JP2008227380A - Polarized electrode used for capacitor of electric double layer and its manufacturing method - Google Patents

Polarized electrode used for capacitor of electric double layer and its manufacturing method Download PDF

Info

Publication number
JP2008227380A
JP2008227380A JP2007066819A JP2007066819A JP2008227380A JP 2008227380 A JP2008227380 A JP 2008227380A JP 2007066819 A JP2007066819 A JP 2007066819A JP 2007066819 A JP2007066819 A JP 2007066819A JP 2008227380 A JP2008227380 A JP 2008227380A
Authority
JP
Japan
Prior art keywords
electric double
nonwoven fabric
capacitor
nickel
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007066819A
Other languages
Japanese (ja)
Other versions
JP4919226B2 (en
Inventor
Tsutomu Iwaki
勉 岩城
Tetsuo Sakai
哲男 境
Masaru Yao
勝 八尾
Kazuki Okuno
一樹 奥野
Masahiro Kato
真博 加藤
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Electric Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007066819A priority Critical patent/JP4919226B2/en
Publication of JP2008227380A publication Critical patent/JP2008227380A/en
Application granted granted Critical
Publication of JP4919226B2 publication Critical patent/JP4919226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor of an electric double layer whose electrostatic capacity is large, its internal resistance is small, and is excellent in durability. <P>SOLUTION: The polarized electrode used for a capacitor of electric double layer can be obtained by filling an activated charcoal into a collector, and the collector is formed in a manner such that a nickel-plated layer and a chromium-plated layer are laminated on a porous non-woven fabric in order. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規な電気二重層キャパシタ用分極性電極及びその製造方法に関する。   The present invention relates to a novel polarizable electrode for an electric double layer capacitor and a method for producing the same.

電気二重層キャパシタは、各種キャパシタ中でも容量が大きいため、最近注目されてきている。例えば、キャパシタは電気機器のメモリーバックアップ用として幅広く使われており、近年この用途にも電気二重層キャパシタの利用が促進している。さらに近年では、ハイブリッド車、燃料自動車等の自動車用にも期待されている。   The electric double layer capacitor has recently attracted attention because of its large capacitance among various capacitors. For example, capacitors are widely used for memory backup of electrical equipment, and in recent years, the use of electric double layer capacitors has been promoted for this purpose as well. Furthermore, in recent years, it is also expected for vehicles such as hybrid vehicles and fuel vehicles.

電気二重層キャパシタには、ボタン型、円筒型、角型等といった種類がある。ボタン型は、例えば、活性炭電極層を集電体上に設けた分極性電極を一対として、その電極間にセパレータを配置して電気二重層キャパシタ素子を構成し、電解質とともに金属ケース内に収納し、封口板と両者を絶縁するガスケットで密封することにより製造される。円筒型は、この一対の分極性電極とセパレータを重ね、捲回して電気二重層キャパシタ素子を構成し、この素子に電解液を含浸させてアルミニウムケース中に収納し、封口材を用いて密封することにより製造される。角型も、基本的構造はボタン型や円筒型と同様である。   There are various types of electric double layer capacitors such as a button type, a cylindrical type, and a square type. The button type is, for example, a pair of polarizable electrodes having an activated carbon electrode layer provided on a current collector, and a separator is disposed between the electrodes to form an electric double layer capacitor element, which is stored in a metal case together with an electrolyte. It is manufactured by sealing with a sealing plate and a gasket that insulates both. In the cylindrical type, a pair of polarizable electrodes and a separator are overlapped and wound to form an electric double layer capacitor element. The element is impregnated with an electrolytic solution and stored in an aluminum case, and sealed with a sealing material. It is manufactured by. The basic structure of the square type is the same as that of the button type or cylindrical type.

この電気二重層キャパシタに用いる分極性電極は、一般的には、アルミニウム箔である集電体に、活性炭を塗布することにより製造される。その分極性電極を構成する集電体は、例えば、特許文献1〜3に非水電解質電気二重層キャパシタ用として種々のものが開示されている。特許文献1には、アルミニウム、ステンレス等の金属集電体が開示されている。特許文献2には、ステンレス繊維のマットをステンレス箔に電気溶接した集電体が開示されている。特許文献3には、タンタル、アルミニウム及びチタニウムの少なくとも1種の金属からなる多孔質集電体が開示されている。
特開平11-274012号公報 特開平09-232190号公報 特開平11-150042号公報
The polarizable electrode used for this electric double layer capacitor is generally manufactured by applying activated carbon to a current collector that is an aluminum foil. For example, Patent Documents 1 to 3 disclose various current collectors constituting the polarizable electrode for non-aqueous electrolyte electric double layer capacitors. Patent Document 1 discloses a metal current collector such as aluminum or stainless steel. Patent Document 2 discloses a current collector obtained by electrically welding a stainless fiber mat to a stainless steel foil. Patent Document 3 discloses a porous current collector made of at least one metal selected from tantalum, aluminum, and titanium.
Japanese Patent Laid-Open No. 11-274012 Japanese Unexamined Patent Publication No. 09-232190 Japanese Patent Laid-Open No. 11-150042

ところで、メモリーバックアップ用、自動車用等の用途に用いられる電気二重層キャパシタは、より一層の高容量化等が求められている。つまり、静電容量の向上及び内部抵抗の低減が求められている。これを達成する手段として分極性電極中の活性炭にカーボンブラック、炭素繊維等の導電助剤を添加したり、集電体を金属箔に代えて多孔体(三次元構造)にすることが試みられている。   By the way, electric double layer capacitors used for applications such as memory backup and automobiles are required to have a higher capacity. That is, improvement in capacitance and reduction in internal resistance are required. In order to achieve this, attempts have been made to add a conductive agent such as carbon black or carbon fiber to the activated carbon in the polarizable electrode, or to replace the current collector with a metal foil to make a porous body (three-dimensional structure) ing.

しかし、導電助剤による試みでは、電気抵抗を下げるために多量の導電助剤を添加すると分極性電極中の活性炭の含有量が減少してしまい、逆にキャパシタの静電容量が小さくなる問題が生じる。   However, in the trial using the conductive auxiliary agent, if a large amount of conductive auxiliary agent is added to lower the electric resistance, the content of the activated carbon in the polarizable electrode is reduced, and conversely, the capacitance of the capacitor is reduced. Arise.

一方、集電体に関しては、多孔体としてスクリーン、パンチングメタル、ラスなどを用いることが試みられているが、構造上は実質的に二次元構造であり、大幅な静電容量の向上は期待できない。   On the other hand, regarding current collectors, attempts have been made to use screens, punching metals, laths and the like as porous bodies, but the structure is substantially a two-dimensional structure, and a significant improvement in capacitance cannot be expected. .

現在、量産可能な三次元構造集電体としては発泡状ニッケルがあり、アルカリ電解質二次電池用の集電体として普及している。しかし、非水電解質を用いる電気二重層キャパシタでは、ニッケルは非水電解質による酸化や腐食を受けるため使用に耐えない。また、ニッケル以外のステンレススチール等では、多孔度が大きい三次元構造の集電体を量産することは現在のところ困難である。   Currently, foamed nickel is a three-dimensional structure current collector that can be mass-produced, and is widely used as a current collector for an alkaline electrolyte secondary battery. However, in an electric double layer capacitor using a non-aqueous electrolyte, nickel cannot be used because it is oxidized or corroded by the non-aqueous electrolyte. In addition, it is difficult at present to mass-produce current collectors having a three-dimensional structure with a high porosity using stainless steel other than nickel.

本発明者らは、上記問題点に鑑み、鋭意研究を重ねた結果、特定の構造を有する集電体を採用することにより、上記問題点を解決するに至った。すなわち、本発明は、下記の電気二重層キャパシタ用分極性電極及びそれを用いたキャパシタにかかる。   In view of the above problems, the present inventors have intensively researched and, as a result, have adopted the current collector having a specific structure and have solved the above problems. That is, the present invention relates to the following polarizable electrode for an electric double layer capacitor and a capacitor using the same.

項1.集電体に活性炭が充填されてなる電気二重層キャパシタ用分極性電極であって、当該集電体が、多孔質不織布にニッケルめっき層及びクロムめっき層を順次積層してなる、ことを特徴とする電気二重層キャパシタ用分極性電極。   Item 1. A polarizable electrode for an electric double layer capacitor in which a current collector is filled with activated carbon, wherein the current collector is formed by sequentially laminating a nickel plating layer and a chromium plating layer on a porous nonwoven fabric. Polarizable electrode for electric double layer capacitor.

項2.前記多孔質不織布を構成する繊維がポリオレフィン系樹脂繊維である、項1に記載の電極。   Item 2. Item 2. The electrode according to Item 1, wherein the fibers constituting the porous nonwoven fabric are polyolefin resin fibers.

項3.前記多孔質不織布を構成する繊維の平均繊維径が10〜50μmである、項1又は2に記載の電極。   Item 3. Claim | item 1 or 2 electrode whose average fiber diameter of the fiber which comprises the said porous nonwoven fabric is 10-50 micrometers.

項4.前記ニッケルめっき層の目付量が15〜250g/m2である、項1〜3のいずれかに記載の電極。 Item 4. Item 4. The electrode according to any one of Items 1 to 3, wherein the nickel plating layer has a basis weight of 15 to 250 g / m 2 .

項5.前記クロムめっき層の目付量が50〜300g/m2ある、項1〜4のいずれかに記載の電極。 Item 5. Item 5. The electrode according to any one of Items 1 to 4, wherein a weight per unit area of the chromium plating layer is 50 to 300 g / m 2 .

項6.活性炭100重量部に対して導電助剤が0.2〜5重量部含まれている、項1〜5のいずれかに記載の電極。   Item 6. Item 6. The electrode according to any one of Items 1 to 5, wherein 0.2 to 5 parts by weight of a conductive additive is contained with respect to 100 parts by weight of activated carbon.

項7.多孔質不織布に、導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行った後、活性炭を充填する工程、を備えた電気二重層キャパシタ用電極の製造方法。   Item 7. A method for producing an electrode for an electric double layer capacitor, comprising: sequentially conducting a conductive treatment, an electrolytic nickel plating treatment, and a chromium plating treatment on a porous nonwoven fabric, and then filling with activated carbon.

項8.導電性処理が無電解ニッケルめっき処理又はニッケルスパッタリング処理である、項7に記載の製造方法。   Item 8. Item 8. The manufacturing method according to Item 7, wherein the conductive treatment is an electroless nickel plating treatment or a nickel sputtering treatment.

本発明の電気二重層キャパシタ用分極性電極は、集電体に活性炭が充填されてなる電気二重層キャパシタ用分極性電極であって、当該集電体が、多孔質不織布にニッケルめっき層及びクロムめっき層を順次積層してなる、ことを特徴とすることを特徴とする。以下、詳細に説明する。   A polarizable electrode for an electric double layer capacitor of the present invention is a polarizable electrode for an electric double layer capacitor in which a current collector is filled with activated carbon, and the current collector has a nickel-plated layer and chromium on a porous nonwoven fabric. It is characterized by being formed by sequentially laminating plating layers. Details will be described below.

集電体
本発明の集電体は多孔質不織布にニッケルめっき層及びクロムめっき層を順次積層してなる。
Current Collector The current collector of the present invention is formed by sequentially laminating a nickel plating layer and a chromium plating layer on a porous nonwoven fabric.

本発明で用いる多孔質不織布は限定的でなく、公知又は市販のものを使用することができるが、特に、耐酸化性及び耐電解質性が優れる観点から、ポリオレフィン系樹脂繊維を主成分として構成されていることが好ましい。このようなポリオレフィン系樹脂繊維としては熱可塑性であることが好ましく、例えば、ポリエチレン、ポリプロピレン、ポリブテン等のオレフィン単独重合体からなる繊維、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、プロピレン−ブテン共重合体等のオレフィン共重合体からなる繊維、これら繊維の混合物が挙げられる。また、オレフィン系樹脂(芯成分)に、当該オレフィン系樹脂と異なる種類のオレフィン系樹脂(鞘成分)が被覆した芯鞘型繊維も挙げられる。   The porous nonwoven fabric used in the present invention is not limited, and publicly known or commercially available ones can be used. In particular, from the viewpoint of excellent oxidation resistance and electrolyte resistance, the porous nonwoven fabric is composed mainly of polyolefin resin fibers. It is preferable. Such polyolefin resin fibers are preferably thermoplastic, for example, fibers made of olefin homopolymers such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymers, ethylene-butene copolymers, propylene- Examples thereof include fibers made of an olefin copolymer such as a butene copolymer, and a mixture of these fibers. Moreover, the core-sheath-type fiber which the olefin resin (core component) coat | covered with the kind of olefin resin (sheath component) different from the said olefin resin is also mentioned.

これらの中でも、特にポリプロピレンを芯成分に、ポリエチレンを鞘成分とした芯鞘型繊維が好ましい。この場合、ポリプロピレン樹脂:ポリエチレン樹脂の配合割合(重量比)は、通常20:80〜80:20程度であり、好ましくは40:60〜70:30程度である。   Among these, a core-sheath fiber having polypropylene as a core component and polyethylene as a sheath component is particularly preferable. In this case, the blending ratio (weight ratio) of polypropylene resin: polyethylene resin is usually about 20:80 to 80:20, preferably about 40:60 to 70:30.

樹脂繊維の平均繊維径は限定的でなく、通常8μm〜60μm程度、好ましくは10μm〜50μm程度とすればよい。平均繊維長も限定的でなく、通常5mm〜100mm程度、好ましくは30mm〜70mm程度とすればよい。   The average fiber diameter of the resin fibers is not limited and is usually about 8 μm to 60 μm, preferably about 10 μm to 50 μm. The average fiber length is not limited and is usually about 5 mm to 100 mm, preferably about 30 mm to 70 mm.

ポリオレフィン系樹脂繊維を構成するポリオレフィン系樹脂の分子量及び密度は特に限定されず、ポリオレフィン系樹脂の種類等に応じて適宜決定すればよい。   The molecular weight and density of the polyolefin resin constituting the polyolefin resin fiber are not particularly limited, and may be appropriately determined according to the type of the polyolefin resin.

不織布の多孔度は限定的でなく、通常85〜98vol%程度であり、好ましくは86〜96vol%程度である。この範囲にすることにより、分極性電極としての強度を保ちつつ不織布状集電体中に活性炭を多く充填することができ、キャパシタの高出力化及び高容量化が可能となる。   The porosity of the nonwoven fabric is not limited and is usually about 85 to 98 vol%, preferably about 86 to 96 vol%. By setting this range, it is possible to fill the nonwoven fabric current collector with a large amount of activated carbon while maintaining the strength as a polarizable electrode, and it is possible to increase the output and capacity of the capacitor.

不織布の孔径は限定的でなく、通常10μm〜250μm程度、好ましくは15μm〜200μm程度である。本発明の孔径は、バブルポイント法により測定されるものである。   The pore diameter of the nonwoven fabric is not limited, and is usually about 10 μm to 250 μm, preferably about 15 μm to 200 μm. The pore diameter of the present invention is measured by the bubble point method.

不織布の平均厚みは限定的でなく、製造する電気二重層キャパシタの用途、目的等に応じて適宜決定すればよいが、通常100μm〜700μm程度、好ましくは150μm〜550μm程度とすればよい。   The average thickness of the nonwoven fabric is not limited, and may be appropriately determined according to the use, purpose, etc. of the electric double layer capacitor to be produced, but is usually about 100 μm to 700 μm, preferably about 150 μm to 550 μm.

不織布は、後述するめっきに処理に先立って、ニードルパンチ法、水流交絡法等の交絡処理;樹脂繊維の軟化温度付近での熱処理;などの前処理を行ってもよい。この前処理によって、繊維同士の結合が強固になり、不織布の強度を向上させることができる。その結果、活性炭を当該不織布に充填する際に必要な三次元構造を十分に保持することができる。   Prior to the plating described below, the nonwoven fabric may be subjected to a pretreatment such as a confounding treatment such as a needle punch method or a hydroentanglement method; a heat treatment near the softening temperature of the resin fiber. By this pretreatment, the bonds between the fibers are strengthened, and the strength of the nonwoven fabric can be improved. As a result, the three-dimensional structure necessary when filling the nonwoven fabric with activated carbon can be sufficiently retained.

不織布は、通常、公知の乾式法及び湿式法のいずれかで製造されるが、本発明ではいずれの方法で製造されたものでもかまわない。乾式法としては、例えば、カート法、エアレイ法、メルトブロー法、スパンボンド法等が挙げられる。湿式法は、例えば、単繊維を水中に分散し網状ネット上に漉す方法等が挙げられる。本発明では、目付量及び厚みのばらつきが小さく、厚みが均一な集電体を製造できる観点から、湿式法により得られた不織布を使用することが好ましい。   The nonwoven fabric is usually produced by any one of the known dry method and wet method, but may be produced by any method in the present invention. Examples of the dry method include a cart method, an air lay method, a melt blow method, and a spun bond method. Examples of the wet method include a method in which single fibers are dispersed in water and laid on a net-like net. In the present invention, it is preferable to use a nonwoven fabric obtained by a wet method from the viewpoint of producing a current collector with a small basis weight and a small variation in thickness and a uniform thickness.

本発明の集電体は、上記多孔質不織布表面にニッケルめっき層及びクロムめっき層が順次積層されてなる。このようなニッケルめっき層の上にクロムめっき層が形成されている構造を有するため、本発明の集電体は、良好な耐酸化性及び耐電解質性を有する。   The current collector of the present invention is formed by sequentially laminating a nickel plating layer and a chromium plating layer on the surface of the porous nonwoven fabric. Since it has a structure in which a chromium plating layer is formed on such a nickel plating layer, the current collector of the present invention has good oxidation resistance and electrolyte resistance.

ニッケルめっき層は、公知のニッケルめっき処理により設けられた層である。このようなニッケルめっき処理としては限定的でなく、例えば、電解ニッケルめっき処理、無電解ニッケルめっき処理、ニッケルスパッタリング処理等が挙げられる。ニッケルめっき層は、複数のめっき処理により形成されることにより、複数のニッケルめっき層から構成されていてもよい。   The nickel plating layer is a layer provided by a known nickel plating process. Such nickel plating treatment is not limited, and examples thereof include electrolytic nickel plating treatment, electroless nickel plating treatment, and nickel sputtering treatment. The nickel plating layer may be composed of a plurality of nickel plating layers by being formed by a plurality of plating treatments.

ニッケルめっき層の目付量(付着量)は限定的でないが、導電性、多孔質、強度、経済性、耐食性等の観点から、不織布に対してニッケルめっき層の目付量が、通常15〜250g/m2程度、好ましくは30〜200g/m2程度とすればよい(複数のニッケルめっき層を形成した場合は、合計量を示す)。 The basis weight (attachment amount) of the nickel plating layer is not limited, but from the viewpoint of conductivity, porosity, strength, economy, corrosion resistance, etc., the basis weight of the nickel plating layer is usually 15 to 250 g / m 2, preferably about 30 to 200 g / m 2 about a may be (in the case of forming a plurality of nickel-plated layer, shows the total amount).

電解ニッケルめっき処理は限定的でなく、例えば、公知のニッケル電解めっき浴中で行うことができる。用いるニッケルめっき浴としては、ワット浴、塩化浴、スルファミン酸浴等が挙げられる。   The electrolytic nickel plating treatment is not limited and can be performed, for example, in a known nickel electrolytic plating bath. Examples of the nickel plating bath to be used include a watt bath, a chloride bath, a sulfamic acid bath, and the like.

無電解ニッケルめっき処理は、例えば、還元剤として次亜リン酸ナトリウムを含有した硫酸ニッケル水溶液等の公知の無電解ニッケルめっき浴に不織布を浸漬すればよい。また、必要に応じて、めっき浴浸漬前に、不織布を微量のパラジウムイオンを含む活性化液(カニゼン社製)等に浸漬し洗浄してもよい。   The electroless nickel plating treatment may be performed by immersing the nonwoven fabric in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent. Further, if necessary, before immersing the plating bath, the non-woven fabric may be immersed in an activation liquid (manufactured by Kanisen Co., Ltd.) containing a trace amount of palladium ions and washed.

ニッケルスパッタリング処理は、ニッケルをターゲットとする限り限定的でなく、常法に従って行えばよい。具体的には、基板ホルダーに多孔質不織布を取り付けた後、不活性ガス(アルゴン等)を導入しながら当該ホルダーとターゲット(ニッケル)との間に直流電圧を印加することにより、イオン化した不活性ガスをニッケルに衝突させ、はじき飛ばされたニッケルを当該不織布表面に堆積させることにより行われる。なお、本発明では、スパッタリング処理は、不織布が溶解しない温度下で行うことが好ましく、具体的には、100〜200℃程度、好ましくは120〜180℃程度で行えばよい。   The nickel sputtering process is not limited as long as nickel is used as a target, and may be performed according to a conventional method. Specifically, after attaching a porous non-woven fabric to the substrate holder, an inert gas (such as argon) is introduced and a DC voltage is applied between the holder and the target (nickel) to ionize the inert gas. It is performed by causing the gas to collide with nickel and depositing the repelled nickel on the nonwoven fabric surface. In the present invention, the sputtering treatment is preferably performed at a temperature at which the nonwoven fabric does not dissolve. Specifically, the sputtering treatment may be performed at about 100 to 200 ° C, preferably about 120 to 180 ° C.

不織布にニッケルめっき層を形成させる場合、(1)無電解ニッケルめっき処理又はニッケルスパッタリング処理と、(2)電解ニッケルめっき処理とを併用すればよい。すなわち、無電解ニッケルめっき処理又はニッケルスパッタリング処理により第1のニッケルめっき層を設けた後、さらに電解ニッケルめっき処理を施すことにより第2のニッケルめっき層を形成させればよい。これにより、所望量のニッケルめっき層を容易に形成させることができる。   When the nickel plating layer is formed on the nonwoven fabric, (1) electroless nickel plating treatment or nickel sputtering treatment and (2) electrolytic nickel plating treatment may be used in combination. That is, after the first nickel plating layer is provided by the electroless nickel plating process or the nickel sputtering process, the second nickel plating layer may be formed by performing an electrolytic nickel plating process. Thereby, a desired amount of nickel plating layer can be easily formed.

本発明の集電体は、上記ニッケルめっき層上に、クロムめっき層が形成されている。クロムめっき層は、公知のクロムめっき処理により設けられた層である。このようなクロムめっき処理としては限定的でなく、例えば、電解めっき処理、無電解めっき処理、スパッタリング処理等が挙げられる。本発明においては、電解めっき処理で形成されたクロムめっき層が好ましい。   In the current collector of the present invention, a chromium plating layer is formed on the nickel plating layer. The chromium plating layer is a layer provided by a known chromium plating process. Such a chromium plating process is not limited, and examples thereof include an electrolytic plating process, an electroless plating process, and a sputtering process. In the present invention, a chromium plating layer formed by electrolytic plating is preferable.

この電解めっき処理に用いる電解めっき浴としては公知又は市販のものを使用でき、例えば、サージェント浴(代表的な組成として、クロム酸CrO3:250g/l及び硫酸H2SO4:2.5g/l)、フッ化浴(代表的な組成として、クロム酸CrO3:250g/l、及びフッ素成分F:0.6g/l(又はSiF6:2.5g/l))等が挙げられる。 As the electroplating bath used for this electroplating treatment, a known or commercially available bath can be used. For example, a sergeant bath (typical compositions are CrO 3 : 250 g / l and sulfuric acid H 2 SO 4 : 2.5 g / l ), A fluorination bath (typical composition is CrO 3 : 250 g / l, and fluorine component F: 0.6 g / l (or SiF 6 : 2.5 g / l)).

クロムめっき層の目付量(付着量)は限定的でないが、上記ニッケルめっき層全面が露出することなくクロムめっき層に被覆されていることが好ましい。例えば、不織布に対して、通常50〜300g/m2程度、好ましくは60〜200g/m2程度とすればよい。この範囲を超えると集電体の多孔度が減少して活性炭の充填量が減少するおそれがあり、またコスト面で不利になる。なお、クロムめっき層が複数のめっき処理により形成することにより、複数のクロムめっき層としてもよい。 The basis weight (attachment amount) of the chromium plating layer is not limited, but it is preferable that the entire surface of the nickel plating layer is covered with the chromium plating layer without being exposed. For example, with respect to the nonwoven fabric, it is usually about 50 to 300 g / m 2 , preferably about 60 to 200 g / m 2 . If this range is exceeded, the porosity of the current collector may decrease and the amount of activated carbon charged may decrease, which is disadvantageous in terms of cost. In addition, it is good also as a some chromium plating layer by forming a chromium plating layer by a some plating process.

集電体の平均厚みは限定的でなく、通常100μm〜700μm程度、好ましくは150μm〜550μm程度とすればよい。   The average thickness of the current collector is not limited and is usually about 100 μm to 700 μm, preferably about 150 μm to 550 μm.

電気二重層キャパシタ用分極性電極
本発明の電気二重層キャパシタ用分極性電極は、上記集電体に、活性炭が充填されてなる。本発明の分極性電極は、多孔質不織布を集電体の支持体としているため、高強度性及び多孔性を有し、より多くの活性炭を充填することが可能となる。これにより、キャパシタを高容量化させることができる。
Polarizable electrode for electric double layer capacitor The polarizable electrode for electric double layer capacitor of the present invention is formed by filling the current collector with activated carbon. Since the polarizable electrode of the present invention uses a porous nonwoven fabric as a support for the current collector, it has high strength and porosity and can be filled with more activated carbon. Thereby, the capacity of the capacitor can be increased.

活性炭は、電気二重層キャパシタ用に一般的に市販されているものを使用することができる。   The activated carbon can use what is generally marketed for electric double layer capacitors.

活性炭の原料としては、例えば、木材、ヤシ殻、パルプ廃液、石炭、石油重質油、又はそれらを熱分解した石炭・石油系ピッチのほか、フェノール樹脂などの樹脂などが挙げられる。炭化後に賦活するのが一般的であり、賦活法は、ガス賦活法及び薬品賦活法が挙げられる。ガス賦活法は、高温下で水蒸気、炭酸ガス、酸素等と接触反応させることにより活性炭を得る方法である。薬品賦活法は、上記原料に公知の賦活薬品を含浸させ、不活性ガス雰囲気中で加熱することにより、賦活薬品の脱水及び酸化反応を生じさせて活性炭を得る方法である。賦活薬品としては、例えば、塩化亜鉛、水酸化ナトリウム等が挙げられる。   Examples of the raw material for the activated carbon include wood, coconut shell, pulp waste liquid, coal, heavy petroleum oil, coal / petroleum pitch obtained by pyrolyzing them, and resins such as phenol resins. The activation is generally performed after carbonization, and examples of the activation method include a gas activation method and a chemical activation method. The gas activation method is a method in which activated carbon is obtained by contact reaction with water vapor, carbon dioxide gas, oxygen or the like at a high temperature. The chemical activation method is a method in which activated carbon is obtained by impregnating the above-mentioned raw material with a known activation chemical and heating it in an inert gas atmosphere to cause dehydration and oxidation reaction of the activation chemical. Examples of the activation chemical include zinc chloride and sodium hydroxide.

活性炭の粒径は限定的でないが、20μm程度以下が好ましい。比表面積も限定的でなく、800〜3000m2/g程度が好ましい。この範囲とすることにより、キャパシタの容量を大きくでき、内部抵抗を小さくできる。 The particle size of the activated carbon is not limited, but is preferably about 20 μm or less. The specific surface area is not limited and is preferably about 800 to 3000 m 2 / g. By setting this range, the capacitance of the capacitor can be increased and the internal resistance can be reduced.

また、必要に応じて、導電助剤、バインダ等の各種添加剤を含有していてもよい。   Moreover, you may contain various additives, such as a conductive support agent and a binder, as needed.

導電助剤としては限定的でなく、公知又は市販のものが使用できる。例えば、アセチレンブラック、ケッチェンブラック、炭素繊維、天然黒鉛(鱗片状黒鉛、土状黒鉛等)、人造黒鉛、酸化ルテニウム等が挙げられる。これらの中でも、アセチレンブラック、ケッチェンブラック、炭素繊維等が好ましい。これにより、キャパシタの導電性を向上させることができる。導電助剤の含量は限定的でないが、活性炭100重量部に対して0.1〜10重量部程度が好ましく、より好ましくは0.2〜5重量部である。10重量部を超えると静電容量が低下するおそれがある。   The conductive auxiliary agent is not limited, and known or commercially available ones can be used. Examples thereof include acetylene black, ketjen black, carbon fiber, natural graphite (scaly graphite, earthy graphite, etc.), artificial graphite, ruthenium oxide and the like. Among these, acetylene black, ketjen black, carbon fiber and the like are preferable. Thereby, the electrical conductivity of the capacitor can be improved. The content of the conductive auxiliary agent is not limited, but is preferably about 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the activated carbon. If it exceeds 10 parts by weight, the capacitance may decrease.

バインダとしては限定的でなく、公知又は市販のものが使用できる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルピロリドン、ポリビニルクロリド、ポリオレフィン、スチレンブタジエンゴム、ポリビニルアルコール、カルボキシメチルセルロース等が挙げられる。   The binder is not limited, and known or commercially available binders can be used. Examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl pyrrolidone, polyvinyl chloride, polyolefin, styrene butadiene rubber, polyvinyl alcohol, carboxymethyl cellulose and the like.

バインダの含量は限定的でないが、活性炭100重量部に対して好ましくは0.2〜10重量部、より好ましくは0.5〜5重量部である。この範囲とすることにより、電気抵抗の増加及び放電容量の低下を防ぎながら、結着強度を向上させることができる。   The content of the binder is not limited, but is preferably 0.2 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the activated carbon. By setting it as this range, it is possible to improve the binding strength while preventing an increase in electrical resistance and a decrease in discharge capacity.

集電体に活性炭を充填する場合の充填量(含有量)は特に制限されず、集電体の厚み、キャパシタの形状等に応じて適宜決定すればよいが、例えば、充填量は、通常13〜40mg/cm2程度、好ましく16〜32 mg/cm2程度とすればよい。 The filling amount (content) when the current collector is filled with activated carbon is not particularly limited, and may be determined as appropriate according to the thickness of the current collector, the shape of the capacitor, and the like. 40 mg / cm 2 or so, it may be the preferred 16 to 32 mg / cm 2 or so.

電気二重層キャパシタ
本発明のキャパシタは、本発明の分極性電極2枚を一対とし、これらの分極性電極の間にセパレータを配置し、さらにセパレータに電解液を含浸させたものである。
Electric Double Layer Capacitor The capacitor of the present invention comprises a pair of two polarizable electrodes of the present invention, a separator disposed between these polarizable electrodes, and a separator impregnated with an electrolytic solution.

セパレータは、公知又は市販のものを使用できる。例えば、ポリオレフィン、ポリエチレンレテフタラート、ポリアミド、ポリイミド、セルロース、ガラス繊維等からなる絶縁性膜が好ましい。セパレータの平均孔径は特に限定されず、通常0.01μm〜5μm程度であり、平均厚さは通常10μm〜100μm程度である。   A known or commercially available separator can be used. For example, an insulating film made of polyolefin, polyethylene terephthalate, polyamide, polyimide, cellulose, glass fiber or the like is preferable. The average pore diameter of the separator is not particularly limited, and is usually about 0.01 μm to 5 μm, and the average thickness is usually about 10 μm to 100 μm.

電解液は、公知又は市販のものを使用でき、水系電解液及び非水電解液のいずれも使用することができる。水系電解液としては、例えば、水酸化カリウム水溶液、水酸化ナトリウム水溶液等のアルカリ性水溶液が挙げられる。非水系電解液としては、例えば、テトラアルキルホスホニウムテトラフルオロボレートを溶解したプロピレンカーボネート溶液、テトラアルキルアンモニウムテトラフルオロボレートを溶解したプロピレンカーボネート溶液又はスルホラン溶液、トリエチルメチルアンモニウム・テトラフルオロボーレイト溶解したプロピレンカーボネート溶液などが挙げられる。これらの中でも、本発明では、非水系電解液が好ましい。これにより静電容量を向上させることができる。   As the electrolytic solution, a known or commercially available one can be used, and either an aqueous electrolytic solution or a nonaqueous electrolytic solution can be used. Examples of the aqueous electrolyte include alkaline aqueous solutions such as an aqueous potassium hydroxide solution and an aqueous sodium hydroxide solution. Examples of the non-aqueous electrolyte include a propylene carbonate solution in which tetraalkylphosphonium tetrafluoroborate is dissolved, a propylene carbonate solution or sulfolane solution in which tetraalkylammonium tetrafluoroborate is dissolved, and a propylene carbonate solution in which triethylmethylammonium tetrafluoroborate is dissolved. Etc. Among these, a nonaqueous electrolytic solution is preferable in the present invention. Thereby, an electrostatic capacitance can be improved.

電気二重層キャパシタ用分極性電極の製造方法
本発明の電気二重層キャパシタ用分極性電極の製造方法は、多孔質不織布に、導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行った後、次いで、活性炭を充填することを特徴とする。
Method for Producing Polarizable Electrode for Electric Double Layer Capacitor A method for producing a polarizable electrode for an electric double layer capacitor according to the present invention comprises conducting a conductive treatment, an electrolytic nickel plating treatment and a chromium plating treatment on a porous nonwoven fabric in order, Next, the activated carbon is filled.

多孔質不織布、電解ニッケルめっき処理及びクロムめっき処理は上述したものと同一のものが挙げられる。   Examples of the porous nonwoven fabric, electrolytic nickel plating treatment, and chromium plating treatment are the same as those described above.

多孔質不織布に行う導電性処理は、多孔質不織布に導電性を有する層を設ける限り限定的でない。導電性を有する層(導電めっき層)を構成する材料としては、例えば、ニッケル、チタン、ステンレススチール等の金属の他、黒鉛等が挙げられる。これらの中でも特にニッケルが好ましい。   The conductive treatment performed on the porous nonwoven fabric is not limited as long as a conductive layer is provided on the porous nonwoven fabric. Examples of a material constituting the conductive layer (conductive plating layer) include graphite, in addition to metals such as nickel, titanium, and stainless steel. Among these, nickel is particularly preferable.

導電性処理の具体例としては、例えば、ニッケルを用いる場合は、無電解ニッケルめっき処理、ニッケルスパッタリング処理等が好ましく挙げられる。例えば、チタン、ステンレススチール等の金属、黒鉛等を用いる場合は、これら金属又は黒鉛の微粉末にバインダを加えて得られる混合物を、多孔質不織布に塗着する処理が好ましく挙げられる。この場合のバインダとしては、後述する活物質ペーストと同じものが採用できる。   As specific examples of the conductive treatment, for example, when nickel is used, electroless nickel plating treatment, nickel sputtering treatment, and the like are preferable. For example, when a metal such as titanium or stainless steel, graphite, or the like is used, a treatment obtained by applying a mixture obtained by adding a binder to a fine powder of these metals or graphite is preferably applied to the porous nonwoven fabric. As the binder in this case, the same material as the active material paste described later can be used.

本発明の導電性処理としては、無電解ニッケルめっき処理又はニッケルスパッタリング処理が好ましく、これらは上述したものと同様である。なお、導電性処理を構成する材料としてニッケルを用いた場合は、導電性処理によって得られためっき層(導電めっき層)及び電解ニッケルめっき処理によって形成されためっき層(電解ニッケルめっき層)からなる二層が、本発明の電気二重層キャパシタ用分極性電極を構成する「ニッケルめっき層」に相当する。   The electroconductive treatment of the present invention is preferably an electroless nickel plating treatment or a nickel sputtering treatment, which are the same as those described above. In addition, when nickel is used as a material constituting the conductive treatment, it includes a plating layer (conductive plating layer) obtained by the conductive treatment and a plating layer (electrolytic nickel plating layer) formed by the electrolytic nickel plating treatment. The two layers correspond to the “nickel plating layer” constituting the polarizable electrode for an electric double layer capacitor of the present invention.

導電性めっき層の目付量は不織布に導電性を付与できる限り限定的でなく、例えば、5g/m2〜12g/m2程度、6g/m2〜9g/m2程度とすればよい。 Basis weight of the conductive plating layer is not limited as long as capable of imparting conductivity to the nonwoven fabric, for example, 5g / m 2 ~12g / m 2 about, may be set to 6g / m 2 ~9g / m 2 approximately.

電解ニッケルめっき処理は、形成されるニッケルめっき層が上述した目付量となるように行えばよく、クロムめっき処理も、形成されるクロムめっき層が上述した目付量となるように行えばよい。   The electrolytic nickel plating process may be performed so that the formed nickel plating layer has the above-mentioned basis weight, and the chromium plating process may be performed so that the formed chromium plating layer has the above-mentioned basis weight.

活性炭を集電体に充填する方法としては、例えば、活性炭ペーストを圧入法などの公知の方法などを使用すればよい。   As a method for filling the current collector with activated carbon, for example, a known method such as press-fitting activated carbon paste may be used.

活性炭ペーストは、活性炭及び溶媒を含有していればよく、その配合割合は限定的でない。溶媒としては限定的でなく、例えば、N−メチル−2−ピロリドン、水等が挙げられる。特に、バインダとしてポリフッ化ビニリデンを用いる場合は溶媒としてN−メチル−2−ピロリドンを用いればよく、バインダとしてポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルロース等を用いる場合は溶媒として水を用いればよい。また、必要に応じて、上記電導助剤、バインダ等の添加剤を含有していてもよい。   The activated carbon paste should just contain activated carbon and a solvent, and the mixture ratio is not limited. The solvent is not limited, and examples thereof include N-methyl-2-pyrrolidone and water. In particular, when polyvinylidene fluoride is used as a binder, N-methyl-2-pyrrolidone may be used as a solvent. When polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, or the like is used as a binder, water may be used as a solvent. Moreover, you may contain additives, such as the said conductive support agent and a binder, as needed.

圧入法としては、例えば、活性炭ペースト中に集電体を浸漬し、必要に応じて減圧する方法、活性炭ペーストを集電体の一方面からポンプ等で加圧しながら充填する方法等が挙げられる。     Examples of the press-fitting method include a method of immersing the current collector in activated carbon paste and reducing the pressure as necessary, and a method of filling the activated carbon paste while applying pressure from one side of the current collector with a pump or the like.

本発明の分極性電極は、活性炭ペーストを充填した後、必要に応じて乾燥処理を施すことにより、ペースト中の溶媒が除去されてもよい。さらに必要に応じて、活性炭ペーストを充填した後、ローラプレス機等により加圧することにより、圧縮成形されていてもよい。圧縮前後の厚さは限定的でないが、圧縮前の厚さは通常300μm〜1500μm、好ましくは400μm〜1200μmとすればよく、圧縮成形後の厚みは通常150μm〜700μm程度、好ましくは200μm〜600μm程度とすればよい。   After the polarizable electrode of the present invention is filled with the activated carbon paste, the solvent in the paste may be removed by performing a drying treatment as necessary. Further, if necessary, after the activated carbon paste is filled, it may be compression-molded by pressurizing with a roller press or the like. The thickness before and after compression is not limited, but the thickness before compression is usually 300 μm to 1500 μm, preferably 400 μm to 1200 μm, and the thickness after compression molding is usually about 150 μm to 700 μm, preferably about 200 μm to 600 μm. And it is sufficient.

また、分極性電極には、リード端子が具備されていてもよい。リード端子は、溶接を行ったり、接着剤を塗布することにより、取り付ければよい。   The polarizable electrode may be provided with a lead terminal. The lead terminal may be attached by welding or applying an adhesive.

本発明の電気二重層キャパシタ用電極によれば、静電容量が大きく、内部抵抗が小さく、さらに耐久性の優れた電気二重層キャパシタを得ることができる。   According to the electrode for an electric double layer capacitor of the present invention, an electric double layer capacitor having a large capacitance, a small internal resistance, and excellent durability can be obtained.

以下に実施例及び比較例を挙げて本発明をより一層詳述する。なお、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

実施例1
(不織布の作製)
不織布の材料として、ポリプロピレン繊維を芯成分とし、ポリエチレンを鞘成分とした芯鞘型繊維(平均繊維径約15μm、平均繊維長約50mm、ポリプロピレン成分は70重量%、ポリエチレン成分30重量%)を用いた。この芯鞘型繊維を用いて、湿式法により交絡処理を行い、多孔質不織布を作製した。作製した多孔質不織布の目付量は55g/m2、平均厚さは550μm、多孔度は約95vol%、孔径は15μm〜200μm(バブルポイント法により測定)であった。
Example 1
(Production of nonwoven fabric)
As the nonwoven material, use core-sheath fiber (average fiber diameter is about 15μm, average fiber length is about 50mm, polypropylene component is 70% by weight, polyethylene component is 30% by weight) with polypropylene fiber as the core component and polyethylene as the sheath component It was. Using this core-sheath fiber, a entanglement treatment was performed by a wet method to produce a porous nonwoven fabric. The basis weight of the produced porous nonwoven fabric was 55 g / m 2 , the average thickness was 550 μm, the porosity was about 95 vol%, and the pore diameter was 15 μm to 200 μm (measured by the bubble point method).

(集電体の作製)
この多孔質不織布1m2に、スパッタリング装置(アルバック社製)を用いてスパッタリング処理を行うことにより、ニッケルからなる導電性めっき層を被覆した。目付量は7g/m2とした。スパッタリングは、アルゴン雰囲気下、150℃で行った。
(Preparation of current collector)
This porous nonwoven fabric 1 m 2 was subjected to a sputtering treatment using a sputtering apparatus (manufactured by ULVAC) to coat a conductive plating layer made of nickel. The basis weight was 7 g / m 2 . Sputtering was performed at 150 ° C. in an argon atmosphere.

得られた導電性めっき層形成不織布に電解ニッケルめっき処理を行った。電解ニッケルめっき浴は、ワット浴(硫酸ニッケル330g/l、塩化ニッケ50g/l、硼酸40g/l)を使用し、電着条件としては浴温60℃、電流密度30A/dm2で行った。対極には、ニッケル片を入れたチタンバスケットを使用した。電解ニッケルめっき層の目付量を80g/m2とした。これにより、ニッケルめっき層の総目付量は87g/m2となった。 The obtained electroconductive plating layer-formed non-woven fabric was subjected to electrolytic nickel plating. The electrolytic nickel plating bath was a Watt bath (nickel sulfate 330 g / l, nickel chloride 50 g / l, boric acid 40 g / l), and the electrodeposition conditions were a bath temperature of 60 ° C. and a current density of 30 A / dm 2 . A titanium basket containing nickel pieces was used as the counter electrode. The basis weight of the electrolytic nickel plating layer was 80 g / m 2 . As a result, the total basis weight of the nickel plating layer was 87 g / m 2 .

次いで、得られたニッケルめっき層形成不織布にクロムによる電解めっき処理を行うことにより、ニッケルめっき層上にクロムめっき層130 g/m2を形成させ、集電体を得た。めっき浴は、サージェント浴(クロム酸250g/l、硫酸2.5g/l)とした。対極には、銅基体を鉛合金で被覆した電極を使用した。電着条件としては、浴温50℃、電流密度40A/dm2で行った。クロムめっき層を形成した後、水洗及び乾燥した。このときの集電体の平均厚みは450μmであった。 Next, electrolytic plating treatment with chromium was performed on the obtained nickel plating layer-formed nonwoven fabric to form a chromium plating layer of 130 g / m 2 on the nickel plating layer to obtain a current collector. The plating bath was a sergeant bath (chromic acid 250 g / l, sulfuric acid 2.5 g / l). As the counter electrode, an electrode in which a copper substrate was coated with a lead alloy was used. As electrodeposition conditions, the bath temperature was 50 ° C. and the current density was 40 A / dm 2 . After forming the chromium plating layer, it was washed with water and dried. The average thickness of the current collector at this time was 450 μm.

(分極性電極の作製)
活性炭粉末(比表面積約2000m2/g、平均粒径約5μm)100重量部に導電助剤としてケッチェンブラック2重量部、バインダとしてポリフッ化ビニリデン粉末4重量部、溶媒としてN−メチルピロリドン15重量部を添加し、混合機で攪拌することにより活性炭ペーストを調製した。
(Preparation of polarizable electrode)
Activated carbon powder (specific surface area about 2000m 2 / g, average particle size about 5μm) 100 parts by weight Ketjen black 2 parts by weight as conductive aid, 4 parts by weight polyvinylidene fluoride powder as binder, N-methylpyrrolidone 15 weights as solvent The activated carbon paste was prepared by adding a part and stirring with a mixer.

この活性炭ペーストを上記集電体中にポンプを用いて活性炭の含量が24mg/cm2となるように充填した。表面を平滑にした後に80℃で20分間乾燥し、ローラプレスで加圧することにより、本発明の分極性電極を得た。電極の平均厚さは270μmであった。 This activated carbon paste was filled into the current collector using a pump so that the activated carbon content was 24 mg / cm 2 . The surface was smoothed, dried at 80 ° C. for 20 minutes, and pressed with a roller press to obtain a polarizable electrode of the present invention. The average thickness of the electrode was 270 μm.

(試験用コイン型電気二重層キャパシタ)
得られた分極性電極2枚を直径14mmに打ち抜き、これら電極の間にセルロース繊維製セパレータ(厚み40μm、密度0.45g/cm3、多孔度70%)を設置した。この状態で180℃、5時間減圧下で乾燥した。次いで、ステンレススチール製スペーサを用いて、セルケースに収納し、非水系電解液(テトラエチルホスホニウムテトラフルオロボレートを1mol/l溶解したプロピレンカーボネート溶液)を、電極及びセパレータに含浸した。さらに、プロピレン製絶縁ガスケットを介してケース蓋を締めて封口することにより、試験用コイン型電気二重層キャパシタを作製した。作製したキャパシタは、直径が20mm、厚さが3.2mmであった。定格電圧は3.0Vとした。
(Coin-type electric double layer capacitor for testing)
Two of the obtained polarizable electrodes were punched to a diameter of 14 mm, and a cellulose fiber separator (thickness 40 μm, density 0.45 g / cm 3 , porosity 70%) was placed between these electrodes. In this state, it was dried under reduced pressure at 180 ° C. for 5 hours. Next, using a stainless steel spacer, the electrode case and the separator were impregnated with a non-aqueous electrolyte solution (a propylene carbonate solution in which 1 mol / l tetraethylphosphonium tetrafluoroborate was dissolved). Furthermore, a coin-type electric double layer capacitor for test was manufactured by closing and sealing the case lid via a propylene insulating gasket. The manufactured capacitor had a diameter of 20 mm and a thickness of 3.2 mm. The rated voltage was 3.0V.

比較例1
集電体を、発泡状ニッケル(ニッケル量:400g/m2)とした以外は、実施例1と同様に電気二重層キャパシタを作製した。しかし、ニッケルの酸化及び腐食が著しく生じたため、キャパシタとしての特性が得られなかった。
Comparative Example 1
An electric double layer capacitor was produced in the same manner as in Example 1 except that the current collector was foamed nickel (nickel amount: 400 g / m 2 ). However, since nickel was oxidized and corroded remarkably, the characteristics as a capacitor could not be obtained.

比較例2
集電体としてアルミニウム箔(厚さ25μm)を用い、実施例1と同様の活性炭ペーストを調製して、集電体の一方面に塗布した。しかし、活性炭がアルミニウム箔に付着しなかった。
Comparative Example 2
Using an aluminum foil (thickness: 25 μm) as a current collector, an activated carbon paste similar to that in Example 1 was prepared and applied to one surface of the current collector. However, activated carbon did not adhere to the aluminum foil.

したがって、バインダ含量を8重量部に、導電助剤含量を3重量部にした活性炭ペーストを調製し、このペーストをアルミニウム箔の一方面に活性炭含量が8mg/cm2となるように塗布した。次いで、80℃で20分間乾燥し、ローラプレスで加圧成形することにより、比較例2の分極性電極を得た。この電極の厚さはアルミニウム箔も含めて180μmであった。 Therefore, an activated carbon paste having a binder content of 8 parts by weight and a conductive assistant content of 3 parts by weight was prepared, and this paste was applied to one side of the aluminum foil so that the activated carbon content was 8 mg / cm 2 . Next, the electrode was dried at 80 ° C. for 20 minutes and pressure-molded with a roller press to obtain a polarizable electrode of Comparative Example 2. The thickness of this electrode including the aluminum foil was 180 μm.

比較例2の電極を用いた以外は実施例と同様にして、試験用コイン型電気二重層キャパシタを作製した。定格電圧は3.0Vとした。   A test coin-type electric double layer capacitor was produced in the same manner as in the example except that the electrode of Comparative Example 2 was used. The rated voltage was 3.0V.

静電容量試験
実施例1及び比較例2のキャパシタをそれぞれ10個作製し、これら10個の単位面積当たりの静電容量、電極単位体積当たりの静電容量及び内部抵抗の平均値を測定した。この測定結果を表1に示す。
Capacitance test Ten capacitors of Example 1 and Comparative Example 2 were respectively produced, and the average value of the capacitance per unit area, the capacitance per electrode unit volume, and the internal resistance of these 10 units was measured. The measurement results are shown in Table 1.

Figure 2008227380
Figure 2008227380

表1から、実施例のキャパシタは比較例のキャパシタよりも単位面積当たりの静電容量が大幅に向上することが分かった。   From Table 1, it was found that the capacitance of the capacitor of the example was significantly improved per unit area as compared with the capacitor of the comparative example.

このことから、本発明の分極性電極を用いると、従来の二次元構造集電体(アルミニウム箔)を用いた分極性電極よりも、電極の長さを大幅に短くできるため、セパレータ等の直接静電容量にしない材料が少なくでき電極単位体積当たりの静電容量の向上が可能になる。また、本発明の分極性電極を用いると、内部抵抗が下がることが分かった。   Therefore, when the polarizable electrode of the present invention is used, the length of the electrode can be significantly shortened compared to the polarizable electrode using the conventional two-dimensional structure current collector (aluminum foil). It is possible to reduce the amount of material that is not used for capacitance, and it is possible to improve the capacitance per electrode unit volume. Further, it was found that the internal resistance decreases when the polarizable electrode of the present invention is used.

耐久性試験1
65℃の雰囲気中で3.0Vの電圧を6時間印加してエージングを行った後、25℃にして3.0Vを開始電圧として1mAの電流で放電を行い、初期状態の静電容量及び内部抵抗を測定した。次いで、65℃で2.7Vの電圧を印加しながら2000時間保持した。その後、25℃にして静電容量及び内部抵抗を測定した。この測定結果を表2に示す。
Durability test 1
After aging by applying a voltage of 3.0V for 6 hours in an atmosphere of 65 ° C, discharge at a current of 1mA with 3.0V as the starting voltage at 25 ° C, and the initial capacitance and internal resistance It was measured. Subsequently, it was maintained for 2000 hours while applying a voltage of 2.7 V at 65 ° C. Thereafter, the capacitance and internal resistance were measured at 25 ° C. The measurement results are shown in Table 2.

Figure 2008227380
Figure 2008227380

表2で明らかなように、本願は比較例に比べて2500時間経過後も静電容量及
び内部抵抗の変化は小さい。したがって、実施例のキャパシタは、耐久性に優れていることが分かった。
As is apparent from Table 2, the change in the capacitance and the internal resistance of the present application is small even after 2500 hours, compared with the comparative example. Therefore, it was found that the capacitor of the example was excellent in durability.

耐久性試験2
実施例及び比較例のキャパシタにおいて、雰囲気温度45℃で0.5〜3.0Vの間で1mAの定電流による充放電サイクルを1万回繰り返し、1万サイクル後の放電容量及び内部抵抗を測定し、初期状態と比較した。その結果、実施例のキャパシタでは、単位面積当たりの静電容量の低下率は約15%、内部抵抗の増加率は18%であった。一方、比較例のキャパシタでは、単位面積当たりの静電容量の低下率は20%、内部抵抗の増加率は21%であった。これらから、実施例のキャパシタは充放電サイクル特性が優れていることが分かった。
Durability test 2
In the capacitors of Examples and Comparative Examples, the charge / discharge cycle with a constant current of 1 mA was repeated 10,000 times at an ambient temperature of 45 ° C. at a temperature of 0.5 to 3.0 V, and the discharge capacity and internal resistance after 10,000 cycles were measured. Compared with state. As a result, in the capacitor of the example, the rate of decrease in capacitance per unit area was about 15%, and the rate of increase in internal resistance was 18%. On the other hand, in the capacitor of the comparative example, the rate of decrease in capacitance per unit area was 20%, and the rate of increase in internal resistance was 21%. From these, it was found that the capacitor of the example has excellent charge / discharge cycle characteristics.

Claims (8)

集電体に活性炭が充填されてなる電気二重層キャパシタ用分極性電極であって、
当該集電体が、多孔質不織布にニッケルめっき層及びクロムめっき層を順次積層してなる、
ことを特徴とする電気二重層キャパシタ用分極性電極。
A polarizable electrode for an electric double layer capacitor in which a current collector is filled with activated carbon,
The current collector is formed by sequentially laminating a nickel plating layer and a chromium plating layer on a porous nonwoven fabric.
A polarizable electrode for an electric double layer capacitor.
前記多孔質不織布を構成する繊維がポリオレフィン系樹脂繊維である、請求項1に記載の電極。   The electrode according to claim 1, wherein the fiber constituting the porous nonwoven fabric is a polyolefin resin fiber. 前記多孔質不織布を構成する繊維の平均繊維径が10〜50μmである、請求項1又は2に記載の電極。   The electrode according to claim 1 or 2, wherein an average fiber diameter of fibers constituting the porous nonwoven fabric is 10 to 50 µm. 前記ニッケルめっき層の目付量が15〜250g/m2である、請求項1〜3のいずれかに記載の電極。 The basis weight of the nickel plating layer is 15~250g / m 2, the electrode according to claim 1. 前記クロムめっき層の目付量が50〜300g/m2ある、請求項1〜4のいずれかに記載の電極。 The basis weight of the chromium plating layer is 50 to 300 g / m 2, the electrode according to claim 1. 活性炭100重量部に対して導電助剤が0.2〜5重量部含まれている、請求項1〜5のいずれかに記載の電極。   The electrode in any one of Claims 1-5 in which 0.2-5 weight part of conductive support agents are contained with respect to 100 weight part of activated carbon. 多孔質不織布に、導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行った後、活性炭を充填する工程、を備えた電気二重層キャパシタ用電極の製造方法。   A method for producing an electrode for an electric double layer capacitor, comprising: sequentially conducting a conductive treatment, an electrolytic nickel plating treatment, and a chromium plating treatment on a porous nonwoven fabric, and then filling with activated carbon. 導電性処理が無電解ニッケルめっき処理又はニッケルスパッタリング処理である、請求項7に記載の製造方法。   The manufacturing method of Claim 7 whose electroconductive process is an electroless nickel plating process or a nickel sputtering process.
JP2007066819A 2007-03-15 2007-03-15 Polarizable electrode for electric double layer capacitor and manufacturing method thereof Expired - Fee Related JP4919226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066819A JP4919226B2 (en) 2007-03-15 2007-03-15 Polarizable electrode for electric double layer capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066819A JP4919226B2 (en) 2007-03-15 2007-03-15 Polarizable electrode for electric double layer capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008227380A true JP2008227380A (en) 2008-09-25
JP4919226B2 JP4919226B2 (en) 2012-04-18

Family

ID=39845600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066819A Expired - Fee Related JP4919226B2 (en) 2007-03-15 2007-03-15 Polarizable electrode for electric double layer capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4919226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140941A (en) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd Capacitor
JP2010171154A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236829A (en) * 1993-02-10 1994-08-23 Elna Co Ltd Electric double layer capacitor
JPH08329952A (en) * 1995-05-29 1996-12-13 Mitsubishi Paper Mills Ltd Evaluation method for porous nickel plated electrode substrate and porous nickel plated electrode substrate using it
JP2000030713A (en) * 1998-07-09 2000-01-28 Matsushita Electric Ind Co Ltd Electrode for alkaline storage battery and its manufacture, and alkaline storage battery
JP2004319606A (en) * 2003-04-14 2004-11-11 Taitsu Corp Electric double layer capacitor
JP2004335875A (en) * 2003-05-09 2004-11-25 Mitsubishi Gas Chem Co Inc Nonaqueous electrolyte for electric double layer capacitor
JP2004536427A (en) * 2001-06-15 2004-12-02 フォルツ・バート・バッテリーエン・ゲー・エム・ベー・ハー Rechargeable battery cell that can be operated at room temperature

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236829A (en) * 1993-02-10 1994-08-23 Elna Co Ltd Electric double layer capacitor
JPH08329952A (en) * 1995-05-29 1996-12-13 Mitsubishi Paper Mills Ltd Evaluation method for porous nickel plated electrode substrate and porous nickel plated electrode substrate using it
JP2000030713A (en) * 1998-07-09 2000-01-28 Matsushita Electric Ind Co Ltd Electrode for alkaline storage battery and its manufacture, and alkaline storage battery
JP2004536427A (en) * 2001-06-15 2004-12-02 フォルツ・バート・バッテリーエン・ゲー・エム・ベー・ハー Rechargeable battery cell that can be operated at room temperature
JP2004319606A (en) * 2003-04-14 2004-11-11 Taitsu Corp Electric double layer capacitor
JP2004335875A (en) * 2003-05-09 2004-11-25 Mitsubishi Gas Chem Co Inc Nonaqueous electrolyte for electric double layer capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140941A (en) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd Capacitor
JP2010171154A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Capacitor

Also Published As

Publication number Publication date
JP4919226B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
Wang et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior
KR101031019B1 (en) Method for manufacturing metal electrode having transition metallic coating layer and metal electrode manufactured thereby
CA2754051C (en) Conductive sheet and electrode
JPWO2008078777A1 (en) Coating electrode and organic electrolyte capacitor
JP4919225B2 (en) Electrode for electric double layer capacitor
JP2007019108A (en) Lithium ion capacitor
JP4694737B2 (en) Method for manufacturing electrode body for electric double layer capacitor
JP4973882B2 (en) Capacitors
JP4822554B2 (en) Foamed nickel chromium current collector for capacitor, electrode using the same, capacitor
JP4973892B2 (en) Capacitors
JP2007067088A (en) Lithium ion capacitor
JP2009176517A (en) Nonwoven fabric-like nickel chromium current collector for nonaqueous electrolyte secondary battery and electrode using it
JP2013008811A (en) Collector for capacitor, electrode using the same, and capacitor
JP2014064030A (en) Electrochemical capacitor
JP5565114B2 (en) Capacitor using porous metal
JP4919226B2 (en) Polarizable electrode for electric double layer capacitor and manufacturing method thereof
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP2010010364A (en) Polarizable electrode for electric double-layer capacitor and its production process
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR101060288B1 (en) composite electrode and method for manufacturing the same
JP4822555B2 (en) Non-woven nickel chrome current collector for capacitor, electrode and capacitor using the same
JP2004319606A (en) Electric double layer capacitor
JP2008181739A (en) Positive electrode for non-aqueous electrolyte secondary battery
CN111128559A (en) Preparation method of fabric-based metal/metal hydroxide flexible composite material
JP2013008813A (en) Capacitor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees