carbonate, propylene carbonate, and butylene carbonate are particularly preferable. In addition to the above, low-viscosity polar linear carbonates represented by dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and the like, and aliphatic branched carbonate compounds can be used. Particularly preferred is a mixed solvent of cyclic carbonate ethylene carbonate and chain carbonate.

更に上記の非水性溶媒以外にも、プロピオン酸メチルなどの鎖状のアルキルエステル類;リン酸トリメチルなどの鎖状リン酸トリエステル;3−メトキシプロピオニトリルなどのニトリル系溶媒;デンドリマーとデンドロンに代表されるエーテル結合を有する分岐型化合物;などの非水性溶媒(有機溶媒)を用いることができる。   In addition to the above non-aqueous solvents, chain alkyl esters such as methyl propionate; chain phosphate triesters such as trimethyl phosphate; nitrile solvents such as 3-methoxypropionitrile; dendrimers and dendrons A non-aqueous solvent (organic solvent) such as a branched compound having an ether bond can be used.

更に、フッ素系の溶媒も用いることができる。フッ素系の溶媒としては、例えば、H(CF)OCH、COCH、H(CF)OCHCH、H(CF)OCHCF、H(CF)CHO(CF)Hなど、または、CFCHFCFOCH、CFCHFCFOCHCHなどの直鎖構造の(パーフロロアルキル)アルキルエーテル、もしくは、イソ(パーフロロアルキル)アルキルエーテル、すなわち、2−トリフロロメチルヘキサフロロプロピルメチルエーテル、2−トリフロロメチルヘキサフロロプロピルエチルエーテル、2−トリフロロメチルヘキサフロロプロピルプロピルエーテル、3−トリフロロオクタフロロブチルメチルエーテル、3−トリフロロオクタフロロブチルエチルエーテル、3−トリフロロオクタフロロブチルプロピルエーテル、4−トリフロロデカフロロペンチルメチルエーテル、4−トリフロロデカフロロペンチルエチルエーテル、4−トリフロロデカフロロペンチルプロピルエーテル、5−トリフロロドデカフロロヘキシルメチルエーテル、5−トリフロロドデカフロロヘキシルエチルエーテル、5−トリフロロドデカフロロヘキシルプロピルエーテル、6−トリフロロテトラデカフロロヘプチルメチルエーテル、6−トリフロロテトラデカフロロヘプチルエチルエーテル、6−トリフロロテトラデカフロロヘプチルプロピルエーテル、7−トリフロロヘキサデカフロロオクチルメチルエーテル、7−トリフロロヘキサデカフロロオクチルエチルエーテル、7−トリフロロヘキサデカフロロヘキシルオクチルエーテルなどが挙げられる。更に、上記のイソ(パーフロロアルキル)アルキルエーテルと、上記の直鎖構造の(パーフロロアルキル)アルキルエーテルを併用することもできる。 Furthermore, a fluorine-based solvent can also be used. Examples of the fluorine-based solvent include H (CF 2 ) 2 OCH 3 , C 4 F 9 OCH 3 , H (CF 2 ) 2 OCH 2 CH 3 , H (CF 2 ) 2 OCH 2 CF 3 , H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H or the like, or (perfluoroalkyl) alkyl ether having a linear structure such as CF 3 CHFCF 2 OCH 3 , CF 3 CHFCF 2 OCH 2 CH 3 or iso (par Fluoroalkyl) alkyl ethers, that is, 2-trifluoromethyl hexafluoropropyl methyl ether, 2-trifluoromethyl hexafluoropropyl ethyl ether, 2-trifluoromethyl hexafluoropropyl propyl ether, 3-trifluorooctafluorobutyl methyl ether , 3-trifluorooctafluorobutyl ethyl ether, 3-trifluoroo Kutafluorobutylpropyl ether, 4-trifluorodecafluoropentyl methyl ether, 4-trifluorodecafluoropentyl ethyl ether, 4-trifluorodecafluoropentylpropyl ether, 5-trifluorododecafluorohexyl methyl ether, 5-trifluoro Dodecafluorohexyl ethyl ether, 5-trifluorododecafluorohexyl propyl ether, 6-trifluorotetradecafluoroheptyl methyl ether, 6-trifluorotetradecafluoroheptyl ethyl ether, 6-trifluorotetradecafluoroheptylpropyl ether, 7 -Trifluorohexadecafluorooctyl methyl ether, 7-trifluorohexadecafluorooctyl ethyl ether, 7-trifluorohexadecafluorohexyl octyl ether, etc. It is. Furthermore, the above iso (perfluoroalkyl) alkyl ether can be used in combination with the above-mentioned (perfluoroalkyl) alkyl ether having a linear structure.

本発明の非水電解液に用いる電解質塩としては、アルカリ金属の過塩素酸塩、有機ホウ素アルカリ金属塩、含フッ素化合物のアルカリ金属塩、アルカリ金属イミド塩などのアルカリ金属塩(例えば、リチウム塩)が好ましい。このような電解質塩の具体例としては、例えば、MClO(MはLi、Na、Kなどのアルカリ金属元素を示す、以下同じ)、MPF、MBF、MAsF 、MSbF 、MCFSO、MCFCO、M(SO 、MN(CFSO、MN(CSO、MC(CFSO)3 、MCn F2n+1SO n≧2)、MN(RfOSO〔ここで、Rfはフルオロアルキル基〕などが挙げられ、これらの各化合物におけるMがリチウム元素である化合物がより好ましく、含フッ素有機リチウム塩が特に好ましい。含フッ素有機リチウム塩は、アニオン性が大きく、かつイオン分離し易いので、非水電解液中において溶解し易いからである。 Examples of the electrolyte salt used for the non-aqueous electrolyte of the present invention include alkali metal salts such as alkali metal perchlorates, organoboron alkali metal salts, alkali metal salts of fluorine-containing compounds, and alkali metal imide salts (for example, lithium salts). ) Is preferred. Specific examples of such an electrolyte salt include, for example, MClO 4 (M represents an alkali metal element such as Li, Na, and K, the same shall apply hereinafter), MPF 6 , MBF 4 , MAsF 6 , MSbF 6 , MCF 3 SO 3 , MCF 3 CO 2 , M 2 C 2 F 4 (SO 3 ) 2 , MN (CF 3 SO 2 ) 2 , MN (C 2 F 5 SO 2 ) 2 , MC (CF 3 SO 2 ) 3, MCn F 2n + 1 SO 3 n ≧ 2), MN (RfOSO 2 ) 2 [wherein Rf is a fluoroalkyl group] and the like, and a compound in which M in each of these compounds is a lithium element is more preferable, and a fluorine-containing organic lithium salt Is particularly preferred. This is because the fluorine-containing organic lithium salt has a large anionic property and is easily ion-separated, so that it is easily dissolved in the non-aqueous electrolyte.

非水電解液中における電解質塩の濃度は、例えば、0.3mol/l以上、より好ましくは0.7mol/l以上であって、1.7mol/l以下、より好ましくは1.2mol/l以下であることが望ましい。電解質塩濃度が低すぎると、イオン伝導度が小さくなることがあり、高すぎると、溶解しきれない電解質塩が析出する虞がある。   The concentration of the electrolyte salt in the nonaqueous electrolytic solution is, for example, 0.3 mol / l or more, more preferably 0.7 mol / l or more, and 1.7 mol / l or less, more preferably 1.2 mol / l or less. It is desirable that If the electrolyte salt concentration is too low, the ionic conductivity may be reduced, and if it is too high, electrolyte salts that cannot be completely dissolved may be deposited.

また、本発明の非水電解液には、これを用いた電池の性能を向上することができる各種の添加剤を添加してもよい。   Moreover, you may add various additives which can improve the performance of the battery using this to the non-aqueous electrolyte of this invention.

例えば、C=C不飽和結合を分子内に有する化合物を添加した非水電解液では、これを用いた電池の充放電サイクル特性の低下を抑制できる場合がある。このようなC=C不飽和結合を分子内に有する化合物としては、例えば、C11(シクロヘキシルベンゼン)などの芳香族化合物;H(CFCHOOCCH=CH、F(CFCHCHOOCCH=CHなどのフッ素化された脂肪族化合物;フッ素含有芳香族化合物;などが挙げられる。また、1,3−プロパンスルトン、1,2−プロパンジオール硫酸エステルをはじめとするイオウ元素を有する化合物(例えば、鎖状または環状スルホン酸エステルや、鎖状または環状の硫酸エステルなど)やビニレンカーボネートなども使用でき、非常に効果的な場合がある。特に負極活物質に高結晶炭素材料を用いる場合、ビニレンカーボネートとの併用はより効果的である。これらの各種添加剤の添加量は、非水電解液全量中、例えば、0.05〜5質量%とすることが好ましい。 For example, in a non-aqueous electrolyte solution to which a compound having a C═C unsaturated bond in the molecule is added, it may be possible to suppress a decrease in charge / discharge cycle characteristics of a battery using the non-aqueous electrolyte solution. Examples of the compound having such a C═C unsaturated bond in the molecule include aromatic compounds such as C 6 H 5 C 6 H 11 (cyclohexylbenzene); H (CF 2 ) 4 CH 2 OOCCH═CH 2 , Fluorinated aliphatic compounds such as F (CF 2 ) 8 CH 2 CH 2 OOCCH═CH 2 ; fluorine-containing aromatic compounds; In addition, compounds having a sulfur element such as 1,3-propane sultone and 1,2-propanediol sulfate (for example, chain or cyclic sulfonate, chain or cyclic sulfate, etc.) and vinylene carbonate Can also be used and may be very effective. In particular, when a highly crystalline carbon material is used for the negative electrode active material, the combined use with vinylene carbonate is more effective. The addition amount of these various additives is preferably 0.05 to 5% by mass in the total amount of the non-aqueous electrolyte.

この他、非水電解液二次電池の高温特性の改善を達成すべく、本発明の非水電解液に酸無水物を添加してもよい。酸無水物は負極の表面改質剤として負極表面に複合皮膜の形成に関与し、高温時における電池の貯蔵特性などを更に向上させる機能を有する。また、酸無水物を非水電解液に添加することにより、非水電解液中の水分量を低減させることができるため、この非水電解液を用いた電池内でのガス発生量も減少させることができる。非水電解液に添加する酸無水物については、特に制限はなく、分子内に酸無水物構造を少なくとも1個有する化合物であればよく、複数個有する化合物であってもよい。酸無水物の具体例としては、例えば、無水メリト酸、無水マロン酸、無水マレイン酸、無水酪酸、無水プロピオン酸、無水プルビン酸、無水フタロン酸、無水フタル酸、無水ピロメリト酸、無水乳酸、無水ナフタル酸、無水トルイル酸、無水チオ安息香酸、無水ジフェン酸、無水シトラコン酸、無水ジグリコールアミド酸、無水酢酸、無水琥珀酸、無水桂皮酸、無水グルタル酸、無水グルタコン酸、無水吉草酸、無水イタコン酸、無水イソ酪酸、無水イソ吉草酸、無水安息香酸などが挙げられ、それらの1種または2種以上を用いることができる。また、本発明の非水電解液における酸無水物の添加量は、非水電解液全量中、0.05〜1質量%とすることが好ましい。   In addition, an acid anhydride may be added to the non-aqueous electrolyte of the present invention in order to achieve improvement in the high temperature characteristics of the non-aqueous electrolyte secondary battery. The acid anhydride is involved in the formation of a composite film on the negative electrode surface as a surface modifier for the negative electrode, and has a function of further improving the storage characteristics of the battery at high temperatures. Moreover, since the amount of water in the non-aqueous electrolyte can be reduced by adding acid anhydride to the non-aqueous electrolyte, the amount of gas generated in the battery using this non-aqueous electrolyte is also reduced. be able to. There is no restriction | limiting in particular about the acid anhydride added to a nonaqueous electrolyte, What is necessary is just a compound which has at least one acid anhydride structure in a molecule | numerator, and the compound which has two or more may be sufficient as it. Specific examples of the acid anhydride include, for example, mellitic anhydride, malonic anhydride, maleic anhydride, butyric anhydride, propionic anhydride, puruvic anhydride, phthalonic anhydride, phthalic anhydride, pyromellitic anhydride, lactic acid anhydride, anhydrous Naphthalic acid, toluic anhydride, thiobenzoic anhydride, diphenic anhydride, citraconic anhydride, diglycolamide anhydride, acetic anhydride, succinic anhydride, cinnamic anhydride, glutaric anhydride, glutaconic anhydride, valeric anhydride, anhydrous Itaconic acid, isobutyric anhydride, isovaleric anhydride, benzoic anhydride and the like can be mentioned, and one or more of them can be used. Moreover, it is preferable that the addition amount of the acid anhydride in the non-aqueous electrolyte of the present invention is 0.05 to 1% by mass in the total amount of the non-aqueous electrolyte.

本発明の非水電解液二次電池は、本発明の非水電解液を有していればよく、その他の構成要素については特に制限はなく、従来公知の非水電解液二次電池と同様のものを採用できる。   The non-aqueous electrolyte secondary battery of the present invention only needs to have the non-aqueous electrolyte of the present invention, and there are no particular restrictions on other components, and it is the same as a conventionally known non-aqueous electrolyte secondary battery Can be used.

正極に係る正極活物質には、リチウムイオンを吸蔵放出可能な化合物が使用でき、例えば、LiMOまたはLi(ただし、Mは遷移金属であり、0≦x≦1、0≦y≦2)で表されるリチウム含有複合酸化物、スピネル状の酸化物、層状構造の金属カルコゲン化物などが挙げられる。その具体例としては、LiCoOなどのリチウムコバルト酸化物、LiMnなどのリチウムマンガン酸化物、LiNiOなどのリチウムニッケル酸化物、Li4/3Ti5/3などのリチウムチタン酸化物、リチウムマンガン・ニッケル複合酸化物、リチウムマンガン・ニッケル・コバルト複合酸化物、二酸化マンガン、五酸化バナジウム、クロム酸化物、などの金属酸化物;二硫化チタン、二硫化モリブデンなどの金属硫化物;などが挙げられる。 As the positive electrode active material related to the positive electrode, a compound capable of occluding and releasing lithium ions can be used. For example, Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, and 0 ≦ x ≦ 1, Examples thereof include lithium-containing composite oxides represented by 0 ≦ y ≦ 2), spinel-like oxides, and layered metal chalcogenides. Specific examples thereof include lithium cobalt oxides such as LiCoO 2 , lithium manganese oxides such as LiMn 2 O 4 , lithium nickel oxides such as LiNiO 2, and lithium titanium oxides such as Li 4/3 Ti 5/3 O 4. , Metal oxides such as lithium manganese / nickel composite oxide, lithium manganese / nickel / cobalt composite oxide, manganese dioxide, vanadium pentoxide, chromium oxide; metal sulfides such as titanium disulfide and molybdenum disulfide; Etc.

特に、層状構造またはスピネル構造のリチウム含有複合酸化物が好ましく用いられ、LiCoO、LiMn、LiNiO、LiNi1/2Mn1/2などに代表されるリチウムマンガン・ニッケル複合酸化物、LiNi1/3Mn1/3Co1/3やLiNi0.6Mn0.2Co0.2などに代表されるリチウムマンガン・ニッケル・コバルト複合酸化物、またはLiNi1−x−y―zCoAlMg(ただし、0≦x≦1、0≦y≦0.1、0≦z≦0.1、0≦1−x−y−z≦1)のように構成元素の一部がGe、Ti、Zr、Mg、Al、Mo、Snなどより選ばれる添加元素で置換されたリチウム含有複合酸化物など、充電時の開路電圧がLi基準で4V以上を示すリチウム複合酸化物を正極活物質として用いる場合には、高電圧下での酸化が抑制された本発明の非水電解液の特徴を生かすことができ、高エネルギー密度の非水電解液二次電池が得られる。 In particular, a lithium-containing composite oxide having a layered structure or a spinel structure is preferably used, and lithium manganese / nickel composite oxide represented by LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1/2 Mn 1/2 O 2, etc. LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 typified lithium manganese / nickel / cobalt composite oxide, or LiNi 1− x-y-z Co x Al y Mg z O 2 ( however, 0 ≦ x ≦ 1,0 ≦ y ≦ 0.1,0 ≦ z ≦ 0.1,0 ≦ 1-x-y-z ≦ 1) The open circuit voltage during charging is 4 V or more on the basis of Li, such as a lithium-containing composite oxide in which some of the constituent elements are substituted with an additive element selected from Ge, Ti, Zr, Mg, Al, Mo, Sn, etc. Indicate When a lithium composite oxide is used as a positive electrode active material, it is possible to take advantage of the characteristics of the nonaqueous electrolyte solution of the present invention in which oxidation under high voltage is suppressed, and a high energy density nonaqueous electrolyte secondary battery. Is obtained.

これらの正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。例えば、層状構造のリチウム含有複合酸化物とスピネル構造のリチウム含有複合酸化物とを共に用いることにより、高容量化と安全性向上との両立を図ることができる。   These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together. For example, by using both a lithium-containing composite oxide having a layered structure and a lithium-containing composite oxide having a spinel structure, it is possible to achieve both higher capacity and improved safety.

非水電解液二次電池を構成するための正極は、例えば、上記の正極活物質に、カーボンブラック、アセチレンブラックなどの導電助剤や、ポリフッ化ビニリデン、ポリエチレンオキシドなどの結着剤などを適宜添加して正極合剤を調製し、これをアルミニウム箔などからなる集電材料を芯材として帯状の成形体に仕上げたものが用いられる。ただし、正極の作製方法は、上記例示のもののみに限定される訳ではない。   For the positive electrode for constituting the nonaqueous electrolyte secondary battery, for example, a conductive aid such as carbon black or acetylene black, or a binder such as polyvinylidene fluoride or polyethylene oxide is appropriately added to the above positive electrode active material. A positive electrode material mixture is prepared by adding it, and a product obtained by finishing this into a strip-shaped molded body using a current collecting material made of aluminum foil or the like as a core material is used. However, the method for manufacturing the positive electrode is not limited to the above-described examples.

本発明の有機電解液二次電池を構成するための負極における負極活物質としては、例えば、リチウム金属やリチウムを吸蔵放出可能な化合物が使用できる。例えば、Al、Si、Sn、Inなどの合金またはリチウム(Li)に近い低電位で充放電できる酸化物、炭素材料などの各種材料も、負極活物質として用いることができる。本発明の非水電解液二次電池においては、負極活物質としては、リチウムイオンを電気化学的に出し入れ可能な炭素材料が特に好ましい。このような炭素材料としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などが挙げられる。   As the negative electrode active material in the negative electrode for constituting the organic electrolyte secondary battery of the present invention, for example, lithium metal or a compound capable of occluding and releasing lithium can be used. For example, an alloy such as Al, Si, Sn, In, or various materials such as an oxide and a carbon material that can be charged and discharged at a low potential close to lithium (Li) can be used as the negative electrode active material. In the non-aqueous electrolyte secondary battery of the present invention, as the negative electrode active material, a carbon material capable of electrochemically taking in and out lithium ions is particularly preferable. Examples of such carbon materials include graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, mesocarbon microbeads, carbon fibers, activated carbon, and the like.

負極活物質に炭素材料を用いる場合、該炭素材料の(002)面の層間距離d002に関しては、0.37nm以下であることが好ましい。また、電池の高容量化を実現するためd002は、0.35nm以下であることがより好ましく、0.34nm以下であることが更に好ましい。d002の下限値は特に限定されないが、理論的には約0.335nmである。 When using a carbon material as the negative electrode active material, with respect to the interlayer distance d 002 of (002) plane the carbon material, it is preferably not more than 0.37 nm. In order to realize a high capacity of the battery, d 002 is more preferably 0.35 nm or less, and further preferably 0.34 nm or less. The lower limit value of d 002 is not particularly limited, but is theoretically about 0.335 nm.

また、炭素材料のc軸方向の結晶子の大きさLcは、3nm以上であることが好ましく、8nm以上であることがより好ましく、25nm以上であることがさらに好ましい。Lcの上限は特に限定されないが、通常200nm程度である。そして、その平均粒径は、3μm以上、より好ましくは5μm以上であって、15μm以下、より好ましくは13μm以下であることが望ましい。また、その純度は99.9%以上であることが望ましい。   Further, the crystallite size Lc in the c-axis direction of the carbon material is preferably 3 nm or more, more preferably 8 nm or more, and further preferably 25 nm or more. The upper limit of Lc is not particularly limited, but is usually about 200 nm. And the average particle diameter is 3 micrometers or more, More preferably, it is 5 micrometers or more, Comprising: It is desirable that it is 15 micrometers or less, More preferably, it is 13 micrometers or less. Further, the purity is desirably 99.9% or more.

負極は、例えば、上記負極活物質、またはその負極活物質に必要に応じて導電助剤(カーボンブラック、アセチレンブラックなど)や結着剤(ポリフッ化ビニリデン、スチレンブタジエンゴムなど)などを適宜加えて調製した負極合剤を、銅箔などの集電材料を芯材として成形体に仕上げることによって作製される。ただし、負極の作製方法は、上記例示のもののみに限られることはない。   For the negative electrode, for example, a conductive additive (carbon black, acetylene black, etc.) or a binder (polyvinylidene fluoride, styrene butadiene rubber, etc.) or the like is appropriately added to the negative electrode active material or the negative electrode active material as necessary. The prepared negative electrode mixture is produced by finishing a molded body using a current collecting material such as copper foil as a core material. However, the manufacturing method of the negative electrode is not limited to the above-described examples.

本発明の非水電解液二次電池において、正極と負極を仕切るためのセパレータも特に制限はなく、従来公知の非水電解液二次電池で採用されている各種セパレータを用いることができる。例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂で構成される微孔性セパレータ、ポリブチレンテレフタレートなどのポリエステル系樹脂で構成される微孔性セパレータが好適に用いられる。また、セパレータの厚みにも特に制限はないが、電池の安全性と高容量化の両方を考慮して5μm以上30μm以下であることが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, the separator for partitioning the positive electrode and the negative electrode is not particularly limited, and various separators employed in conventionally known nonaqueous electrolyte secondary batteries can be used. For example, a microporous separator composed of a polyolefin resin such as polyethylene or polypropylene and a microporous separator composed of a polyester resin such as polybutylene terephthalate are preferably used. The thickness of the separator is not particularly limited, but is preferably 5 μm or more and 30 μm or less in consideration of both the safety of the battery and the increase in capacity.

本発明の非水電解液二次電池は、例えば、上記の正極と負極とを、上記のセパレータを介して重ね合わせて積層電極体としたり、更にこれを巻回して巻回電極体とした後、外装体に装填し、正負極と外装体の正負極端子とをリード体などを介して接続し、更に上記本発明の非水電解液を外装体内に注入した後に外装体を封止して作製される。   The non-aqueous electrolyte secondary battery of the present invention is, for example, after the positive electrode and the negative electrode are stacked with the separator interposed therebetween to form a laminated electrode body, or further wound into a wound electrode body. The outer body is loaded, the positive and negative electrodes and the positive and negative terminals of the outer body are connected via a lead body, and the outer body is sealed after the non-aqueous electrolyte of the present invention is injected into the outer body. Produced.

電池の外装体としては、金属製の角形、円筒形などの外装体や、金属(アルミニウムなど)ラミネートフィルムからなるラミネート外装体などを用いることができる。   As a battery outer package, a metal rectangular or cylindrical outer package, a laminate outer package made of a metal (such as aluminum) laminate film, or the like can be used.

なお、非水電解液二次電池の製造方法と電池の構造は特に限定されないが、d002が0.34nm以下の炭素材料を負極活物質として用いる場合、外装体に正極、負極、セパレータおよび非水電解液を収納した後であって電池を完全に密閉する前に、充電を行う開放化成工程を設けることが好ましい。これにより、充電初期に発生するガスや電池内の残留水分を電池外に除去することができる。化成後、電池内のガスの除去方法は特に限定されるものではなく、自然除去または真空除去のいずれもよい。また、電池を完全に密閉する前に、電池を押圧などにより適宜成形してもよい。 Note that the manufacturing method of the non-aqueous electrolyte secondary battery and the structure of the battery are not particularly limited. However, when a carbon material having d 002 of 0.34 nm or less is used as the negative electrode active material, a positive electrode, a negative electrode, a separator, It is preferable to provide an open chemical conversion step for charging after housing the water electrolyte and before completely sealing the battery. Thereby, the gas generated at the initial stage of charging and the residual moisture in the battery can be removed outside the battery. After the formation, the method for removing the gas in the battery is not particularly limited, and either natural removal or vacuum removal may be used. Further, before the battery is completely sealed, the battery may be appropriately molded by pressing or the like.

本発明の非水電解液二次電池は、安全性に優れており、電池特性も良好であることから、こうした特性を活かして、携帯電話、ノート型パソコンなどのモバイル情報機器の駆動電源用の二次電池としてだけではなく、様々な機器の電源として幅広く利用することができる。   The non-aqueous electrolyte secondary battery of the present invention is excellent in safety and has good battery characteristics. Therefore, taking advantage of these characteristics, it can be used as a driving power source for mobile information devices such as mobile phones and laptop computers. It can be widely used not only as a secondary battery but also as a power source for various devices.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

<スルホン酸塩A、BおよびCの合成>
分岐型のエーテル骨格とスルホン酸金属塩基とを有するデンドロンであるスルホン酸塩A、BおよびCを合成した。スルホン酸塩A、BおよびCの構造式を下記式(7)に示す。なお、下記式(7)において、スルホン酸塩Aはn=0、スルホン酸塩Bはn=1、スルホン酸塩Cはn=2である。
<Synthesis of sulfonate A, B and C>
Sulfonates A, B and C, which are dendrons having a branched ether skeleton and a metal sulfonate group, were synthesized. The structural formula of the sulfonates A, B and C is shown in the following formula (7). In the following formula (7), sulfonate A has n = 0, sulfonate B has n = 1, and sulfonate C has n = 2.

Figure 2008234838
Figure 2008234838

スルホン酸塩A:
まず、下記の工程1および工程2により、下記式(8)に示す構造の化合物a[下記式(8)中、n=0]を合成し、これを用いて下記の工程3によりスルホン酸塩Aを合成した。
Sulfonate A:
First, a compound a having a structure represented by the following formula (8) [n = 0 in the following formula (8)] was synthesized by the following step 1 and step 2, and using this, the sulfonate was obtained by the following step 3. A was synthesized.

Figure 2008234838
Figure 2008234838

(工程1)2000ml容のナス型フラスコ中で、200mlのエピクロロヒドリンと200mlのメタノールとを混合し、これに16.85gの水酸化カリウムを320mlのメタノールに溶解した溶液を、氷浴で冷却しながらゆっくり滴下した。室温で19時間攪拌した後、濾過し、濾液中の低沸点成分を60℃に加熱しながら減圧留去して黄色液体を得た。副生成物である目的物の構造異性体を除去するため、上記の黄色液体に5.0gのエピクロロヒドリンを加え、60℃で5時間攪拌した後、減圧蒸留(80.2℃/28mmHg)することにより、193.57gの1,3−ジメトキシ−2−プロパノールを無色液体として単離した。   (Step 1) In a 2000 ml eggplant type flask, 200 ml of epichlorohydrin and 200 ml of methanol were mixed, and a solution obtained by dissolving 16.85 g of potassium hydroxide in 320 ml of methanol was mixed in an ice bath. The solution was slowly added dropwise while cooling. After stirring at room temperature for 19 hours, the mixture was filtered, and low-boiling components in the filtrate were distilled off under reduced pressure while heating to 60 ° C. to obtain a yellow liquid. In order to remove the structural isomer of the target product, which is a by-product, 5.0 g of epichlorohydrin was added to the above yellow liquid, stirred at 60 ° C. for 5 hours, and then distilled under reduced pressure (80.2 ° C./28 mmHg). ), 193.57 g of 1,3-dimethoxy-2-propanol was isolated as a colorless liquid.

得られた1,3−ジメトキシ−2−プロパノールのNMRデータは、以下の通りである。
H−NMR(CDCl):δ2.89(dd),3.39(s,6H),3.41−3.48(m,4H),3.96(m,1H);
13C−NMR(CDCl):δ59.2(s),69.3(s),73.84(s)
The NMR data of the obtained 1,3-dimethoxy-2-propanol are as follows.
1 H-NMR (CDCl 3 ): δ 2.89 (dd), 3.39 (s, 6H), 3.41-3.48 (m, 4H), 3.96 (m, 1H);
13 C-NMR (CDCl 3 ): δ 59.2 (s), 69.3 (s), 73.84 (s)

(工程2)500ml容のナス型フラスコ中で、13.4mlのエピクロロヒドリンとテトラヒドロフラン(THF)とを混合し、これに11.34gの水酸化カリウムを工程1で単離した1,3−ジメトキシ−2−プロパノール210gに溶解した溶液をゆっくり滴下した。100℃で29時間攪拌した後、濾過し、濾液中の低沸点成分を減圧留去して桃色液体を得た。この桃色液体を減圧蒸留(85.0℃/39mmHg)することにより1,3−ジメトキシ−2−プロパノールを回収した後、更に減圧蒸留(101.6℃/0.08mmHg)することにより、12.9gの化合物a[1,3−ビス(1,3−ジメトキシ−2−プロポキシ)−2−プロパノール]を無色液体として単離した。   (Step 2) In a 500 ml eggplant type flask, 13.4 ml of epichlorohydrin and tetrahydrofuran (THF) were mixed, and 11.34 g of potassium hydroxide was isolated in Step 1 1,3 -A solution dissolved in 210 g of dimethoxy-2-propanol was slowly added dropwise. After stirring at 100 ° C. for 29 hours, the mixture was filtered, and low-boiling components in the filtrate were distilled off under reduced pressure to obtain a pink liquid. This pink liquid was distilled under reduced pressure (85.0 ° C./39 mmHg) to recover 1,3-dimethoxy-2-propanol, and then further distilled under reduced pressure (101.6 ° C./0.08 mmHg). 9 g of compound a [1,3-bis (1,3-dimethoxy-2-propoxy) -2-propanol] was isolated as a colorless liquid.

得られた化合物aのNMRデータは、以下の通りである。
H−NMR(CDCl):δ3.37(s,12H),3.42−3.49(m,8H),3.59−3.63(m,4H),3.65−3.71(m,2H),3.92−3.96(m,1H);
13C−NMR(CDCl):δ59.22(d),69.86(s),72.00(s),72.73(d),78.60(s)
The NMR data of the obtained compound a are as follows.
1 H-NMR (CDCl 3 ): δ 3.37 (s, 12H), 3.42-3.49 (m, 8H), 3.59-3.63 (m, 4H), 3.65-3. 71 (m, 2H), 3.92-3.96 (m, 1H);
13 C-NMR (CDCl 3 ): δ 59.22 (d), 69.86 (s), 72.00 (s), 72.73 (d), 78.60 (s)

(工程3)窒素雰囲気とした300ml容のナス型フラスコ中で、6.61gの化合物aを100mlの脱水THFに溶解した。ここに、1.57Mのn−ブチルリチウムヘキサン溶液を13.5ml滴下した後、60℃で12時間加熱攪拌した。その後フラスコ内の溶液を室温まで放冷し、これに1.95mlの1,3−プロパンスルトンを添加した後、60℃で4日間加熱攪拌した。得られた反応混合物を濾過し、濾液をエバポレーションにより濃縮して粗生成物を得た。この租生成物を、メタノールを溶離液に用いたゲル濾過クロマトグラフィーで精製することにより、粘性黄色液体のスルホン酸塩A:6.30gを得た。   (Step 3) In a 300 ml eggplant type flask in a nitrogen atmosphere, 6.61 g of compound a was dissolved in 100 ml of dehydrated THF. 13.5 ml of a 1.57M n-butyllithium hexane solution was added dropwise thereto, and the mixture was heated and stirred at 60 ° C. for 12 hours. Thereafter, the solution in the flask was allowed to cool to room temperature, and 1.95 ml of 1,3-propane sultone was added thereto, followed by heating and stirring at 60 ° C. for 4 days. The resulting reaction mixture was filtered and the filtrate was concentrated by evaporation to give the crude product. The crude product was purified by gel filtration chromatography using methanol as an eluent to obtain 6.30 g of sulfonic acid salt A as a viscous yellow liquid.

得られたスルホン酸塩Aの構造を、H−NMR(CDCl)および13C−NMR(CDCl)を用いて同定した。その結果は、以下の通りである。
H−NMR(CDCl):δ2.08(m,2H),3.02(t,2H),3.37(s,6H),3.39(s,6H),3.44-3.50(m,8H),3.61―3.79(m,9H);
13C−NMR(CDCl):δ25.03(s),47.84(s)59.27(d),68.77(s),69.14(s),72.11(s),77.56(s),77.82(s)
The structure of the resulting sulfonate A was identified using 1 H-NMR (CDCl 3 ) and 13 C-NMR (CDCl 3 ). The results are as follows.
1 H-NMR (CDCl 3 ): δ 2.08 (m, 2H), 3.02 (t, 2H), 3.37 (s, 6H), 3.39 (s, 6H), 3.44-3 .50 (m, 8H), 3.61-3.79 (m, 9H);
13 C-NMR (CDCl 3 ): δ 25.03 (s), 47.84 (s) 59.27 (d), 68.77 (s), 69.14 (s), 72.11 (s), 77.56 (s), 77.82 (s)

スルホン酸塩B:
まず、下記の工程1および工程2により、上記式(8)に示す構造の化合物b[上記式(8)中、n=1]を合成し、これを用いて下記の工程3によりスルホン酸塩Bを合成した。
Sulfonate B:
First, a compound b having the structure represented by the above formula (8) [n = 1 in the above formula (8)] was synthesized by the following step 1 and step 2, and this was used to sulphonate by the following step 3. B was synthesized.

(工程1)2000ml容のナス型フラスコ中で、120mlのエピクロロヒドリンと300mlのTHFとを混合し、これに90.78gの水酸化カリウムを725mlの2−メトキシエタノールに溶解した溶液を、氷浴で冷却しながらゆっくり滴下した。室温で15時間、90℃で32時間攪拌した後、8.05gの水酸化カリウムを加え、90℃で19時間加熱した。得られた反応混合物を濾過し、濾液中の低沸点成分を減圧留去した。得られた液体に7.42gの水酸化カリウムを溶解し、10.64gのエピクロロヒドリンを加えて、140℃で29時間加熱した。この反応混合物を濾過し、濾液を減圧蒸留(109.3℃/0.8mmHg)することにより、1,3−ジ(2−メトキシエトキシ)−2−プロパノールを無色液体として単離した。   (Step 1) In a 2000 ml eggplant-shaped flask, 120 ml of epichlorohydrin and 300 ml of THF were mixed, and a solution obtained by dissolving 90.78 g of potassium hydroxide in 725 ml of 2-methoxyethanol was added. The solution was slowly added dropwise while cooling in an ice bath. After stirring at room temperature for 15 hours and at 90 ° C. for 32 hours, 8.05 g of potassium hydroxide was added and heated at 90 ° C. for 19 hours. The obtained reaction mixture was filtered, and low boiling point components in the filtrate were distilled off under reduced pressure. 7.42 g of potassium hydroxide was dissolved in the obtained liquid, 10.64 g of epichlorohydrin was added, and the mixture was heated at 140 ° C. for 29 hours. The reaction mixture was filtered, and the filtrate was distilled under reduced pressure (109.3 ° C./0.8 mmHg) to isolate 1,3-di (2-methoxyethoxy) -2-propanol as a colorless liquid.

得られた1,3−ジ(2−メトキシエトキシ)−2−プロパノールのNMRデータは、以下の通りである。
H−NMR(CDCl):δ2.99(s,1H),3.39(s,6H),3.49−3.60(m,8H),3.65−3.67(m,4H),4.01(m,1H);
13C−NMR(CDCl):δ59.02(s),69.44(s),70.73(s),71.90(s),72.59(s)
The NMR data of the obtained 1,3-di (2-methoxyethoxy) -2-propanol is as follows.
1 H-NMR (CDCl 3 ): δ 2.99 (s, 1H), 3.39 (s, 6H), 3.49-3.60 (m, 8H), 3.65-3.67 (m, 4H), 4.01 (m, 1H);
13 C-NMR (CDCl 3 ): δ 59.02 (s), 69.44 (s), 70.73 (s), 71.90 (s), 72.59 (s)

(工程2)500ml容のナス型フラスコ中で、8.8mlのエピクロロヒドリンと25mlのTHFとを混合し、これに7.47gの水酸化カリウムを工程1で単離した1,3−ジ(メトキシエトキシ)−2−プロパノール228gに溶解した溶液をゆっくり滴下した。140℃で29時間攪拌した後、塩酸で中和した。この反応混合物を濾過し、濾液中の低沸点成分を減圧留去して橙色液体を得た。この橙色液体を減圧蒸留(142.4℃/0.1mmHg)することにより1,3−ジ(2−メトキシエトキシ)−2−プロパノールを回収した後、更に減圧蒸留(275℃/0.1mmHg)することにより、8.85gの化合物b[1,3−ビス〔1,3−ジ(2−メトキシエトキシ)−2−プロポキシ〕−2−プロパノール]を無色液体として単離した。   (Step 2) In a 500 ml eggplant type flask, 8.8 ml of epichlorohydrin and 25 ml of THF were mixed, and 7.47 g of potassium hydroxide was isolated in Step 1, A solution dissolved in 228 g of di (methoxyethoxy) -2-propanol was slowly added dropwise. The mixture was stirred at 140 ° C. for 29 hours and then neutralized with hydrochloric acid. This reaction mixture was filtered, and low boiling components in the filtrate were distilled off under reduced pressure to obtain an orange liquid. This orange liquid was distilled under reduced pressure (142.4 ° C./0.1 mmHg) to recover 1,3-di (2-methoxyethoxy) -2-propanol, and then further distilled under reduced pressure (275 ° C./0.1 mmHg). By doing so, 8.85 g of compound b [1,3-bis [1,3-di (2-methoxyethoxy) -2-propoxy] -2-propanol] was isolated as a colorless liquid.

得られた化合物bのNMRデータは、以下の通りである。
H−NMR(CDCl):δ3.38(s,12H),3.46−3.57(m,16H),3.59−3.66(m,8H),3.68(d,4H),3.70−3.76(m,2H),3.92(m,1H);
13C−NMR(CDCl):δ59.03(s),69.76(s),70.73(d),71.42(d),71.88(d),72.06(s),78.70(s)
The NMR data of the obtained compound b are as follows.
1 H-NMR (CDCl 3 ): δ 3.38 (s, 12H), 3.46-3.57 (m, 16H), 3.59-3.66 (m, 8H), 3.68 (d, 4H), 3.70-3.76 (m, 2H), 3.92 (m, 1H);
13 C-NMR (CDCl 3 ): δ 59.03 (s), 69.76 (s), 70.73 (d), 71.42 (d), 71.88 (d), 72.06 (s) 78.70 (s)

(工程3)窒素雰囲気とした300ml容のナス型フラスコ中で、7.47gの化合物bを150mlの脱水THFに溶解した。ここに、1.57Mのn−ブチルリチウムヘキサン溶液を9.6ml滴下した後、60℃で12時間加熱攪拌した。その後フラスコ内の溶液を室温まで放冷し、これに1.95mlの1,3−プロパンスルトンを添加した後、60℃で4日間加熱攪拌した。得られた反応混合物を濾過し、濾液をエバポレーションにより濃縮して粗生成物を得た。この租生成物を、メタノールを溶離液に用いたゲル濾過クロマトグラフィーで精製することにより、粘性黄色液体のスルホン酸塩B:4.68gを得た。   (Step 3) In a 300 ml eggplant type flask in a nitrogen atmosphere, 7.47 g of compound b was dissolved in 150 ml of dehydrated THF. 9.6 ml of 1.57M n-butyllithium hexane solution was added dropwise thereto, and the mixture was heated and stirred at 60 ° C. for 12 hours. Thereafter, the solution in the flask was allowed to cool to room temperature, and 1.95 ml of 1,3-propane sultone was added thereto, followed by stirring with heating at 60 ° C. for 4 days. The resulting reaction mixture was filtered and the filtrate was concentrated by evaporation to give the crude product. The crude product was purified by gel filtration chromatography using methanol as an eluent to obtain 4.68 g of sulfonic acid salt B as a viscous yellow liquid.

得られたスルホン酸塩Bの構造を、H−NMR(CDCl)および13C−NMR(CDCl)を用いて同定した。その結果は、以下の通りである。
H−NMR(CDCl):δ2.07(m,2H),3.01(t,2H),3.39(s,12H),3.54-3.82(m,33H);
13C−NMR(CDCl):δ25.23(s),48.11(s)59.03(s),68.23(s),69.47(s),70.49(s),70.91(d),71.64(d),77.54(s),77.94(s)
The structure of the resulting sulfonate B was identified using 1 H-NMR (CDCl 3 ) and 13 C-NMR (CDCl 3 ). The results are as follows.
1 H-NMR (CDCl 3 ): δ 2.07 (m, 2H), 3.01 (t, 2H), 3.39 (s, 12H), 3.54-3.82 (m, 33H);
13 C-NMR (CDCl 3 ): δ 25.23 (s), 48.11 (s) 59.03 (s), 68.23 (s), 69.47 (s), 70.49 (s), 70.91 (d), 71.64 (d), 77.54 (s), 77.94 (s)

スルホン酸塩C:
まず、下記の工程1および工程2により、上記式(8)に示す構造の化合物c[上記式(8)中、n=2]を合成し、これを用いて下記の工程3によりスルホン酸塩Cを合成した。
Sulfonate C:
First, a compound c having the structure shown in the above formula (8) [n = 2 in the above formula (8)] was synthesized by the following step 1 and step 2, and using this, the sulfonate was synthesized in the following step 3 C was synthesized.

(工程1)2000ml容のナス型フラスコ中で、80mlのエピクロロヒドリンと400mlのTHFとを混合し、これに66.77gの水酸化カリウムを725mlの2−(2−メトキシエトキシ)エタノールに溶解した溶液をゆっくり滴下した。室温で19時間攪拌した後、24時間還流した。得られた反応混合物を濾過し、濾液中の低沸点成分を減圧留去した。得られた液体を減圧蒸留(109.3℃/0.8mmHg)することにより、168gの1,3−ビス(3,6−ジオキサ−1−ヘプトキシ)−2−プロパノールを無色液体として単離した。   (Step 1) In a 2000 ml eggplant type flask, 80 ml of epichlorohydrin and 400 ml of THF are mixed, and 66.77 g of potassium hydroxide is mixed with 725 ml of 2- (2-methoxyethoxy) ethanol. The dissolved solution was slowly added dropwise. The mixture was stirred at room temperature for 19 hours and then refluxed for 24 hours. The obtained reaction mixture was filtered, and low boiling point components in the filtrate were distilled off under reduced pressure. The obtained liquid was distilled under reduced pressure (109.3 ° C./0.8 mmHg) to isolate 168 g of 1,3-bis (3,6-dioxa-1-heptoxy) -2-propanol as a colorless liquid. .

得られた1,3−ビス(3,6−ジオキサ−1−ヘプトキシ)−2−プロパノールのNMRデータは、以下の通りである。
H−NMR(CDCl):δ3.19(s,1H),3.38(s,6H),3.49−3.59(m,8H),3.64−3.68(m,12H),3.98(m,1H);
13C−NMR(CDCl):δ59.03(s),69.36(s),70.48(s),70.74(s),71.91(s),72.54(s)
The NMR data of 1,3-bis (3,6-dioxa-1-heptoxy) -2-propanol obtained are as follows.
1 H-NMR (CDCl 3 ): δ 3.19 (s, 1H), 3.38 (s, 6H), 3.49-3.59 (m, 8H), 3.64-3.68 (m, 12H), 3.98 (m, 1H);
13 C-NMR (CDCl 3 ): δ 59.03 (s), 69.36 (s), 70.48 (s), 70.74 (s), 71.91 (s), 72.54 (s)

(工程2)500ml容のナス型フラスコ中で、7.4mlのエピクロロヒドリンと22mlのTHFとを混合し、これに6.10gの水酸化カリウムを工程1で単離した1,3−ビス(3,6−ジオキサ−1−ヘプトキシ)−2−プロパノール168gに溶解した溶液をゆっくり滴下した。室温で2日攪拌した後、90で5時間、140℃で1時間攪拌した。この反応混合物を濾過し、濾液中の低沸点成分を減圧留去して液体を得た。この液体を減圧蒸留(142.4℃/0.1mmHg)することにより1,3−ビス(3,6−ジオキサ−1−ヘプトキシ)−2−プロパノールを回収した後、更に減圧蒸留(275℃/0.1mmHg)することにより、2.70gの化合物c[1,3−ビス〔1,3−ジ(3,6−ジオキサ−1−ヘプトキシ)−2−プロポキシ〕−2−プロパノール]を無色液体として単離した。   (Step 2) In a 500 ml eggplant-shaped flask, 7.4 ml of epichlorohydrin and 22 ml of THF were mixed, and 6.10 g of potassium hydroxide was mixed with 1,3- A solution dissolved in 168 g of bis (3,6-dioxa-1-heptoxy) -2-propanol was slowly added dropwise. After stirring at room temperature for 2 days, the mixture was stirred at 90 ° C. for 5 hours and at 140 ° C. for 1 hour. This reaction mixture was filtered, and low boiling point components in the filtrate were distilled off under reduced pressure to obtain a liquid. This liquid was distilled under reduced pressure (142.4 ° C./0.1 mmHg) to recover 1,3-bis (3,6-dioxa-1-heptoxy) -2-propanol, and then further distilled under reduced pressure (275 ° C./275° C. / 0.170 mmHg) to give 2.70 g of compound c [1,3-bis [1,3-di (3,6-dioxa-1-heptoxy) -2-propoxy] -2-propanol] as a colorless liquid As isolated.

得られた化合物cのNMRデータは、以下の通りである。
H−NMR(CDCl):δ3.38(s,12H),3.50−3.61(m,24H),3.64(s,16H),3.69(m,6H),3.84(m,1H);
13C−NMR(CDCl):δ69.74(s),70.50(t),70.79(d),71.30(d),71.92(s),72.05(s),78.68(s)
The NMR data of the obtained compound c are as follows.
1 H-NMR (CDCl 3 ): δ 3.38 (s, 12H), 3.50-3.61 (m, 24H), 3.64 (s, 16H), 3.69 (m, 6H), 3 .84 (m, 1H);
13 C-NMR (CDCl 3 ): δ 69.74 (s), 70.50 (t), 70.79 (d), 71.30 (d), 71.92 (s), 72.05 (s) 78.68 (s)

(工程3)窒素雰囲気とした300ml容のナス型フラスコ中で、6.30gの化合物cを100mlの脱水THFに溶解した。ここに、1.57Mのn−ブチルリチウムヘキサン溶液を5.9ml滴下した後、60℃で12時間加熱攪拌した。その後フラスコ内の溶液を室温まで放冷し、これに0.85mlの1,3−プロパンスルトンを添加した後、60℃で4日間加熱攪拌した。得られた反応混合物を濾過し、濾液をエバポレーションにより濃縮して粗生成物を得た。この租生成物を、メタノールを溶離液に用いたゲル濾過クロマトグラフィーで精製することにより、粘性黄色液体のスルホン酸塩C:1.25gを得た。   (Step 3) In a 300 ml eggplant type flask in a nitrogen atmosphere, 6.30 g of compound c was dissolved in 100 ml of dehydrated THF. Here, 5.9 ml of a 1.57M n-butyllithium hexane solution was dropped, and then the mixture was heated and stirred at 60 ° C. for 12 hours. Thereafter, the solution in the flask was allowed to cool to room temperature, 0.85 ml of 1,3-propane sultone was added thereto, and then the mixture was heated and stirred at 60 ° C. for 4 days. The resulting reaction mixture was filtered and the filtrate was concentrated by evaporation to give the crude product. The crude product was purified by gel filtration chromatography using methanol as an eluent to obtain 1.25 g of sulfonic acid salt C as a viscous yellow liquid.

得られたスルホン酸塩Cの構造を、H−NMR(CDCl)および13C−NMR(CDCl)を用いて同定した。その結果は、以下の通りである。
H−NMR(CDCl):δ2.04(m,2H),2.96(t,2H),3.39(s,12H),3.52-3.73(m,49H);
13C−NMR(CDCl):δ25.33(s),48.05(s)58.99(s),68.72(s),69.62(s),70.31(s),70.38(s),70.69(s),70.84(s),71.82(s),77.91(s),78.25(s)
The structure of the resulting sulfonate C was identified using 1 H-NMR (CDCl 3 ) and 13 C-NMR (CDCl 3 ). The results are as follows.
1 H-NMR (CDCl 3 ): δ 2.04 (m, 2H), 2.96 (t, 2H), 3.39 (s, 12H), 3.52 to 3.73 (m, 49H);
13 C-NMR (CDCl 3 ): δ 25.33 (s), 48.05 (s) 58.9 (s), 68.72 (s), 69.62 (s), 70.31 (s), 70.38 (s), 70.69 (s), 70.84 (s), 71.82 (s), 77.91 (s), 78.25 (s)

実施例1
<非水電解液の調製>
エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とジエチルカーボネート(DEC)との体積比1:1:1の混合溶媒に、LiPFを1.0mol/L溶解させたものに、スルホン酸塩A1.0質量%となるように添加して、非水電解液を調製した。なお、非水電解液の調製は、Ar雰囲気中で行った。
Example 1
<Preparation of non-aqueous electrolyte>
In a solvent mixture of ethylene carbonate (EC), methyl ethyl carbonate (MEC) and diethyl carbonate (DEC) having a volume ratio of 1: 1: 1, LiPF 6 was dissolved at 1.0 mol / L, and sulfonate A1 A non-aqueous electrolyte was prepared by adding 0.0% by mass. The non-aqueous electrolyte was prepared in an Ar atmosphere.

<正極の作製>
95質量部の層状MnNi材
であるLiNi1/3Mn1/3Co1/3(正極活物質)に導電助剤としてカーボンブラックを2.5質量部加えて混合し、この混合物にポリフッ化ビニリデン(PVDF)2.5質量部をN−メチル−2−ピロリドン(NMP)に溶解させた溶液を加え、混合して正極合剤含有スラリーを調製した。この正極合剤含有スラリーを70メッシュの網に通過させて粒径の大きなものを取り除いた後、この正極合剤含有スラリーを厚みが15μmのアルミニウム箔からなる正極集電体の両面に均一に塗付して乾燥し、その後、ロールプレス機により圧縮成形して総厚さを129μmにした後切断し、アルミニウム製のリード体を溶接して、帯状の正極を得た。
<Preparation of positive electrode>
The mixture was added to 95 parts by mass of Li x Ni 1/3 Mn 1/3 Co 1/3 O 2 (positive electrode active material), which is a layered MnNi material, and 2.5 parts by mass of carbon black as a conductive additive. A solution in which 2.5 parts by mass of polyvinylidene fluoride (PVDF) was dissolved in N-methyl-2-pyrrolidone (NMP) was added to and mixed to prepare a positive electrode mixture-containing slurry. This positive electrode mixture-containing slurry is passed through a 70-mesh net to remove large particles, and the positive electrode mixture-containing slurry is uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm. Then, it was compression-molded by a roll press machine to a total thickness of 129 μm and then cut, and an aluminum lead body was welded to obtain a belt-like positive electrode.

<負極の作製>
負極活物質として、メソフェーズカーボンマイクロビーズ(MCMB)を用いた。96質量部のMCMBに、PVDF4質量部をNMPに溶解させた溶液を加えて混合し、更にNMPを加えて混合して負極合剤含有ペーストとした。この負極合剤含有ペーストを厚みが8μmの銅箔からなる負極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形して総厚さを141μmにした後切断し、ニッケル製のリード体を溶接して、帯状の負極を得た。
<Production of negative electrode>
Mesophase carbon microbeads (MCMB) were used as the negative electrode active material. To 96 parts by mass of MCMB, a solution in which 4 parts by mass of PVDF was dissolved in NMP was added and mixed, and further NMP was added and mixed to obtain a negative electrode mixture-containing paste. This negative electrode mixture-containing paste is uniformly applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 8 μm, dried, and then compressed by a roll press machine to a total thickness of 141 μm and then cut. The lead body made of nickel was welded to obtain a strip-shaped negative electrode.

<電池の組み立て>
上記帯状の正極と上記帯状の負極とを、厚みが20μmの微孔性ポリエチレンセパレータ(空隙率:41%)を介して重ね合わせ、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極巻回体とし、この電極巻回体をポリプロピレン製の絶縁テープで固定した。次に、外寸が縦(厚み)4.6mm、横34mm、高さ43mmのアルミニウム合金製の角形の電池ケースに上記電極巻回体を挿入し、リード体の溶接を行うとともに、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた電解液注入口から上記非水電解液を注入し、1時間静置した。なお、本実施例の非水電解液二次電池の4.35Vまで充電した場合(Li基準で4.45V)の設計電気容量は、800mAhとした。ちなみに本実施例の非水電解液二次電池の4.2Vまで充電した場合(Li基準で4.3V)の設計電気容量は、約700mAhとした。
<Battery assembly>
The strip-shaped positive electrode and the strip-shaped negative electrode are overlapped via a microporous polyethylene separator (porosity: 41%) having a thickness of 20 μm, wound in a spiral shape, and then pressed so as to be flat. Thus, an electrode winding body having a flat winding structure was formed, and the electrode winding body was fixed with an insulating tape made of polypropylene. Next, the electrode winding body is inserted into a rectangular battery case made of aluminum alloy having a vertical (thickness) length of 4.6 mm, a width of 34 mm, and a height of 43 mm, and the lead body is welded. The lid plate was welded to the open end of the battery case. Thereafter, the non-aqueous electrolyte solution was injected from the electrolyte solution injection port provided on the cover plate, and allowed to stand for 1 hour. In addition, the design electric capacity at the time of charging to 4.35V of the nonaqueous electrolyte secondary battery of a present Example (4.45V on the basis of Li) was 800 mAh. Incidentally, the design electric capacity of the non-aqueous electrolyte secondary battery of this example when charged to 4.2 V (4.3 V based on Li) was about 700 mAh.

次に、上記電池を露点−30℃のドライルーム内で以下の条件で充電を行った。充電は、充電量が電池の設計電気容量(800mAh)の25%(200mAh)となるように、0.25CmA(200mA)の定電流で1時間行った。充電終了後に電解液注入口を封止して電池内部を密閉状態にした。作製した電池を0.3CmA(240mA)で4.1Vになるまで充電してから、60℃で12時間貯蔵した。その後、0.3CmA(240mA)で4.35Vになるまで充電してから、更に4.35Vの定電圧で3時間充電し、1CmA(800mA)で3.8Vまで放電して、充電電圧を4.35Vとして評価するための評価用電池とした。   Next, the battery was charged in a dry room with a dew point of −30 ° C. under the following conditions. Charging was performed for 1 hour at a constant current of 0.25 CmA (200 mA) so that the amount of charge was 25% (200 mAh) of the designed electric capacity (800 mAh) of the battery. After charging, the electrolyte injection port was sealed to seal the inside of the battery. The produced battery was charged at 0.3 CmA (240 mA) to 4.1 V and then stored at 60 ° C. for 12 hours. After that, the battery is charged at 0.3 CmA (240 mA) to 4.35 V, then charged at a constant voltage of 4.35 V for 3 hours, discharged to 3.8 V at 1 CmA (800 mA), and the charge voltage is 4 A battery for evaluation for evaluation as .35V was obtained.

また、充電電圧4.35Vでの評価用電池とは別の電池について、最高充電電圧を4.35Vから4.2Vに変えた以外は、上述の、電池の設計電気容量の25%となるように0.25CmAの定電流で1時間充電してから、1CmAで3.8Vまで放電するまでの一連の操作を行って、充電電圧を4.2Vとして評価するための評価用電池とした。   In addition, with respect to a battery different from the evaluation battery at the charging voltage of 4.35 V, the maximum charging voltage is changed from 4.35 V to 4.2 V, so that it becomes 25% of the battery design electric capacity described above. Then, a series of operations from charging for 1 hour at a constant current of 0.25 CmA to discharging to 3.8 V at 1 CmA was performed, and an evaluation battery for evaluating the charging voltage as 4.2 V was obtained.

上記のようにして得られた本実施例の非水電解液二次電池の構造を図1および図2に示す。図1は、本実施例の非水電解液二次電池の外観を表す斜視図であり、図2は、図1のI−I線断面模式図である。   The structure of the nonaqueous electrolyte secondary battery of the present example obtained as described above is shown in FIGS. FIG. 1 is a perspective view showing the appearance of the nonaqueous electrolyte secondary battery of this example, and FIG. 2 is a schematic cross-sectional view taken along the line II of FIG.

本実施例の非水電解液二次電池1は、アルミニウム合金製の電池ケース2と、該電池ケース2の開口端部に溶接されたアルミニウム合金製の蓋板3とにより形成された密閉空間内に、正極6、負極7およびセパレータ8よりなる電極巻回体9、並びに非水電解液(図示しない)を収容している。蓋板3には、絶縁パッキング4を介して端子5が取り付けられている。端子5の底部にはリード板14が取り付けられていて、このリード体14と電極巻回体9の負極7とが、負極リード体12を介して接続されている。また、電極巻回体9の正極6は、正極リード体11を介して蓋板3と接続されている。10は電極巻回体9と電池ケース2とを仕切るための絶縁体であり、13は蓋板3とリード板14とを仕切るための絶縁体である。   The non-aqueous electrolyte secondary battery 1 of the present embodiment is in a sealed space formed by an aluminum alloy battery case 2 and an aluminum alloy lid plate 3 welded to the opening end of the battery case 2. In addition, an electrode winding body 9 including a positive electrode 6, a negative electrode 7, and a separator 8, and a nonaqueous electrolytic solution (not shown) are accommodated. Terminals 5 are attached to the cover plate 3 via insulating packings 4. A lead plate 14 is attached to the bottom of the terminal 5, and the lead body 14 and the negative electrode 7 of the electrode winding body 9 are connected via a negative electrode lead body 12. The positive electrode 6 of the electrode winding body 9 is connected to the lid plate 3 via the positive electrode lead body 11. Reference numeral 10 denotes an insulator for partitioning the electrode winding body 9 and the battery case 2, and 13 is an insulator for partitioning the lid plate 3 and the lead plate 14.

比較例1
スルホン酸塩Aを添加しなかった以外は、実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にして、充電電圧4.35Vでの評価用電池および充電電圧4.2Vでの評価用電池を作製した。
Comparative Example 1
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the sulfonate A was not added. The charge voltage was 4.35 V in the same manner as in Example 1 except that this non-aqueous electrolyte was used. The battery for evaluation and the battery for evaluation at a charging voltage of 4.2 V were prepared.

比較例2
スルホン酸塩Aに代えて1,3−プロパンスルトンを用いた以外は、実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にして、充電電圧4.35Vでの評価用電池および充電電圧4.2Vでの評価用電池を作製した。
Comparative Example 2
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 1,3-propane sultone was used in place of the sulfonate A, and the same as in Example 1 except that this non-aqueous electrolyte was used. Thus, an evaluation battery with a charging voltage of 4.35 V and an evaluation battery with a charging voltage of 4.2 V were produced.

実施例2
スルホン酸塩Aに代えてスルホン酸塩Bを用いた以外は、実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にして、充電電圧4.35Vでの評価用電池および充電電圧4.2Vでの評価用電池を作製した。
Example 2
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that sulfonate B was used instead of sulfonate A, and the same as in Example 1 except that this non-aqueous electrolyte was used. A battery for evaluation at a charging voltage of 4.35 V and a battery for evaluation at a charging voltage of 4.2 V were prepared.

実施例3
スルホン酸塩Aに代えてスルホン酸塩Cを用いた以外は、実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にして、充電電圧4.35Vでの評価用電池および充電電圧4.2Vでの評価用電池を作製した。
Example 3
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that sulfonate C was used instead of sulfonate A, and in the same manner as in Example 1 except that this non-aqueous electrolyte was used. A battery for evaluation at a charging voltage of 4.35 V and a battery for evaluation at a charging voltage of 4.2 V were prepared.

実施例1〜3および比較例1〜2の非水電解液二次電池について、下記の高温貯蔵特性試験を行った。結果を表1および表2に示す。   The following high temperature storage characteristic test was done about the nonaqueous electrolyte secondary battery of Examples 1-3 and Comparative Examples 1-2. The results are shown in Tables 1 and 2.

<高温貯蔵特性試験>
実施例1〜3および比較例1〜2の各電池のうち、充電電圧4.35Vでの評価用電池について、20℃において600mAで4.35Vになるまで充電し、更に4.35Vの定電圧で3時間充電して満充電とし、その後、20℃において0.2Cで3Vまで放電して貯蔵前の放電容量を測定した。
<High temperature storage characteristics test>
Among the batteries of Examples 1 to 3 and Comparative Examples 1 and 2, the evaluation battery at a charging voltage of 4.35 V was charged to 4.35 V at 600 mA at 20 ° C., and further a constant voltage of 4.35 V The battery was fully charged by charging for 3 hours, and then discharged at 20 ° C. to 3 V at 0.2 C, and the discharge capacity before storage was measured.

次に、上記各電池を上記と同様にして充電した後、恒温槽中において80℃で1日間貯蔵した。貯蔵後の各電池を20℃まで自然冷却した後、電池ケースの厚みを測定し、貯蔵前の電池ケースの厚みとの比較から、下記式により電池の膨れを求めた。その後全ての電池を、20℃において0.2Cで3Vまで放電し、貯蔵前と同様の条件で充放電を行って、貯蔵後の放電容量を測定した。
電池の膨れ(mm)=貯蔵後の電池の厚み ― 貯蔵前の電池の厚み
Next, each battery was charged in the same manner as described above, and then stored in a thermostatic bath at 80 ° C. for 1 day. After each battery after storage was naturally cooled to 20 ° C., the thickness of the battery case was measured, and from the comparison with the thickness of the battery case before storage, the swelling of the battery was determined by the following formula. Thereafter, all the batteries were discharged at 20 ° C. to 3 V at 0.2 C, charged and discharged under the same conditions as before storage, and the discharge capacity after storage was measured.
Battery swelling (mm) = Battery thickness after storage-Battery thickness before storage

また、実施例1〜3および比較例1〜2の各電池のうち、充電電圧4.2Vでの評価用電池について、20℃において700mAで4.2Vになるまで充電し、更に4.2Vの定電圧で2.5時間充電して満充電とし、その後、20℃において0.2Cで3Vまで放電して貯蔵前の放電容量を測定した。   Moreover, about each battery of Examples 1-3 and Comparative Examples 1-2, about the battery for evaluation by the charge voltage 4.2V, it charges until it becomes 4.2V at 700mA at 20 degreeC, and also 4.2V The battery was charged at a constant voltage for 2.5 hours to be fully charged, then discharged at 20 ° C. to 3 V at 0.2 C, and the discharge capacity before storage was measured.

次に、上記各電池を上記と同様にして充電した後、恒温槽中において80℃で1日間貯蔵した。貯蔵後の各電池を20℃まで自然冷却した後、電池ケースの厚みを測定し、貯蔵前の電池ケースの厚みとの比較から、上記の電池の膨れの算出式により電池の膨れを求めた。その後全ての電池を、20℃において0.2Cで3Vまで放電し、貯蔵前と同様の条件で充放電を行って、貯蔵後の放電容量を測定した。   Next, each battery was charged in the same manner as described above, and then stored in a thermostatic bath at 80 ° C. for 1 day. Each battery after storage was naturally cooled to 20 ° C., and then the thickness of the battery case was measured. From the comparison with the thickness of the battery case before storage, the swelling of the battery was obtained by the above formula for calculating the swelling of the battery. Thereafter, all the batteries were discharged at 20 ° C. to 3 V at 0.2 C, charged and discharged under the same conditions as before storage, and the discharge capacity after storage was measured.

実施例1〜3および比較例1〜2の各電池について、貯蔵前の放電容量と貯蔵後の放電容量を用いて、下記式により容量維持率を算出し、電池の膨れと容量維持率から高温貯蔵特性を評価した。
容量維持率(%)=(貯蔵後の放電容量/貯蔵前の放電容量)×100
About each battery of Examples 1-3 and Comparative Examples 1-2, the capacity maintenance rate is calculated by the following formula using the discharge capacity before storage and the discharge capacity after storage, and the high temperature is calculated from the swelling of the battery and the capacity maintenance rate. Storage characteristics were evaluated.
Capacity maintenance rate (%) = (discharge capacity after storage / discharge capacity before storage) × 100

Figure 2008234838
Figure 2008234838

表1から明らかなように、実施例1の非水電解液二次電池では、比較例1および比較例2の非水電解液二次電池に比べて、貯蔵後の電池膨れが大きく抑制されている。また、実施例1の非水電解液二次電池では、特に充電電圧が高電圧の4.35Vの場合に、比較例1および比較例2の非水電解液二次電池に比べて、貯蔵後においても容量がより高く維持されている。これらのことから、実施例1の非水電解液二次電池は、高温貯蔵特性に優れていることが分かる。   As is clear from Table 1, in the nonaqueous electrolyte secondary battery of Example 1, battery swelling after storage was greatly suppressed as compared with the nonaqueous electrolyte secondary batteries of Comparative Example 1 and Comparative Example 2. Yes. Further, in the non-aqueous electrolyte secondary battery of Example 1, in particular, when the charging voltage was 4.35 V, which is a high voltage, compared with the non-aqueous electrolyte secondary batteries of Comparative Example 1 and Comparative Example 2, after storage The capacity is also maintained at a higher level. From these, it can be seen that the non-aqueous electrolyte secondary battery of Example 1 is excellent in high-temperature storage characteristics.

Figure 2008234838
Figure 2008234838

また、表2から明らかなように、実施例2および実施例3の非水電解液二次電池は、実施例1の非水電解液二次電池と同様の高温貯蔵特性を有しており、スルホン酸塩Bおよびスルホン酸塩Cを用いても、スルホン酸塩Aを用いた場合と同様の効果を奏し得ることが分かる。特に、充電電圧が高電圧の4.35Vの場合に、スルホン酸塩Bまたはスルホン酸塩Cを用いることにより、スルホン酸塩Aを用いた場合よりも優れた効果が期待される。   As is clear from Table 2, the nonaqueous electrolyte secondary batteries of Example 2 and Example 3 have the same high-temperature storage characteristics as the nonaqueous electrolyte secondary battery of Example 1, It can be seen that even when the sulfonate B and the sulfonate C are used, the same effect as when the sulfonate A is used can be obtained. In particular, when the charging voltage is a high voltage of 4.35 V, the use of the sulfonate B or the sulfonate C is expected to have an effect that is superior to the case of using the sulfonate A.

実施例4〜11および比較例3
<非水電解液の調製>
スルホン酸塩Aの量を、表3に示すように変更し、更にビニレンカーボネートを2.0質量%添加した以外は、実施例1と同様にして非水電解液を調製した。
Examples 4 to 11 and Comparative Example 3
<Preparation of non-aqueous electrolyte>
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the amount of the sulfonate A was changed as shown in Table 3 and 2.0% by mass of vinylene carbonate was further added.

<電池の作製>
正極活物質を、10質量部のLiNi1/3Mn1/3Co1/3と、85質量部のLiCoAl0.005Mg0.005Zr0.002との混合物に変更した以外は、実施例1と同様にして正極を作製した。
<Production of battery>
The positive electrode active material was changed to a mixture of 10 parts by mass of LiNi 1/3 Mn 1/3 Co 1/3 O 2 and 85 parts by mass of LiCoAl 0.005 Mg 0.005 Zr 0.002 O 2. Produced a positive electrode in the same manner as in Example 1.

また、負極活物質を、下記方法により得られた高結晶の人造黒鉛に変更した以外は、実施例1と同様にして負極を作製した。   Further, a negative electrode was produced in the same manner as in Example 1 except that the negative electrode active material was changed to highly crystalline artificial graphite obtained by the following method.

コークス粉末100質量部、タールピッチ40質量部、炭化ケイ素14質量部およびコールタール20質量部を、空気中において200℃で混合した後に粉砕し、窒素雰囲気中において1000℃で熱処理し、更に窒素雰囲気中において3000℃で熱処理して黒鉛化させて人造黒鉛とした。得られた人造黒鉛のBET比表面積は4.0m/gで、X線回折法によって測定される(002)面の面間隔d002は0.336nm、c軸方向の結晶子の大きさLcは48nm、全細孔容積は1×10−3/kgであった。 Coke powder 100 parts by weight, tar pitch 40 parts by weight, silicon carbide 14 parts by weight and coal tar 20 parts by weight are mixed in air at 200 ° C. and then pulverized, heat treated at 1000 ° C. in a nitrogen atmosphere, and further a nitrogen atmosphere Inside, it was heat-treated at 3000 ° C. and graphitized to produce artificial graphite. The obtained artificial graphite had a BET specific surface area of 4.0 m 2 / g, a (002) plane spacing d 002 of 0.336 nm measured by X-ray diffraction, and a crystallite size Lc in the c-axis direction. Was 48 nm and the total pore volume was 1 × 10 −3 m 3 / kg.

上記の正極、上記の負極、および上記の各非水電解液を用いた以外は、実施例1と同様にして、充電電圧4.35Vでの評価用非水電解液二次電池を作製した。実施例4〜11および比較例3の非水電解液二次電池の設計電気容量(4.35V)も、800mAhであった。   A nonaqueous electrolyte secondary battery for evaluation at a charging voltage of 4.35 V was produced in the same manner as in Example 1 except that the above positive electrode, the above negative electrode, and each of the above nonaqueous electrolytes were used. The design electric capacity (4.35V) of the nonaqueous electrolyte secondary batteries of Examples 4 to 11 and Comparative Example 3 was also 800 mAh.

実施例4〜11および比較例3の非水電解液二次電池について、実施例1の充電電圧4.35Vでの評価用電池と同様にして、高温貯蔵特性試験を行い、貯蔵後の電池膨れを評価した。結果を表3に併記する。   The non-aqueous electrolyte secondary batteries of Examples 4 to 11 and Comparative Example 3 were subjected to a high-temperature storage characteristic test in the same manner as the evaluation battery at the charging voltage of 4.35 V in Example 1, and the battery swelled after storage Evaluated. The results are also shown in Table 3.

Figure 2008234838
Figure 2008234838

表3から明らかなように、実施例4〜11の非水電解液二次電池も、実施例1〜3の非水電解液二次電池と同様に、貯蔵後の電池膨れが大きく抑制されており、優れた高温貯蔵特性を有していることが分かる。なお、実施例4の結果から、非水電解液中のスルホン酸塩量は0.05質量%以上とすることで、その作用がより有効に発揮されることも分かる。   As can be seen from Table 3, the non-aqueous electrolyte secondary batteries of Examples 4 to 11 were greatly suppressed from swelling of the battery after storage, similarly to the non-aqueous electrolyte secondary batteries of Examples 1 to 3. It can be seen that it has excellent high-temperature storage characteristics. In addition, the result of Example 4 also shows that the effect | action is exhibited more effectively by the amount of sulfonates in a non-aqueous electrolyte being 0.05 mass% or more.

また、実施例4〜9および比較例3の非水電解液二次電池について、下記の充放電サイクル試験を行った。結果を表4に示す。   In addition, the following charge / discharge cycle test was performed on the nonaqueous electrolyte secondary batteries of Examples 4 to 9 and Comparative Example 3. The results are shown in Table 4.

<充放電サイクル試験>
実施例4〜9および比較例3の電池のうち、上記の高温貯蔵特性試験に供したものとは別の電池について、45℃において、600mAで4.35Vになるまで充電し、更に4.35Vの定電圧で3時間充電して満充電とし、その後、1Cの800mAhで3Vまで放電する充放電サイクルを300回繰り返し、1サイクル目の放電容量と200サイクル目の放電容量を測定した。続いて、1サイクル目の放電容量と300サイクル目の放電容量を用いて、下記式により容量維持率を算出し、充放電サイクル特性を評価した。
容量維持率(%)
=(300サイクル目の放電容量/1サイクル目の放電容量)×100
<Charge / discharge cycle test>
Among the batteries of Examples 4 to 9 and Comparative Example 3, a battery different from that used for the above high-temperature storage characteristic test was charged at 45 ° C. until it reached 4.35 V at 600 mA, and further 4.35 V. The battery was charged at a constant voltage of 3 hours for full charge, and then the charge / discharge cycle of discharging to 3 V at 1 mA of 800 mAh was repeated 300 times, and the discharge capacity at the first cycle and the discharge capacity at the 200th cycle were measured. Subsequently, using the discharge capacity at the first cycle and the discharge capacity at the 300th cycle, the capacity retention rate was calculated by the following formula, and the charge / discharge cycle characteristics were evaluated.
Capacity maintenance rate (%)
= (Discharge capacity at 300th cycle / Discharge capacity at 1st cycle) × 100

Figure 2008234838
Figure 2008234838

表4から明らかなように、スルホン酸塩Aを含有する非水電解液を用いた実施例4〜9の非水電解液二次電池では、スルホン酸塩Aを含有していない非水電解液を用いた比較例3の非水電解液二次電池に比べて、45℃における300サイクル目の容量維持率が高く、優れた充放電サイクル特性も有していることが分かる。   As is clear from Table 4, in the non-aqueous electrolyte secondary batteries of Examples 4 to 9 using the non-aqueous electrolyte containing sulfonate A, the non-aqueous electrolyte not containing sulfonate A Compared to the non-aqueous electrolyte secondary battery of Comparative Example 3 using the above, it can be seen that the capacity retention rate at the 300th cycle at 45 ° C. is high and also has excellent charge / discharge cycle characteristics.

本発明の非水電解液二次電池の一例を模式的に示す外観斜視図である。It is an external appearance perspective view which shows typically an example of the nonaqueous electrolyte secondary battery of this invention. 図1のI−I線断面模式図である。FIG. 2 is a schematic cross-sectional view taken along the line II of FIG. 1.

符号の説明Explanation of symbols

1 非水電解液二次電池
2 電池ケース
3 蓋板
6 正極
7 負極
8 セパレータ
9 電極巻回体
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Battery case 3 Cover plate 6 Positive electrode 7 Negative electrode 8 Separator 9 Electrode winding body

Claims (12)

非水性溶媒と電解質塩とスルホン酸塩とを含有する非水電解液であって、上記スルホン酸塩が、分子内に分岐型エーテル骨格を有する化合物であることを特徴とする非水電解液。   A nonaqueous electrolytic solution containing a nonaqueous solvent, an electrolyte salt, and a sulfonate, wherein the sulfonate is a compound having a branched ether skeleton in the molecule. 分子内に分岐型エーテル骨格を有するスルホン酸塩は、下記一般式(1)で表されるエーテル結合を分子内に有するものである請求項1に記載の非水電解液。
Figure 2008234838
[上記一般式(1)中、Rは、水素がフッ素で置換されていてもよい炭素数2〜4のアルキレンであり、R’は、水素がフッ素で置換されていてもよい炭素数1〜6のアルキル基であり、mは1〜10の整数を表す。]
The nonaqueous electrolytic solution according to claim 1, wherein the sulfonate having a branched ether skeleton in the molecule has an ether bond represented by the following general formula (1) in the molecule.
Figure 2008234838
[In the above general formula (1), R is alkylene having 2 to 4 carbon atoms in which hydrogen may be substituted with fluorine, and R ′ is 1 to carbon atoms in which hydrogen may be substituted with fluorine. 6 is an alkyl group, and m represents an integer of 1 to 10. ]
分子内に分岐型エーテル骨格を有するスルホン酸塩は、下記一般式(2)で表される構造部分を分子内に有するものである請求項1または2に記載の非水電解液。
Figure 2008234838
[上記一般式(2)中、Mはアルカリ金属であり、Rは、水素がフッ素で置換されていてもよい炭素数1〜8のアルキレンまたは2価の芳香族残基を表す。]
The nonaqueous electrolytic solution according to claim 1 or 2, wherein the sulfonate having a branched ether skeleton in the molecule has a structural portion represented by the following general formula (2) in the molecule.
Figure 2008234838
[In the general formula (2), M represents an alkali metal, and R 1 represents an alkylene having 1 to 8 carbon atoms or a divalent aromatic residue in which hydrogen may be substituted with fluorine. ]
分子内に分岐型エーテル骨格を有するスルホン酸塩は、下記一般式(3)で表されるエーテル結合を分子内に有するものである請求項1に記載の非水電解液。
Figure 2008234838
[上記一般式(3)中、Rは炭素数1〜3のアルキレンであり、RおよびRは、水素がフッ素で置換されていてもよい炭素数2〜4のアルキレンで、同一でもよく、また異なっていてもよく、RおよびRは、水素がフッ素で置換されていてもよい炭素数1〜6のアルキル基で、同一でもよく、また異なっていてもよく、nは1〜4の整数であり、oおよびpは、同一でもよく、また異なってもよい0〜10の整数を表す。]
The nonaqueous electrolytic solution according to claim 1, wherein the sulfonate having a branched ether skeleton in the molecule has an ether bond represented by the following general formula (3) in the molecule.
Figure 2008234838
[In the above general formula (3), R 2 is alkylene having 1 to 3 carbon atoms, and R 3 and R 4 are alkylene having 2 to 4 carbon atoms in which hydrogen may be substituted with fluorine. R 5 and R 6 are alkyl groups having 1 to 6 carbon atoms in which hydrogen may be substituted with fluorine, and may be the same or different, and n is 1 It is an integer of -4, o and p represent the integer of 0-10 which may be the same and may differ. ]
分子内に分岐型エーテル結合を有するスルホン酸塩が、下記一般式(4)で表される化合物である請求項4に記載の非水電解液。
Figure 2008234838
[上記一般式(4)中、Mはアルカリ金属であり、Rは、水素がフッ素で置換されていてもよい炭素数1〜8のアルキレンまたは2価の芳香族残基であり、Rは炭素数1〜3のアルキレン基であり、RおよびRは、水素がフッ素で置換されていてもよい炭素数2〜4のアルキレンで、同一でもよく、また異なっていてもよく、RおよびRは、水素がフッ素で置換されていてもよい炭素数1〜6のアルキル基で、同一でもよく、また異なっていてもよく、nは1〜4の整数であり、oおよびpは、同一でもよく、また異なってもよい0〜10の整数を表す。]
The nonaqueous electrolytic solution according to claim 4, wherein the sulfonate having a branched ether bond in the molecule is a compound represented by the following general formula (4).
Figure 2008234838
[In the above general formula (4), M is an alkali metal, R 1 is an alkylene or divalent aromatic residue having 1 to 8 carbon atoms in which hydrogen may be substituted with fluorine, and R 2 Is an alkylene group having 1 to 3 carbon atoms, R 3 and R 4 are alkylene having 2 to 4 carbon atoms in which hydrogen may be substituted with fluorine, which may be the same or different, and R 5 and R 6 are alkyl groups having 1 to 6 carbon atoms in which hydrogen may be substituted with fluorine, which may be the same or different, and n is an integer of 1 to 4, and o and p Represent the integer of 0-10 which may be the same or different. ]
分子内に分岐型エーテル骨格を有するスルホン酸塩は、下記一般式(5)で表されるエーテル結合を分子内に有するものである請求項1に記載の非水電解液。
Figure 2008234838
[上記一般式(5)中、qは1または2であり、rは1〜10の整数を表す。]
The nonaqueous electrolytic solution according to claim 1, wherein the sulfonate having a branched ether skeleton in the molecule has an ether bond represented by the following general formula (5) in the molecule.
Figure 2008234838
[In the general formula (5), q is 1 or 2, and r represents an integer of 1 to 10. ]
分子内に分岐型エーテル骨格を有するスルホン酸塩が、下記一般式(6)で表される化合物である請求項6に記載の非水電解液。
Figure 2008234838
[上記一般式(6)中、Mはアルカリ金属であり、Rは、水素がフッ素で置換されていてもよい炭素数1〜8のアルキレンまたは2価の芳香族残基であり、qは1または2であり、rは1〜10の整数を表す。]
The nonaqueous electrolytic solution according to claim 6, wherein the sulfonate having a branched ether skeleton in the molecule is a compound represented by the following general formula (6).
Figure 2008234838
[In the general formula (6), M is an alkali metal, R 1 is an alkylene or divalent aromatic residue having 1 to 8 carbon atoms in which hydrogen may be substituted with fluorine, and q is 1 or 2 and r represents an integer of 1 to 10. ]
分子内にエーテル結合を有するスルホン酸塩の含有量が、非水電解液全量中、0.05〜10質量%である請求項1〜7のいずれかに記載の非水電解液。   The nonaqueous electrolytic solution according to any one of claims 1 to 7, wherein the content of the sulfonate having an ether bond in the molecule is 0.05 to 10% by mass in the total amount of the nonaqueous electrolytic solution. 電解質塩が、リチウム塩である請求項1〜8のいずれかに記載の非水電解液。   The nonaqueous electrolytic solution according to any one of claims 1 to 8, wherein the electrolyte salt is a lithium salt. 非水性溶媒として、環状カーボネートおよび鎖状カーボネートを含有する請求項1〜9のいずれかに記載の非水電解液。   The nonaqueous electrolytic solution according to any one of claims 1 to 9, comprising a cyclic carbonate and a chain carbonate as the nonaqueous solvent. ビニレンカーボネートを含有する請求項1〜10のいずれかに記載の非水電解液。   The nonaqueous electrolytic solution according to any one of claims 1 to 10, which contains vinylene carbonate. 正極、負極、セパレータ、および請求項1〜11のいずれかに記載の非水電解液を有することを特徴とする非水電解液二次電池。   A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator, and the non-aqueous electrolyte solution according to claim 1.
JP2007067998A 2007-03-16 2007-03-16 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery Expired - Fee Related JP5150928B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007067998A JP5150928B2 (en) 2007-03-16 2007-03-16 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
PCT/JP2008/054776 WO2008114739A1 (en) 2007-03-16 2008-03-14 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR1020097017001A KR101113192B1 (en) 2007-03-16 2008-03-14 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
CN2008800043118A CN101606267B (en) 2007-03-16 2008-03-14 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067998A JP5150928B2 (en) 2007-03-16 2007-03-16 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008234838A true JP2008234838A (en) 2008-10-02
JP5150928B2 JP5150928B2 (en) 2013-02-27

Family

ID=39765847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067998A Expired - Fee Related JP5150928B2 (en) 2007-03-16 2007-03-16 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Country Status (4)

Country Link
JP (1) JP5150928B2 (en)
KR (1) KR101113192B1 (en)
CN (1) CN101606267B (en)
WO (1) WO2008114739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102356499A (en) * 2009-03-25 2012-02-15 索尼公司 Electrolyte and secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847752A (en) * 2010-05-26 2010-09-29 惠州市德赛聚能电池有限公司 Additive of electrolytic solution of lithium ion battery
CN109428119B (en) * 2017-08-23 2020-12-22 宁德时代新能源科技股份有限公司 Lithium ion battery and non-aqueous electrolyte thereof
CN112670582B (en) * 2020-12-23 2022-08-30 远景动力技术(江苏)有限公司 Non-aqueous electrolyte and lithium ion battery with high and low temperature consideration
CN116154101A (en) * 2021-05-24 2023-05-23 宁德新能源科技有限公司 Electrochemical device and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748459A (en) * 1993-08-05 1995-02-21 Matsushita Electric Ind Co Ltd Ionic conductive thin film and production thereof
JP2004281368A (en) * 2002-08-29 2004-10-07 Nec Corp Electrolyte solution for secondary battery and secondary battery using the same
JP2005228631A (en) * 2004-02-13 2005-08-25 Nec Corp Electrolytic solution for secondary battery, and secondary battery using the same
JP2005340080A (en) * 2004-05-28 2005-12-08 Ube Ind Ltd Nonaqueous electrolyte solution and lithium secondary cell using above
JP2007063176A (en) * 2005-08-31 2007-03-15 Nagoya City Carbonate derivative having branched polyether skeleton
JP2007095657A (en) * 2005-08-31 2007-04-12 Hitachi Maxell Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100521010C (en) * 2006-08-23 2009-07-29 锦州凯美能源有限公司 High temperature electrolyte for super capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748459A (en) * 1993-08-05 1995-02-21 Matsushita Electric Ind Co Ltd Ionic conductive thin film and production thereof
JP2004281368A (en) * 2002-08-29 2004-10-07 Nec Corp Electrolyte solution for secondary battery and secondary battery using the same
JP2005228631A (en) * 2004-02-13 2005-08-25 Nec Corp Electrolytic solution for secondary battery, and secondary battery using the same
JP2005340080A (en) * 2004-05-28 2005-12-08 Ube Ind Ltd Nonaqueous electrolyte solution and lithium secondary cell using above
JP2007063176A (en) * 2005-08-31 2007-03-15 Nagoya City Carbonate derivative having branched polyether skeleton
JP2007095657A (en) * 2005-08-31 2007-04-12 Hitachi Maxell Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102356499A (en) * 2009-03-25 2012-02-15 索尼公司 Electrolyte and secondary battery
CN104332655A (en) * 2009-03-25 2015-02-04 索尼公司 Electrolyte and secondary battery
CN102356499B (en) * 2009-03-25 2015-04-08 索尼公司 Electrolyte and secondary battery
CN104332655B (en) * 2009-03-25 2017-10-24 索尼公司 Electrolyte and secondary cell

Also Published As

Publication number Publication date
CN101606267B (en) 2011-12-28
JP5150928B2 (en) 2013-02-27
KR101113192B1 (en) 2012-03-09
KR20090111327A (en) 2009-10-26
WO2008114739A1 (en) 2008-09-25
CN101606267A (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US8795893B2 (en) Nonaqueous secondary battery electrode, nonaqueous secondary battery including the same, and assembled battery
JP5095090B2 (en) Non-aqueous electrolyte secondary battery
EP1890357B1 (en) Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery and carbonate compound
JP6376875B2 (en) Lithium battery electrolyte additive, organic electrolyte containing the same, and lithium battery employing the electrolyte
JP2022133342A (en) Electrolyte for power storage device and non-aqueous electrolyte
JP5072056B2 (en) Non-aqueous electrolyte secondary battery
JP2006140115A (en) Non-aqueous electrolytic liquid secondary battery
JP5764526B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP5279045B2 (en) Non-aqueous electrolyte secondary battery
JP7115724B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2005267857A (en) Organic electrolyte, and organic electrolyte battery using the same
JP5982201B2 (en) Disulfonic acid benzylamide compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device
JP5150928B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
WO2016006315A1 (en) Nonaqueous electrolytic solution including ester having 3,3,3-trifluoropropionate group and nonaqueous electrolyte battery using same
JP4512949B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5335218B2 (en) Non-aqueous electrolyte secondary battery
JP5877109B2 (en) Phosphorus-containing sulfonic acid ester compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device
JP4578933B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5953146B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP6017803B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP5474224B2 (en) Non-aqueous electrolyte secondary battery system
KR102248688B1 (en) Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery
JP5008471B2 (en) Non-aqueous electrolyte, non-aqueous electrolyte secondary battery and manufacturing method thereof
JP7166258B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees