JP2008232801A - Ultrasonic transducer and ultrasonic level gage - Google Patents

Ultrasonic transducer and ultrasonic level gage Download PDF

Info

Publication number
JP2008232801A
JP2008232801A JP2007072324A JP2007072324A JP2008232801A JP 2008232801 A JP2008232801 A JP 2008232801A JP 2007072324 A JP2007072324 A JP 2007072324A JP 2007072324 A JP2007072324 A JP 2007072324A JP 2008232801 A JP2008232801 A JP 2008232801A
Authority
JP
Japan
Prior art keywords
ultrasonic
level
piezoelectric elements
liquid level
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007072324A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sekine
良浩 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2007072324A priority Critical patent/JP2008232801A/en
Publication of JP2008232801A publication Critical patent/JP2008232801A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow liquid level measurement less affected by a reverberation characteristic when a liquid level is low, robust against a liquid face change in charge of a liquid or the like, and stable over from the time when the liquid level is low up to the time when the liquid level is high, by simple control. <P>SOLUTION: This ultrasonic level gage is provided with an ultrasonic transducer 10 attached to a bottom outer wall face of a container 30, for transmitting an ultrasonic wave toward a face of a liquid stored in an inside of the container, and for receiving a reflected wave from a liquid face. The ultrasonic transducer 10 is arranged concentrically with a disk-like piezoelectric element 12 and a ring-like piezoelectric element 13, and the two piezoelectric elements 12, 13 transmit and receive the ultrasonic wave by different vibration conditions (vertical vibration, lateral vibration). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超音波トランスジューサ及び超音波レベル計、より詳細には、超音波の伝播時間を利用して容器内の液体の液面レベルなどを計測するための超音波トランスジューサ及び該超音波トランスジューサを備えた超音波レベル計に関する。   The present invention relates to an ultrasonic transducer and an ultrasonic level meter, and more specifically, an ultrasonic transducer for measuring a liquid level of a liquid in a container using an ultrasonic propagation time, and the ultrasonic transducer. The present invention relates to an equipped ultrasonic level meter.

送受信兼用の超音波トランスジューサを備えた超音波レベル計は、超音波トランスジューサから超音波を送信し、その反射波を受信するまでの時間を計測し、その時間に基づいて対象物までの距離を算出するもので、対象物までの距離を正確かつ容易に計測することができるため、各種用途で利用されている。   An ultrasonic level meter equipped with an ultrasonic transducer for both transmission and reception measures the time taken to transmit an ultrasonic wave from the ultrasonic transducer and receive the reflected wave, and calculates the distance to the object based on that time. Therefore, since the distance to the object can be measured accurately and easily, it is used for various purposes.

貯槽内部の液面が高い位置にある場合(貯槽底面から遠距離にある場合)、液面が近い場合に比べて微弱な波であるため、従来の受信回路では、液面が高い場合であっても十分にエコーを取得するには増幅回路のゲインを高める必要があった。ところが、増幅回路を高ゲインにした場合、駆動残響が指数関数的に減衰しきるところまでの十分な時間が必要となってしまう。すなわち、高い液面まで対応させようとすると、駆動残響時間が長引くために、液面位置が低い場合に液面をとらえることができないという問題があった。   When the liquid level inside the storage tank is at a high position (when it is far from the bottom of the storage tank), the wave is weaker than when the liquid level is close. However, it is necessary to increase the gain of the amplifier circuit in order to obtain sufficient echo. However, when the amplification circuit is set to a high gain, sufficient time is required until the drive reverberation is attenuated exponentially. That is, when trying to cope with a high liquid level, the drive reverberation time is prolonged, so that there is a problem that the liquid level cannot be captured when the liquid level is low.

この問題を解決するために、受信回路をゲイン可変増幅回路で構成し、前回の計測結果で液面位置が低い場合には、低ゲインで反射エコーを検出する方法が考えられる。しかし、この方法では、液面位置が急激に変化するような場合、あるいは計測間隔が非常に長い場合には液面変動に追従できず、安定した計測ができない。   In order to solve this problem, a method is conceivable in which the receiving circuit is configured by a variable gain amplification circuit, and when the liquid level position is low in the previous measurement result, the reflected echo is detected with a low gain. However, with this method, when the liquid level position changes suddenly or when the measurement interval is very long, it is not possible to follow the liquid level fluctuation and stable measurement cannot be performed.

これに対して、特許文献1には、超音波トランスジューサの駆動タイミングを起点として時間に応じて信号の増幅率が大きくなるように制御することにより、残響により検出できない不感帯時間(距離)を調整し、常に安定した残響特性と感度特性を実現できるようにした技術が開示されている。
特開2004−257981号公報
On the other hand, in Patent Document 1, the dead zone time (distance) that cannot be detected due to reverberation is adjusted by controlling the ultrasonic transducer drive timing as a starting point so that the signal amplification factor increases. Therefore, a technique that can always realize stable reverberation characteristics and sensitivity characteristics is disclosed.
JP 2004-257981 A

しかしながら、上記特許文献1に記載の技術の場合、信号の増幅率を制御することで、残響により検出できない不感帯時間を調整し、常に安定した残響特性と感度特性を両立させるには限界がある。また貯槽の板厚が大きい場合、信号の増幅率を変化させると共に、超音波トランスジューサに入力するパルス信号の発振時間を変化させることにより、ある程度の残響による不感帯時間(距離)を短く調整できるが、調整にも限界があり、温度や経時変化等を考慮すると、検出マージンが問題となる上、上記調整のタイミングなどの制御が複雑化し、消費電力の増加が余儀なくされるという問題がある。   However, in the case of the technique described in Patent Document 1, there is a limit in adjusting the dead zone time that cannot be detected by reverberation by controlling the signal amplification factor, and always achieving both stable reverberation characteristics and sensitivity characteristics. In addition, when the thickness of the storage tank is large, the dead zone time (distance) due to a certain amount of reverberation can be shortened by changing the signal amplification factor and changing the oscillation time of the pulse signal input to the ultrasonic transducer. There is a limit to the adjustment, and considering the temperature, changes with time, and the like, there is a problem that the detection margin becomes a problem, and the control of the adjustment timing and the like becomes complicated and the power consumption is inevitably increased.

本発明は、上述のごとき実情に鑑みてなされたものであり、液面レベルの低い場合の残響特性の影響が少なく、液体の充填等の液面変化に強く、液面の低い場合から高い場合まで、簡単な制御で安定した液面計測を可能とする超音波トランスジューサ及び該超音波トランスジューサを備えた超音波レベル計を提供すること、を目的とする。   The present invention has been made in view of the above circumstances, and is less affected by reverberation characteristics when the liquid level is low, strong against liquid level changes such as liquid filling, and when the liquid level is low to high An object of the present invention is to provide an ultrasonic transducer capable of stable liquid level measurement with simple control and an ultrasonic level meter equipped with the ultrasonic transducer.

上記課題を解決するために、請求項1の発明は、容器の底部外壁面に取り付けられ、該容器内部に収容された液体の液面に向けて超音波を送信させると共に、前記液面からの反射波を受信する超音波トランスジューサであって、2つの圧電素子が略同一箇所に配置され、該2つの圧電素子がそれぞれ異なる振動状態により超音波の送受信を行うことを特徴としたものである。   In order to solve the above-mentioned problem, the invention of claim 1 is attached to the bottom outer wall surface of the container, transmits ultrasonic waves toward the liquid surface of the liquid contained in the container, and An ultrasonic transducer that receives reflected waves, wherein two piezoelectric elements are arranged at substantially the same location, and the two piezoelectric elements transmit and receive ultrasonic waves in different vibration states.

請求項2の発明は、請求項1の発明において、前記2つの圧電素子が同心円状に配置されていることを特徴としたものである。   The invention of claim 2 is characterized in that, in the invention of claim 1, the two piezoelectric elements are arranged concentrically.

請求項3の発明は、請求項1又は2の発明において、前記2つの圧電素子のうち、送信用圧電素子の機械的共振周波数と、受信用圧電素子の電気的***振周波数とが略等しいことを特徴としたものである。   According to a third aspect of the present invention, in the first or second aspect of the invention, the mechanical resonance frequency of the transmitting piezoelectric element and the electrical anti-resonance frequency of the receiving piezoelectric element of the two piezoelectric elements are substantially equal. It is characterized by.

請求項4の発明は、請求項1乃至3のいずれか1の発明において、前記容器の底部外壁面と前記2つの圧電素子との間に音響整合層を備え、前記音響整合層の厚みは、前記2つの圧電素子間で一致した共振周波数における音波の波長の1/2の整数倍に音響整合されていることを特徴としたものである。   The invention of claim 4 is the invention of any one of claims 1 to 3, further comprising an acoustic matching layer between the bottom outer wall surface of the container and the two piezoelectric elements, and the thickness of the acoustic matching layer is: The two piezoelectric elements are acoustically matched to an integral multiple of 1/2 of the wavelength of the sound wave at the resonance frequency that coincides between the two piezoelectric elements.

請求項5の発明は、請求項4の発明において、前記音響整合層は、前記2つの圧電素子のうち、一方の圧電素子が固定された第1の領域と、他方の圧電素子が固定された第2の領域とを備え、前記第1の領域と前記第2の領域との境界にスリットが形成されていることを特徴としたものである。   According to a fifth aspect of the present invention, in the invention of the fourth aspect, the acoustic matching layer includes a first region where one of the two piezoelectric elements is fixed, and the other piezoelectric element is fixed. A second region, and a slit is formed at a boundary between the first region and the second region.

請求項6の発明は、請求項4の発明において、前記音響整合層は、前記2つの圧電素子のうち、一方の圧電素子が固定された第1の部材と、他方の圧電素子が固定された第2の部材とにより一体的に形成され、前記第1の部材と前記第2の部材とがそれぞれ別の材質で構成されていることを特徴としたものである。   According to a sixth aspect of the present invention, in the fourth aspect of the invention, the acoustic matching layer includes a first member to which one of the two piezoelectric elements is fixed, and the other piezoelectric element to which the other piezoelectric element is fixed. The second member is formed integrally with the first member, and the first member and the second member are made of different materials.

請求項7の発明は、請求項1乃至6のいずれか1の発明における超音波トランスジューサと、該超音波トランスジューサにより超音波を送信した時点からその反射波を受信する時点までの時間情報に基づいて前記液面の検出動作を制御する制御部とが接続されたことを特徴とする超音波レベル計である。   The invention of claim 7 is based on the ultrasonic transducer according to any one of claims 1 to 6 and time information from the time when the ultrasonic wave is transmitted by the ultrasonic transducer to the time when the reflected wave is received. The ultrasonic level meter is connected to a control unit that controls the liquid level detection operation.

請求項8の発明は、請求項7の発明において、前記制御部は、前記液面のレベルが所定レベル以下の場合、超音波の送信時、前記2つの圧電素子のうち、厚み方向に縦振動する一方の圧電素子を駆動させ、前記液面で反射した前記超音波の受信時、前記厚み方向と直交する方向に横振動する他方の圧電素子で前記超音波を受信するように制御することを特徴としたものである。   The invention according to claim 8 is the invention according to claim 7, wherein, when the level of the liquid surface is equal to or lower than a predetermined level, the control unit longitudinally vibrates in the thickness direction of the two piezoelectric elements during transmission of ultrasonic waves. One piezoelectric element is driven, and when the ultrasonic wave reflected by the liquid surface is received, control is performed so that the ultrasonic wave is received by the other piezoelectric element that laterally vibrates in a direction orthogonal to the thickness direction. It is a feature.

請求項9の発明は、請求項7の発明において、前記制御部は、前記液面のレベル及び/又は前記液面の状態に基づいて、前記2つの圧電素子の使用状態を切り換えることを特徴としたものである。   The invention according to claim 9 is the invention according to claim 7, wherein the control unit switches use states of the two piezoelectric elements based on the level of the liquid level and / or the state of the liquid level. It is a thing.

請求項10の発明は、請求項7の発明において、前記制御部は、前記液面のレベルが所定レベルを超えている場合、前記液面で反射した超音波の受信時、前記2つの圧電素子を同時に使用して前記超音波を受信するように制御することを特徴としたものである。   According to a tenth aspect of the present invention, in the seventh aspect of the invention, when the level of the liquid surface exceeds a predetermined level, the control unit is configured to receive the two piezoelectric elements upon reception of an ultrasonic wave reflected by the liquid surface. And controlling to receive the ultrasonic wave simultaneously.

請求項11の発明は、請求項7の発明において、前記制御部は、前記液面のレベルが所定レベルを超えており且つ前記液面の揺れが発生した場合、超音波の送信時、前記2つの圧電素子を同時に駆動させ、前記液面で反射した前記超音波の受信時、前記2つの圧電素子を使用して前記超音波を受信するように制御することを特徴としたものである。   According to an eleventh aspect of the present invention, in the seventh aspect of the present invention, when the level of the liquid level exceeds a predetermined level and the fluctuation of the liquid level occurs, Two piezoelectric elements are driven at the same time, and when the ultrasonic waves reflected by the liquid surface are received, control is performed so that the ultrasonic waves are received using the two piezoelectric elements.

本発明によれば、液面レベルの低い場合の残響特性の影響が少なく、液体の充填等の液面変化に強く、液面の低い場合から高い場合まで、簡単な制御で安定した液面計測を可能とし、消費電力の低減を図ることができる。   According to the present invention, the effect of reverberation characteristics when the liquid level is low is small, resistant to liquid level changes such as liquid filling, and stable liquid level measurement with simple control from low to high liquid levels. And power consumption can be reduced.

図1は、本発明の超音波トランスジューサを備えた超音波レベル計を容器に設置した状態の一例を示す図である。図中、10は超音波トランスジューサ、20はコントローラ(制御部)、30は液化ガスや灯油等を収容する貯槽又は容器(以下、容器で代表する)、31は液面を示す。超音波レベル計は、後述する2つの圧電素子を備えた超音波トランスジューサ10と、超音波トランスジューサ10により超音波を送信した時点からその反射波を受信する時点までの時間情報に基づいて液面31の検出動作を制御するコントローラ20とで構成される。超音波トランスジューサ10は、容器30の外壁底面に図示しないマグネット等により設置され、有線によりコントローラ20に接続されている。   FIG. 1 is a view showing an example of a state in which an ultrasonic level meter equipped with the ultrasonic transducer of the present invention is installed in a container. In the figure, 10 is an ultrasonic transducer, 20 is a controller (control unit), 30 is a storage tank or container (hereinafter, represented by a container) for storing liquefied gas, kerosene, and the like, and 31 is a liquid level. The ultrasonic level meter includes an ultrasonic transducer 10 having two piezoelectric elements, which will be described later, and a liquid level 31 based on time information from the time when ultrasonic waves are transmitted by the ultrasonic transducer 10 to the time when the reflected waves are received. And a controller 20 for controlling the detection operation. The ultrasonic transducer 10 is installed on the bottom surface of the outer wall of the container 30 with a magnet or the like (not shown) and connected to the controller 20 by wire.

なお、超音波トランスジューサ10とコントローラ20との間の通信を無線を介して行うように構成してもよく、この場合、配線の損傷や第三者による故意の切断等による動作不良を回避することが可能となる。   In addition, you may comprise so that communication between the ultrasonic transducer 10 and the controller 20 may be performed via radio | wireless, In this case, avoiding the malfunction by wiring damage or the intentional cutting | disconnection by a third party, etc. Is possible.

上記のような構成において、例えば、液体の液面31を検出しようとする際に、作業者はコントローラ20を操作して、超音波トランスジューサ10から超音波wを送信し、主に液面31で反射して戻ってきた反射エコーを受信し、この受信した反射エコーに基づいて液面位置、すなわち液面31までの液面距離を算出し、さらに算出した液面距離に基づいて容器30内の液体容量を算出することができる。   In the above configuration, for example, when detecting the liquid level 31 of the liquid, the operator operates the controller 20 to transmit the ultrasonic wave w from the ultrasonic transducer 10, and mainly at the liquid level 31. The reflected echo returned and received is received, the liquid level position, that is, the liquid level distance to the liquid level 31 is calculated based on the received reflected echo, and the liquid level in the container 30 is calculated based on the calculated liquid level distance. The liquid volume can be calculated.

液面31の高さを検出する際に、超音波トランスジューサ10は、容器30の底部壁に向けて上方に超音波wを送信する。送信した超音波wは、液面31で反射して戻ってくるが、液面31の高さに応じて超音波トランスジューサ10が反射波を受信するまでの遅延時間が異なる。コントローラ20は、受信した反射波の遅延時間から液面距離を算出するためのデータ、例えば温度や伝播速度(空気又は液体等)に応じた音速データ等を保持しており、このデータに基づいて液面距離を算出する。   When detecting the height of the liquid surface 31, the ultrasonic transducer 10 transmits the ultrasonic wave w upward toward the bottom wall of the container 30. The transmitted ultrasonic wave w is reflected and returned by the liquid surface 31, but the delay time until the ultrasonic transducer 10 receives the reflected wave differs depending on the height of the liquid surface 31. The controller 20 holds data for calculating the liquid level distance from the delay time of the received reflected wave, for example, sound speed data corresponding to temperature and propagation speed (air or liquid, etc.), and based on this data. The liquid level distance is calculated.

図2は、図1に示した超音波トランスジューサ10の詳細構成例を示す図である。図中、超音波トランスジューサ10は、振動状態(振動モード)の異なる2つの圧電素子12,13を備え、容器30と圧電素子12,13との間に設けられた音響整合層11により、圧電素子12,13が音響整合される。これら2つの圧電素子12,13は略同一箇所(本例の場合、同心円状)に配置され、容器30の底部外壁面に音響整合層11を介して取り付けられる。そして、2つの圧電素子12,13は、それぞれ異なる振動モードにより超音波の送受信を行う。   FIG. 2 is a diagram showing a detailed configuration example of the ultrasonic transducer 10 shown in FIG. In the figure, the ultrasonic transducer 10 includes two piezoelectric elements 12 and 13 having different vibration states (vibration modes), and the piezoelectric matching element 11 is provided between the container 30 and the piezoelectric elements 12 and 13. 12 and 13 are acoustically matched. These two piezoelectric elements 12 and 13 are arranged at substantially the same location (in the case of this example, concentric), and are attached to the bottom outer wall surface of the container 30 via the acoustic matching layer 11. The two piezoelectric elements 12 and 13 transmit and receive ultrasonic waves in different vibration modes.

すなわち、超音波トランスジューサ10には、それぞれ異なる振動モードを有する圧電素子12,13が備えられ、本例の場合、圧電素子12は円板状圧電素子であり、圧電素子13はリング状圧電素子である。2つの圧電素子12,13のうち、円板状圧電素子12に外部(図1に示したコントローラ20)より電圧を印加し、この電気信号により電気機械変換された振動による超音波が音響整合層11へと伝播され、容器30の壁(板厚部)を透過し、媒質中の既存のLPGなどの液体へと超音波が伝播される。その後、この媒質中を伝播し、液層と気層との境界面(図1に示した液面31)にて全反射した超音波が、再び受信側の超音波トランスジューサ10の一部であるリング状圧電素子13で受信される。   That is, the ultrasonic transducer 10 includes piezoelectric elements 12 and 13 having different vibration modes. In this example, the piezoelectric element 12 is a disk-shaped piezoelectric element, and the piezoelectric element 13 is a ring-shaped piezoelectric element. is there. Of the two piezoelectric elements 12 and 13, a voltage is applied to the disk-shaped piezoelectric element 12 from the outside (the controller 20 shown in FIG. 1), and ultrasonic waves generated by vibration electromechanically converted by this electric signal are generated by the acoustic matching layer. 11, passes through the wall (thickness portion) of the container 30, and ultrasonic waves are propagated to a liquid such as existing LPG in the medium. Thereafter, the ultrasonic wave propagating through this medium and totally reflected at the boundary surface (liquid surface 31 shown in FIG. 1) between the liquid layer and the gas layer is again a part of the ultrasonic transducer 10 on the receiving side. Received by the ring-shaped piezoelectric element 13.

このように、超音波トランスジューサを構成する2つの圧電素子が略同一な位置で超音波を送受信することができるため、送受信の効率が良く、実装スペースも最小限で済むため、小型コンパクトにすることができ、簡単な制御で消費電力の低減を図ることができる。
また、2つの圧電素子の振動状態の相異により、受信時の残響特性が良く、液面レベルが低い場合でも液面検出が可能となる。
As described above, since the two piezoelectric elements constituting the ultrasonic transducer can transmit and receive ultrasonic waves at substantially the same position, the transmission and reception efficiency is high, and the mounting space is minimized. Therefore, power consumption can be reduced with simple control.
Also, due to the difference in the vibration state of the two piezoelectric elements, the reverberation characteristics at the time of reception are good, and the liquid level can be detected even when the liquid level is low.

図3は、円板状圧電素子12とリング状圧電素子13の周波数インピーダンス特性の一例を示す図である。図中、41は円板状圧電素子12の周波数インピーダンスで、42はリング状圧電素子13の周波数インピーダンスである。図中の点線部において、送信時に縦振動モード(Aモード)を行う。このAモードでは円板状圧電素子12を縦(厚み)方向に機械振動させ、機械的共振周波数f3により超音波を伝播させる。また、受信時に横振動モード(Bモード)を行う。このBモードではリング状圧電素子13を円板状圧電素子12の縦振動とは直交関係となる横方向へ広がり振動させる。この際、リング状圧電素子13の電気的***振周波数f2が、円板状圧電素子12の機械的共振周波数f3と略同一周波数(f2≒f3)となる。   FIG. 3 is a diagram illustrating an example of frequency impedance characteristics of the disk-shaped piezoelectric element 12 and the ring-shaped piezoelectric element 13. In the figure, 41 is the frequency impedance of the disk-shaped piezoelectric element 12, and 42 is the frequency impedance of the ring-shaped piezoelectric element 13. In the dotted line portion in the figure, the longitudinal vibration mode (A mode) is performed during transmission. In this A mode, the disk-shaped piezoelectric element 12 is mechanically vibrated in the longitudinal (thickness) direction, and ultrasonic waves are propagated at the mechanical resonance frequency f3. Further, the transverse vibration mode (B mode) is performed at the time of reception. In this B mode, the ring-shaped piezoelectric element 13 is spread and vibrated in the lateral direction orthogonal to the longitudinal vibration of the disk-shaped piezoelectric element 12. At this time, the electrical antiresonance frequency f2 of the ring-shaped piezoelectric element 13 becomes substantially the same frequency (f2≈f3) as the mechanical resonance frequency f3 of the disk-shaped piezoelectric element 12.

このように、送信用圧電素子(円板状圧電素子)の厚み(液面)方向への縦振動による機械的共振周波数f3が、受信用圧電素子(リング状圧電素子)の電気的***振周波数f2とほぼ一致していることで、互いの振動が阻害されることが無く、送受信の効率が良い超音波トランスジューサを提供することができる。   Thus, the mechanical resonance frequency f3 due to longitudinal vibration in the thickness (liquid surface) direction of the transmitting piezoelectric element (disk-shaped piezoelectric element) is the electrical anti-resonant frequency of the receiving piezoelectric element (ring-shaped piezoelectric element). By substantially matching with f2, it is possible to provide an ultrasonic transducer with good transmission and reception efficiency without interfering with mutual vibration.

図4は、音響整合層11の厚みと2つの圧電素子12,13の共振周波数との関係を説明するための図である。ここで、図3において略一致した共振周波数f3≒f2以下の周波数で、f2近傍周波数における共振周波数f(≒f2≒f3)において、音響整合層11の厚みtは、この周波数fによる音波の波長λのおおよそ1/2の整数倍mで音響整合される。   FIG. 4 is a diagram for explaining the relationship between the thickness of the acoustic matching layer 11 and the resonance frequencies of the two piezoelectric elements 12 and 13. Here, at a resonance frequency f (≈f2≈f3) in the vicinity of f2, at a frequency substantially equal to the resonance frequency f3≈f2 in FIG. Acoustic matching is performed at an integer multiple m of approximately ½ of λ.

すなわち、音響整合層11の厚みtは下記の式(1)から求められる。
t=m・λ/2=m・{C/(2f)} …式(1)
但し、m:整数、λ:音響整合層11を伝搬する音波の波長、C:音響整合層11を伝搬する縦波音波の速度、f:2つの圧電素子間の共振周波数とする。例えば、m=1である場合、厚みt=C/(2f)の音響整合層となる。
That is, the thickness t of the acoustic matching layer 11 is obtained from the following formula (1).
t = m · λ / 2 = m · {C / (2f)} Equation (1)
Where m is an integer, λ is the wavelength of the sound wave propagating through the acoustic matching layer 11, C is the velocity of the longitudinal wave sound wave propagating through the acoustic matching layer 11, and f is the resonance frequency between the two piezoelectric elements. For example, when m = 1, the acoustic matching layer has a thickness t = C / (2f).

このように、超音波トランスジューサの音響整合層の厚みが、2つの圧電素子で一致した共振周波数における音波の波長のおおよそ1/2の整数倍に音響整合することで、2つの圧電素子の振動特性を変化させること無く、超音波振動を発生でき、使用帯域内における不要な共振の発生を低減することができる。このため、S/Nが良く、効率の良い送受信特性が確保することができる。   As described above, the thickness of the acoustic matching layer of the ultrasonic transducer is acoustically matched to an integral multiple of approximately 1/2 of the wavelength of the sound wave at the resonance frequency matched by the two piezoelectric elements. The ultrasonic vibration can be generated without changing the frequency, and the occurrence of unnecessary resonance within the use band can be reduced. For this reason, S / N is good and efficient transmission / reception characteristics can be ensured.

図5は、本発明に係る超音波トランスジューサ10の他の構成例を示す図である。本例における音響整合層11は、2つの圧電素子12,13のうち、円板状圧電素子12が固定された第1の領域111と、リング状圧電素子13が固定された第2の領域112とを備える。そして、第1の領域111と第2の領域112との境界にスリット14が形成されている。これにより、音響整合層11は、2つの圧電素子12,13の境界で、スリット14により一定の間隔をおいて分離される。   FIG. 5 is a diagram showing another configuration example of the ultrasonic transducer 10 according to the present invention. The acoustic matching layer 11 in this example includes a first region 111 in which the disk-shaped piezoelectric element 12 is fixed and a second region 112 in which the ring-shaped piezoelectric element 13 is fixed, of the two piezoelectric elements 12 and 13. With. A slit 14 is formed at the boundary between the first region 111 and the second region 112. Thereby, the acoustic matching layer 11 is separated by a slit 14 at a boundary between the two piezoelectric elements 12 and 13.

すなわち、円板状圧電素子12の外周縁から一定の距離だけ離れた位置に、この外周に沿う形で相似形のリング状スリット14が形成され、このスリット14の外周には、さらに一定の距離を隔てて、リング状圧電素子13が配置される。2つの圧電素子12,13は音響整合層11と接着等により結合され、このスリット14によって機械的にアイソレーションされた超音波トランスジューサ10の放射面の構造を有する。図5の構造とすることで、2つの圧電素子12,13は、機械的にアイソレーションされ、同一の音響整合層11に接着剤等で固定されていながら、互いの振動モードによる干渉が抑えられ、異なる振動モードで振動し、超音波の送受信を行うことができる。   That is, a ring-shaped slit 14 having a similar shape is formed along the outer periphery at a position away from the outer peripheral edge of the disk-shaped piezoelectric element 12, and a further predetermined distance is formed on the outer periphery of the slit 14. A ring-shaped piezoelectric element 13 is disposed with a gap therebetween. The two piezoelectric elements 12 and 13 are coupled to the acoustic matching layer 11 by adhesion or the like, and have a radiation surface structure of the ultrasonic transducer 10 mechanically isolated by the slit 14. With the structure of FIG. 5, the two piezoelectric elements 12 and 13 are mechanically isolated and fixed to the same acoustic matching layer 11 with an adhesive or the like, but interference due to the mutual vibration mode is suppressed. It can vibrate in different vibration modes and can transmit and receive ultrasonic waves.

このように、2つの圧電素子を固定する音響整合層が、圧電素子間の境界においてスリット(溝)で分離されるため、互いに異なる振動モードによる振動位相の微妙なズレを機械的に分離することができる。これにより、残響が少なく、個々の振動を効率良く伝播できるようになるため、消費電力の低減化が図れ、液面検出におけるS/Nの向上が期待できる。また温度や経時変化、互いの圧電素子振動による機械的なストレスを低減することができる。   As described above, since the acoustic matching layer for fixing the two piezoelectric elements is separated by the slit (groove) at the boundary between the piezoelectric elements, the subtle deviation of the vibration phase due to the different vibration modes can be mechanically separated. Can do. Thereby, since there is little reverberation and it becomes possible to propagate each vibration efficiently, power consumption can be reduced and an improvement in S / N in liquid level detection can be expected. Further, it is possible to reduce mechanical stress due to temperature, change with time, and mutual vibration of piezoelectric elements.

図6は、本発明に係る超音波トランスジューサ10の他の構成例を示す図である。本例における音響整合層11は、2つの圧電素子12,13のうち、円板状圧電素子12が固定された第1の部材11aと、リング状圧電素子13が固定された第2の部材11bとにより一体的に形成される。そして、第1の部材11aと第2の部材11bとがそれぞれ別の材質で構成されている。   FIG. 6 is a diagram showing another configuration example of the ultrasonic transducer 10 according to the present invention. Of the two piezoelectric elements 12 and 13, the acoustic matching layer 11 in this example includes a first member 11a to which the disk-shaped piezoelectric element 12 is fixed and a second member 11b to which the ring-shaped piezoelectric element 13 is fixed. And are integrally formed. The first member 11a and the second member 11b are made of different materials.

すなわち、音響整合層11は、円板状圧電素子12の外周と、この外周に沿う形で配置された、リング状圧電素子13の内周との中心線を境界に、それぞれ材質の異なる2つの部材11a,11bが接合部15で貼り合わされた構造を有する。そして、音響整合層11の下面には振動モードが互いに異なる圧電素子12,13が接着固定され、これら互いに異なる振動モードによる振動を、互いに材質の異なる音響整合層の第1の部材11a,第2の部材11bへと伝播させ、超音波の送受信を行う。   That is, the acoustic matching layer 11 includes two different materials, each having a center line between the outer periphery of the disk-shaped piezoelectric element 12 and the inner periphery of the ring-shaped piezoelectric element 13 arranged along the outer periphery. The members 11 a and 11 b have a structure in which they are bonded together at the joint 15. Then, piezoelectric elements 12 and 13 having different vibration modes are bonded and fixed to the lower surface of the acoustic matching layer 11, and the first member 11 a and the second member 11 of the acoustic matching layer are made of different vibration modes. Is transmitted to the member 11b and ultrasonic waves are transmitted and received.

このように、2つの圧電素子を固定する音響整合層が、圧電素子間の境界において材質の異なる2つの部材で構成されるため、2つの圧電素子の共振周波数の差(特性差)を緩和でき、更には機械的な振動における互いの干渉が低減できるので、送受信効率がよく、消費電力の低減化が図れ、更には液面検出におけるS/Nの向上が期待できる。また温度や経時変化、互いの圧電素子振動による機械的なストレスを低減することができる。   As described above, since the acoustic matching layer for fixing the two piezoelectric elements is composed of two members having different materials at the boundary between the piezoelectric elements, the difference in resonance frequency (characteristic difference) between the two piezoelectric elements can be reduced. Furthermore, since mutual interference in mechanical vibration can be reduced, transmission / reception efficiency is good, power consumption can be reduced, and further improvement in S / N in liquid level detection can be expected. Further, it is possible to reduce mechanical stress due to temperature, change with time, and mutual vibration of piezoelectric elements.

図7は、本発明の超音波レベル計による液面検出処理の一例を説明するための図である。本例は図1及び図2に示した超音波レベル計の構成に基づいて説明する。
超音波レベル計のコントローラ20は、液面31のレベルが所定レベル以下の場合、超音波wの送信時、2つの圧電素子12,13のうち、厚み(液面)方向に縦振動する円板状圧電素子12を駆動させ、液面31で反射した超音波wの受信時、厚み方向と直交する方向に横振動するリング状圧電素子13で超音波wを受信するように制御する。
FIG. 7 is a diagram for explaining an example of the liquid level detection process by the ultrasonic level meter of the present invention. This example will be described based on the configuration of the ultrasonic level meter shown in FIGS.
When the level of the liquid level 31 is equal to or lower than the predetermined level, the controller 20 of the ultrasonic level meter is a disk that vibrates longitudinally in the thickness (liquid level) direction of the two piezoelectric elements 12 and 13 when transmitting the ultrasonic wave w. When the ultrasonic wave w reflected by the liquid surface 31 is received, the ring-shaped piezoelectric element 13 that laterally vibrates in the direction orthogonal to the thickness direction is controlled to receive the ultrasonic wave w.

すなわち、図7(A)に示すように、液面レベルが規定のレベルhx以下の場合、特に近距離での残響を考慮して計測する場合、図7(B)に示すように、2つの圧電素子12,13のうち、送信用の縦振動をする円板状圧電素子12を駆動し、電気機械変換された振動音波が音響整合層11へ伝播され、これによる超音波w1が、容器30の壁を透過し、媒質中の液体(LPG等)へ送信され、この媒質中を伝播し、液層と気層との境界面(液面31)にて反射し、反射した超音波w2が再び受信側のリング状圧電素子13で受信される。   That is, as shown in FIG. 7A, when the liquid level is equal to or lower than the prescribed level hx, particularly when measurement is performed in consideration of reverberation at a short distance, as shown in FIG. Of the piezoelectric elements 12 and 13, the disk-shaped piezoelectric element 12 that performs longitudinal vibration for transmission is driven, and an electromechanically converted vibration sound wave is propagated to the acoustic matching layer 11. Is transmitted to the liquid (LPG, etc.) in the medium, propagated in the medium, reflected at the boundary surface (liquid surface 31) between the liquid layer and the gas layer, and the reflected ultrasonic wave w2 is reflected. The signal is received again by the ring-shaped piezoelectric element 13 on the receiving side.

超音波w2の受信時において、リング状圧電素子13は、送信側の円板状圧電素子12の振動方向と直交関係となる広がり振動(横方向振動)を行い、且つ、共振周波数が円板状圧電素子12の共振周波数と略一致するようにしている。   When receiving the ultrasonic wave w2, the ring-shaped piezoelectric element 13 performs spreading vibration (lateral vibration) orthogonal to the vibration direction of the transmitting disk-shaped piezoelectric element 12, and the resonance frequency is disk-shaped. The resonance frequency of the piezoelectric element 12 is substantially the same.

このように、液面レベルが規定のレベル以下の場合、特に近距離での残響を考慮して計測する場合、2つの圧電素子のうち、縦振動する一方の圧電素子を駆動し、受信時には、送信側と直交関係となる広がり振動(横方向振動)し且つ上記一方の圧電素子と共振周波数が略一致した他方の圧電素子により、超音波を受信するので、送信側と振動が分離できるため、送信時の圧電素子による残響の影響が低減され、近距離検出における検出マージンを向上させることができる。さらに、送受信を別々の圧電素子にすることで、送受信効率が良く、液面検出におけるS/Nの向上を図ることができる。   In this way, when the liquid level is below a specified level, particularly when measuring in consideration of reverberation at a short distance, one piezoelectric element that vibrates longitudinally out of the two piezoelectric elements is driven. Since the ultrasonic wave is received by the other piezoelectric element that has a spread vibration (lateral vibration) that is orthogonal to the transmission side and the resonance frequency of the one piezoelectric element is substantially the same, the vibration can be separated from the transmission side. The influence of reverberation due to the piezoelectric element during transmission is reduced, and the detection margin in short-range detection can be improved. Furthermore, by using separate piezoelectric elements for transmission and reception, transmission and reception efficiency is good, and S / N can be improved in liquid level detection.

図8は、本発明の超音波レベル計による液面検出処理の他の例を説明するための図である。本例は図1及び図2に示した超音波レベル計の構成に基づいて説明する。
超音波レベル計のコントローラ20は、液面31のレベル及び/又は液面31の状態に基づいて、2つの圧電素子12,13の使用状態を切り換える制御を行う。
FIG. 8 is a diagram for explaining another example of the liquid level detection process by the ultrasonic level meter of the present invention. This example will be described based on the configuration of the ultrasonic level meter shown in FIGS.
The controller 20 of the ultrasonic level meter performs control to switch the usage state of the two piezoelectric elements 12 and 13 based on the level of the liquid surface 31 and / or the state of the liquid surface 31.

すなわち、図8において、Aモード(縦振動モード)では円板状圧電素子12を動作させ、Bモード(横振動モード)ではリング状圧電素子13を動作させる。本例の場合、液面31のレベル(液面の高さ)や、液面31の状態(液面の揺れなど)に応じて、超音波の送受信モード(Aモード,Bモード)を使い分ける。   That is, in FIG. 8, the disk-shaped piezoelectric element 12 is operated in the A mode (longitudinal vibration mode), and the ring-shaped piezoelectric element 13 is operated in the B mode (lateral vibration mode). In the case of this example, the ultrasonic transmission / reception mode (A mode, B mode) is selectively used according to the level of the liquid surface 31 (the height of the liquid surface) and the state of the liquid surface 31 (such as shaking of the liquid surface).

例えば、通常時においては、送信をAモード、受信をBモードにしておき、送信時に円板状圧電素子12でのみ超音波の送信を行い、受信時にリング状圧電素子13でのみ超音波の受信を行う。この際、容器30の内部に媒質(LPG等)を充填し、液面レベルがhx以上となり且つ液面31に揺れが発生したと判断(検出能力が低下)した場合には、超音波の送受信を行う圧電素子のモード(Aモード,Bモード)を切り換えて、使い分けを行う。具体的には、送信の場合、Aモードの円板状圧電素子12に加えて、Bモードのリング状圧電素子13を駆動させ、両方の圧電素子で超音波の送信を行い、受信の場合、Bモードのリング状圧電素子13に加えて、Aモードの円板状圧電素子12でも受信し、両方の圧電素子で超音波の受信を行う。   For example, in normal times, transmission is set to A mode and reception is set to B mode, ultrasonic waves are transmitted only by the disk-shaped piezoelectric element 12 during transmission, and ultrasonic waves are received only by the ring-shaped piezoelectric element 13 during reception. I do. At this time, if the inside of the container 30 is filled with a medium (LPG or the like), the liquid level is higher than hx and it is determined that the liquid surface 31 has shaken (detection ability is reduced), transmission / reception of ultrasonic waves The mode (A mode, B mode) of the piezoelectric element that performs is switched and used properly. Specifically, in the case of transmission, in addition to the A-mode disk-shaped piezoelectric element 12, the B-mode ring-shaped piezoelectric element 13 is driven, ultrasonic waves are transmitted by both piezoelectric elements, and in the case of reception, In addition to the B-mode ring-shaped piezoelectric element 13, the A-mode disk-shaped piezoelectric element 12 receives the ultrasonic waves and both piezoelectric elements receive the ultrasonic waves.

このように、液面のレベル及び/又は液面の状態に応じて、さらには、温度変化による残響特性、感度特性などに応じて、送受信用の2つの圧電素子の使用状態を切り換える構成とすることで、2つの圧電素子の最適な使い分けが可能となるため、全計測範囲に渡って検出マージンが高く、常に安定した液面検出が可能となる。   As described above, the usage state of the two piezoelectric elements for transmission / reception is switched according to the level of the liquid level and / or the state of the liquid level, and further according to the reverberation characteristics, sensitivity characteristics, etc. due to temperature change. Thus, since the two piezoelectric elements can be optimally used properly, the detection margin is high over the entire measurement range, and stable liquid level detection is always possible.

図9は、本発明の超音波レベル計による液面検出処理の他の例を説明するための図である。本例は図1及び図2に示した超音波レベル計の構成に基づいて説明する。
超音波レベル計のコントローラ20は、液面31のレベルが所定レベルを超えている場合、液面31で反射した超音波wの受信時、2つの圧電素子12,13を同時に使用して超音波wを受信するように制御する。
FIG. 9 is a diagram for explaining another example of the liquid level detection process by the ultrasonic level meter of the present invention. This example will be described based on the configuration of the ultrasonic level meter shown in FIGS.
When the level of the liquid level 31 exceeds a predetermined level, the controller 20 of the ultrasonic level meter uses two piezoelectric elements 12 and 13 at the same time when receiving the ultrasonic wave w reflected by the liquid level 31. Control to receive w.

すなわち、図9(A)に示すように、液面31のレベルが規定のレベルhxを超えた状態で、超音波を送受信する際に、図9(B)に示すように、超音波の受信時において、振動モードの互いに異なる2つの圧電素子12,13を同時に使用する。本例の場合、送信時はAモードで一方の圧電素子のみで送信し、受信時はA+Bモードで両方の圧電素子により受信するように制御される。   That is, as shown in FIG. 9 (A), when transmitting / receiving ultrasonic waves in a state where the level of the liquid surface 31 exceeds a prescribed level hx, as shown in FIG. 9 (B), reception of ultrasonic waves is performed. Sometimes, two piezoelectric elements 12 and 13 having different vibration modes are used simultaneously. In the case of this example, at the time of transmission, control is performed so that transmission is performed by only one piezoelectric element in the A mode, and at the time of reception, reception is performed by both piezoelectric elements in the A + B mode.

より具体的には、超音波を送信し伝播させる際には、Aモードの円板状圧電素子12を駆動し、電気機械変換された振動音波が音響整合層11へ伝播され、これによる超音波振動が、容器30の壁を透過し、媒質中の液体(LPG等)へ送信され、この媒質中を伝播し、液層と気層との境界面(液面31)にて反射し、再び受信側のリング状圧電素子13と円板状圧電素子12で受信される。   More specifically, when transmitting and propagating the ultrasonic wave, the A-mode disk-shaped piezoelectric element 12 is driven, and the electromechanically converted vibrational sound wave is propagated to the acoustic matching layer 11, thereby generating the ultrasonic wave. The vibration is transmitted through the wall of the container 30 and transmitted to the liquid (LPG or the like) in the medium, propagates in the medium, is reflected at the boundary surface (liquid surface 31) between the liquid layer and the gas layer, and again Reception is performed by the ring-shaped piezoelectric element 13 and the disk-shaped piezoelectric element 12 on the receiving side.

なお、受信時には、互いに振動モードの異なる、Aモード(円板状圧電素子12の縦振動)とBモード(リング状圧電素子13の横振動)の2つの振動モードによる圧電素子により、ほぼ同時に液面境界で反射し再び戻ってくる超音波を受信する。この際、互いの圧電素子12,13の電気的***振周波数がほぼ一致していることと、互いの振動モードが直交関係となることで、図9(B)に示すように、Aモード(円板状圧電素子12)及びBモード(リング状圧電素子13)の位相がほぼ揃って縦横に振動する。   At the time of reception, liquids are almost simultaneously applied by piezoelectric elements having two vibration modes, A mode (longitudinal vibration of disc-shaped piezoelectric element 12) and B mode (lateral vibration of ring-shaped piezoelectric element 13), which have different vibration modes. Receives the ultrasonic wave that is reflected at the surface boundary and returns again. At this time, the electrical anti-resonance frequencies of the piezoelectric elements 12 and 13 are substantially the same and the vibration modes are orthogonal to each other, so that the A mode ( The phases of the disc-shaped piezoelectric element 12) and the B mode (ring-shaped piezoelectric element 13) are substantially aligned and vibrate vertically and horizontally.

このように、液面のレベルが所定レベルを超えた場合、超音波を受信する際、2つの圧電素子を同時に使用し、2つの圧電素子によりほぼ同時に反射音波を受信することで、特に液面が遠い時(遠距離の液面計測時)に超音波信号の減衰による影響が少なく、効率良く超音波を受信することが可能となる。   Thus, when the level of the liquid level exceeds a predetermined level, when receiving ultrasonic waves, two piezoelectric elements are used at the same time, and the reflected sound waves are received almost simultaneously by the two piezoelectric elements. When the distance is long (when measuring the liquid level at a long distance), the influence of attenuation of the ultrasonic signal is small, and it is possible to efficiently receive the ultrasonic wave.

図10は、本発明の超音波レベル計による液面検出処理の他の例を説明するための図である。本例は図1及び図2に示した超音波レベル計の構成に基づいて説明する。
超音波レベル計のコントローラ20は、液面31のレベルが所定レベルを超えており且つ液面31の揺れが発生した場合、超音波wの送信時、2つの圧電素子12,13を同時に駆動させ、液面31で反射した超音波wの受信時、2つの圧電素子12,13を使用して超音波wを受信するように制御する。
FIG. 10 is a diagram for explaining another example of the liquid level detection process by the ultrasonic level meter of the present invention. This example will be described based on the configuration of the ultrasonic level meter shown in FIGS.
The controller 20 of the ultrasonic level meter drives the two piezoelectric elements 12 and 13 simultaneously when transmitting the ultrasonic wave w when the level of the liquid level 31 exceeds a predetermined level and the fluctuation of the liquid level 31 occurs. When the ultrasonic wave w reflected by the liquid surface 31 is received, control is performed so as to receive the ultrasonic wave w using the two piezoelectric elements 12 and 13.

ずなわち、図10に示すように、液面31のレベルが規定のレベル:hxを超え、液面31の揺れが発生した場合、送信時に2つの圧電素子12,13を同時に使用(A+Bモード)し、これらを駆動し、送信パワーを増強させると同時に、受信時に、圧電素子12,13を切り換えることなく、2つの圧電素子12,13を同時に使用(A+Bモード)することで、液面31の揺れにより分散され散乱される境界面からの反射音波を効率良く取得する。   In other words, as shown in FIG. 10, when the level of the liquid surface 31 exceeds a specified level: hx and the liquid surface 31 is shaken, the two piezoelectric elements 12 and 13 are simultaneously used during transmission (A + B mode). ), And driving them to increase the transmission power, and simultaneously using the two piezoelectric elements 12 and 13 (A + B mode) without switching the piezoelectric elements 12 and 13 during reception, the liquid surface 31 The reflected sound wave from the boundary surface that is dispersed and scattered by the shaking is efficiently acquired.

このように、液面のレベルが所定レベルを超え、内容液の充填等により液面の揺れが発生した場合、送受信の2つの圧電素子を同時に駆動し、送信パワーを増強させ、液面の揺れ等により分散される反射波の超音波信号を、2つの圧電素子により広い範囲で、しかも効率良く受信できるので、液面に揺れがあっても安定した液面検出が可能となる。   In this way, when the liquid level exceeds a predetermined level and the liquid level fluctuates due to filling of the content liquid, etc., the two piezoelectric elements for transmission and reception are simultaneously driven to increase the transmission power and the liquid level fluctuations. Since an ultrasonic signal of a reflected wave dispersed by the above method can be efficiently received in a wide range by two piezoelectric elements, stable liquid level detection is possible even if the liquid level fluctuates.

本発明の超音波トランスジューサを備えた超音波レベル計を容器に設置した状態の一例を示す図である。It is a figure which shows an example of the state which installed the ultrasonic level meter provided with the ultrasonic transducer of this invention in the container. 図1に示した超音波トランスジューサの詳細構成例を示す図である。It is a figure which shows the detailed structural example of the ultrasonic transducer shown in FIG. 円板状圧電素子とリング状圧電素子の周波数インピーダンス特性の一例を示す図である。It is a figure which shows an example of the frequency impedance characteristic of a disk-shaped piezoelectric element and a ring-shaped piezoelectric element. 音響整合層の厚みと2つの圧電素子の共振周波数との関係を説明するための図である。It is a figure for demonstrating the relationship between the thickness of an acoustic matching layer, and the resonant frequency of two piezoelectric elements. 本発明に係る超音波トランスジューサの他の構成例を示す図である。It is a figure which shows the other structural example of the ultrasonic transducer based on this invention. 本発明に係る超音波トランスジューサの他の構成例を示す図である。It is a figure which shows the other structural example of the ultrasonic transducer based on this invention. 本発明の超音波レベル計による液面検出処理の一例を説明するための図である。It is a figure for demonstrating an example of the liquid level detection process by the ultrasonic level meter of this invention. 本発明の超音波レベル計による液面検出処理の他の例を説明するための図である。It is a figure for demonstrating the other example of the liquid level detection process by the ultrasonic level meter of this invention. 本発明の超音波レベル計による液面検出処理の他の例を説明するための図である。It is a figure for demonstrating the other example of the liquid level detection process by the ultrasonic level meter of this invention. 本発明の超音波レベル計による液面検出処理の他の例を説明するための図である。It is a figure for demonstrating the other example of the liquid level detection process by the ultrasonic level meter of this invention.

符号の説明Explanation of symbols

10…超音波トランスジューサ、11…音響整合層、11a…第1の部材、11b…第2の部材、12…圧電素子(円板状圧電素子)、13…圧電素子(リング状圧電素子)、14…スリット、15…接合部、20…コントローラ、30…容器、31…液面、41…円板状圧電素子の周波数インピーダンス特性、42…リング状圧電素子の周波数インピーダンス特性、111…第1の領域、112…第2の領域。 DESCRIPTION OF SYMBOLS 10 ... Ultrasonic transducer, 11 ... Acoustic matching layer, 11a ... 1st member, 11b ... 2nd member, 12 ... Piezoelectric element (disk-shaped piezoelectric element), 13 ... Piezoelectric element (ring-shaped piezoelectric element), 14 DESCRIPTION OF SYMBOLS ... Slit, 15 ... Joint part, 20 ... Controller, 30 ... Container, 31 ... Liquid surface, 41 ... Frequency impedance characteristic of disk-shaped piezoelectric element, 42 ... Frequency impedance characteristic of ring-shaped piezoelectric element, 111 ... 1st area | region 112 ... The second area.

Claims (11)

容器の底部外壁面に取り付けられ、該容器内部に収容された液体の液面に向けて超音波を送信させると共に、前記液面からの反射波を受信する超音波トランスジューサであって、
2つの圧電素子が略同一箇所に配置され、該2つの圧電素子がそれぞれ異なる振動状態により超音波の送受信を行うことを特徴とする超音波トランスジューサ。
An ultrasonic transducer that is attached to the bottom outer wall surface of the container, transmits ultrasonic waves toward the liquid surface of the liquid contained in the container, and receives reflected waves from the liquid surface,
An ultrasonic transducer, wherein two piezoelectric elements are arranged at substantially the same location, and the two piezoelectric elements transmit and receive ultrasonic waves in different vibration states.
前記2つの圧電素子が同心円状に配置されていることを特徴とする請求項1に記載の超音波トランスジューサ。   The ultrasonic transducer according to claim 1, wherein the two piezoelectric elements are arranged concentrically. 前記2つの圧電素子のうち、送信用圧電素子の機械的共振周波数と、受信用圧電素子の電気的***振周波数とが略等しいことを特徴とする請求項1又は2に記載の超音波トランスジューサ。   3. The ultrasonic transducer according to claim 1, wherein, of the two piezoelectric elements, a mechanical resonance frequency of the transmitting piezoelectric element is substantially equal to an electrical anti-resonance frequency of the receiving piezoelectric element. 前記容器の底部外壁面と前記2つの圧電素子との間に音響整合層を備え、
前記音響整合層の厚みは、前記2つの圧電素子間で一致した共振周波数における音波の波長の1/2の整数倍に音響整合されていることを特徴とする請求項1乃至3のいずれか1項に記載の超音波トランスジューサ。
An acoustic matching layer is provided between the bottom outer wall surface of the container and the two piezoelectric elements,
The thickness of the acoustic matching layer is acoustically matched to an integral multiple of ½ of the wavelength of a sound wave at a resonance frequency that matches between the two piezoelectric elements. The ultrasonic transducer according to item.
前記音響整合層は、前記2つの圧電素子のうち、一方の圧電素子が固定された第1の領域と、他方の圧電素子が固定された第2の領域とを備え、
前記第1の領域と前記第2の領域との境界にスリットが形成されていることを特徴とする請求項4に記載の超音波トランスジューサ。
The acoustic matching layer includes a first region in which one of the two piezoelectric elements is fixed, and a second region in which the other piezoelectric element is fixed,
The ultrasonic transducer according to claim 4, wherein a slit is formed at a boundary between the first region and the second region.
前記音響整合層は、前記2つの圧電素子のうち、一方の圧電素子が固定された第1の部材と、他方の圧電素子が固定された第2の部材とにより一体的に形成され、
前記第1の部材と前記第2の部材とがそれぞれ別の材質で構成されていることを特徴とする請求項4に記載の超音波トランスジューサ。
The acoustic matching layer is integrally formed of a first member to which one of the two piezoelectric elements is fixed and a second member to which the other piezoelectric element is fixed,
The ultrasonic transducer according to claim 4, wherein the first member and the second member are made of different materials.
請求項1乃至6のいずれか1項に記載の超音波トランスジューサと、該超音波トランスジューサにより超音波を送信した時点からその反射波を受信する時点までの時間情報に基づいて前記液面の検出動作を制御する制御部とが接続されたことを特徴とする超音波レベル計。   The ultrasonic transducer according to any one of claims 1 to 6, and an operation for detecting the liquid level based on time information from a time point at which an ultrasonic wave is transmitted by the ultrasonic transducer to a time point at which the reflected wave is received. An ultrasonic level meter characterized in that a control unit for controlling the sound level is connected. 前記制御部は、前記液面のレベルが所定レベル以下の場合、超音波の送信時、前記2つの圧電素子のうち、厚み方向に縦振動する一方の圧電素子を駆動させ、前記液面で反射した前記超音波の受信時、前記厚み方向と直交する方向に横振動する他方の圧電素子で前記超音波を受信するように制御することを特徴とする請求項7に記載の超音波レベル計。   When the level of the liquid level is equal to or lower than a predetermined level, the control unit drives one of the two piezoelectric elements that vibrates longitudinally in the thickness direction during reflection of ultrasonic waves, and reflects it on the liquid level. 8. The ultrasonic level meter according to claim 7, wherein when receiving the ultrasonic wave, the ultrasonic level meter is controlled to receive the ultrasonic wave by the other piezoelectric element that laterally vibrates in a direction orthogonal to the thickness direction. 前記制御部は、前記液面のレベル及び/又は前記液面の状態に基づいて、前記2つの圧電素子の使用状態を切り換えることを特徴とする請求項7に記載の超音波レベル計。   8. The ultrasonic level meter according to claim 7, wherein the control unit switches use states of the two piezoelectric elements based on the level of the liquid level and / or the state of the liquid level. 前記制御部は、前記液面のレベルが所定レベルを超えている場合、前記液面で反射した超音波の受信時、前記2つの圧電素子を同時に使用して前記超音波を受信するように制御することを特徴とする請求項7に記載の超音波レベル計。   The control unit controls to receive the ultrasonic wave simultaneously using the two piezoelectric elements when receiving the ultrasonic wave reflected by the liquid level when the level of the liquid level exceeds a predetermined level. The ultrasonic level meter according to claim 7. 前記制御部は、前記液面のレベルが所定レベルを超えており且つ前記液面の揺れが発生した場合、超音波の送信時、前記2つの圧電素子を同時に駆動させ、前記液面で反射した前記超音波の受信時、前記2つの圧電素子を使用して前記超音波を受信するように制御することを特徴とする請求項7に記載の超音波レベル計。   When the level of the liquid level exceeds a predetermined level and the fluctuation of the liquid level occurs, the control unit drives the two piezoelectric elements simultaneously when transmitting an ultrasonic wave, and reflects on the liquid level The ultrasonic level meter according to claim 7, wherein the ultrasonic level meter is controlled to receive the ultrasonic wave using the two piezoelectric elements when receiving the ultrasonic wave.
JP2007072324A 2007-03-20 2007-03-20 Ultrasonic transducer and ultrasonic level gage Pending JP2008232801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072324A JP2008232801A (en) 2007-03-20 2007-03-20 Ultrasonic transducer and ultrasonic level gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072324A JP2008232801A (en) 2007-03-20 2007-03-20 Ultrasonic transducer and ultrasonic level gage

Publications (1)

Publication Number Publication Date
JP2008232801A true JP2008232801A (en) 2008-10-02

Family

ID=39905779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072324A Pending JP2008232801A (en) 2007-03-20 2007-03-20 Ultrasonic transducer and ultrasonic level gage

Country Status (1)

Country Link
JP (1) JP2008232801A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109158B1 (en) * 2010-01-20 2012-02-15 주성대학산학협력단 Ultrasonic transducer and ultrasonic bathe tub for leg
DE102011013687A1 (en) * 2011-03-11 2012-09-13 Continental Automotive Gmbh Method for calibrating a level sensor
US9818926B2 (en) 2014-07-31 2017-11-14 Seiko Epson Corporation Ultrasonic device and probe as well as electronic apparatus and ultrasonic imaging apparatus
US10811590B1 (en) 2016-06-23 2020-10-20 Plastipak Packaging, Inc. Containers with sensing and/or communication features
CN112985544A (en) * 2019-12-13 2021-06-18 西安定华电子股份有限公司 External measuring liquid level system
DE102021128380A1 (en) 2021-10-29 2023-05-04 Endress+Hauser Flowtec Ag Ultrasonic sensor for an ultrasonic measuring device and ultrasonic measuring device
CN116818047A (en) * 2023-04-25 2023-09-29 河北华创测控技术有限公司 Integrated intelligent ultrasonic liquid level meter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102387A (en) * 1987-10-16 1989-04-20 Tokyo Keiki Co Ltd Wave propagation time measuring device
JP2000314651A (en) * 1999-04-30 2000-11-14 Kinseki Ltd Method and apparatus for detection of liquid level
JP2001194210A (en) * 2000-01-14 2001-07-19 Tokyo Electric Power Co Inc:The Ultrasonic level measuring apparatus
JP2001272266A (en) * 2000-03-27 2001-10-05 Ricoh Elemex Corp Ultrasonic level gauge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102387A (en) * 1987-10-16 1989-04-20 Tokyo Keiki Co Ltd Wave propagation time measuring device
JP2000314651A (en) * 1999-04-30 2000-11-14 Kinseki Ltd Method and apparatus for detection of liquid level
JP2001194210A (en) * 2000-01-14 2001-07-19 Tokyo Electric Power Co Inc:The Ultrasonic level measuring apparatus
JP2001272266A (en) * 2000-03-27 2001-10-05 Ricoh Elemex Corp Ultrasonic level gauge

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109158B1 (en) * 2010-01-20 2012-02-15 주성대학산학협력단 Ultrasonic transducer and ultrasonic bathe tub for leg
DE102011013687A1 (en) * 2011-03-11 2012-09-13 Continental Automotive Gmbh Method for calibrating a level sensor
DE102011013687B4 (en) * 2011-03-11 2014-10-09 Continental Automotive Gmbh Method for calibrating a level sensor
US9818926B2 (en) 2014-07-31 2017-11-14 Seiko Epson Corporation Ultrasonic device and probe as well as electronic apparatus and ultrasonic imaging apparatus
US10811590B1 (en) 2016-06-23 2020-10-20 Plastipak Packaging, Inc. Containers with sensing and/or communication features
CN112985544A (en) * 2019-12-13 2021-06-18 西安定华电子股份有限公司 External measuring liquid level system
DE102021128380A1 (en) 2021-10-29 2023-05-04 Endress+Hauser Flowtec Ag Ultrasonic sensor for an ultrasonic measuring device and ultrasonic measuring device
CN116818047A (en) * 2023-04-25 2023-09-29 河北华创测控技术有限公司 Integrated intelligent ultrasonic liquid level meter
CN116818047B (en) * 2023-04-25 2024-01-12 河北华创测控技术有限公司 Integrated intelligent ultrasonic liquid level meter

Similar Documents

Publication Publication Date Title
US10775222B2 (en) Measurement device and method for determining a fluid flow in a measurement tube
JP2008232801A (en) Ultrasonic transducer and ultrasonic level gage
US5446332A (en) Ultrasonic transducer
US7518491B2 (en) Ultrasonic object detector
US9636709B2 (en) Ultrasonic generation device
EP2076061B1 (en) Ultrasonic transducer
JP6172533B2 (en) Ultrasonic transducer and ultrasonic flow meter having the same
CN102405653B (en) Ultrasonic probe
JP2007088805A (en) Ultrasonic radar
JP2012026878A (en) Ultrasonic device
JP2007067500A (en) Ultrasonic transceiver
JP3062170B2 (en) Sound conversion device
WO2012060042A1 (en) Electronic equipment
JP2012220434A (en) Object detecting device
CN109211338B (en) Method and measuring device for determining a fluid quantity
JP5332056B2 (en) Ultrasonic sensor
JP2010014496A (en) Mounting structure of ultrasonic sensor
JP2009267510A (en) Ultrasonic sensor
JP3708226B2 (en) Flow velocity measuring device
JP2008256597A (en) Ultrasonic transducer and ultrasonic level gage
JPH1114649A (en) Flow-rate measuring device
JP2000298045A (en) Ultrasonic flowmeter
JP2008294719A (en) Transducer and its driving method
JP3629481B2 (en) Ultrasonic vibrator and ultrasonic flow meter using the same
JP2011007764A (en) Ultrasonic level meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807