JP2008231244A - Surface-porous structure material and method for producing the same - Google Patents

Surface-porous structure material and method for producing the same Download PDF

Info

Publication number
JP2008231244A
JP2008231244A JP2007072521A JP2007072521A JP2008231244A JP 2008231244 A JP2008231244 A JP 2008231244A JP 2007072521 A JP2007072521 A JP 2007072521A JP 2007072521 A JP2007072521 A JP 2007072521A JP 2008231244 A JP2008231244 A JP 2008231244A
Authority
JP
Japan
Prior art keywords
porous structure
solution
metal oxide
water
surface porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007072521A
Other languages
Japanese (ja)
Other versions
JP5344799B2 (en
Inventor
Toshihiko Takagi
斗志彦 高木
Kazuyuki Fukuda
和幸 福田
Fumiaki Nishino
文晃 西埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2007072521A priority Critical patent/JP5344799B2/en
Publication of JP2008231244A publication Critical patent/JP2008231244A/en
Application granted granted Critical
Publication of JP5344799B2 publication Critical patent/JP5344799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-porous structure material containing an organic polymer having a plurality of cavities having a concave curve cross-section in the thickness direction and coated of the inner surface of the cavity with a metal oxide, and to provide a method for producing the structure material. <P>SOLUTION: This surface-porous structure material having surface cavities coated of their inner surfaces with a metal oxide is produced by mixing a metal oxide solution with an organic polymer solution in the process to form a metal oxide by a sol-gel reaction, adding water as necessary, forming a film from the mixture and drying the product. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、厚さ方向の断面が凹曲面である窪みを複数有する有機重合体を含む表面多孔構造体の、該窪みの内面が金属酸化物で被覆されている表面多孔構造体およびその製造方法に関する。   The present invention relates to a surface porous structure including an organic polymer having a plurality of depressions whose cross section in the thickness direction is a concave curved surface, and a surface porous structure in which an inner surface of the depression is coated with a metal oxide, and a method for manufacturing the same. About.

表面に微細孔が規則的に配列した構造体は、光学ディスプレイ用材料、二次元フォトニック結晶、磁気記録材料、低誘電率素材、細胞培養用基材、触媒担体やバイオチップなど、多方面での応用が期待されている有望な材料である。   Structures with regularly arranged micropores are widely used in various fields such as optical display materials, two-dimensional photonic crystals, magnetic recording materials, low dielectric constant materials, cell culture substrates, catalyst carriers and biochips. It is a promising material that is expected to be applied.

規則的に配列した微細な多孔質体を製造する方法の一つとして、ガラスや樹脂表面に鋳型をパターン転写するナノインプリント法がある。この方法ではリソグラフィー方法で原盤となる鋳型を作製する必要があるため多大のコストを必要とし、大面積にナノ構造を加工する方法としては適さない。自己組織化方法は、ナノインプリント法のようなトップダウン的な手法に対して、莫大なコストのかかる装置を必要としないでナノ構造に加工できる方法として注目されている。近年、表面に微細孔が規則的に配列した構造体に関しても、自己組織化法を用いて作製する例が数多く報告されている。   As one of the methods for producing a regularly arranged fine porous body, there is a nanoimprint method in which a template is transferred onto a glass or resin surface. This method requires a great deal of cost because it is necessary to produce a template as a master by a lithography method, and is not suitable as a method for processing a nanostructure in a large area. The self-organization method is attracting attention as a method that can be processed into a nanostructure without requiring a very expensive device for a top-down method such as the nanoimprint method. In recent years, there have been many reports on examples in which a structure in which micropores are regularly arranged on the surface is manufactured using a self-organization method.

自己組織化法を用いてハニカム状多孔性ポリマーフィルムの作製方法として、ポリスチレン−ポリパラフェニレンブロック共重合体を高湿度雰囲気下において作製する方法が報告されている(非特許文献1)。また、線状ポリマー溶液を冷却し水蒸気を結露させることによって液滴の一部をポリマー溶液の表面から内部に入り込ませた後、溶媒や結露した液滴を除去することで製造したハニカム状多孔質体が開示されている(特許文献1)。   A method for producing a polystyrene-polyparaphenylene block copolymer in a high humidity atmosphere has been reported as a method for producing a honeycomb-like porous polymer film using a self-organization method (Non-Patent Document 1). In addition, a honeycomb-like porous material manufactured by cooling a linear polymer solution and condensing water vapor to allow some of the droplets to enter inside from the surface of the polymer solution, and then removing the solvent and condensed droplets. A body is disclosed (Patent Document 1).

また、水と混和しない溶剤に溶解したポリマー溶液をキャストし、溶媒の蒸発に伴う潜熱によって冷却された液膜上に高湿度空気からの微小水滴が凝結し、液膜中に生じる対流や液膜表面の毛細管力によって微小水滴が配列し、ブロック共重合体や種々のポリマーにハニカム構造を形成する手法が報告されている(非特許文献2〜4)。   In addition, a polymer solution dissolved in a solvent immiscible with water is cast, and minute water droplets from high-humidity air condense on the liquid film cooled by the latent heat that accompanies the evaporation of the solvent, resulting in convection and liquid film generated in the liquid film. Techniques have been reported in which minute water droplets are arranged by the capillary force of the surface, and a honeycomb structure is formed in a block copolymer or various polymers (Non-Patent Documents 2 to 4).

これらの方法により、リソグラフィー手法を用いなくても、ポリマー表面に多数の穴が規則的にあいた構造体の製造が可能になった。表面に微細孔が規則的に配列した構造体は、分離膜、マイクロリアクター、細胞培養基材、微小電極デバイス、フォトニック結晶など、幅広い応用が期待されている(非特許文献5)。これらの微細孔構造体の作製方法は湿度の高いガスのフロー下で作る点で共通しており、基本的に空気中の微小水滴を鋳型として微細孔が作られる。そのため、製造には湿度を調整して結露させる工程とその後溶媒を乾燥させる2段階の工程を必要とする。さらに、これらの微細空孔構造体はその空孔部に異種材料(微粒子)を配したパターンを作製するための基材としての利用等も考案されているが(非特許文献6)、この場合には当然ながら異種材料を空孔に充填する工程を必要とするだけではなく、充填の前に膜をUV−オゾンで親水化処理するなど、多くの工程を必要とする。
特開平8−311231 G.Widawski,et al.,Nature,Vol.369,387 (1994) N.Maruyama,et al.,Thin solid Films,Vol.327-329,854 (1998) N.Maruyama,et al.,Supramolecular Science,Vol.5,331 (1998) L.V.Gover,et al.,Macromol.Chem.Phys.,Vol.201,2721 (2000) 西川雄大、高分子、51巻、245 (2002) H.Yabu,M.Shimomura,Polymer Preprints,Japan,Vol.53,5130 (2004)
By these methods, it is possible to produce a structure in which a large number of holes are regularly formed on the polymer surface without using a lithography technique. Structures having regularly arranged micropores on the surface are expected to have a wide range of applications such as separation membranes, microreactors, cell culture substrates, microelectrode devices, and photonic crystals (Non-patent Document 5). The method for producing these fine pore structures is common in that they are produced under a flow of gas with high humidity. Basically, fine pores are produced using minute water droplets in air as a mold. For this reason, the production requires a process of adjusting the humidity to cause condensation, and then a two-stage process of drying the solvent. Further, these fine pore structures have been devised to be used as a base material for producing a pattern in which different kinds of materials (fine particles) are arranged in the pore portions (Non-patent Document 6). Needless to say, not only the process of filling the pores with different kinds of materials is required, but also a number of processes such as hydrophilic treatment of the film with UV-ozone are required before the filling.
JP-A-8-311231 G. Widawski, et al. , Nature, Vol. 369, 387 (1994) N. Maruyama, et al. , Thin solid Films, Vol. 327-329, 854 (1998) N. Maruyama, et al. Supramolecular Science, Vol. 5,331 (1998) L. V. Gover, et al. Macromol. Chem. Phys. , Vol. 201, 2721 (2000) Nishikawa Yudai, Polymer, 51, 245 (2002) H. Yabu, M .; Shimomura, Polymer Preprints, Japan, Vol. 53, 5130 (2004)

本発明の課題は、従来技術のような単に表面に多数の穴が空いた微細多孔体とは異なり、厚さ方向の断面が凹曲面である窪みを複数有する有機重合体を含む表面多孔構造体の、該窪みの内面が金属酸化物で被覆されている表面多孔構造体およびその製造方法を提供することにある。   An object of the present invention is to provide a surface porous structure including an organic polymer having a plurality of depressions having a concave curved cross section in the thickness direction, unlike a microporous body having a large number of holes on the surface as in the prior art. An object of the present invention is to provide a surface porous structure in which the inner surface of the recess is coated with a metal oxide and a method for producing the same.

本出願人は、上記課題を解決するために鋭意検討を行った結果、金属酸化物をゾル−ゲル反応でつくる過程において、金属酸化物溶液を有機重合体溶液と混合し、さらに必要に応じて水を添加した後、製膜し、乾燥することで、厚さ方向の断面が凹曲面である窪みを複数有する有機重合体を含む表面多孔構造体の、該窪みの内面が金属酸化物で被覆されている表面多孔構造体が得られることを見出した。   As a result of intensive studies to solve the above problems, the present applicant has mixed a metal oxide solution with an organic polymer solution in the process of forming a metal oxide by a sol-gel reaction, and further, if necessary. After the addition of water, the film is formed and dried, so that the inner surface of the surface porous structure containing an organic polymer having a plurality of dents whose cross section in the thickness direction is a concave curved surface is coated with a metal oxide. It has been found that a porous surface structure can be obtained.

即ち本発明は、以下に関するものである。
(1)厚さ方向の断面が凹曲面である窪みを複数有する有機重合体を含む表面多孔構造体の、該窪みの内面が金属酸化物で被覆されていることを特徴とする表面多孔構造体。
(2)該窪みが構造体の表面に規則的に並んでいる(1)に記載の表面多孔構造体が好ましい。
(3)金属酸化物が、珪素、チタン、ジルコニウム、アルミニウムから選ばれる1種以上の金属を含有するものである、(1)または(2)に記載の表面多孔構造体が好ましい。
(4)有機重合体が、水と混和可能な溶媒に可溶である、(1)乃至(3)のいずれかに記載の表面多孔構造体が好ましい。
(5)金属酸化物がゾル−ゲル反応により製造されるものである、(1)乃至(4)のいずれかに記載の表面多孔構造体が好ましい。
(6)金属酸化物が金属アルコキシドのゾル−ゲル反応により製造されるものである、(1)乃至(5)のいずれかに記載の表面多孔構造体が好ましい。
(7)窪みの大きさが10nm以上50μm以下である(1)乃至(6)のいずれかに記載の表面多孔構造体が好ましい。
That is, the present invention relates to the following.
(1) A surface porous structure comprising a surface porous structure including an organic polymer having a plurality of depressions each having a concave curved surface in the thickness direction, wherein the inner surface of the depression is coated with a metal oxide. .
(2) The surface porous structure according to (1), in which the depressions are regularly arranged on the surface of the structure, is preferable.
(3) The surface porous structure according to (1) or (2), wherein the metal oxide contains one or more metals selected from silicon, titanium, zirconium, and aluminum.
(4) The surface porous structure according to any one of (1) to (3), wherein the organic polymer is soluble in a solvent miscible with water.
(5) The surface porous structure according to any one of (1) to (4), wherein the metal oxide is produced by a sol-gel reaction.
(6) The surface porous structure according to any one of (1) to (5), wherein the metal oxide is produced by a sol-gel reaction of a metal alkoxide.
(7) The surface porous structure according to any one of (1) to (6), wherein the size of the depression is 10 nm or more and 50 μm or less.

また、本願は以下に関するものである。
(8)少なくとも(A)〜(D)の工程を経ることを特徴とする、(1)乃至(7)のいずれかに記載の表面多孔構造体の製造方法。
(A)金属酸化物の原料溶液と、触媒を含んでいてもよい水を混合して調製して、ゾル−ゲル反応させる工程、
(B)有機重合体溶液を調製する工程、
(C)(A)工程から得られた溶液と(B)工程から得られた溶液を混合する工程、
(D)(C)工程で得られた溶液から溶媒を蒸発させて表面多孔シートを形成する工程。
(9)少なくとも(E)〜(G)の工程を経ることを特徴とする、(1)乃至(7)のいずれかに記載の表面多孔構造体の製造方法。
(E)有機重合体溶液を調製する工程、
(F)(E)工程で得られた溶液中に、金属酸化物の原料と、触媒を含んでいてもよい水を混合してゾル−ゲル反応をおこなう工程、
(G)(F)工程で得られた溶液から溶媒を蒸発させて表面多孔シートを形成する工程。
(10)(C)工程において、更に、混合溶液中の金属酸化物1重量部に対して水が1重量部以上10重量部以下含まれるように水を添加混合することを特徴とする、(8)に記載の表面多孔構造体の製造方法が好ましい。
(11)(F)工程において、ゾル−ゲル反応を行う前および/または後に、(E)工程で得られた溶液中の金属酸化物1重量部に対して水が1重量部以上10重量部以下含まれるように更に水を添加混合することを特徴とする、(9)に記載の表面多孔構造体の製造方法が好ましい。
(12)(D)工程において、相対湿度50%以下、乾燥温度100℃以下の条件で溶媒を蒸発させることを特徴とする、(10)に記載の表面多孔構造体の製造方法が好ましい。
(13)(G)工程において、相対湿度50%以下、乾燥温度100℃以下の条件で溶媒を蒸発させることを特徴とする、(11)に記載の表面多孔構造体の製造方法が好ましい。
The present application also relates to the following.
(8) The method for producing a surface porous structure according to any one of (1) to (7), wherein at least the steps (A) to (D) are performed.
(A) a step of preparing a metal oxide raw material solution and water that may contain a catalyst to prepare a sol-gel reaction;
(B) preparing an organic polymer solution;
(C) A step of mixing the solution obtained from step (A) and the solution obtained from step (B),
(D) The process of evaporating a solvent from the solution obtained at the (C) process, and forming a surface porous sheet.
(9) The method for producing a surface porous structure according to any one of (1) to (7), wherein at least the steps (E) to (G) are performed.
(E) a step of preparing an organic polymer solution;
(F) A step of performing a sol-gel reaction by mixing a metal oxide raw material and water that may contain a catalyst in the solution obtained in step (E),
(G) A step of evaporating the solvent from the solution obtained in the step (F) to form a surface porous sheet.
(10) In the step (C), water is further added and mixed so that water is contained in an amount of 1 to 10 parts by weight with respect to 1 part by weight of the metal oxide in the mixed solution. The method for producing a surface porous structure according to 8) is preferred.
(11) In the step (F), before and / or after performing the sol-gel reaction, water is 1 part by weight or more and 10 parts by weight with respect to 1 part by weight of the metal oxide in the solution obtained in the step (E). The method for producing a surface porous structure according to (9), wherein water is further added and mixed so as to be included below, is preferable.
(12) In the step (D), the method for producing a surface porous structure according to (10), wherein the solvent is evaporated under conditions of a relative humidity of 50% or less and a drying temperature of 100 ° C. or less, is preferable.
(13) In the step (G), the method for producing a surface porous structure according to (11), wherein the solvent is evaporated under conditions of a relative humidity of 50% or less and a drying temperature of 100 ° C. or less, is preferable.

本発明によれば、表面に、厚さ方向の断面が凹曲面である窪みを複数有し、窪みの内面が金属酸化物で被覆されている表面多孔構造体を提供することができる。さらに窪みの大きさがナノメートルからマイクロメートルに制御され、表面の窪みが規則的に並んだ表面多孔構造体を提供することができる。また、窪み内部と表面の窪み以外の部分とが異なる表面エネルギーを有する表面多孔構造体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the surface porous structure which has a plurality of the dents where the cross section of a thickness direction is a concave curved surface on the surface, and the inner surface of the dent is coat | covered with the metal oxide can be provided. Furthermore, the size of the depression can be controlled from nanometers to micrometers, and a surface porous structure in which the depressions on the surface are regularly arranged can be provided. Moreover, the surface porous structure which has surface energy from which the inside of a hollow differs from parts other than the hollow of a surface can be provided.

以下、本発明を詳細に説明する。本発明は、厚さ方向の断面が凹曲面である窪みを複数有する有機重合体を含む表面多孔構造体の、該窪みの内面が金属酸化物で被覆されていることを特徴とする表面多孔構造体である。水あるいは水と混和可能な溶媒に有機重合体を溶解した有機重合体溶液中でゾル−ゲル反応を行うことにより、内部を金属酸化物で被覆された窪みを表面に形成することを特徴とする表面多孔構造体の製造方法である。本発明の製造方法によれば、従来技術のように湿度の高いガスフローを使うことなく、簡便に表面多孔シートを製造する方法を提供できる。   Hereinafter, the present invention will be described in detail. According to the present invention, there is provided a surface porous structure comprising a surface porous structure including an organic polymer having a plurality of depressions each having a concave curved surface in the thickness direction, wherein the inner surface of the depression is coated with a metal oxide. Is the body. A hollow formed on the surface is coated with a metal oxide by performing a sol-gel reaction in an organic polymer solution in which an organic polymer is dissolved in water or a solvent miscible with water. It is a manufacturing method of a surface porous structure. According to the production method of the present invention, it is possible to provide a method for easily producing a surface porous sheet without using a gas flow having a high humidity as in the prior art.

[有機重合体]
本発明に用いる有機重合体は、水あるいは水と混和可能な溶媒に溶解性を有するものであれば特に制限を受けるものではない。有機重合体の中でも樹脂が好ましく、例示すると、ポリオレフィン系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、ポリアクリレート系樹脂、ポリメタクリレート系樹脂、ポリエーテルケトン系樹脂(ポリエーテルエーテルケトン類を含む)、ポリスチレン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ポリアミド系樹脂、ポリスルホン系樹脂(ポリエーテルスルホン、ポリスルホンなど)、ポリアラミド系樹脂、ポリウレタン系樹脂、ポリ酢酸ビニル系樹脂、ポリエチレングリコール系樹脂、セルロース誘導体(セルロースエステル類、セルロースカーバメート類、セルロースエーテル類)、シリコーン樹脂、ポリアセタール樹脂などから選ばれる樹脂である。これらは2種以上の樹脂を混合して使用しても良い。これらの樹脂の中でも、ポリアクリレート系樹脂、ポリメタクリレート系樹脂、ポリスチレン系樹脂が、表面多孔構造形成能に優れる点で好ましく用いられる。
[Organic polymer]
The organic polymer used in the present invention is not particularly limited as long as it has solubility in water or a solvent miscible with water. Among organic polymers, resins are preferred. For example, polyolefin resins, polyimide resins, polycarbonate resins, polyacrylate resins, polymethacrylate resins, polyether ketone resins (including polyether ether ketones), polystyrene Resin, polyester resin, epoxy resin, polyamide resin, polysulfone resin (polyethersulfone, polysulfone, etc.), polyaramid resin, polyurethane resin, polyvinyl acetate resin, polyethylene glycol resin, cellulose derivative (cellulose Esters, cellulose carbamates, cellulose ethers), silicone resins, polyacetal resins and the like. These may be used by mixing two or more kinds of resins. Among these resins, polyacrylate-based resins, polymethacrylate-based resins, and polystyrene-based resins are preferably used in terms of excellent surface porous structure forming ability.

[溶媒]
本発明で溶媒として使用される溶剤は有機重合体を溶解できる溶剤であり、かつ水と混和可能な溶剤である。水、水と混和できる有機溶剤、水と混和できる有機溶剤と水の混合物、のいずれかから選ばれる。水と混和できる溶剤とは、溶剤に対して水を0.1重量%以上混合しても分離しないものをいう。水と混和できる溶剤と水の混合物の場合、水を溶剤に対して0.1重量%以上添加しても分離を起こさなければ好適に使用することができる。水を0.1重量%以上含むことにより、ゾル−ゲル反応を円滑に進行させることができるのみならず、表面に金属酸化物を析出させることができるようになる。具体的に用いることのできる有機溶剤は前述の条件を満たすものであれば特に制限されるものではなく、使用する有機重合体の種類により異なるが、例示すると、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド(DMSO)、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン、テトラヒドロフラン(THF)、ジオキサン、メタノール、エタノール、プロパノール、ブタノール、シクロヘキサノール、メチルセルソルブ、エチルセルソルブなどが挙げられる。これらの溶剤は、単独で用いても良いし、2種以上を混合したものや、水と混合して用いても良い。
[solvent]
The solvent used as the solvent in the present invention is a solvent that can dissolve the organic polymer and is miscible with water. It is selected from water, an organic solvent miscible with water, and a mixture of an organic solvent miscible with water and water. A solvent miscible with water means a solvent that does not separate even when 0.1% by weight or more of water is mixed with the solvent. In the case of a mixture of water and a solvent that is miscible with water, it can be suitably used if separation does not occur even when water is added in an amount of 0.1 wt% or more. By containing 0.1 wt% or more of water, not only can the sol-gel reaction proceed smoothly, but also metal oxide can be deposited on the surface. The organic solvent that can be specifically used is not particularly limited as long as the above-described conditions are satisfied, and varies depending on the type of organic polymer to be used. For example, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide (DMSO), cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone, tetrahydrofuran (THF), dioxane, methanol, ethanol, propanol, butanol, cyclohexanol, methyl cellosolve And ethyl cellosolve. These solvents may be used singly or as a mixture of two or more kinds or with water.

[金属酸化物]
本発明に用いられる金属酸化物は、ゾル−ゲル法を用いて作製できるものであれば特に制限はされず、例えば、「ゾル−ゲル法の科学」(作花済夫著、アグネ承風社、P13、P20)に紹介されている金属、例えばリチウム、ナトリウム、銅、カルシウム、ストロンチウム、バリウム、亜鉛、ホウ素、アルミニウム、ガリウム、イットリウム、珪素、ゲルマニウム、鉛、リン、アンチモン、バナジウム、タンタル、タングステン、ランタン、ネオジム、チタン、ジルコニウムから選ばれる1種以上の金属を含有してなる金属酸化物を例として挙げることができ、好ましくは、珪素、ジルコニウム、チタン、アルミニウムから選ばれる1種以上の金属を含有してなる金属酸化物が原料の多様性の点から好ましい。用いる金属を変えることで、表面多孔シートの化学的性質(溶解度、耐薬品性、吸着能、生体親和性、接触角など)、物理的性質(密度、強度、硬度、耐熱性など)、電気的特性、光学的特性(透明性、屈折率、反射率など)等を制御することができるため、用途に応じた金属種を選ぶことで最適な表面多孔シートを得ることができる。
[Metal oxide]
The metal oxide used in the present invention is not particularly limited as long as it can be prepared using a sol-gel method. For example, “Science of Sol-Gel Method” (Sakuo Sakuhana, Agne Jofu Co., Ltd.) P13, P20), such as lithium, sodium, copper, calcium, strontium, barium, zinc, boron, aluminum, gallium, yttrium, silicon, germanium, lead, phosphorus, antimony, vanadium, tantalum, tungsten As an example, a metal oxide containing at least one metal selected from lanthanum, neodymium, titanium, and zirconium can be used, and preferably at least one metal selected from silicon, zirconium, titanium, and aluminum. From the viewpoint of the diversity of raw materials, metal oxides containing bismuth are preferred. By changing the metal used, the surface porous sheet chemical properties (solubility, chemical resistance, adsorption capacity, biocompatibility, contact angle, etc.), physical properties (density, strength, hardness, heat resistance, etc.), electrical Since the properties, optical properties (transparency, refractive index, reflectance, etc.) can be controlled, an optimum surface porous sheet can be obtained by selecting a metal species according to the application.

[金属酸化物量]
本発明において、表面多孔シート中の金属酸化物の含有量は、表面多孔構造体100質量部に対して、好ましくは0.1質量部以上70質量部以下、より好ましくは0.1質量部以上50質量部以下である。70質量部以上にすると、シートの強度を損なうことがある。また、0.1質量部以下であると窪みの数が少なくなり、表面多孔構造体として用いることができなくなる。ここでいう金属酸化物の含有量とは、表面多孔構造体の有機成分を空気中800℃で焼成後に残る灰分量を指す。
[Amount of metal oxide]
In the present invention, the content of the metal oxide in the surface porous sheet is preferably 0.1 parts by mass or more and 70 parts by mass or less, more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the surface porous structure. It is 50 parts by mass or less. If it is 70 parts by mass or more, the strength of the sheet may be impaired. In addition, when the amount is 0.1 parts by mass or less, the number of depressions decreases, and the surface porous structure cannot be used. Here, the content of the metal oxide refers to the amount of ash remaining after firing the organic component of the surface porous structure at 800 ° C. in the air.

[金属酸化物原料]
ゾル−ゲル法を用いて作製できる金属酸化物の原料としては、「ゾル−ゲル法の科学」(作花済夫著、アグネ承風社、P17)に紹介されている金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、金属硝酸塩、金属オキシ塩化物、金属塩化物等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いても良い。また、これらを加水分解、重縮合して得られる部分加水分解重縮合化合物を用いても良い。
[Metal oxide raw materials]
Metal oxides that can be produced using the sol-gel method include metal alkoxide and metal acetylacetate introduced in “Science of Sol-Gel Method” (Sakuo Sakuo, Agne Jofusha, P17). Nates, metal carboxylates, metal nitrates, metal oxychlorides, metal chlorides and the like. These may be used alone or in combination of two or more. Moreover, you may use the partial hydrolysis polycondensation compound obtained by hydrolyzing and polycondensing these.

金属アルコキシドの例としては、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、テトラプロポキシシラン、テトライソプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−クロロプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、テトラメトキシチタン、テトラエトキシチタン、チタニウムイソプロポキシド、アルミニウムブトキシド、ジルコニウムテトラ−n−ブトキシド、ジルコニウムテトライソプロポキシド、バリウムイソプロポキシド、カルシウムエトキシドが挙げられ、好ましくは、TMOS、TEOS、チタニウムイソプロポキシド、アルミニウムブトキシド、ジルコニウムテトラ−n−ブトキシド、ジルコニウムテトライソプロポキシド等のアルコキシシラン等である。   Examples of metal alkoxides include tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetrapropoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, Ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxy Silane, trifluoromethyltrimethoxysilane, trifluoromethyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane , Phenyltrimethoxysilane, phenyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidyl Sidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Methoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-chloropropyltriethoxysilane, 3-methyl Captopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, tetramethoxytitanium, tetraethoxytitanium, titanium isopropoxide, aluminum butoxide, zirconium tetra-n-butoxide, zirconium tetraisopropoxide , Barium isopropoxide, calcium ethoxide, and preferably alkoxysilanes such as TMOS, TEOS, titanium isopropoxide, aluminum butoxide, zirconium tetra-n-butoxide, zirconium tetraisopropoxide.

金属アセチルアセトネートの例としては、ジルコニウムアセチルアセトネート、チタニウムアセチルアセトネート、アルミニウムアセチルアセトネート、インジウムアセチルアセトネートや亜鉛アセチルアセトネートなどが挙げられ、好ましくは、ジルコニウムアセチルアセトネート、チタニウムアセチルアセトネート、アルミニウムアセチルアセトネートである。   Examples of the metal acetylacetonate include zirconium acetylacetonate, titanium acetylacetonate, aluminum acetylacetonate, indium acetylacetonate and zinc acetylacetonate, preferably zirconium acetylacetonate and titanium acetylacetonate. Aluminum acetylacetonate.

金属カルボキシレートの例としては、酢酸鉛、ステアリン酸イットリウム、シュウ酸バリウムが挙げられる。金属硝酸塩の例としては、硝酸イットリウム、硝酸ニッケルなどが挙げられる。金属オキシ塩化物の例としては、オキシ塩化ジルコニウム、オキシ塩化アルミニウムなどが挙げられる。金属塩化物の例としては、四塩化チタン、四塩化珪素などが挙げられる。反応の制御し易さの点から、テトラメトキシシラン、テトラエトキシシランなどのアルコキシシラン類が好ましいが、屈折率を変えたい場合には、テトラメトキシチタン、テトラエトキシチタン、チタニウムイソプロポキシド、アルミニウムブトキシド、ジルコニウムテトラ−n−ブトキシド、ジルコニウムテトライソプロポキシド、ジルコニウムアセチルアセトネート、チタニウムアセチルアセトネート、アルミニウムアセチルアセトネートなどと組み合わせることが好ましい。   Examples of metal carboxylates include lead acetate, yttrium stearate, and barium oxalate. Examples of metal nitrates include yttrium nitrate and nickel nitrate. Examples of metal oxychlorides include zirconium oxychloride and aluminum oxychloride. Examples of metal chlorides include titanium tetrachloride and silicon tetrachloride. From the viewpoint of easy control of the reaction, alkoxysilanes such as tetramethoxysilane and tetraethoxysilane are preferable. However, when the refractive index is to be changed, tetramethoxytitanium, tetraethoxytitanium, titanium isopropoxide, aluminum butoxide. , Zirconium tetra-n-butoxide, zirconium tetraisopropoxide, zirconium acetylacetonate, titanium acetylacetonate, aluminum acetylacetonate and the like are preferable.

[ゾル−ゲル触媒]
ゾル−ゲル反応をさせる際には、加水分解・重縮合反応を促進させる目的で下記に示すような加水分解・重合反応の触媒となりうるものを加えても良い。ゾル−ゲル反応の加水分解・重合反応の触媒として使用されるものは、「最新ゾル−ゲル法による機能性薄膜作製技術」(平島碩著、株式会社総合技術センター、P29)や「ゾル−ゲル法の科学」(作花済夫著、アグネ承風社、P154)等に記載されている一般的なゾル−ゲル反応で用いられる触媒である。例えば、酸触媒では塩酸、硝酸、硫酸、リン酸、酢酸、蓚酸、酒石酸、トルエンスルホン酸等の無機および有機酸類、アルカリ触媒では、水酸化アンモニウム、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどの4級アンモニウム水酸化物、アンモニア、トリエチルアミン、トリブチルアミン、モルホリン、ピリジン、ピペリジン、エチレンジアミン、ジエチレントリアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類、3−アミノプロピルトリエトキシシラン、N(2−アミノエチル)−3−アミノプロピルトリメトキシシランなどのアミノシラン類などが挙げられる。その他にも、有機スズ化合物、チタニウムテトライソプロポキシド、ジイソプロポキシチタニウムビスアセチルアセトナート、ジルコニウムテトラブトキシド、ジルコニウムテトラキスアセチルアセトナート、アルミニウムトリイソプロポキシド、アルミニウムトリスエチルアセトナート、トリメトキシボランなどの金属アルコキシド等を使用することができる。
[Sol-gel catalyst]
When carrying out the sol-gel reaction, for the purpose of accelerating the hydrolysis / polycondensation reaction, those which can serve as a catalyst for the hydrolysis / polymerization reaction as shown below may be added. What is used as a catalyst for hydrolysis / polymerization reaction of sol-gel reaction is “Functional thin film fabrication technology by the latest sol-gel method” (by Satoshi Hirashima, General Technical Center, P29) and “Sol-gel” It is a catalyst used in a general sol-gel reaction described in “Science of Law” (Sakuo Sakuo, Agne Jofusha, P154) and the like. For example, for acid catalysts, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, oxalic acid, tartaric acid, toluenesulfonic acid and other inorganic and organic acids, for alkali catalysts, alkali metal water such as ammonium hydroxide, potassium hydroxide and sodium hydroxide Oxides, quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, ammonia, triethylamine, tributylamine, morpholine, pyridine, piperidine, ethylenediamine, diethylenetriamine, ethanolamine, diethanolamine, Amines such as triethanolamine, aminosilanes such as 3-aminopropyltriethoxysilane, N (2-aminoethyl) -3-aminopropyltrimethoxysilane, etc. And the like. In addition, organotin compounds, titanium tetraisopropoxide, diisopropoxytitanium bisacetylacetonate, zirconium tetrabutoxide, zirconium tetrakisacetylacetonate, aluminum triisopropoxide, aluminum trisethylacetonate, trimethoxyborane, etc. A metal alkoxide etc. can be used.

好ましい触媒の使用量は、金属酸化物の原料となる金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、金属硝酸塩、金属オキシ塩化物、金属塩化物など1モルに対して2モル当量以下、さらに好ましくは1モル当量以下であるが、金属酸化物の原料となる金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、金属硝酸塩、金属オキシ塩化物、金属塩化物などが触媒となりうる官能基、例えばアミノ基やカルボキシル基を持つ場合にはこの限りではない。   The amount of the catalyst used is preferably 2 molar equivalents or less, more preferably 1 mole per 1 mole of metal alkoxide, metal acetylacetonate, metal carboxylate, metal nitrate, metal oxychloride, metal chloride, etc., as the raw material for the metal oxide. Is a functional group that can be a catalyst for metal alkoxide, metal acetylacetonate, metal carboxylate, metal nitrate, metal oxychloride, metal chloride, and the like, which are raw materials for metal oxides, such as an amino group. However, this is not the case when it has a carboxyl group.

[ゾル−ゲル反応と水の添加量]
ゾル−ゲル反応をさせる際、好ましい水の添加量は、金属酸化物の原料となる金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、金属硝酸塩、金属オキシ塩化物、金属塩化物など1モルに対して、40モル当量以下であり、より好ましくは10モル当量以下であり、さらに好ましくは5モル当量以下である。なお、有機重合体溶液中に始めから含まれている水や、大気中の水によっても、ゾル−ゲル反応は進行するため、水を添加しなくても良い場合もある。また、溶媒として水を用いる場合にはこの限りではない。また、後述するように、塗布溶液中の水を金属酸化物1重量部に対して1重量部以上10重量部以下含まれるようにする場合には、あらかじめゾル−ゲル反応の際に相当量の水を添加しておいても良い。
[Sol-gel reaction and amount of water added]
When the sol-gel reaction is carried out, the preferred amount of water added is 1 mol of metal alkoxide, metal acetylacetonate, metal carboxylate, metal nitrate, metal oxychloride, metal chloride, etc., which are the raw materials for the metal oxide. 40 mole equivalents or less, more preferably 10 mole equivalents or less, and even more preferably 5 mole equivalents or less. In addition, since the sol-gel reaction proceeds even with water contained in the organic polymer solution from the beginning or water in the atmosphere, it may not be necessary to add water. This is not the case when water is used as the solvent. Further, as will be described later, when the water in the coating solution is contained in an amount of 1 part by weight or more and 10 parts by weight or less with respect to 1 part by weight of the metal oxide, a considerable amount of water in advance during the sol-gel reaction. Water may be added.

[ゾル−ゲル反応の反応条件]
本発明において、好ましいゾル−ゲル反応の反応濃度、温度、時間は、使用する有機重合体の種類や分子量、それぞれの条件が相互に関わるため一概には言えない。すなわち、有機重合体の分子量が高い場合や、反応濃度の高い場合に、反応温度を高く設定したり、反応時間を長くし過ぎたりすると、加水分解、重縮合反応に伴って反応生成物の分子量が上がり、高粘度化やゲル化する可能性がある。従って、通常の好ましい反応濃度は、概ね溶液中の固形分の重量%濃度で1%以上50%以下であり、5%以上30%以下がより好ましい。また、反応温度は反応時間にもよるが通常0℃以上150℃以下であり、好ましくは1℃以上100℃以下、より好ましくは20℃以上60℃以下であり、反応時間は1時間以上50時間程度が好ましい。
[Reaction conditions for sol-gel reaction]
In the present invention, the preferred reaction concentration, temperature, and time of the sol-gel reaction cannot be generally described because the type and molecular weight of the organic polymer used and the respective conditions are related to each other. That is, when the molecular weight of the organic polymer is high or when the reaction concentration is high, if the reaction temperature is set high or the reaction time is too long, the molecular weight of the reaction product accompanying hydrolysis and polycondensation reactions May increase, resulting in high viscosity or gelation. Therefore, the normal preferable reaction concentration is generally 1% or more and 50% or less, more preferably 5% or more and 30% or less in terms of the concentration by weight of the solid content in the solution. In addition, although depending on the reaction time, the reaction temperature is usually 0 ° C. or more and 150 ° C. or less, preferably 1 ° C. or more and 100 ° C. or less, more preferably 20 ° C. or more and 60 ° C. or less, and the reaction time is 1 hour or more and 50 hours or less. The degree is preferred.

[表面多孔構造体作製方法(工程1:有機重合体と金属酸化物の溶液調整)]
本発明においては、金属酸化物をゾル−ゲル反応により調製するが、金属酸化物の原料溶液をゾル−ゲル反応させた後に有機重合体溶液と混合してさらにゾル−ゲル反応を行う方法((A)〜(C)工程をおこなう方法)と、有機重合体溶液中で金属酸化物の原料をゾル−ゲル反応させる方法((E)〜(F)工程をおこなう方法)の2つの方法に大別される。
[Method for producing surface porous structure (step 1: preparation of solution of organic polymer and metal oxide)]
In the present invention, a metal oxide is prepared by a sol-gel reaction. However, a method of performing a sol-gel reaction by mixing a metal oxide raw material solution with an organic polymer solution after the sol-gel reaction (( A method of performing steps A) to (C)) and a method of performing a sol-gel reaction of a metal oxide raw material in an organic polymer solution (a method of performing steps (E) to (F)). Separated.

本発明においては、有機重合体存在下でゾル−ゲル反応を進行させて金属酸化物を成長させる点に特徴があり、それによって本発明の表面多孔構造体が得られると考えられる。ゾル−ゲル反応とは、一般的に金属酸化物の原料を酸またはアルカリ触媒により加水分解される反応と、生成した金属水酸化物の水酸基が脱水して縮合する反応に大別される。ここでいうゾル−ゲル反応を進行させるとは、両反応を進行させることを意味するが、それぞれの反応は同時並行的に進行するため、両反応を反応操作に対応づけて区別することはできないが、反応初期の段階では前者の加水分解反応が主として起こり、反応後期の段階では後者の反応が主として起こる。また、触媒の種類により両反応の進行過程が異なることが知られている。ゾル−ゲル反応は金属酸化物の原料溶液に水、触媒を添加して開始され、必要に応じて加熱、マイクロ波照射、赤外線照射等を行って反応を促進することができる。   The present invention is characterized in that a metal oxide is grown by advancing a sol-gel reaction in the presence of an organic polymer, and it is considered that the surface porous structure of the present invention can be obtained thereby. The sol-gel reaction is generally classified into a reaction in which a metal oxide raw material is hydrolyzed with an acid or an alkali catalyst, and a reaction in which a hydroxyl group of a generated metal hydroxide is dehydrated and condensed. To advance the sol-gel reaction here means to advance both reactions, but since each reaction proceeds in parallel, the two reactions cannot be distinguished in correspondence with the reaction operation. However, the former hydrolysis reaction mainly occurs in the early stage of the reaction, and the latter reaction mainly occurs in the later stage of the reaction. It is also known that the progress of both reactions differs depending on the type of catalyst. The sol-gel reaction is started by adding water and a catalyst to the metal oxide raw material solution, and the reaction can be promoted by heating, microwave irradiation, infrared irradiation, or the like, if necessary.

本発明方法における(A)工程の金属酸化物の原料溶液と、触媒を含んでいてもよい水を混合して調製して、ゾル−ゲル反応させる方法としては具体的には以下のような方法が例示できる。(1)溶媒に、金属酸化物の原料を加え攪拌混合させた後に、必要に応じて触媒を含んでいてもよい水(水、または触媒を含んでいる水)を添加して所定温度で反応させる方法、(2)溶媒に必要に応じて触媒を含んでいてもよい水(水、または触媒を含んでいる水)を加え攪拌混合した後に、金属酸化物の原料を加え攪拌混合させた後に、所定温度で反応させる方法、(3)溶媒に必要に応じて触媒を含んでいてもよい水(水、または触媒を含んでいる水)を加え攪拌混合した後に、金属酸化物の原料を加え攪拌混合させた後に、所定温度で反応させる方法などが挙げられ、これらのどの方法で行ってもよい。得られた金属酸化物溶液は、攪拌下に有機重合体溶液と混合され((C)工程)、次いで必要に応じて加熱、マイクロ波照射、赤外線照射などの処理を行って反応を進行させて、膜を形成する工程に供せられる金属酸化物と有機重合体の複合溶液を調製することができる。   In the method of the present invention, the method for preparing the sol-gel reaction by mixing the raw material solution of the metal oxide in the step (A) and water that may contain a catalyst, specifically, is as follows. Can be illustrated. (1) After adding a metal oxide raw material to a solvent and stirring and mixing, if necessary, water containing water (water or water containing a catalyst) may be added and reacted at a predetermined temperature. (2) After adding water (water or water containing a catalyst) which may contain a catalyst as necessary to the solvent and stirring and mixing, after adding the metal oxide raw material and stirring and mixing , A method of reacting at a predetermined temperature, and (3) adding water (which may contain a catalyst if necessary) to the solvent (water or water containing the catalyst), stirring and mixing, and then adding a metal oxide raw material A method of reacting at a predetermined temperature after stirring and mixing may be mentioned, and any of these methods may be used. The obtained metal oxide solution is mixed with the organic polymer solution under stirring (step (C)), and then subjected to a treatment such as heating, microwave irradiation, infrared irradiation and the like as necessary to advance the reaction. A composite solution of a metal oxide and an organic polymer to be used in the step of forming a film can be prepared.

本発明方法における(E)〜(F)工程の有機重合体溶液中でゾル−ゲル反応を行う方法としては以下のような方法が挙げられる。(1)有機重合体溶液に、金属酸化物の原料を加え攪拌混合させた後に、必要に応じて触媒を含んでいてもよい水(水、または触媒を含んでいる水)を添加して所定温度で反応させる方法、(2)有機重合体溶液に必要に応じて触媒を含んでいてもよい水(水、または触媒を含んでいる水)を加え攪拌混合した後に、金属酸化物の原料を加え攪拌混合させた後に、所定温度で反応させる方法、(3)有機重合体溶液に必要に応じて触媒を含んでいてもよい水(水、または触媒を含んでいる水)を加え攪拌混合した後に、金属酸化物の原料を加え攪拌混合させ所定温度で反応させる方法などが挙げられ、これらのどの方法で行ってもよい。   Examples of the method for carrying out the sol-gel reaction in the organic polymer solution in the steps (E) to (F) in the method of the present invention include the following methods. (1) After adding a raw material of a metal oxide to an organic polymer solution and stirring and mixing, water (water or water containing a catalyst) that may contain a catalyst is added as necessary. A method of reacting at a temperature; (2) adding water (which may contain a catalyst if necessary) to the organic polymer solution (water or water containing the catalyst) and stirring and mixing; (2) A method of reacting at a predetermined temperature after stirring and mixing, and (3) adding water (water or water containing a catalyst) which may contain a catalyst to the organic polymer solution as necessary, and stirring and mixing. Later, a method of adding a raw material of metal oxide, stirring and mixing, and reacting at a predetermined temperature may be mentioned, and any of these methods may be used.

これらの工程後、上記の調製方法によって得られた溶液に、さらに金属酸化物の原料、溶媒、水、触媒から選ばれる1種以上の物質を混合してゾル−ゲル反応を進行させることも好ましい態様である。この場合には、金属種や官能基が異なる、金属酸化物の原料を用いることができるため、反応速度の制御や、金属酸化物の化学的性質、物理的・熱的性質、電気・光学的性質を変化させることができる。また、例えばこのときにアルカリ触媒を用いることで、反応後期で進行する金属酸化物の縮合反応を促進することも可能である。反応の進行は溶液粘度の上昇や溶液の白濁により確認することができる。金属酸化物と有機重合体の複合溶液は、反応進行の程度により異なるが主に透明であり、次の工程において白濁する場合が多い。   It is also preferable that after these steps, the solution obtained by the above preparation method is further mixed with one or more substances selected from a metal oxide raw material, a solvent, water, and a catalyst to advance the sol-gel reaction. It is an aspect. In this case, it is possible to use metal oxide raw materials with different metal species and functional groups, so it is possible to control the reaction rate, the chemical properties, physical and thermal properties, and electrical / optical properties of the metal oxide. The property can be changed. Further, for example, by using an alkali catalyst at this time, it is also possible to promote the condensation reaction of the metal oxide that proceeds in the late stage of the reaction. The progress of the reaction can be confirmed by an increase in the solution viscosity or the cloudiness of the solution. The composite solution of the metal oxide and the organic polymer is mainly transparent although it varies depending on the degree of reaction progress, and often becomes cloudy in the next step.

[表面多孔構造体作製方法(工程2:製膜工程)]
本発明においては、表面多孔構造体作製(工程1:有機重合体と金属酸化物の溶液調整)で作製した金属酸化物と有機重合体の複合溶液から溶媒を蒸発させることにより、有機重合体と金属酸化物を含む表面多孔構造体を作製する((D)及び(G)工程)。この過程で有機重合体と金属酸化物の相分離が起こり、表面多孔構造が形成されるため、溶液を膜状にする製造条件や溶媒を蒸発させる乾燥条件が得られる表面多孔構造体の表面構造に大きく影響する。
[Method for producing surface porous structure (step 2: film forming step)]
In the present invention, by evaporating the solvent from the composite solution of the metal oxide and organic polymer prepared in the preparation of the surface porous structure (step 1: solution adjustment of the organic polymer and metal oxide), the organic polymer and A surface porous structure containing a metal oxide is produced (steps (D) and (G)). In this process, phase separation of the organic polymer and metal oxide occurs, and a surface porous structure is formed, so that the surface structure of the surface porous structure can be obtained in which the production conditions for forming the solution into a film and the drying conditions for evaporating the solvent are obtained. Greatly affects.

膜状にする製造条件について具体的に例を挙げると、[表面多孔構造体作製方法(工程1:有機重合体と金属酸化物の溶液調整)]で調製された金属酸化物と有機重合体の複合溶液を、ガラス、金属、プラスチックなどの容器に展開する方法、ガラス、石英、金属、セラミックス、プラスチック、ゴム等の基板、ロール、ベルト等の上に塗布して作製する方法がある。金属酸化物と有機重合体の複合溶液から得られた構造体が自立膜でなくてもよく、基材上に膜状の表面多孔構造体を形成したものでもよい。基材の種類や形状は特に限定されない。例えば、基材となるフィルムの片面あるいは両面に塗布して、コーティングフィルムとすることもできるし、さらに別種の塗布液を塗工した複層フィルムとすることもできる。複層フィルムの場合、塗工順序は任意の順に重ね塗りできる。塗布方法は特に制限はなく、流し塗り法、浸漬法、スプレー法等があり、バーコーター、ナイフコーター、ブレードコーター、ダイコーター、コンマコーター、ロールコーター、グラビアコーター、カーテンコーター、スプレーコーター、スピンコーター等の公知の塗工機を使用できる。展開または塗布した溶液から溶媒を蒸発させるための乾燥方法としては、通常の加熱乾燥炉が利用できる以外にも、減圧、送気、赤外線照射、極超短波照射等の処理を行うことができる。乾燥の雰囲気としては、空気、イナートガス(窒素、アルゴン)等が利用できる。乾燥温度は使用した有機重合体や溶媒の沸点により異なり、適宜選択すればよいが、概ね5℃から200℃の範囲が好ましい。この温度範囲内で乾燥温度を変えた多段階での乾燥処理を行ってもよく、100℃以下の温度で予備乾燥を行った後に、連続的または断続的に昇温して乾燥する方法が好ましい。乾燥時間は溶媒の種類や塗布濃度や量により異なるため適宜選択すればよく一概には言えないが、100℃以下では概ね10分以上必要とし、減圧下あるいは乾燥気流下で乾燥する場合にはさらに短縮できる。   Specific examples of the production conditions for forming a film include the metal oxide and organic polymer prepared by [Method for preparing surface porous structure (step 1: preparation of solution of organic polymer and metal oxide)]. There are a method of developing the composite solution in a glass, metal, plastic, or other container, and a method of applying the composite solution on a substrate such as glass, quartz, metal, ceramics, plastic, rubber, a roll, a belt, or the like. The structure obtained from the composite solution of the metal oxide and the organic polymer may not be a free-standing film, and may be a film-like surface porous structure formed on a substrate. The type and shape of the substrate are not particularly limited. For example, it can be applied to one side or both sides of a film as a substrate to form a coating film, or a multilayer film coated with another type of coating solution. In the case of a multilayer film, the coating order can be repeated in any order. The coating method is not particularly limited, and there are a flow coating method, a dipping method, a spray method, and the like. Bar coater, knife coater, blade coater, die coater, comma coater, roll coater, gravure coater, curtain coater, spray coater, spin coater A known coating machine such as can be used. As a drying method for evaporating the solvent from the developed or applied solution, treatments such as reduced pressure, air supply, infrared irradiation, and ultra high frequency irradiation can be performed in addition to using a normal heating and drying furnace. As the drying atmosphere, air, inert gas (nitrogen, argon) or the like can be used. The drying temperature varies depending on the boiling point of the organic polymer used and the solvent, and may be selected as appropriate. A drying process in multiple stages with different drying temperatures within this temperature range may be performed, and a method of drying by raising the temperature continuously or intermittently after preliminary drying at a temperature of 100 ° C. or lower is preferable. . The drying time varies depending on the type of solvent and the coating concentration and amount, so it can be selected as appropriate. However, it is generally required that the drying time is 10 minutes or more at 100 ° C. or lower. Can be shortened.

本発明の表面多孔構造体を形成する過程は、概ね次のような過程を経て進行するものと推察される。まず、塗布、乾燥の過程で主に有機重合体と溶媒を含む相と、主に金属酸化物又はその前駆体と水を含む相に分離を起こす。分離した際の主に金属酸化物又はその前駆体と水を含む相の大きさで、表面多孔構造体表面の窪みの大きさが決定され、その大きさは塗布溶液に含まれる水分量で決まる。水分量が少ないと窪みの大きさは小さく、浅くなる。水分量が多いと窪みの大きさは大きくなり、深くなる。本発明で溶液中に含まれる水分量は有機重合体が不溶化して析出しない範囲であれば特に制限はないが、概ね溶液中の金属酸化物1重量部に対して1重量部以上10重量部以下の範囲であると好ましい。溶液から溶媒を蒸発させる乾燥工程において、雰囲気中の水分が溶液中に溶解する場合があるが、その場合には添加する水分量を調整するか、乾燥雰囲気中の相対湿度を50%RH以下にして乾燥を行うなどの処置をとればよい。   The process of forming the surface porous structure of the present invention is presumed to proceed through the following process. First, in the process of coating and drying, a phase containing mainly an organic polymer and a solvent and a phase containing mainly a metal oxide or a precursor thereof and water are caused to separate. The size of the recesses on the surface porous structure surface is determined by the size of the phase containing mainly the metal oxide or its precursor and water when separated, and the size is determined by the amount of moisture contained in the coating solution. . When the amount of water is small, the size of the dent is small and shallow. When the amount of water is large, the size of the dent increases and becomes deeper. In the present invention, the amount of water contained in the solution is not particularly limited as long as the organic polymer is insolubilized and does not precipitate, but is generally 1 part by weight or more and 10 parts by weight with respect to 1 part by weight of the metal oxide in the solution. The following range is preferable. In the drying step of evaporating the solvent from the solution, moisture in the atmosphere may be dissolved in the solution. In that case, the amount of moisture to be added is adjusted, or the relative humidity in the drying atmosphere is reduced to 50% RH or less. And then take measures such as drying.

水は、(D)工程または(G)工程に入る前の段階、すなわち(C)工程または(F)工程を行う前または後に添加する。(C)工程または(F)工程を行う前と後の両方で添加してもよい。このとき、溶液中の水の量が、(A)〜(C)または(E)〜(G)のゾルゲル反応の工程で添加される水の量を含めて、溶液中の金属酸化物1重量部に対して1重量部以上10重量部以下の範囲になるように添加する。   Water is added before or after performing the step (D) or (G), that is, the step (C) or (F). You may add both before and after performing the (C) process or the (F) process. At this time, the amount of water in the solution, including the amount of water added in the sol-gel reaction steps (A) to (C) or (E) to (G), is 1 weight of metal oxide in the solution. To 1 part by weight or more and 10 parts by weight or less.

[表面多孔構造体表面の窪み]
本発明における表面多孔構造体の表面には、表面多孔構造体の厚さ方向の断面が凹曲面である窪みが複数あり、窪みの内面が金属酸化物で被覆されている。窪みは互いに接することなく並んでおり、規則的に並んでいるものが好ましい。
[Dimple on the surface porous structure surface]
On the surface of the surface porous structure in the present invention, there are a plurality of recesses whose cross section in the thickness direction of the surface porous structure is a concave curved surface, and the inner surface of the recess is coated with a metal oxide. The depressions are arranged without touching each other, and are preferably arranged regularly.

窪みの形状、大きさ、窪みと窪みの間隔は、透過電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)観察により確認できる。
窪みの大きさは上述の通り、溶液中の水分量や乾燥条件などにより変化し、概ね大きさが10nm以上50μm以下であり、好ましくは10nm以上30μmであり、さらに好ましくは10nm以上25μm以下の範囲にある。本発明でいう窪みの大きさとは、表面多孔構造体の表面における窪みの幅の最大値をいう。例えば図1の点Aと点Bの距離が窪みの大きさである。窪みの形状、大きさ、窪みと窪みの間隔は、光学顕微鏡、透過電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)観察によって確認できる。窪みの形状の確認は、サンプル断面のTEM観察、SEM観察が好ましい。窪みの大きさ、窪みと窪みの間隔は、デジタル顕微鏡等の光学顕微鏡が簡便な観察に好ましく使用される。窪みの大きさ、窪みと窪みの間隔が1μm未満の場合は、AFM、TEM,SEMでの観察が好ましい。窪みの大きさは、100個の窪みから無作為に選んだ窪み30個の大きさの平均値とする。
The shape and size of the recess, and the interval between the recesses can be confirmed by observation with a transmission electron microscope (TEM), a scanning electron microscope (SEM), and an atomic force microscope (AFM).
As described above, the size of the recess varies depending on the amount of water in the solution, the drying conditions, and the like, and the size is generally 10 nm to 50 μm, preferably 10 nm to 30 μm, and more preferably 10 nm to 25 μm. It is in. The size of the dent in the present invention refers to the maximum value of the width of the dent on the surface of the surface porous structure. For example, the distance between point A and point B in FIG. 1 is the size of the depression. The shape and size of the recess, and the interval between the recesses can be confirmed by observation with an optical microscope, a transmission electron microscope (TEM), a scanning electron microscope (SEM), or an atomic force microscope (AFM). Confirmation of the shape of the depression is preferably performed by TEM observation or SEM observation of the sample cross section. An optical microscope such as a digital microscope is preferably used for simple observation with respect to the size of the recess and the interval between the recesses. When the size of the recess and the interval between the recesses is less than 1 μm, observation with AFM, TEM, or SEM is preferable. The size of the depression is an average value of the size of 30 depressions randomly selected from 100 depressions.

10nm未満は、金属酸化物と有機重合体との相分離が困難であり、また50μmを超えると不均一なシートとなる。窪みの大きさが10nm以上50μm以下の範囲であれば窪みの大きさはいかなる分布を持つものであってもよい。しかしながら、表面の窪みがハニカム状に並んでいる場合には、窪みの大きさのばらつきが少ない必要があり、概ね窪みの大きさのばらつきは20%の範囲内であるとよく、好ましくは10%以内であるとよい。   If it is less than 10 nm, phase separation between the metal oxide and the organic polymer is difficult, and if it exceeds 50 μm, a non-uniform sheet is formed. As long as the size of the recess is in the range of 10 nm to 50 μm, the size of the recess may have any distribution. However, when the depressions on the surface are arranged in a honeycomb shape, the variation in the size of the depressions needs to be small, and the variation in the size of the depressions is generally within a range of 20%, preferably 10%. It should be within.

窪みの深さは、窪みの大きさの概ね1%以上300%以下の範囲にあると好ましい。窪みの深さは、窪みの大きさを測定した窪み30個について測定し、その平均値とする。   The depth of the dent is preferably in the range of approximately 1% to 300% of the size of the dent. The depth of the dent is measured for 30 dents measured for the size of the dent, and is taken as the average value.

本発明の表面多孔構造体中に、構造体形成工程中に発生した金属酸化物粒子が含まれていてもよい。その大きさ及び分散状態は、透過電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)観察やX線散乱により確認できる。金属酸化物微粒子の形状は、概ね球体状、または楕円体状となる。楕円体状の粒子は表面多孔構造体の厚さ方向の断面で見た際に、粒子の長軸方向が構造体表面と水平に並んだ構造になっている。   The surface porous structure of the present invention may contain metal oxide particles generated during the structure forming step. The size and dispersion state can be confirmed by transmission electron microscope (TEM), scanning electron microscope (SEM), atomic force microscope (AFM) observation and X-ray scattering. The shape of the metal oxide fine particles is approximately spherical or elliptical. The ellipsoidal particles have a structure in which the major axis direction of the particles is aligned horizontally with the surface of the structure when viewed in a cross section in the thickness direction of the surface porous structure.

[添加剤]
本発明の表面多孔構造体は、その目的に応じて他のいかなる成分、例えば、紫外線吸収剤、架橋剤、増粘剤、充填剤、増感剤、可塑剤、光重合開始剤、モノマー、オリゴマー、安定剤、湿潤剤、流動剤、顔料、染料、接着促進剤、反応触媒、脱水剤などを含有しても構わない。
[Additive]
The surface porous structure of the present invention has any other component depending on its purpose, for example, an ultraviolet absorber, a crosslinking agent, a thickener, a filler, a sensitizer, a plasticizer, a photopolymerization initiator, a monomer, and an oligomer. , Stabilizers, wetting agents, flow agents, pigments, dyes, adhesion promoters, reaction catalysts, dehydrating agents, and the like.

[表面多孔構造体の用途]
本発明による表面多孔構造体は、表面に微細孔が規則的に配列した従来技術の構造体と同様に、分離膜、マイクロリアクター、細胞培養基材、微小電極デバイス、フォトニック結晶などに応用可能である。従来の微細孔構造体に比べて、本発明は窪み内部が金属酸化物で被覆されている特徴を持つことから、本発明の用途は上記の例示的に列挙した用途に限定されるものではなく、化学的性質(溶解度、耐薬品性、吸着能、生体親和性、接触角など)、物理・熱的性質(密度、強度、硬度、耐熱性など)、電気的特性、光学的特性(透明性、屈折率、反射率など)に応じた用途に幅広く利用可能である。
[Application of surface porous structure]
The surface porous structure according to the present invention can be applied to a separation membrane, a microreactor, a cell culture substrate, a microelectrode device, a photonic crystal, and the like, in the same manner as a conventional structure in which micropores are regularly arranged on the surface. It is. Compared with the conventional microporous structure, the present invention has a feature that the inside of the recess is coated with a metal oxide, so the application of the present invention is not limited to the above-listed applications. , Chemical properties (solubility, chemical resistance, adsorption capacity, biocompatibility, contact angle, etc.), physical and thermal properties (density, strength, hardness, heat resistance, etc.), electrical properties, optical properties (transparency) , Refractive index, reflectance, etc.) can be widely used.

[細胞培養基材用途]
本発明の表面多孔構造体は、種々の細胞培養基材として用いるのに適している。細胞を培養するためには、細胞の足場となる培養基材が必要であり、その基材表面の構造と化学的性質が、細胞の成長に大きく影響を及ぼすことが知られている。本発明の表面多孔体は、表面の微細な窪みによって、細胞が平面状に広がることなく、三次元的に培養することが可能である。さらに本発明の表面多孔体は、窪みの内面が親水性の金属酸化物で被覆されているため、窪みの内面に選択的に細胞を床着させることができるため、窪みの内壁に沿って三次元的に高密度な細胞を培養することが可能である。
[Application for cell culture substrate]
The surface porous structure of the present invention is suitable for use as various cell culture substrates. In order to cultivate cells, a culture substrate that serves as a scaffold for cells is required, and it is known that the structure and chemical properties of the surface of the substrate greatly affect cell growth. The surface porous body of the present invention can be cultured three-dimensionally without causing the cells to spread in a planar shape due to fine depressions on the surface. Furthermore, since the porous inner surface of the present invention is coated with a hydrophilic metal oxide on the inner surface of the recess, cells can be selectively deposited on the inner surface of the recess. It is possible to cultivate cells with high density originally.

以下、本発明を実地例により更に詳細に説明する。本発明はこれにより何等制限されるものではない。なお、実地例中の記号は以下のものを意味する。また、実施例中の各評価は下記のように行った。
THF:テトラヒドロフラン
TMOS:テトラメトキシシラン
PS:ポリスチレン
Hereinafter, the present invention will be described in more detail by way of practical examples. This invention is not restrict | limited at all by this. In addition, the symbol in a practical example means the following. Moreover, each evaluation in an Example was performed as follows.
THF: Tetrahydrofuran TMOS: Tetramethoxysilane PS: Polystyrene

[SEM観察]
表面多孔構造体表面にカーボン蒸着処理したサンプルを、走査型電子顕微鏡(株式会社日立ハイテクサイエンスシステムズ製S−4500)を用いて、加速電圧5kVで観察した。
[TEM観察]
表面多孔構造体に白金蒸着処理を施したサンプルをエポキシ樹脂で包埋後、ウルトラミクロトームを用いて切削することで、超薄切片を作製した。作製した超薄切片をコロジオン膜付きの銅メッシュに載せ、透過電子顕微鏡(株式会社日立ハイテクサイエンスシステムズ製H−7650)を用いて、加速電圧100kVで観察した。
[AFM観察]
Nanopics1000(セイコーインスツル株式会社製)を用いて、DFM/SSモードカンチレバー(NPXICTP004)を用いて行った。
[デジタル顕微鏡]
レンズユニット(VHZ450)を装着したVH6300(株式会社キーエンス製)を用いて、2000倍の条件で観察した。
[SEM observation]
The sample which carried out the carbon vapor deposition process on the surface porous structure surface was observed at the acceleration voltage of 5 kV using the scanning electron microscope (S-4500 by Hitachi High-Tech Science Systems Co., Ltd.).
[TEM observation]
An ultrathin slice was prepared by embedding a sample obtained by subjecting the surface porous structure to platinum deposition with an epoxy resin and then cutting it using an ultramicrotome. The prepared ultrathin slice was placed on a copper mesh with a collodion film and observed at an acceleration voltage of 100 kV using a transmission electron microscope (H-7650 manufactured by Hitachi High-Tech Science Systems Co., Ltd.).
[AFM observation]
Using Nanopics 1000 (manufactured by Seiko Instruments Inc.), a DFM / SS mode cantilever (NPXICTP004) was used.
[Digital microscope]
Using a VH6300 (manufactured by Keyence Co., Ltd.) equipped with a lens unit (VHZ450), observation was performed at 2000 times.

[合成例1]
TMOS5.425gを30mlのスクリュー管に量り取り、これにTHF5.00gを加え攪拌混合した。この溶液を氷浴で冷やしながら、2.5N塩酸2.56gを加え、5分間攪拌した後、室温(23℃)で6時間攪拌した。
[Synthesis Example 1]
5.425 g of TMOS was weighed into a 30 ml screw tube, and 5.00 g of THF was added thereto and mixed with stirring. While this solution was cooled in an ice bath, 2.5N hydrochloric acid (2.56 g) was added, and the mixture was stirred for 5 minutes and then stirred at room temperature (23 ° C.) for 6 hours.

[合成例2]
メタクリル樹脂(旭化成株式会社製デルペット(登録商標)グレード:60N)(分子量9万)0.50gを50mlのスクリュー管に量り取り、これにTHF12.49gを加え、攪拌しメタクリル樹脂を溶解させ、メタクリル樹脂/THF溶液を調製した。このメタクリル樹脂/THF溶液を攪拌しながら、合成例1で得られた溶液1.30gを加え、30分攪拌することでメタクリル樹脂/シリカ溶液を調製した。
[Synthesis Example 2]
Methacrylic resin (Delpet (registered trademark) grade: 60N manufactured by Asahi Kasei Co., Ltd.) (molecular weight 90,000) 0.50 g was weighed into a 50 ml screw tube, and 12.49 g of THF was added thereto, and stirred to dissolve the methacrylic resin. A methacrylic resin / THF solution was prepared. While stirring this methacrylic resin / THF solution, 1.30 g of the solution obtained in Synthesis Example 1 was added and stirred for 30 minutes to prepare a methacrylic resin / silica solution.

[合成例3]
メタクリル樹脂(旭化成株式会社製 デルペット(登録商標) グレード:80NB)(分子量18万)0.50gを50mlのスクリュー管に量り取り、これにTHF12.48gを加え、攪拌しメタクリル樹脂を溶解させ、メタクリル樹脂/THF溶液を調製した。このメタクリル樹脂/THF溶液を攪拌しながら、合成例1で得られた溶液1.30gを加え、30分攪拌することでメタクリル樹脂/シリカ溶液を調製した。
[Synthesis Example 3]
Methacrylic resin (Delpet (registered trademark) grade: 80NB, manufactured by Asahi Kasei Co., Ltd.) 0.50 g (molecular weight 180,000) was weighed into a 50 ml screw tube, and 12.48 g of THF was added thereto, and stirred to dissolve the methacrylic resin. A methacrylic resin / THF solution was prepared. While stirring this methacrylic resin / THF solution, 1.30 g of the solution obtained in Synthesis Example 1 was added and stirred for 30 minutes to prepare a methacrylic resin / silica solution.

[合成例4]
TMOS5.425gを30mlのスクリュー管に量り取り、これにシクロペンタノン5gを加え攪拌混合した。この溶液を氷浴で冷やしながら、2.5N塩酸2.56gを加え、5分間攪拌した後、室温(23℃)で6時間攪拌し、反応させた。
[Synthesis Example 4]
5.425 g of TMOS was weighed into a 30 ml screw tube, and 5 g of cyclopentanone was added thereto and stirred and mixed. While cooling this solution in an ice bath, 2.5N hydrochloric acid (2.56 g) was added and stirred for 5 minutes, and then stirred at room temperature (23 ° C.) for 6 hours to be reacted.

[合成例5]
メタクリル樹脂(旭化成株式会社製デルペット(登録商標)グレード:60N)(分子量9万)0.50gを50mlのスクリュー管に量り取り、これにシクロペンタノン12.48gを加え、攪拌しメタクリル樹脂を溶解させ、メタクリル樹脂/シクロペンタノン溶液を調製した。このメタクリル樹脂/シクロペンタノン溶液を攪拌しながら、合成例4で得られた溶液1.29gを加え、30分攪拌することでメタクリル樹脂/シリカ溶液を調製した。
[Synthesis Example 5]
Methacrylic resin (Delpet (registered trademark) grade: 60N manufactured by Asahi Kasei Co., Ltd.) (molecular weight 90,000) 0.50 g is weighed into a 50 ml screw tube, and 12.48 g of cyclopentanone is added to this, and the methacrylic resin is stirred. Dissolved to prepare a methacrylic resin / cyclopentanone solution. While stirring this methacrylic resin / cyclopentanone solution, 1.29 g of the solution obtained in Synthesis Example 4 was added and stirred for 30 minutes to prepare a methacrylic resin / silica solution.

[合成例6]
メタクリル樹脂(旭化成株式会社製デルペット(登録商標)グレード:60N)(分子量9万)0.50gを50mlのスクリュー管に量り取り、これにTHF9.87gを加え、攪拌しメタクリル樹脂を溶解させ、メタクリル樹脂/THF溶液を調製した。このメタクリル樹脂/THF溶液を攪拌しながら、合成例1で得られた溶液0.16gを加え、30分攪拌することでメタクリル樹脂/シリカ溶液を調製した。
[Synthesis Example 6]
Methacrylic resin (Delpet (registered trademark) grade: 60N manufactured by Asahi Kasei Co., Ltd.) (molecular weight 90,000) 0.50 g was weighed into a 50 ml screw tube, THF 9.87 g was added to this, and stirred to dissolve the methacrylic resin. A methacrylic resin / THF solution was prepared. While stirring this methacrylic resin / THF solution, 0.16 g of the solution obtained in Synthesis Example 1 was added and stirred for 30 minutes to prepare a methacrylic resin / silica solution.

[合成例7]
メタクリル樹脂(旭化成株式会社製デルペット(登録商標)グレード:60N)(分子量9万)0.50gを50mlのスクリュー管に量り取り、これにTHF8.219gを加え、攪拌しメタクリル樹脂を溶解させ、メタクリル樹脂/THF溶液を調製した。このメタクリル樹脂/THF溶液を攪拌しながら、合成例1で得られた溶液0.27gを加え、30分攪拌することでメタクリル樹脂/シリカ溶液を調製した。
[Synthesis Example 7]
Methacrylic resin (Delpet (registered trademark) grade: 60N, manufactured by Asahi Kasei Co., Ltd.) 0.50 g (molecular weight 90,000) is weighed into a 50 ml screw tube, and 8.219 g of THF is added thereto and stirred to dissolve the methacrylic resin. A methacrylic resin / THF solution was prepared. While stirring this methacrylic resin / THF solution, 0.27 g of the solution obtained in Synthesis Example 1 was added and stirred for 30 minutes to prepare a methacrylic resin / silica solution.

[合成例8]
メタクリル樹脂(旭化成株式会社製デルペット(登録商標)グレード:60N)(分子量9万)0.50gを50mlのスクリュー管に量り取り、これにTHF11.24gを加え、攪拌しメタクリル樹脂を溶解させ、メタクリル樹脂/THF溶液を調製した。このメタクリル樹脂/THF溶液を攪拌しながら、合成例1で得られた溶液0.76gを加え、30分攪拌することでメタクリル樹脂/シリカ溶液を調製した。
[Synthesis Example 8]
Methacrylic resin (Delpet (registered trademark) grade: 60N, manufactured by Asahi Kasei Co., Ltd.) 0.50 g (molecular weight 90,000) is weighed into a 50 ml screw tube, and 11.24 g of THF is added thereto, and stirred to dissolve the methacrylic resin. A methacrylic resin / THF solution was prepared. While stirring this methacrylic resin / THF solution, 0.76 g of the solution obtained in Synthesis Example 1 was added and stirred for 30 minutes to prepare a methacrylic resin / silica solution.

[合成例9]
メタクリル樹脂(旭化成株式会社製デルペット(登録商標)グレード:60N)(分子量9万)0.50gを50mlのスクリュー管に量り取り、これにTHF14.146gを加え、攪拌しメタクリル樹脂を溶解させ、メタクリル樹脂/THF溶液を調製した。このメタクリル樹脂/THF溶液を攪拌しながら、合成例1で得られた溶液2.02gを加え、30分攪拌することでメタクリル樹脂/シリカ溶液を調製した。
[Synthesis Example 9]
Methacrylic resin (Delpet (registered trademark) grade: 60N manufactured by Asahi Kasei Co., Ltd.) (molecular weight 90,000) 0.50 g was weighed into a 50 ml screw tube, THF 14.146 g was added to this and stirred to dissolve the methacrylic resin, A methacrylic resin / THF solution was prepared. While stirring this methacrylic resin / THF solution, 2.02 g of the solution obtained in Synthesis Example 1 was added and stirred for 30 minutes to prepare a methacrylic resin / silica solution.

[合成例10]
メタクリル樹脂(旭化成株式会社製デルペット(登録商標)グレード:60N)(分子量9万)0.50gを50mlのスクリュー管に量り取り、これにTHF16.47gを加え、攪拌しメタクリル樹脂を溶解させ、メタクリル樹脂/THF溶液を調製した。このメタクリル樹脂/THF溶液を攪拌しながら、合成例1で得られた溶液3.03gを加え、30分攪拌することでメタクリル樹脂/シリカ溶液を調製した。
[Synthesis Example 10]
Methacrylic resin (Delpet (registered trademark) grade: 60N manufactured by Asahi Kasei Co., Ltd.) (molecular weight 90,000) 0.50 g was weighed into a 50 ml screw tube, and 16.47 g of THF was added to this and stirred to dissolve the methacrylic resin. A methacrylic resin / THF solution was prepared. While stirring this methacrylic resin / THF solution, 3.03 g of the solution obtained in Synthesis Example 1 was added and stirred for 30 minutes to prepare a methacrylic resin / silica solution.

[合成例11]
PS(和光純薬工業株式会社製)0.50gを50mlのスクリュー管に量り取り、これにTHF12.49gを加え、攪拌しPSを溶解させ、PS/THF溶液を調製した。このPS/THF溶液を攪拌しながら、合成例1で得られた溶液1.30gを加え、30分攪拌することでPS/シリカ溶液を調製した。
[Synthesis Example 11]
PS (manufactured by Wako Pure Chemical Industries, Ltd.) 0.50 g was weighed into a 50 ml screw tube, and 12.49 g of THF was added thereto, and stirred to dissolve PS to prepare a PS / THF solution. While stirring this PS / THF solution, 1.30 g of the solution obtained in Synthesis Example 1 was added and stirred for 30 minutes to prepare a PS / silica solution.

[実施例1]
合成例2で得られた溶液2.7gをガラスシャーレに移し、温度23℃、相対湿度30%のグローブBOX中で乾燥し、メタクリル樹脂/シリカフィルムを得た。得られたフィルムの表面SEM写真、デジタル顕微鏡像、AFM像およびフィルムの断面TEM写真を図1〜4に示す。得られたフィルム表面には厚さ方向の断面が凹曲面である窪みが規則的に並んでいることがわかった。TEM観察によって、窪みの内部は酸化ケイ素で覆われていることがわかった。
[Example 1]
2.7 g of the solution obtained in Synthesis Example 2 was transferred to a glass petri dish and dried in a globe BOX having a temperature of 23 ° C. and a relative humidity of 30% to obtain a methacrylic resin / silica film. The surface SEM photograph of the obtained film, a digital microscope image, an AFM image, and the cross-sectional TEM photograph of a film are shown in FIGS. It was found that pits having a concave curved surface in the thickness direction were regularly arranged on the obtained film surface. By TEM observation, it was found that the inside of the depression was covered with silicon oxide.

[実施例2]
合成例2で得られた溶液2.7gをガラスシャーレに移し、温度23℃、相対湿度12%のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のAFM観察を行ったところ、表面に直径100〜250nm、深さ30nm程度、厚さ方向の断面が凹曲面である窪みが並んだ構造が観察された。
[Example 2]
2.7 g of the solution obtained in Synthesis Example 2 was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 12% to obtain a methacrylic resin film having a depression covered with silicon oxide. . When AFM observation of the surface of the obtained film was performed, a structure in which pits having a diameter of 100 to 250 nm, a depth of about 30 nm, and a cross section having a concave curved surface in the thickness direction were arranged on the surface was observed.

[実施例3]
合成例2で得られた溶液2.7gをガラスシャーレに移し、温度23℃、相対湿度23%のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径1〜2μmの窪みが並んだ構造が観察された。
[Example 3]
2.7 g of the solution obtained in Synthesis Example 2 was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 23% to obtain a methacrylic resin film having a depression covered with silicon oxide. . When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 1 to 2 μm were arranged on the surface was observed.

[実施例4]
合成例2で得られた溶液2.7gをガラスシャーレに移し、温度23℃、相対湿度40%のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径3〜5μmの窪みが並んだ構造が観察された。
[Example 4]
2.7 g of the solution obtained in Synthesis Example 2 was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 40% to obtain a methacrylic resin film having a depression covered with silicon oxide. . When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 3 to 5 μm were arranged on the surface was observed.

[実施例5]
合成例2で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水53μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡像を図5に示す。デジタル顕微鏡、およびTEM観察により、表面に直径3〜5μm、深さ1.5μm程度、厚さ方向の断面が凹曲面である窪みが並んだ構造が観察された。
[Example 5]
2.7 g of the solution obtained in Synthesis Example 2 was weighed into a screw tube, and 53 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. A digital microscope image of the surface of the obtained film is shown in FIG. By a digital microscope and TEM observation, a structure in which pits having a diameter of 3 to 5 μm, a depth of about 1.5 μm, and a cross section having a concave curved surface in the thickness direction were arranged on the surface was observed.

[実施例6]
合成例2で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水25μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径1〜2μmの窪みが並んだ構造が観察された。
[Example 6]
2.7 g of the solution obtained in Synthesis Example 2 was weighed into a screw tube, and 25 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 1 to 2 μm were arranged on the surface was observed.

[実施例7]
合成例2で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水154μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察、およびTEM観察を行ったところ、直径3〜8μm、深さ3μm程度、厚さ方向の断面が凹曲面である窪みが並んだ構造が観察された。
[Example 7]
2.7 g of the solution obtained in Synthesis Example 2 was weighed into a screw tube, and 154 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was subjected to digital microscope observation and TEM observation, a structure in which pits having a diameter of 3 to 8 μm, a depth of about 3 μm, and a cross section having a concave curved surface in the thickness direction was observed.

[実施例8]
合成例2で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水200μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径3〜8μmの窪みが並んだ構造が観察された。
[Example 8]
2.7 g of the solution obtained in Synthesis Example 2 was weighed into a screw tube, and 200 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 3 to 8 μm were arranged on the surface was observed.

[実施例9]
合成例2で得られた溶液4.1gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水150μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径3〜5μmの窪みが並んだ構造が観察された。
[Example 9]
4.1 g of the solution obtained in Synthesis Example 2 was weighed into a screw tube, and 150 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 3 to 5 μm were arranged on the surface was observed.

[実施例10]
合成例2で得られた溶液4.1gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水200μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径4〜8μmの窪みが並んだ構造が観察された。
[Example 10]
4.1 g of the solution obtained in Synthesis Example 2 was weighed into a screw tube, and 200 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 4 to 8 μm were arranged on the surface was observed.

[実施例11]
合成例2で得られた溶液をガラス基板上に垂らし、500rpmで温度22℃、相対湿度10%の条件でスピンキャストし、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のAFM観察を行ったところ、表面に直径2〜4μm、深さ300nm程度、厚さ方向の断面が凹曲面である窪みが並んだ構造が観察された。
[Example 11]
The solution obtained in Synthesis Example 2 was hung on a glass substrate and spin-cast at 500 rpm under conditions of a temperature of 22 ° C. and a relative humidity of 10% to obtain a methacrylic resin film having a depression covered with silicon oxide. When AFM observation of the surface of the obtained film was performed, a structure in which pits having a diameter of 2 to 4 μm, a depth of about 300 nm, and a concave curved surface in the thickness direction were arranged on the surface was observed.

[実施例12]
合成例2で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水53μLを加えた。この溶液をガラス基板上に垂らし、500rpmで温度22℃、相対湿度10%の条件でスピンキャストし、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のAFM観察を行ったところ、表面に直径2〜5μm、深さ300nm程度、厚さ方向の断面が凹曲面である窪みが並んだ構造が観察された。
[Example 12]
2.7 g of the solution obtained in Synthesis Example 2 was weighed into a screw tube, and 53 μL of distilled water was added while stirring the solution. This solution was dropped on a glass substrate and spin-cast at 500 rpm under the conditions of a temperature of 22 ° C. and a relative humidity of 10% to obtain a methacrylic resin film having a depression covered with silicon oxide. When AFM observation was performed on the surface of the obtained film, a structure in which pits having a diameter of 2 to 5 μm, a depth of about 300 nm, and a concave curved surface in the thickness direction were arranged on the surface was observed.

[実施例13]
合成例2で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、THF2.7gを加えた。この溶液をガラス基板上に垂らし、500rpmで温度22℃、相対湿度50%の条件でスピンキャストし、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のAFM観察を行ったところ、表面に直径1〜2μm、深さ200nm程度、厚さ方向の断面が凹曲面である窪みが並んだ構造が観察された。
[Example 13]
2.7 g of the solution obtained in Synthesis Example 2 was weighed into a screw tube, and 2.7 g of THF was added while stirring the solution. This solution was hung on a glass substrate and spin-cast at 500 rpm under conditions of a temperature of 22 ° C. and a relative humidity of 50% to obtain a methacrylic resin film having a depression covered with silicon oxide. When AFM observation was performed on the surface of the obtained film, a structure in which pits having a diameter of 1 to 2 μm, a depth of about 200 nm, and a concave curved surface in the thickness direction were arranged on the surface was observed.

[実施例14]
合成例2で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、THF10.8gを加えた。この溶液をガラス基板上に垂らし、500rpmで温度22℃、相対湿度50%の条件でスピンキャストし、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のAFM観察を行ったところ、表面に直径1〜2μm、深さ200nm程度、厚さ方向の断面が凹曲面である窪みが並んだ構造が観察された。
[Example 14]
2.7 g of the solution obtained in Synthesis Example 2 was weighed into a screw tube, and 10.8 g of THF was added while stirring the solution. This solution was hung on a glass substrate and spin-cast at 500 rpm under conditions of a temperature of 22 ° C. and a relative humidity of 50% to obtain a methacrylic resin film having a depression covered with silicon oxide. When AFM observation was performed on the surface of the obtained film, a structure in which pits having a diameter of 1 to 2 μm, a depth of about 200 nm, and a concave curved surface in the thickness direction were arranged on the surface was observed.

[実施例15]
合成例3で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水53μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径2〜4μmの窪みが並んだ構造が観察された。
[Example 15]
2.7 g of the solution obtained in Synthesis Example 3 was weighed into a screw tube, and 53 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 2 to 4 μm were arranged on the surface was observed.

[実施例16]
合成例5で得られた溶液2.7gをガラスシャーレに移し、温度23℃、相対湿度65%の条件下で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡像を図6に示す。表面に窪みが並んだ構造が観察された。
[Example 16]
2.7 g of the solution obtained in Synthesis Example 5 was transferred to a glass petri dish and dried under the conditions of a temperature of 23 ° C. and a relative humidity of 65% to obtain a methacrylic resin film having a depression covered with silicon oxide. The digital microscope image of the surface of the obtained film is shown in FIG. A structure with dents on the surface was observed.

[実施例17]
合成例6で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水92μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察および、AFM観察を行ったところ、表面に直径2〜4μm、深さ300nm程度、厚さ方向の断面が凹曲面である窪みが並んだ構造が観察された。
[Example 17]
2.7 g of the solution obtained in Synthesis Example 6 was weighed into a screw tube, and 92 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was subjected to digital microscope observation and AFM observation, a structure was observed in which pits having a diameter of 2 to 4 μm, a depth of about 300 nm, and a cross section having a concave curved surface in the thickness direction were arranged on the surface. .

[実施例18]
合成例7で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水84μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径2〜5μmの窪みが並んだ構造が観察された。
[Example 18]
2.7 g of the solution obtained in Synthesis Example 7 was weighed into a screw tube, and 84 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 2 to 5 μm were arranged on the surface was observed.

[実施例19]
合成例8で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水68μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径2〜8μmの窪みが並んだ構造が観察された。
[Example 19]
2.7 g of the solution obtained in Synthesis Example 8 was weighed into a screw tube, and 68 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 2 to 8 μm were arranged on the surface was observed.

[実施例20]
合成例9で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水35μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径2〜11μmの窪みが並んだ構造が観察された。
[Example 20]
2.7 g of the solution obtained in Synthesis Example 9 was weighed into a screw tube, and 35 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 2 to 11 μm were arranged on the surface was observed.

[実施例21]
合成例10で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水19μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するメタクリル樹脂フィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、直径5〜14μmの窪みが並んだ構造が観察された。
[Example 21]
2.7 g of the solution obtained in Synthesis Example 10 was weighed into a screw tube, and 19 μL of distilled water was added while stirring the solution. This solution was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a methacrylic resin film having a depression covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 5 to 14 μm were arranged was observed.

[実施例22]
合成例11で得られた溶液2.7gをガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するPSフィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径2〜7μmの窪みが並んだ構造が観察された。
[Example 22]
2.7 g of the solution obtained in Synthesis Example 11 was transferred to a glass petri dish and dried in a glove BOX having a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a PS film having a depression covered with silicon oxide. . When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 2 to 7 μm were arranged on the surface was observed.

[実施例23]
合成例11で得られた溶液2.7gをスクリュー管に量り取り、この溶液を攪拌しながら、蒸留水53μLを加えた。この溶液をガラスシャーレに移し、温度23℃、相対湿度10%以下のグローブBOX中で乾燥し、酸化ケイ素で内部を被覆された窪みを有するPSフィルムを得た。得られたフィルムの表面のデジタル顕微鏡観察を行ったところ、表面に直径4〜12μmの窪みが並んだ構造が観察された。
[Example 23]
2.7 g of the solution obtained in Synthesis Example 11 was weighed into a screw tube, and 53 μL of distilled water was added while stirring this solution. This solution was transferred to a glass petri dish and dried in a glove BOX at a temperature of 23 ° C. and a relative humidity of 10% or less to obtain a PS film having a recess whose interior was covered with silicon oxide. When the surface of the obtained film was observed with a digital microscope, a structure in which depressions having a diameter of 4 to 12 μm were arranged on the surface was observed.

本発明の表面多孔構造体は、光学ディスプレイ用材料、二次元フォトニック結晶、磁気記録材料、低誘電率素材、細胞培養用基材、触媒担体やバイオチップなどに利用できる。また、有機重合体と金属酸化物の表面状態の違いを利用して、有機重合体の表面だけ、もしくは、金属酸化物の表面だけに選択的に金属、無機材料、有機材料などの材料を吸着、成長させるなどの二次加工するための複合材料の基材として有用である。   The porous surface structure of the present invention can be used for optical display materials, two-dimensional photonic crystals, magnetic recording materials, low dielectric constant materials, cell culture substrates, catalyst carriers, biochips, and the like. Also, by utilizing the difference in surface condition between organic polymer and metal oxide, materials such as metals, inorganic materials, and organic materials can be selectively adsorbed only on the surface of the organic polymer or only on the surface of the metal oxide. It is useful as a base material for composite materials for secondary processing such as growth.

表面多孔構造体の表面の走査型電子顕微鏡写真Scanning electron micrograph of the surface of the surface porous structure 表面多孔構造体の表面の走査型電子顕微鏡写真Scanning electron micrograph of the surface of the surface porous structure 表面多孔構造体の表面の原子間力顕微鏡写真Atomic force micrograph of the surface of the surface porous structure 表面多孔構造体の断面の走査型電子顕微鏡写真Scanning electron micrograph of cross section of surface porous structure 表面多孔構造体の表面の走査型電子顕微鏡写真Scanning electron micrograph of the surface of the surface porous structure 表面多孔構造体の表面の走査型電子顕微鏡写真Scanning electron micrograph of the surface of the surface porous structure

Claims (13)

厚さ方向の断面が凹曲面である窪みを複数有する有機重合体を含む表面多孔構造体の、該窪みの内面が金属酸化物で被覆されていることを特徴とする表面多孔構造体。 A surface porous structure comprising a surface porous structure including an organic polymer having a plurality of depressions each having a concave curved surface in the thickness direction, wherein the inner surface of the depression is coated with a metal oxide. 該窪みが構造体の表面に規則的に並んでいる請求項1に記載の表面多孔構造体。 The surface porous structure according to claim 1, wherein the depressions are regularly arranged on the surface of the structure. 金属酸化物が、珪素、チタン、ジルコニウム、アルミニウムから選ばれる1種以上の金属を含有するものである、請求項1または2に記載の表面多孔構造体。 The surface porous structure according to claim 1 or 2, wherein the metal oxide contains one or more metals selected from silicon, titanium, zirconium, and aluminum. 有機重合体が、水と混和可能な溶剤に可溶である、請求項1乃至3のいずれかに記載の表面多孔構造体。 The surface porous structure according to any one of claims 1 to 3, wherein the organic polymer is soluble in a solvent miscible with water. 金属酸化物がゾル−ゲル反応により製造されるものである、請求項1乃至4のいずれかに記載の表面多孔構造体。 The surface porous structure according to any one of claims 1 to 4, wherein the metal oxide is produced by a sol-gel reaction. 金属酸化物が金属アルコキシドのゾル−ゲル反応により製造されるものである、請求項1乃至5のいずれかに記載の表面多孔構造体。 The surface porous structure according to any one of claims 1 to 5, wherein the metal oxide is produced by a sol-gel reaction of a metal alkoxide. 窪みの大きさが10nm以上50μm以下である請求項1乃至6のいずれかに記載の表面多孔構造体。 The surface porous structure according to any one of claims 1 to 6, wherein the size of the depression is 10 nm or more and 50 µm or less. 少なくとも(A)〜(D)の工程を経ることを特徴とする、請求項1乃至7のいずれかに記載の表面多孔構造体の製造方法。
(A)金属酸化物の原料溶液と、触媒を含んでいてもよい水を混合して調製して、ゾル−ゲル反応させる工程、
(B)有機重合体溶液を調製する工程、
(C)(A)工程から得られた溶液と(B)工程から得られた溶液を混合する工程、
(D)(C)工程で得られた溶液から溶媒を蒸発させて表面多孔構造体を形成する工程。
The method for producing a surface porous structure according to any one of claims 1 to 7, wherein the method comprises at least steps (A) to (D).
(A) a step of preparing a metal oxide raw material solution and water that may contain a catalyst to prepare a sol-gel reaction;
(B) preparing an organic polymer solution;
(C) A step of mixing the solution obtained from step (A) and the solution obtained from step (B),
(D) A step of evaporating the solvent from the solution obtained in the step (C) to form a surface porous structure.
少なくとも(E)〜(G)の工程を経ることを特徴とする、請求項1乃至7のいずれかに記載の表面多孔構造体の製造方法。
(E)有機重合体溶液を調製する工程、
(F)(E)工程で得られた溶液中に、金属酸化物の原料と、触媒を含んでいてもよい水を混合してゾル−ゲル反応をおこなう工程、
(G)(F)工程で得られた溶液から溶媒を蒸発させて表面多孔構造体を形成する工程。
The method for producing a surface porous structure according to any one of claims 1 to 7, wherein the method comprises at least steps (E) to (G).
(E) a step of preparing an organic polymer solution;
(F) A step of performing a sol-gel reaction by mixing a metal oxide raw material and water that may contain a catalyst in the solution obtained in step (E),
(G) A step of evaporating the solvent from the solution obtained in the step (F) to form a surface porous structure.
(C)工程において、更に、混合溶液中の金属酸化物1重量部に対して水が1重量部以上10重量部以下含まれるように水を添加混合することを特徴とする、請求項8に記載の表面多孔構造体の製造方法。 In the step (C), water is further added and mixed so that water is contained in an amount of 1 to 10 parts by weight with respect to 1 part by weight of the metal oxide in the mixed solution. The manufacturing method of the surface porous structure of description. (F)工程において、ゾル−ゲル反応を行う前および/または後に、(E)工程で得られた溶液中の金属酸化物1重量部に対して水が1重量部以上10重量部以下含まれるように更に水を添加混合することを特徴とする、請求項9に記載の表面多孔構造体の製造方法。 In the step (F), before and / or after the sol-gel reaction, 1 to 10 parts by weight of water is contained with respect to 1 part by weight of the metal oxide in the solution obtained in the step (E). The method for producing a surface porous structure according to claim 9, wherein water is further added and mixed as described above. (D)工程において、相対湿度50%以下、乾燥温度100℃以下の条件で溶媒を蒸発させることを特徴とする、請求項10に記載の表面多孔構造体の製造方法。 The method for producing a surface porous structure according to claim 10, wherein in the step (D), the solvent is evaporated under conditions of a relative humidity of 50% or less and a drying temperature of 100 ° C or less. (G)工程において、相対湿度50%以下、乾燥温度100℃以下の条件で溶媒を蒸発させることを特徴とする、請求項11に記載の表面多孔構造体の製造方法。 The method for producing a surface porous structure according to claim 11, wherein in the step (G), the solvent is evaporated under conditions of a relative humidity of 50% or less and a drying temperature of 100 ° C or less.
JP2007072521A 2007-03-20 2007-03-20 Surface porous structure and manufacturing method thereof Expired - Fee Related JP5344799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072521A JP5344799B2 (en) 2007-03-20 2007-03-20 Surface porous structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072521A JP5344799B2 (en) 2007-03-20 2007-03-20 Surface porous structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008231244A true JP2008231244A (en) 2008-10-02
JP5344799B2 JP5344799B2 (en) 2013-11-20

Family

ID=39904443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072521A Expired - Fee Related JP5344799B2 (en) 2007-03-20 2007-03-20 Surface porous structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5344799B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029890A1 (en) 2008-09-09 2010-03-18 オリンパスメディカルシステムズ株式会社 Ultrasonographic device and ultrasonographic device focal point position control method
CN108048912A (en) * 2017-12-14 2018-05-18 苏州中科纳福材料科技有限公司 The preparation method of sphero-colloid photonic crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157807A (en) * 1992-11-19 1994-06-07 Mitsui Toatsu Chem Inc Production of porous polymeric material
JPH09227712A (en) * 1996-02-19 1997-09-02 Toyota Central Res & Dev Lab Inc Surface-coated resin article and its production
JP2001026664A (en) * 1999-05-13 2001-01-30 Matsushita Electric Ind Co Ltd Preparation of porous product
WO2004048064A1 (en) * 2002-11-27 2004-06-10 Japan Science And Technology Agency Microprotrusion structure and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157807A (en) * 1992-11-19 1994-06-07 Mitsui Toatsu Chem Inc Production of porous polymeric material
JPH09227712A (en) * 1996-02-19 1997-09-02 Toyota Central Res & Dev Lab Inc Surface-coated resin article and its production
JP2001026664A (en) * 1999-05-13 2001-01-30 Matsushita Electric Ind Co Ltd Preparation of porous product
WO2004048064A1 (en) * 2002-11-27 2004-06-10 Japan Science And Technology Agency Microprotrusion structure and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029890A1 (en) 2008-09-09 2010-03-18 オリンパスメディカルシステムズ株式会社 Ultrasonographic device and ultrasonographic device focal point position control method
CN108048912A (en) * 2017-12-14 2018-05-18 苏州中科纳福材料科技有限公司 The preparation method of sphero-colloid photonic crystal

Also Published As

Publication number Publication date
JP5344799B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
KR101151486B1 (en) Optical film and method for producing same
TWI252325B (en) Plastic substrate having multi-layer structure and method for preparing the same
JP6612563B2 (en) Silicone porous body and method for producing the same
Tettey et al. Progress in superhydrophilic surface development
US11396614B2 (en) Void-containing layer, laminate, method for producing void-containing layer, optical member, and optical apparatus
WO2011157820A1 (en) Inorganic oxide coating
WO2012082611A2 (en) Porous films by backfilling with reactive compounds
Guo et al. High-quality hollow closed-pore silica antireflection coatings based on styrene–acrylate emulsion@ organic–inorganic silica precursor
EP3572868A1 (en) Optical sheet for light-guide panel-type lcd, backlight unit for light-guide panel-type lcd, and light-guide panel-type lcd
WO2016104762A1 (en) Porous silicone object and process for producing same
CN107629491A (en) A kind of mesoporous SiO for flexible substrate2Wear-resisting antireflecting coating and preparation method
EP3476589A1 (en) Optical laminate manufacturing method and optical laminate intermediate body
EP3596544B1 (en) Nanoimprint lithography process and patterned substrate obtainable therefrom
JP5344799B2 (en) Surface porous structure and manufacturing method thereof
JP2016033101A (en) Method for producing metal oxide hollow particle
Kim Preparation and barrier property of poly (vinyl alcohol)/SiO 2 hybrid coating films
Kajihara et al. Macroporous morphology of titania films prepared by sol-gel dip-coating method from a system containing poly (ethylene glycol) and poly (vinylpyrrolidone)
JP4035148B2 (en) Complex of organic polymer and metal oxide, production method and use thereof
KR20090081532A (en) Fabrication method of nano-cyclindrical template and nanoparticle array
Yeh et al. Organic‐acid‐catalyzed sol–gel route for preparing poly (methyl methacrylate)–silica hybrid materials
Shang et al. Facile creation of superhydrophobic surface with fluorine–silicon polymer under ambient atmosphere
JP2004107470A (en) Polycarbonate resin composition, its molded article, and its manufacturing process
JP4903657B2 (en) Manufacturing method of optical film
TW202210559A (en) Polymetalloxane-containing composition, cured body, member, electronic component, and fiber
JP2007291185A (en) Honeycomb porous form and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees