JP2008230897A - Method for manufacturing hydrogen generator, method for manufacturing desulfurizer, and maintenance method of hydrogen generator - Google Patents

Method for manufacturing hydrogen generator, method for manufacturing desulfurizer, and maintenance method of hydrogen generator Download PDF

Info

Publication number
JP2008230897A
JP2008230897A JP2007072284A JP2007072284A JP2008230897A JP 2008230897 A JP2008230897 A JP 2008230897A JP 2007072284 A JP2007072284 A JP 2007072284A JP 2007072284 A JP2007072284 A JP 2007072284A JP 2008230897 A JP2008230897 A JP 2008230897A
Authority
JP
Japan
Prior art keywords
desulfurizer
raw material
gas
hydrogen generator
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007072284A
Other languages
Japanese (ja)
Inventor
Kunihiro Ukai
邦弘 鵜飼
Seiji Fujiwara
誠二 藤原
Hidenobu Wakita
英延 脇田
Yukimune Kani
幸宗 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007072284A priority Critical patent/JP2008230897A/en
Publication of JP2008230897A publication Critical patent/JP2008230897A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that upon starting an adsorption type desulfurizer after replacement, the combustion state in a combustor becomes unstable to induce accidental extinction of flame. <P>SOLUTION: The method for manufacturing a hydrogen generator equipped with a desulfurizer 4 containing a desulfurizing agent to adsorb and remove a sulfur compound in a source material containing hydrocarbons, a reformer 1 having a reforming catalyst to generate a hydrogen-containing gas from the source material passed through the desulfurizer 4, and a combustor 5 to heat the reformer 1, includes an adsorption step where, prior to installing the desulfurizer 4 in the hydrogen generator, hydrocarbons are preliminarily adsorbed by the desulfurizing agent by passing a gas containing the hydrocarbons with 2 or more carbon numbers included in the source material, in higher concentration than in the source material, through the desulfurizer 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、原料と水の改質反応により水素含有ガスを生成する装置で、原料中の硫黄化合物を吸着除去する脱硫器を有する水素生成装置、脱硫器の製造方法及び水素生成装置のメンテナンス方法に関する。   The present invention relates to an apparatus for generating a hydrogen-containing gas by a reforming reaction between a raw material and water, and a hydrogen generator having a desulfurizer that adsorbs and removes sulfur compounds in the raw material, a method for manufacturing the desulfurizer, and a maintenance method for the hydrogen generator About.

小型装置でも高効率発電が可能な燃料電池は、分散型エネルギー供給源の発電装置として開発が進められている。その発電時の燃料として用いられる水素含有ガスは、一般的なインフラとして整備されていないため、例えば、都市ガス、LPG等の既存化石燃料インフラから得られる原料から水素含有ガスを生成させる水素生成装置を併設する構成がとられる。その水素生成装置は、原料と水とを改質反応させて水素含有ガスを生成する改質器、水素含有ガス中の一酸化炭素濃度を低減するために一酸化炭素と水蒸気を水性ガスシフト反応させる変成器、および変成器を通過した水素含有ガス中の一酸化炭素を主に微量空気等の酸化ガスで酸化させるCO除去器を設ける構成がとられることが多い。また、それらの反応器には、各反応に適した触媒、例えば、改質器にはRu触媒やNi触媒、変成器にはCu−Zn触媒、CO除去器にはRu触媒等が用いられている。   Development of a fuel cell capable of high-efficiency power generation even with a small device is being developed as a power generator for a distributed energy source. Since the hydrogen-containing gas used as fuel for power generation is not established as a general infrastructure, for example, a hydrogen generator that generates hydrogen-containing gas from raw materials obtained from existing fossil fuel infrastructure such as city gas and LPG The structure which takes the side is taken. The hydrogen generator is a reformer that generates a hydrogen-containing gas by reforming a raw material and water, and a water gas shift reaction of carbon monoxide and water vapor to reduce the carbon monoxide concentration in the hydrogen-containing gas. In many cases, a configuration is provided in which a transformer and a CO remover that oxidizes carbon monoxide in the hydrogen-containing gas that has passed through the transformer are mainly oxidized with an oxidizing gas such as a minute amount of air. In these reactors, a catalyst suitable for each reaction, for example, a Ru catalyst or Ni catalyst is used for the reformer, a Cu-Zn catalyst is used for the shifter, and a Ru catalyst is used for the CO remover. Yes.

さて、既存インフラで供給される原料ラインの都市ガスやLPGには、配管等からの原料の漏れを検知するため硫黄化合物系の付臭剤が添加されている。それら硫黄化合物系の付臭剤は、水素生成装置に用いる前記触媒の被毒成分となるため、あらかじめ付臭剤を除去する脱硫器が併用されることが一般的である。   A sulfur compound odorant is added to the city gas and LPG of the raw material line supplied by the existing infrastructure in order to detect leakage of the raw material from the piping. Since these sulfur compound odorants become poisoning components of the catalyst used in the hydrogen generator, it is common to use a desulfurizer that removes the odorant in advance.

例えば、ゼオライト系吸着脱硫剤が充填された吸着型脱硫器で原料中の硫黄成分を除去する方法が考案されている(例えば、特許文献1参照)。   For example, a method of removing a sulfur component in a raw material with an adsorption-type desulfurizer filled with a zeolite-based adsorptive desulfurization agent has been devised (see, for example, Patent Document 1).

また、上記ゼオライト系吸着脱硫剤は、硫黄成分だけでなく、同時に炭化水素系燃料ガスも吸着するため、上記脱硫器を新規に設置する際には、短時間でシステムが起動できるよう予め炭化水素系燃料ガスを吸着させた新規脱硫器を用いる燃料電池システムの起動準備方法が提案されている(例えば、特許文献2参照)。
特開2004−228016号公報 特開2006−278120号公報
In addition, the zeolite-based adsorptive desulfurization agent adsorbs not only the sulfur component but also the hydrocarbon fuel gas at the same time. A fuel cell system start-up preparation method using a new desulfurizer in which a system fuel gas is adsorbed has been proposed (see, for example, Patent Document 2).
JP 2004-228016 A JP 2006-278120 A

上記特許文献2に記載の従来の水素生成装置は、予め原料を吸着させた新規脱硫器を用いることで、脱硫器通過後の原料の減少が抑制され、起動時における燃料改質装置の燃焼部での着火安定性及び燃焼安定性を確保し、速やかな起動を実現するものである。   The conventional hydrogen generator described in Patent Document 2 uses a new desulfurizer in which the raw material is adsorbed in advance, so that the reduction of the raw material after passing through the desulfurizer is suppressed, and the combustion part of the fuel reformer at the time of startup This ensures the ignition stability and combustion stability at, and realizes quick start-up.

しかしながら、本願発明者は、原料として一般的な都市ガスを新規脱硫器に吸着させる場合、相当量の都市ガスを通流させないと新規脱硫器の原料の吸着が飽和せず、起動時の燃焼安定性を確保することが困難であることに気づいた。   However, when the present inventor adsorbs a general city gas as a raw material to a new desulfurizer, the adsorbing of the raw material of the new desulfurizer does not saturate unless a considerable amount of city gas is allowed to flow, and combustion stability at startup is stabilized. I realized that it was difficult to secure sex.

本発明は、上記従来の課題を解決するものであり、吸着型脱硫器を具備した水素生成装置において、新規脱硫器に予め原料中の炭化水素成分を吸着させる際に、より短時間に吸着動作を完了し、製造工程の効率化を促進することが可能な水素生成装置の製造方法、脱硫器の製造方法及び水素生成装置のメンテナンス方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and in a hydrogen generator equipped with an adsorption-type desulfurizer, when a hydrocarbon component in a raw material is adsorbed in advance to a new desulfurizer, an adsorption operation is performed in a shorter time. It is an object of the present invention to provide a method for manufacturing a hydrogen generator, a method for manufacturing a desulfurizer, and a maintenance method for a hydrogen generator that can complete the process and promote the efficiency of the manufacturing process.

上記従来の課題を解決するために、本願発明者は鋭意検討の結果、予め原料としての都市ガスを供給して新規脱硫器に都市ガス中の炭化水素成分を吸着させた場合、低濃度の炭素数2以上の炭化水素成分(エタン、プロパン、ブタン)が、主に脱硫剤に吸着され、都市ガスの主成分である炭素数1の炭化水素成分(メタン)はほとんど吸着されていなため、新規脱硫器内の脱硫剤を都市ガス中の炭化水素成分で飽和吸着させるのに相当量の都市ガスの供給が必要になることが分かった。   In order to solve the above-described conventional problems, the present inventor, as a result of earnest study, supplied a city gas as a raw material in advance and adsorbed a hydrocarbon component in the city gas to a new desulfurizer. Since hydrocarbon components (ethane, propane, butane) of 2 or more are mainly adsorbed by the desulfurizing agent, the hydrocarbon component (methane) of carbon number 1 that is the main component of city gas is hardly adsorbed. It has been found that a considerable amount of city gas needs to be supplied in order to saturate and adsorb the desulfurization agent in the desulfurizer with the hydrocarbon components in the city gas.

そこで、本発明の水素生成装置の製造方法は、炭化水素を含む原料中の硫黄化合物を吸着除去する脱硫剤を含む脱硫器と、前記脱硫器を通過した前記原料から水素含有ガスを生成する改質触媒を有する改質器と、前記改質器を加熱する燃焼器を具備した水素生成装置の製造方法であって、前記脱硫器を前記水素生成装置に設置する前に、前記脱硫剤に前記原料に含まれる炭素数が2以上の炭化水素を前記原料よりも高濃度に含むガスを流通させ、前記炭化水素を前記脱硫剤に予め吸着させる吸着工程を備えることを特徴とする。   Accordingly, the method for producing a hydrogen generator of the present invention includes a desulfurizer that includes a desulfurizing agent that adsorbs and removes sulfur compounds in a raw material containing hydrocarbons, and a modified gas generator that generates hydrogen-containing gas from the raw material that has passed through the desulfurizer. A hydrogen generator comprising a reformer having a catalyst and a combustor for heating the reformer, wherein the desulfurizer is added to the desulfurizing agent before the desulfurizer is installed in the hydrogen generator. It is characterized by comprising an adsorption step in which a gas containing a hydrocarbon having 2 or more carbon atoms contained in the raw material is circulated in a higher concentration than the raw material, and the hydrocarbon is adsorbed in advance on the desulfurizing agent.

また、第2の本発明の水素生成装置の製造方法は、前記原料が、炭素数1の炭化水素を主成分とすることを特徴とする。   The method for producing a hydrogen generator according to the second aspect of the present invention is characterized in that the raw material contains a hydrocarbon having 1 carbon as a main component.

また、第3の本発明の水素生成装置の製造方法は、前記原料が、都市ガスであることを特徴とする。   Moreover, the manufacturing method of the hydrogen production | generation apparatus of 3rd this invention is characterized by the said raw material being city gas.

また、第4の本発明の水素生成装置の製造方法は、前記吸着工程において、前記炭素数2以上の炭化水素の前記脱硫剤への累積供給量が前記炭化水素の飽和吸着量以上になるよう前記ガスを前記脱硫剤に流通させることを特徴とする。   Further, in the method for producing a hydrogen generator according to the fourth aspect of the present invention, in the adsorption step, the cumulative supply amount of the hydrocarbon having 2 or more carbon atoms to the desulfurization agent is equal to or greater than the saturated adsorption amount of the hydrocarbon. The gas is circulated through the desulfurizing agent.

また、第5の本発明の脱硫器の製造方法は、炭化水素を含む原料中の硫黄化合物を吸着除去する脱硫剤を含む脱硫器の製造方法であって、前記脱硫剤に炭素数が2以上の炭化水素を前記原料よりも高濃度に含むガスを流通させ、前記炭化水素を前記脱硫剤に予め吸着させる吸着工程を備えることを特徴とする。   The fifth desulfurizer production method of the present invention is a desulfurizer production method including a desulfurization agent that adsorbs and removes sulfur compounds in a raw material containing hydrocarbon, wherein the desulfurization agent has 2 or more carbon atoms. It is characterized by comprising an adsorption step in which a gas containing a higher concentration of hydrocarbons than the raw material is circulated and the hydrocarbons are adsorbed in advance on the desulfurizing agent.

また、第6の本発明の水素生成装置のメンテナンス方法は、炭化水素を含む原料中の硫黄化合物を吸着除去する脱硫剤を含む脱硫器と、前記脱硫器を通過した前記原料から水素含有ガスを生成する改質触媒を有する改質器と、前記改質器を加熱する燃焼器を具備した水素生成装置のメンテナンス方法であって、前記脱硫器を交換する前に、前記脱硫器に前記原料に含まれる炭素数が2以上の炭化水素を前記原料よりも高濃度に含むガスを流通させ、前記炭化水素を前記脱硫剤に予め吸着させる吸着工程を備えることを特徴とする。   A maintenance method for a hydrogen generator according to the sixth aspect of the present invention includes a desulfurizer that includes a desulfurizing agent that adsorbs and removes sulfur compounds in a raw material that includes hydrocarbons, and a hydrogen-containing gas from the raw material that has passed through the desulfurizer. A maintenance method for a hydrogen generator comprising a reformer having a reforming catalyst to be generated and a combustor for heating the reformer, wherein the raw material is added to the desulfurizer before the desulfurizer is replaced. It is characterized by comprising an adsorption step in which a gas containing a hydrocarbon containing 2 or more carbon atoms in a concentration higher than that of the raw material is circulated and the hydrocarbon is adsorbed in advance by the desulfurizing agent.

本発明の水素生成装置の製造方法によれば、新規脱硫器を装着後の水素生成装置の起動時における燃焼バーナでの着火安定性及び燃焼安定性を確保し、速やかな起動を実現するだけでなく、新規脱硫器の装着前に予め原料中の炭化水素成分を吸着させる際に、より短時間に吸着動作を完了し、製造工程の効率化を促進することが可能になる。   According to the method for producing a hydrogen generator of the present invention, it is possible to ensure ignition stability and combustion stability in the combustion burner at the time of starting the hydrogen generator after installing a new desulfurizer, and to realize quick start-up. In addition, when the hydrocarbon component in the raw material is adsorbed in advance before the installation of the new desulfurizer, the adsorption operation can be completed in a shorter time, and the efficiency of the production process can be promoted.

以下、本発明の実施形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1における燃料電池システムの構成図である。図1において、1は、メタンを主成分とする都市ガス、天然ガス、LPG等の炭化水素、メタノール等のアルコール、あるいはナフサ成分等の少なくとも炭素及び水素から構成される有機化合物を含む原料と水蒸気の改質反応を主に進行させ水素含有ガスを生成する水素生成装置である。Ru系の改質触媒を充填した改質器と、改質器で生成した水素含有ガス中の一酸化炭素を水蒸気変成反応させるCu−Zn系変成触媒を設けた変成器、変成器通過後の水素含有ガス中に残留する一酸化炭素を、主に酸化により低減するRu系触媒を設けたCO除去器を有する構成とした(詳細説明は省略する)。
(Embodiment 1)
FIG. 1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a raw material and water vapor containing an organic compound composed of at least carbon and hydrogen such as city gas mainly composed of methane, natural gas, hydrocarbon such as LPG, alcohol such as methanol, or naphtha component. This is a hydrogen generator that mainly generates the hydrogen-containing gas by proceeding with the reforming reaction. A reformer provided with a Ru-based reforming catalyst, a shifter provided with a Cu-Zn-based shift catalyst for performing a steam shift reaction of carbon monoxide in the hydrogen-containing gas generated by the reformer, and after passing through the shifter The carbon monoxide remaining in the hydrogen-containing gas is configured to have a CO remover provided with a Ru-based catalyst that reduces mainly by oxidation (detailed explanation is omitted).

2は、改質反応に必要な水蒸気を生成するための水を水素生成装置1に供給する水供給器である。なお、水供給器2は、市水、水タンク等に例示される水供給源からの水の供給を調節する弁、流量調節器、ポンプ等が用いられ、本実施の形態では、水素生成装置1に供給する水として、市水を活性炭及びイオン交換樹脂で浄化した水を用いる構成とした。   Reference numeral 2 denotes a water supplier that supplies water for generating water vapor necessary for the reforming reaction to the hydrogen generator 1. The water supplier 2 uses a valve, a flow regulator, a pump, or the like that regulates the supply of water from a water supply source exemplified by city water, a water tank, etc. In the present embodiment, a hydrogen generator As water to be supplied to the water 1, city water purified with activated carbon and ion exchange resin was used.

3は、水素生成装置1及び後述する燃焼器のそれぞれに供給される原料の流量調整機能を有する原料供給器である。   3 is a raw material supplier having a function of adjusting the flow rate of the raw material supplied to each of the hydrogen generator 1 and a combustor described later.

4は、硫黄吸着剤であるゼオライト(本実施の形態では、東京ガス社製ゼオライト系脱硫剤を用いた)を充填した吸着型の脱硫器で、閉止弁4aを両端に設け、ガスインフラライン9と原料供給器3とで接続する構成とした。本実施の形態では原料として都市ガスのガスインフララインを用いた。図2に脱硫器4の概要図を示す。図2に示すように脱硫器4と閉止弁4aの間のガス経路に接続部40を設け、閉止弁4a前後から脱硫器4を脱着可能な構成としている。図3にその接続部40の簡易構成図を示す。接続部40は、凸凹構成とし、凸部にゴム製のOリング41を設け、凹部に差し込むことで接続する。凸凹部の固定は、凸凹部をクリップで挟みこむことで固定する構成とした(図示せず)。   4 is an adsorption-type desulfurizer filled with zeolite, which is a sulfur adsorbent (in this embodiment, a zeolitic desulfurization agent manufactured by Tokyo Gas Co., Ltd.). And the raw material supplier 3 are connected. In this embodiment, a gas infrastructure line of city gas is used as a raw material. FIG. 2 shows a schematic diagram of the desulfurizer 4. As shown in FIG. 2, the connection part 40 is provided in the gas path | route between the desulfurizer 4 and the shut-off valve 4a, and it is set as the structure which can remove | desorb the desulfurizer 4 from the front and back of the shut-off valve 4a. FIG. 3 shows a simplified configuration diagram of the connecting portion 40. The connecting portion 40 has a concave-convex configuration, and a rubber O-ring 41 is provided on the convex portion and is connected by being inserted into the concave portion. The fixing of the convex and concave portions was fixed by sandwiching the convex and concave portions with clips (not shown).

5は、水素生成装置1の改質触媒に改質反応に必要な熱を供給する燃焼器である。燃焼器5は、原料供給器3より供給される原料の一部を燃焼させる、あるいは水素含有ガス供給先から戻される可燃成分を燃焼させる火炎バーナーと、燃焼空気供給用の燃焼ファン6を備える構成とした。燃焼器5には、火炎を形成させる着火源として圧電放電を用いたイグナイターと、火炎燃焼検知器として燃焼空間のイオン電流を測定するフレームロッド(FR)を有する構成とした(詳細は図示せず)。   Reference numeral 5 denotes a combustor that supplies heat necessary for the reforming reaction to the reforming catalyst of the hydrogen generator 1. The combustor 5 includes a flame burner that burns a part of the raw material supplied from the raw material supplier 3 or burns a combustible component returned from a hydrogen-containing gas supply destination, and a combustion fan 6 for supplying combustion air. It was. The combustor 5 includes an igniter that uses piezoelectric discharge as an ignition source for forming a flame, and a flame rod (FR) that measures ion current in the combustion space as a flame combustion detector (details are not shown). )

7は、固体高分子型燃料電池で、水素生成装置1から供給される水素含有ガスが水素含有ガス供給経路10を介して供給され、この水素含有ガス中の水素を用いて発電を行う(燃料電池7の詳細は図示せず)。なお、燃料電池7の発電時に余剰になった水素オフガスは、オフガス経路11を通して燃焼器5に供給する構成となっている。   7 is a polymer electrolyte fuel cell, in which the hydrogen-containing gas supplied from the hydrogen generator 1 is supplied via the hydrogen-containing gas supply path 10, and power is generated using the hydrogen in the hydrogen-containing gas (fuel). Details of the battery 7 are not shown). The surplus hydrogen offgas generated during power generation by the fuel cell 7 is supplied to the combustor 5 through the offgas path 11.

8は制御器で、水素生成装置1や燃料電池7の動作を制御するとともに半導体メモリー等を用い装置の運転動作方法を記憶する構成とした。   A controller 8 is configured to control the operation of the hydrogen generator 1 and the fuel cell 7 and to store the operation operation method of the apparatus using a semiconductor memory or the like.

次に、本実施の形態の水素生成装置の通常運転動作を説明する。   Next, normal operation of the hydrogen generator according to the present embodiment will be described.

まず、原料供給器3から原料を燃焼器5に供給するとともに、燃焼ファンから燃焼用空気の供給を開始する。燃焼器5では、着火器でスパーク動作を行うとともに、原料と燃焼空気を燃焼空間に噴出させ、原料と燃焼空気の混合気が燃焼範囲に入ることで、燃焼空間に火炎が形成される。この着火動作を、燃焼検知器でイオン電流として検出し燃焼を検知する。燃焼の安定性を確保するため、イオン電流が一定値を維持することを制御器8で確認し、着火器のスパークによる着火動作を停止する。次に、水供給器2と原料供給器3を作動させ、水と原料を水素生成装置1に供給する。水の供給量は、原料中に含まれる炭素原子のモル数に対して約3倍量のモル数となる水を供給した。本実施の形態ではメタンを主成分とする都市ガスを原料としたが、表1に、その都市ガス(13A)の成分およびその含有量の一例を示す(大阪ガス株式会社提供13AのMSDS参照)。   First, the raw material is supplied from the raw material supplier 3 to the combustor 5 and the supply of combustion air from the combustion fan is started. In the combustor 5, a spark operation is performed by the igniter, the raw material and the combustion air are jetted into the combustion space, and the mixture of the raw material and the combustion air enters the combustion range, whereby a flame is formed in the combustion space. This ignition operation is detected as an ion current by a combustion detector to detect combustion. In order to ensure the stability of combustion, the controller 8 confirms that the ion current is maintained at a constant value, and the ignition operation by the spark of the igniter is stopped. Next, the water supply device 2 and the raw material supply device 3 are operated to supply water and the raw material to the hydrogen generator 1. The amount of water supplied was about 3 times the number of moles of carbon atoms contained in the raw material. In this embodiment, city gas containing methane as a main component is used as a raw material, but Table 1 shows an example of the component of the city gas (13A) and its content (refer to MSDS provided by Osaka Gas Co., Ltd. 13A). .

Figure 2008230897
Figure 2008230897

都市ガス(13A)の平均分子式中の炭素原子数1モルに対して3モルの水蒸気が存在するために必要な水の量を供給した(スチームカーボン比(S/C)で3)。改質器で水蒸気改質反応、変成器で水性ガスシフト反応、CO除去器で一酸化炭素の酸化反応を進行させ、一酸化炭素濃度が約20ppm以下となる水素含有ガスの生成を行う。この水素含有ガスを水素含有ガス供給経路10より燃料電池7に供給し発電を行う。   The amount of water necessary for the presence of 3 mol of water vapor per 1 mol of carbon atoms in the average molecular formula of city gas (13A) was supplied (3 in terms of steam carbon ratio (S / C)). A steam reforming reaction is carried out in the reformer, a water gas shift reaction is carried out in the shift converter, and an oxidation reaction of carbon monoxide is carried out in the CO remover to generate a hydrogen-containing gas having a carbon monoxide concentration of about 20 ppm or less. This hydrogen-containing gas is supplied from the hydrogen-containing gas supply path 10 to the fuel cell 7 to generate electricity.

上記通常の一連の動作では、起動開始時の燃焼器5の動作には大きな問題は発生しない。しかし、脱硫器4を交換した直後の起動は、燃焼器5での着火動作が不安定となる。図4に、本実施の形態の水素生成装置におけるフレームロッド方式の燃焼検知動作の一測定例を示す。測定は、燃焼器でのイグナイターによる着火動作を継続させた状態でのフレームロッド出力の経時変化を、脱硫器交換前後で測定したものである。脱硫器交換後は、フレームロッドによる燃焼検知が脱硫器交換前と比較して遅くなっている。これは、ガスを流通させていない初期状態の吸着脱硫剤は吸着能力が高いため、脱硫器交換直後のガス流通初期に硫黄成分とともに原料の一部を吸着してしまうため、燃焼器5へ供給される原料量が低下し、燃焼器5内の混合気が希薄側の燃焼範囲に入り、燃焼継続が困難になるためであると考えられる。従って、図4に示すように脱硫器交換前の通常の着火判定時間(4分)で燃焼検知を行った場合、脱硫器交換後の起動動作においては着火していないことになり、燃焼検知後に行なわれる水素生成装置の起動動作は行えないことになる。そこで、本実施の形態の水素生成装置のメンテナンス方法は、交換用の新規脱硫器に原料中に含まれる炭素数2以上の炭化水素成分を原料よりも高濃度に含む吸着工程用のガスを供給し、炭素数2以上の炭化水素を予め吸着させた後に、この新規脱硫器を装着することで、脱硫器交換後の起動動作のおける燃焼器5での着火安定性及び燃焼の安定化を確保し、速やかな起動を実現するだけでなく、新規脱硫器への吸着動作を短時間に完了することが可能となる。   In the normal series of operations described above, no significant problem occurs in the operation of the combustor 5 at the start of startup. However, starting immediately after replacing the desulfurizer 4 makes the ignition operation in the combustor 5 unstable. FIG. 4 shows a measurement example of a flame rod type combustion detection operation in the hydrogen generator of the present embodiment. In the measurement, the change over time in the output of the flame rod in a state where the ignition operation by the igniter in the combustor is continued is measured before and after replacement of the desulfurizer. After replacement of the desulfurizer, the detection of combustion by the frame rod is slower than before the replacement of the desulfurizer. This is because the adsorbing desulfurizing agent in the initial state in which no gas is circulated has a high adsorbing capacity, and therefore, a part of the raw material is adsorbed together with the sulfur component at the initial stage of gas distribution immediately after replacement of the desulfurizer. This is considered to be because the amount of the raw material to be reduced decreases, the air-fuel mixture in the combustor 5 enters the lean combustion range, and it is difficult to continue combustion. Therefore, as shown in FIG. 4, when the combustion is detected in the normal ignition determination time (4 minutes) before the desulfurizer replacement, the start-up operation after the desulfurizer replacement is not ignited. The startup operation of the hydrogen generator to be performed cannot be performed. Therefore, in the maintenance method of the hydrogen generator of the present embodiment, the gas for the adsorption process containing the hydrocarbon component having 2 or more carbon atoms contained in the raw material at a higher concentration than the raw material is supplied to the new desulfurizer for replacement. Then, after adsorbing hydrocarbons with 2 or more carbon atoms in advance, installing this new desulfurizer ensures ignition stability and combustion stability in the combustor 5 in the start-up operation after desulfurizer replacement. Thus, not only quick start-up but also the adsorption operation to the new desulfurizer can be completed in a short time.

次に、上記の本実施の形態の水素生成装置のメンテナンス方法を想到するに至るもとになった知見について詳述する。本実施の形態で用いた脱硫器4に都市ガスを流通させた場合の、脱硫器4前後での都市ガス流量比(入口側を1とした出口側流量比)の測定例を示す。脱硫器4に充填された脱硫剤は約400g(乾燥重量)で都市ガス流量が1.5L/minの場合の測定結果を図5、都市ガス流量が4L/minの場合の測定結果を図7にそれぞれ示した。原料としての都市ガスが供給されていない新規脱硫器に都市ガスの供給を開始すると、都市ガスの脱硫器4への流通初期は、脱硫器4出口での都市ガス流量は脱硫器4入口での流量よりも減少している。この図5及び図7から、脱硫器4を交換した直後の起動動作において、脱硫器4内の脱硫剤への原料吸着により燃焼器5に供給される原料流量が減少し、燃焼器5における空気と原料との混合気が希薄燃焼範囲になり易く着火動作が不安定になることが説明できる。しかし、流通時間の増加に伴いその減少量は低下している。すなわち、脱硫器4に予め原料を流通させることで、脱硫器4の交換直後の起動動作初期における脱硫剤への原料吸着による燃焼器5への原料供給量の減少の程度を予め緩和できることがわかる。   Next, the knowledge that led to the idea of the maintenance method for the hydrogen generator of the present embodiment will be described in detail. A measurement example of the city gas flow rate ratio (outlet side flow rate ratio with the inlet side being 1) before and after the desulfurizer 4 when the city gas is circulated through the desulfurizer 4 used in the present embodiment will be shown. The desulfurizing agent charged in the desulfurizer 4 is about 400 g (dry weight) and the measurement result when the city gas flow rate is 1.5 L / min is shown in FIG. 5, and the measurement result when the city gas flow rate is 4 L / min is shown in FIG. Respectively. When city gas is supplied to a new desulfurizer that is not supplied with city gas as a raw material, the city gas flow rate at the outlet of the desulfurizer 4 at the initial stage of distribution of the city gas to the desulfurizer 4 is as follows. It is less than the flow rate. From FIG. 5 and FIG. 7, in the starting operation immediately after replacing the desulfurizer 4, the raw material flow rate supplied to the combustor 5 is reduced by the raw material adsorption to the desulfurizing agent in the desulfurizer 4, and the air in the combustor 5 It can be explained that the air-fuel mixture is easily in the lean combustion range and the ignition operation becomes unstable. However, as the distribution time increases, the amount of decrease decreases. That is, it can be seen that the degree of decrease in the amount of the raw material supplied to the combustor 5 due to the raw material adsorption to the desulfurizing agent at the initial stage of the start-up operation immediately after the replacement of the desulfurizer 4 can be mitigated in advance by distributing the raw material to the desulfurizer 4 in advance. .

次に、新規脱硫器へ都市ガスを供給した場合に、都市ガスの供給を開始してからの各経過時間において脱硫器4出口のガスをサンプリングし、ガスクロマトグラフィーを用いてサンプリングガスの成分の定性分析および定量分析した測定例を示す。脱硫器4に充填された脱硫剤は約400g(乾燥重量)で、ガス流量が1.5L/minの場合の測定結果を図6、ガス流量が4L/minの場合の測定結果を図8にそれぞれ示した。図6より都市ガスの供給初期から、都市ガスの主成分であるメタンの吸着は飽和していることがわかる。一方、図6及び図8よりプロパンやブタンといった炭素数2以上の炭化水素成分は、かなりの流量(本例では720L)を流通した後、飽和に達することがわかる。図7で、240Lの都市ガスを流通した際の脱硫器4前後での都市ガスの流量比は約0.96となっており、約4%の原料が吸着されていた。また、図8から、240Lの都市ガスを流通した時点ではプロパンおよびブタンがほぼ全量吸着されていることが分かる。これは、表1に示されるように都市ガス中のプロパンおよびブタンの総濃度が4.3%であるともに、240Lの都市ガスを流通した時点での脱硫器4内の脱硫剤への都市ガスの吸着量が約4%になっていることとほぼ一致する結果となった。また、図7に示されるように脱硫器4への都市ガスの供給初期には脱硫器4前後での都市ガスの流量比は約0.9以下になっているが、これは、図6に示されるように炭素数2であるエタン(表1参照、都市ガス中の体積は6.8%)の吸着も起きているからである。すなわち、都市ガスの供給初期は、脱硫剤により原料中の炭素数2以上の炭化水素成分が主に吸着され脱硫器4出口の原料流量の減少量が大きくなるが、その後、分子数の小さい炭素数2の炭化水素成分(都市ガスの場合は、エタン)の吸着から順次飽和に達していくため脱硫器4出口での都市ガス流量の減少量は低下していくこととなる。なお、炭素数2以上の炭化水素成分は、メタンと比較して同一体積あたりの燃焼量は大きいため、都市ガスの流量の減少率以上に燃焼器5において希薄燃焼側に傾きやすい。例えば、240Lの都市ガス供給時では、上述のように都市ガスの流量減少率は約4%であるが、吸着剤に主に吸着される炭化水素成分であるプロパンおよびブタンの燃焼量が多いため、燃焼量として考えた場合にその値は約10%の低下となっている。通常、燃焼器5に供給される空気量は、脱硫器4に供給される原料量基準で設定されるため(本実施の形態でも、脱硫器4に供給される原料量基準で空気供給量を設定)空気比の設定によっては、混合気が希薄燃焼範囲になる可能性があることが分かる。   Next, when the city gas is supplied to the new desulfurizer, the gas at the outlet of the desulfurizer 4 is sampled at each elapsed time from the start of the city gas supply, and the components of the sampling gas are measured using gas chromatography. The example of a measurement which carried out qualitative analysis and quantitative analysis is shown. The desulfurization agent charged in the desulfurizer 4 is about 400 g (dry weight), the measurement result when the gas flow rate is 1.5 L / min is shown in FIG. 6, and the measurement result when the gas flow rate is 4 L / min is shown in FIG. Shown respectively. FIG. 6 shows that the adsorption of methane, which is the main component of city gas, is saturated from the beginning of the city gas supply. On the other hand, FIG. 6 and FIG. 8 show that hydrocarbon components having 2 or more carbon atoms such as propane and butane reach saturation after flowing through a considerable flow rate (720 L in this example). In FIG. 7, the flow rate ratio of the city gas before and after the desulfurizer 4 when 240 L of city gas was circulated was about 0.96, and about 4% of the raw material was adsorbed. Further, FIG. 8 shows that almost all of propane and butane are adsorbed when 240 L of city gas is circulated. As shown in Table 1, the total concentration of propane and butane in the city gas is 4.3%, and the city gas to the desulfurization agent in the desulfurizer 4 at the time when 240 L of city gas is circulated. The result almost coincided with the fact that the amount of adsorbed was about 4%. Further, as shown in FIG. 7, the flow rate ratio of the city gas before and after the desulfurizer 4 is about 0.9 or less at the initial stage of the supply of the city gas to the desulfurizer 4, which is shown in FIG. This is because adsorption of ethane having 2 carbon atoms (see Table 1, volume in city gas is 6.8%) is also occurring. That is, in the initial supply of city gas, hydrocarbon components having 2 or more carbon atoms in the raw material are mainly adsorbed by the desulfurizing agent, and the amount of decrease in the raw material flow rate at the outlet of the desulfurizer 4 increases, but thereafter, the carbon having a small number of molecules. Since the hydrocarbon components of Formula 2 (ethane in the case of city gas) are successively adsorbed, the amount of decrease in the city gas flow rate at the outlet of the desulfurizer 4 decreases. The hydrocarbon component having 2 or more carbon atoms has a larger combustion amount per volume than methane, and therefore tends to lean toward the lean combustion side in the combustor 5 more than the reduction rate of the flow rate of the city gas. For example, when 240 L of city gas is supplied, the rate of decrease in the flow rate of city gas is about 4% as described above, but the amount of combustion of propane and butane, which are hydrocarbon components mainly adsorbed by the adsorbent, is large. When considered as a combustion amount, the value is reduced by about 10%. Usually, the amount of air supplied to the combustor 5 is set on the basis of the amount of raw material supplied to the desulfurizer 4 (also in this embodiment, the amount of air supplied is based on the amount of raw material supplied to the desulfurizer 4. Setting) It can be seen that the air-fuel mixture may enter the lean combustion range depending on the air ratio setting.

以上のことから、上述のように本実施の形態の水素生成装置のメンテナンス方法においては、都市ガス中に含まれる炭素数2以上の炭化水素成分を都市ガスよりも高濃度に含む吸着工程用のガスを脱硫器に通流し、炭素数2以上の炭化水素成分を脱硫剤に予め吸着させ、この脱硫器を交換用脱硫器として新たに装着することで、脱硫器交換後の起動動作初期のおける脱硫剤への原料吸着を緩和でき、燃焼器5での着火安定性及び燃焼安定性を確保し、速やかな起動を実現するだけでなく、新規脱硫器の装着前に予め原料中の炭化水素成分を吸着させる際に、原料である都市ガスそのものを脱硫器に供給するよりも短時間に吸着動作を完了し、製造工程の効率化を促進することが可能になる。なお、上述の本実施の形態においては、原料として都市ガスを用いた場合を例示したが、炭素数1の炭化水素を主成分として、炭素数2以上の炭化水素を含む原料であれば、上記と同様の効果が得られることは明らかである。また、上述の実施形態においては、脱硫器を交換する水素生成装置のメンテナンス方法について説明したが、水素生成装置を製造する場合においても、通常は、原料が吸着されてない新規脱硫器が装着されるため、上述と同様に起動動作における燃焼器の着火安定性及び燃焼安定性の問題が生じる。従って、水素生成装置を製造する場合にも、脱硫器を交換する場合と同様に、新規脱硫器を設置する前に、新規脱硫器に原料中に含まれる炭素数2以上の炭化水素を原料よりも高濃度に含む吸着工程用のガスを予め通流させることで上述の問題が解消され、上述の水素生成装置のメンテナンス方法の場合と同様の効果が得られる。   From the above, in the maintenance method of the hydrogen generator of the present embodiment as described above, the adsorption process for containing a hydrocarbon component having 2 or more carbon atoms contained in city gas at a higher concentration than city gas. The gas is passed through the desulfurizer, the hydrocarbon component having 2 or more carbon atoms is adsorbed in advance on the desulfurizing agent, and this desulfurizer is newly installed as a replacement desulfurizer, so that the start-up operation after replacement of the desulfurizer can be started. Adsorption of raw materials to the desulfurizing agent can be alleviated, ensuring ignition stability and combustion stability in the combustor 5, not only realizing quick start-up, but also hydrocarbon components in the raw material in advance before installing the new desulfurizer When adsorbing gas, it is possible to complete the adsorption operation in a shorter time than to supply the raw city gas itself to the desulfurizer, thereby promoting the efficiency of the manufacturing process. In the above-described embodiment, the case where city gas is used as a raw material is exemplified. However, if the raw material contains a hydrocarbon having 1 or more carbon atoms and a hydrocarbon having 2 or more carbon atoms, the above It is clear that the same effect can be obtained. In the above-described embodiment, the maintenance method of the hydrogen generator that replaces the desulfurizer has been described. However, even when the hydrogen generator is manufactured, a new desulfurizer that is not adsorbed with a raw material is usually mounted. Therefore, similarly to the above, problems of ignition stability and combustion stability of the combustor in the start-up operation occur. Therefore, in the case of producing a hydrogen generator, as in the case of exchanging the desulfurizer, before installing the new desulfurizer, the hydrocarbon having 2 or more carbon atoms contained in the raw material is contained in the new desulfurizer from the raw material. In addition, the above-mentioned problem can be solved by passing the gas for the adsorption process included in a high concentration in advance, and the same effect as in the case of the maintenance method for the hydrogen generator described above can be obtained.

次に、交換用の新規脱硫器内の脱硫剤に、原料中の炭化水素成分を予め流通させ、吸着させる場合の原料供給量の設定について説明する。新規脱硫器に予め流通させる量は、新規脱硫器を装着後の起動動作において発生する吸着剤への原料成分の吸着を最小限に抑制できる量が望ましい。ここで、図8に示すように、脱硫器へ都市ガスを通流させる際に、都市ガス流量が4L/minで通流量720Lでは脱硫器4前後でのプロパン、ブタンの相対濃度が1となり、原料吸着が飽和になっていることがわかる。従って、都市ガスよりも炭素数2以上の炭化水素を高濃度に含む吸着工程用のガスを流通させ、脱硫剤に予め原料を吸着させる場合に、少なくとも都市ガス720L中に含まれる炭素数が2以上の炭化水素量を含むガス量として設定してもよい。また、都市ガスを720L通流させた場合、脱硫器の重量は、28.5gの増加した。従って、都市ガスよりも炭素数2以上の炭化水素を高濃度に含む吸着工程用のガスを流通させ、脱硫剤に予め原料を吸着させる場合に、予め流通させるガス量を、脱硫器の重量増加量(例えば、28.5g)で管理しても構わない。なお、新規脱硫器内の脱硫剤に原料が飽和吸着すると想定されるガス量(例えば、脱硫器重量が28.5g増加するまでのガス量)を流通させた新規脱硫器を装着して、脱硫器装着後の燃焼器の着火安定性を検討したところ、図4に示す脱硫器交換前の通常動作時のフレームロット出力とほぼ一致することが確認できた。また、原料吸着量は、吸着脱硫剤種や、脱硫器へ充填する脱硫剤量により相違するため、予め流通させる吸着工程用ガス量は、脱硫剤や装置ごとに決定する必要があることはいうまでもない。   Next, the setting of the raw material supply amount when the hydrocarbon component in the raw material is preliminarily circulated and adsorbed in the desulfurizing agent in the replacement new desulfurizer will be described. The amount that is preliminarily distributed to the new desulfurizer is desirably an amount that can suppress the adsorption of the raw material components to the adsorbent generated in the starting operation after the new desulfurizer is installed. Here, as shown in FIG. 8, when the city gas is passed through the desulfurizer, the relative concentration of propane and butane before and after the desulfurizer 4 becomes 1 at a city gas flow rate of 4 L / min and a flow rate of 720 L. It can be seen that the raw material adsorption is saturated. Therefore, when the gas for the adsorption process containing hydrocarbons having a carbon number of 2 or higher than that of city gas is circulated and the raw material is adsorbed in advance to the desulfurization agent, the number of carbons contained in at least city gas 720L is 2 The amount of gas including the above hydrocarbon amount may be set. Further, when city gas was passed through 720 L, the weight of the desulfurizer increased by 28.5 g. Therefore, when the gas for the adsorption process containing hydrocarbons having 2 or more carbon atoms at a higher concentration than city gas is circulated and the raw material is adsorbed in advance by the desulfurizing agent, the amount of gas circulated is increased by the weight of the desulfurizer. You may manage by quantity (for example, 28.5g). In addition, a new desulfurizer that circulates a gas amount (for example, a gas amount until the weight of the desulfurizer increases by 28.5 g) assumed to be saturated and adsorbed on the desulfurizing agent in the new desulfurizer is installed, and desulfurization is performed. As a result of examining the ignition stability of the combustor after installing the combustor, it was confirmed that it almost coincided with the flame lot output during normal operation before desulfurizer replacement shown in FIG. In addition, since the amount of raw material adsorption differs depending on the type of adsorbing desulfurization agent and the amount of desulfurizing agent charged in the desulfurizer, it is necessary to determine the amount of gas for adsorption process to be circulated in advance for each desulfurizing agent and apparatus. Not too long.

本発明にかかる水素生成装置の製造方法は新規脱硫器設置後の起動動作のおける燃焼器5での着火安定性及び燃焼の安定化を確保し、速やかな起動を実現するだけでなく、新規脱硫器への吸着動作を短時間に完了することが可能となるので家庭用燃料電池システムに用いられる水素生成装置の製造方法等として有用である。   The manufacturing method of the hydrogen generator according to the present invention ensures not only the ignition stability and combustion stability in the combustor 5 in the start-up operation after the installation of the new desulfurizer, but also quick start-up, as well as new desulfurization. It is possible to complete the adsorption operation to the vessel in a short time, which is useful as a method for manufacturing a hydrogen generator used in a domestic fuel cell system.

本発明の実施の形態1における燃料電池システムの構成図1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention. 本発明の実施の形態1における脱硫器の構成図Configuration diagram of desulfurizer in Embodiment 1 of the present invention 本発明の実施の形態1における脱硫器の接続部の構成図Configuration diagram of connection part of desulfurizer in Embodiment 1 of the present invention 本発明の実施の形態1における脱硫器交換前後での着火検知動作の一例を示す図The figure which shows an example of the ignition detection operation | movement before and behind desulfurizer replacement | exchange in Embodiment 1 of this invention. 本発明の実施の形態1における都市ガス流通時の脱硫器前後での都市ガスの流量比の一例を示す図The figure which shows an example of the flow rate ratio of the city gas before and behind the desulfurizer at the time of the city gas distribution in Embodiment 1 of this invention 本発明の実施の形態1における都市ガス流通時の脱硫器前後での都市ガス組成の一例を示す図The figure which shows an example of the city gas composition before and behind the desulfurizer at the time of the city gas distribution in Embodiment 1 of this invention 本発明の実施の形態1における都市ガス流通時の脱硫器前後での都市ガスの流量比の一例を示す図The figure which shows an example of the flow rate ratio of the city gas before and behind the desulfurizer at the time of the city gas distribution in Embodiment 1 of this invention 本発明の実施の形態1における都市ガス流通時の脱硫器前後での都市ガス組成の一例を示す図The figure which shows an example of the city gas composition before and behind the desulfurizer at the time of the city gas distribution in Embodiment 1 of this invention

符号の説明Explanation of symbols

1 水素生成装置
2 水供給器
3 原料供給器
4 脱硫器
4a 閉止弁
5 燃焼器
6 燃焼ファン
7 燃料電池
8 制御器
9 ガスインフラライン
10 水素含有ガス供給経路
11 オフガス経路
40 接続部
41 Oリング
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 2 Water supply device 3 Raw material supply device 4 Desulfurizer 4a Stop valve 5 Combustor 6 Combustion fan 7 Fuel cell 8 Controller 9 Gas infrastructure line 10 Hydrogen-containing gas supply route 11 Off-gas route 40 Connection part 41 O-ring

Claims (6)

炭化水素を含む原料中の硫黄化合物を吸着除去する脱硫剤を含む脱硫器と、前記脱硫器を通過した前記原料から水素含有ガスを生成する改質触媒を有する改質器と、前記改質器を加熱する燃焼器を具備した水素生成装置の製造方法であって、前記脱硫器を前記水素生成装置に設置する前に、前記脱硫器に前記原料に含まれる炭素数が2以上の炭化水素を前記原料よりも高濃度に含むガスを流通させ、前記炭化水素を前記脱硫剤に予め吸着させる吸着工程を備えることを特徴とする水素生成装置の製造方法。 A desulfurizer including a desulfurizing agent that adsorbs and removes sulfur compounds in the raw material containing hydrocarbon, a reformer having a reforming catalyst that generates a hydrogen-containing gas from the raw material that has passed through the desulfurizer, and the reformer A method of manufacturing a hydrogen generation apparatus including a combustor for heating a desulfurizer before installing the desulfurizer in the hydrogen generation apparatus, wherein hydrocarbons having 2 or more carbon atoms contained in the raw material are contained in the desulfurizer. A method for producing a hydrogen generator, comprising: an adsorption step in which a gas containing a higher concentration than the raw material is circulated and the hydrocarbon is adsorbed in advance on the desulfurization agent. 前記原料が、炭素数1の炭化水素を主成分とすることを特徴とする請求項1記載の水素生成装置の製造方法。 The method for producing a hydrogen generator according to claim 1, wherein the raw material contains a hydrocarbon having 1 carbon as a main component. 前記原料が、都市ガスであることを特徴とする請求項2記載の水素生成装置の製造方法。 The method for manufacturing a hydrogen generator according to claim 2, wherein the raw material is city gas. 前記吸着工程において、前記炭素数2以上の炭化水素の前記脱硫剤への累積供給量が前記炭化水素の飽和吸着量以上になるよう前記ガスを前記脱硫剤に流通させることを特徴とする請求項1記載の水素生成装置の製造方法。 The said adsorption process WHEREIN: The said gas is distribute | circulated through the said desulfurization agent so that the cumulative supply amount to the said desulfurization agent of the said C2 or more hydrocarbon may become more than the saturated adsorption amount of the said hydrocarbon. A method for producing a hydrogen generator according to claim 1. 炭化水素を含む原料中の硫黄化合物を吸着除去する脱硫剤を含む脱硫器の製造方法であって、前記脱硫剤に炭素数が2以上の炭化水素を前記原料よりも高濃度に含むガスを流通させ、前記炭化水素を前記脱硫剤に予め吸着させる吸着工程を備えることを特徴とする脱硫器の製造方法。 A method for producing a desulfurizer including a desulfurizing agent that adsorbs and removes sulfur compounds in a raw material containing hydrocarbons, wherein a gas containing a hydrocarbon having two or more carbon atoms at a higher concentration than the raw material is circulated in the desulfurizing agent. And a desulfurizer manufacturing method comprising: an adsorption step of adsorbing the hydrocarbons to the desulfurization agent in advance. 炭化水素を含む原料中の硫黄化合物を吸着除去する脱硫剤を含む脱硫器と、前記脱硫器を通過した前記原料から水素含有ガスを生成する改質触媒を有する改質器と、前記改質器を加熱する燃焼器を具備した水素生成装置のメンテナンス方法であって、前記脱硫器を交換する前に、前記脱硫器に前記原料に含まれる炭素数が2以上の炭化水素を前記原料よりも高濃度に含むガスを流通させ、前記炭化水素を前記脱硫剤に予め吸着させる吸着工程を備えることを特徴とする水素生成装置のメンテナンス方法。 A desulfurizer including a desulfurizing agent that adsorbs and removes sulfur compounds in the raw material containing hydrocarbon, a reformer having a reforming catalyst that generates a hydrogen-containing gas from the raw material that has passed through the desulfurizer, and the reformer A maintenance method for a hydrogen generator equipped with a combustor for heating the desulfurizer before replacing the desulfurizer with a hydrocarbon having 2 or more carbon atoms contained in the raw material higher than the raw material. A maintenance method for a hydrogen generator, comprising an adsorption step in which a gas included in the concentration is circulated and the hydrocarbon is adsorbed in advance on the desulfurization agent.
JP2007072284A 2007-03-20 2007-03-20 Method for manufacturing hydrogen generator, method for manufacturing desulfurizer, and maintenance method of hydrogen generator Pending JP2008230897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072284A JP2008230897A (en) 2007-03-20 2007-03-20 Method for manufacturing hydrogen generator, method for manufacturing desulfurizer, and maintenance method of hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072284A JP2008230897A (en) 2007-03-20 2007-03-20 Method for manufacturing hydrogen generator, method for manufacturing desulfurizer, and maintenance method of hydrogen generator

Publications (1)

Publication Number Publication Date
JP2008230897A true JP2008230897A (en) 2008-10-02

Family

ID=39904148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072284A Pending JP2008230897A (en) 2007-03-20 2007-03-20 Method for manufacturing hydrogen generator, method for manufacturing desulfurizer, and maintenance method of hydrogen generator

Country Status (1)

Country Link
JP (1) JP2008230897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276018B2 (en) * 2008-06-04 2013-08-28 パナソニック株式会社 Fuel cell power generation system and method of operating fuel cell power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276018B2 (en) * 2008-06-04 2013-08-28 パナソニック株式会社 Fuel cell power generation system and method of operating fuel cell power generation system

Similar Documents

Publication Publication Date Title
JP2006008459A (en) Hydrogen production apparatus and fuel cell system
JP4295817B2 (en) Hydrogen generator, operation method of hydrogen generator, and fuel cell power generation system
US8304124B2 (en) Hydrogen generator, fuel cell system, and methods for operating them
WO2007081016A1 (en) Hydrogen production apparatus, fuel battery system and method of driving the same
JP2009179487A (en) Hydrogen production system
US20110039172A1 (en) Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
JP2012116666A (en) Hydrogen generating apparatus and fuel cell system provided with the same
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
US8202658B2 (en) Method for stopping a hydrogen generator by controlling water supply to a reformer
JP2002060204A (en) Fuel reformer, its operating method and fuel cell power generation unit using the same
JP5276018B2 (en) Fuel cell power generation system and method of operating fuel cell power generation system
JP5378220B2 (en) Fuel cell power generation system and method of operating fuel cell power generation system
JP5050662B2 (en) Fuel reformer and fuel cell system
JP5045045B2 (en) Hydrogen generator and fuel cell system
JP2007210835A (en) Apparatus for producing hydrogen and fuel battery system
EP2172421A1 (en) Hydrogen production device, and fuel cell system provided with the same
JP5687147B2 (en) Fuel cell system
JP2008230897A (en) Method for manufacturing hydrogen generator, method for manufacturing desulfurizer, and maintenance method of hydrogen generator
US10340537B2 (en) Fuel cell system and control method for the same
JP2005158466A (en) Fuel cell power generation system
JP2010044885A (en) Pretreatment system of original fuel for producing fuel hydrogen of fuel cell
JP2005190995A (en) Fuel cell system
JP2011253705A (en) Fuel cell system
JP5002902B2 (en) Hydrogen generator and fuel cell system
JP2013137865A (en) Usage of steam-reforming catalyst for fuel cell and hydrogen production system