JP2008226782A - Photoelectric conversion element and its manufacturing method - Google Patents

Photoelectric conversion element and its manufacturing method Download PDF

Info

Publication number
JP2008226782A
JP2008226782A JP2007067268A JP2007067268A JP2008226782A JP 2008226782 A JP2008226782 A JP 2008226782A JP 2007067268 A JP2007067268 A JP 2007067268A JP 2007067268 A JP2007067268 A JP 2007067268A JP 2008226782 A JP2008226782 A JP 2008226782A
Authority
JP
Japan
Prior art keywords
layer
substrate
photoelectric conversion
base material
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007067268A
Other languages
Japanese (ja)
Other versions
JP5185550B2 (en
Inventor
Hiroshi Matsui
浩志 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007067268A priority Critical patent/JP5185550B2/en
Publication of JP2008226782A publication Critical patent/JP2008226782A/en
Application granted granted Critical
Publication of JP5185550B2 publication Critical patent/JP5185550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element capable of preventing degradation of adhesive strength by electrolyte, having excellent sealing reliability, and also having broad selectivity of sealing material. <P>SOLUTION: The photoelectric conversion element 10 comprises a counter electrode 12 having a conductive first base material 11, an insulating transparent second base material 13 having a different area from the first base material, and a porous oxide semiconductor layer 15 arranged on one surface of the second base material through a transparent conductive film 14, and supporting pigment at least partially. The porous oxide semiconductor layer comprises a work electrode 16 arranged oppositely to one surface of the first base material, and an electrolyte layer 17 arranged at least partially between the counter electrode and work electrode, and is further provided with a sealing member 18 arranged so as to cover at least a side surface part of either of the first base material and second base material having a smaller area, and a lateral part of the electrolyte layer. The sealing member is formed of a plurality of layers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光電変換素子およびその製造方法に関する。より詳しくは、新しい封止構造により、優れた封止信頼性を有する光電変換素子およびその製造方法に関する。   The present invention relates to a photoelectric conversion element and a manufacturing method thereof. More specifically, the present invention relates to a photoelectric conversion element having excellent sealing reliability by a new sealing structure and a method for manufacturing the photoelectric conversion element.

環境問題、資源問題などを背景に、クリーンエネルギーとしての太陽電池が注目を集めている。太陽電池としては単結晶、多結晶あるいはアモルファスのシリコンを用いたものがある。しかし、従来のシリコン系太陽電池は製造コストが高い、原料供給が不充分などの課題が残されている。   Against the backdrop of environmental problems and resource problems, solar cells as clean energy are attracting attention. Some solar cells use single crystal, polycrystalline or amorphous silicon. However, conventional silicon-based solar cells still have problems such as high manufacturing costs and insufficient supply of raw materials.

また、Cu−In−Se系(CIS系とも呼ぶ)などの化合物系太陽電池が開発されており、高い光電変換効率を示すなど優れた特徴を有しているが、コストや環境負荷などの問題も懸念されている。   In addition, compound solar cells such as Cu-In-Se (also referred to as CIS) have been developed and have excellent characteristics such as high photoelectric conversion efficiency, but problems such as cost and environmental impact There are also concerns.

これらに対して、色素増感型太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、安価で高い光電変換効率を得られる光電変換素子として着目されている(非特許文献1を参照)。   On the other hand, the dye-sensitized solar cell has been proposed by a group such as Gretzel in Switzerland, and has attracted attention as a photoelectric conversion element that can obtain high photoelectric conversion efficiency at low cost (see Non-Patent Document 1). reference).

図7は、従来の色素増感型太陽電池の一例を示す断面図である。
この色素増感型太陽電池100は、増感色素を担持させた多孔質半導体層103が一方の面に形成された第一基板101と、透明導電層104が形成された第二基板105と、これらの間に封入された例えばゲル状電解質からなる電解質層を主な構成要素としている。
FIG. 7 is a cross-sectional view showing an example of a conventional dye-sensitized solar cell.
This dye-sensitized solar cell 100 includes a first substrate 101 on which a porous semiconductor layer 103 carrying a sensitizing dye is formed on one surface, a second substrate 105 on which a transparent conductive layer 104 is formed, The main component is an electrolyte layer made of, for example, a gel electrolyte enclosed between them.

第一基板101としては、光透過性の板材が用いられ、第一基板101の色素増感半導体層103と接する面には導電性を持たせるために透明導電層102が配置されており、第一基板101、透明導電層102および多孔質半導体層103により作用極108をなす。
第二基板105としては、電解質層106と接する側の面には導電性を持たせるために例えば炭素や白金、白金/透明導電膜などからなる導電層104が設けられ、第二基板および導電層104により対極109を構成している。
As the first substrate 101, a light transmissive plate material is used, and a transparent conductive layer 102 is disposed on the surface of the first substrate 101 in contact with the dye-sensitized semiconductor layer 103 in order to provide conductivity. A working electrode 108 is formed by one substrate 101, the transparent conductive layer 102, and the porous semiconductor layer 103.
As the second substrate 105, a conductive layer 104 made of, for example, carbon, platinum, platinum / transparent conductive film, or the like is provided on the surface in contact with the electrolyte layer 106 to provide conductivity. A counter electrode 109 is configured by 104.

多孔質半導体層103と導電層104が対向するように、第一基板101と第二基板105を所定の間隔をおいて配置し、両基板間の周辺部に熱硬化性樹脂からなる封止剤107を設ける。
そして、この封止剤107を介して2つの基板101、105を貼り合わせてセルを積み上げ、電解液の注入口110を介して、両極108、109間にヨウ素・ヨウ化物イオンなどの酸化・還元極を含む有機電解液を充填し、電荷移送用の電解質層106を形成したものが挙げられる。
The first substrate 101 and the second substrate 105 are arranged at a predetermined interval so that the porous semiconductor layer 103 and the conductive layer 104 face each other, and a sealant made of a thermosetting resin is provided in the peripheral portion between the two substrates. 107 is provided.
The two substrates 101 and 105 are bonded to each other through the sealant 107 and the cells are stacked, and oxidation / reduction of iodine / iodide ions or the like between the electrodes 108 and 109 through the electrolyte inlet 110 is performed. An example is one in which an organic electrolyte solution containing an electrode is filled and an electrolyte layer 106 for charge transfer is formed.

しかしながら、上記のような封止構造を採用した従来の光電変換素子では、一般に、熱可塑性樹脂や熱硬化性樹脂等を用いて封止していたため、封止の際の熱工程により電解質や増感色素が劣化し、発電特性が低下してしまうという問題があった。
また、一般的な色素増感太陽電池など電解液にヨウ素を含む場合、封止部に電解液が残っていると、硬化にラジカル反応を利用したものなど、ヨウ素に反応を阻害される接着剤では硬化反応が阻害され、良好な封止状態を確保することができない。つまり、利用できる封止材の選択肢も大幅に狭まってしまう。
さらに、封止材が、電解質に対する耐性と外気に対する耐性とを兼ね備えることが必須とした場合には、利用できる封止材の選択肢が一段と狭まることから、これを改善する構成や製法の開発が期待されていた。
O'' Regan B., Graetzel M., A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991;353:737-739
However, in the conventional photoelectric conversion element adopting the sealing structure as described above, since the sealing is generally performed using a thermoplastic resin, a thermosetting resin, or the like, the electrolyte or the increase in the thermal process at the time of sealing. There was a problem that the dye was deteriorated and the power generation characteristics were lowered.
In addition, when the electrolyte contains iodine in an electrolyte such as a general dye-sensitized solar cell, an adhesive that inhibits the reaction by iodine, such as one using a radical reaction for curing, if the electrolyte remains in the sealing part Then, the curing reaction is hindered, and a good sealing state cannot be secured. That is, the choice of the sealing material that can be used is also greatly reduced.
Furthermore, if it is essential that the sealing material has both resistance to electrolytes and resistance to the outside air, the choices of sealing materials that can be used are further narrowed. It had been.
O '' Regan B., Graetzel M., A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991; 353: 737-739

本発明は、このような従来の実情に鑑みて考案されたものであり、優れた封止信頼性を有するとともに、封止材の広い選択性を兼ね備えた光電変換素子を提供することを第一の目的とする。
また本発明は、封止する際に、封止材の広い選択性を備えるとともに、多層構造化により内外の機能分離も図れる光電変換素子の製造方法を提供することを第二の目的とする。
The present invention has been devised in view of such a conventional situation, and it is the first to provide a photoelectric conversion element having excellent sealing reliability and wide selectivity of a sealing material. The purpose.
A second object of the present invention is to provide a method for manufacturing a photoelectric conversion element that can provide a wide selectivity of a sealing material and can separate functions inside and outside by forming a multilayer structure when sealing.

本発明の請求項1に記載の光電変換素子は、導電性の第一基材を有する対極と、前記第一基材と異なる面積を有し、絶縁性の透明な第二基材と、該第二基材の一面に透明導電膜を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層とを備え、該多孔質酸化物半導体層が前記第一基材の一面と対向して配される作用極と、前記対極と前記作用極との間の少なくとも一部に配された電解質層と、から構成され、前記第一基材と前記第二基材のうち狭い面積を有するいずれか一方の基材の側面部と、前記電解質層の側方とを少なくとも被覆するように配された封止部材を備え、前記封止部材は、複数の層から構成されることを特徴とする。
本発明の請求項2に記載の光電変換素子は、請求項1において、前記封止部材の一部または全部は、前記一方の基板の、他方の基板とは反対側の面上の外縁部も被覆するように配されていることを特徴とする。
The photoelectric conversion element according to claim 1 of the present invention includes a counter electrode having a conductive first base material, an insulating transparent second base material having an area different from that of the first base material, A porous oxide semiconductor layer disposed on one surface of the second base material via a transparent conductive film and having a dye supported at least in part, the porous oxide semiconductor layer comprising one surface of the first base material; A working electrode disposed oppositely, and an electrolyte layer disposed on at least a portion between the counter electrode and the working electrode, and a narrow area of the first base material and the second base material A sealing member disposed so as to cover at least a side surface portion of one of the base materials and a side of the electrolyte layer, and the sealing member is composed of a plurality of layers. Features.
A photoelectric conversion element according to a second aspect of the present invention is the photoelectric conversion element according to the first aspect, wherein a part or all of the sealing member is an outer edge portion on the surface of the one substrate opposite to the other substrate. It is arranged so that it may coat | cover.

本発明の請求項3に記載の光電変換素子は、請求項1において、前記封止部材を構成する複数の層は、同一の材料からなることを特徴とする。
本発明の請求項4に記載の光電変換素子は、請求項1において、前記封止部材の最内層と、該最内層を被覆して配される外層の少なくとも一層とは、異なる材料からなることを特徴とする。
A photoelectric conversion element according to a third aspect of the present invention is the photoelectric conversion element according to the first aspect, wherein the plurality of layers constituting the sealing member are made of the same material.
The photoelectric conversion element according to claim 4 of the present invention is the photoelectric conversion element according to claim 1, wherein the innermost layer of the sealing member and at least one of the outer layers arranged to cover the innermost layer are made of different materials. It is characterized by.

本発明の請求項5に記載の光電変換素子の製造方法は、導電性の第一基材を有する対極と、前記第一基材と異なる面積を有し、絶縁性の透明な第二基材と、該第二基材の一面に透明導電膜を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層とを備え、該多孔質酸化物半導体層が前記第一基材の一面と対向して配される作用極と、前記対極と前記作用極との間の少なくとも一部に配された電解質層と、から構成され、前記第一基材と前記第二基材のうち狭い面積を有するいずれか一方の基材の側面部と、前記電解質層の側方とを少なくとも被覆するように配された封止部材を備え、前記封止部材は、複数の層から構成される光電変換素子の製造方法であって、前記封止部材は、最内層を形成した後、少なくとも外層が配される部分において電解質成分の除去を行い、その後、最内層を被覆するように外層を設けることを特徴とする。   The manufacturing method of the photoelectric conversion element according to claim 5 of the present invention includes a counter electrode having a conductive first base material, and an insulating transparent second base material having an area different from that of the first base material. And a porous oxide semiconductor layer disposed on one surface of the second base material via a transparent conductive film and supporting a dye at least in part, the porous oxide semiconductor layer comprising the first base material A working electrode disposed opposite to the one surface, and an electrolyte layer disposed on at least a part between the counter electrode and the working electrode, the first substrate and the second substrate A sealing member is disposed so as to cover at least a side surface portion of any one of the base materials having a narrow area and a side of the electrolyte layer, and the sealing member includes a plurality of layers. In the method for manufacturing a photoelectric conversion element, the sealing member is formed with at least an outer layer after the innermost layer is formed. That performs the removal of the electrolyte components in the portion, then, it is characterized by providing an outer layer so as to cover the innermost layer.

本発明(請求項1)によれば、前記第一基材と前記第二基材のうち狭い面積を有するいずれか一方の基材の側面部と、前記電解質層の側方とを少なくとも被覆するように配された封止部材を備え、前記封止部材を、複数の層から構成することで、最内層より外側に位置する外層は、電解液に直接曝されない形態が得られる。ゆえに、常に電解液に晒される最内層には、耐電解液性に優れた材料を、また、最内層より外側の外層には、接着性や耐外気性に優れた材料を必要に応じて選択するとともに、各層の膜厚や材料の組み合わせを、各層の被覆する領域に応じて自由に設けることができる。したがって、本発明は、優れた封止信頼性を有するとともに、封止材の広い選択性を兼ね備えた光電変換素子を提供することができる。   According to the present invention (invention 1), at least a side surface portion of one of the first base material and the second base material having a narrow area and a side of the electrolyte layer are covered. By providing the sealing member arranged as described above and forming the sealing member from a plurality of layers, the outer layer positioned outside the innermost layer is not directly exposed to the electrolytic solution. Therefore, select the material with excellent electrolytic solution resistance for the innermost layer that is always exposed to the electrolytic solution, and select the material with excellent adhesiveness and air resistance for the outer layer outside the innermost layer as required. In addition, the thickness of each layer and the combination of materials can be freely provided according to the area covered by each layer. Therefore, the present invention can provide a photoelectric conversion element having excellent sealing reliability and having a wide selectivity of the sealing material.

本発明(請求項5)によれば、前記封止部材の形成において、最内層を形成した後、少なくとも外層が配される部分において電解質成分の除去を行い、その後、最内層を被覆するように外層を設ける。ゆえに、常に電解液に晒される最内層には、耐電解液性に優れた材料を、また、最内層より外側の外層には、接着性や耐外気性に優れた材料を必要に応じて選択するとともに、各層の膜厚や材料の組み合わせを、各層の被覆する領域に応じて自由に設けることができる。よって、封止する際に、封止材の広い選択性を備えるとともに、多層構造化により内外の機能分離も図れる光電変換素子の製造方法を提供することができる。特に、封止部材の多層化は、内外で求められる機能に合わせて適切な部材の配置も可能とするので、光電変換素子の設計自由度の向上も同時に図れる。   According to the present invention (Claim 5), in forming the sealing member, after the innermost layer is formed, the electrolyte component is removed at least in a portion where the outer layer is disposed, and then the innermost layer is covered. An outer layer is provided. Therefore, select the material with excellent electrolytic solution resistance for the innermost layer that is always exposed to the electrolytic solution, and select the material with excellent adhesiveness and air resistance for the outer layer outside the innermost layer as required. In addition, the thickness of each layer and the combination of materials can be freely provided according to the area covered by each layer. Therefore, when sealing, it is possible to provide a method for manufacturing a photoelectric conversion element that has a wide selectivity of a sealing material and can also separate functions inside and outside by forming a multilayer structure. In particular, the multi-layered sealing member enables the arrangement of appropriate members in accordance with the functions required inside and outside, so that the degree of freedom in designing the photoelectric conversion element can be improved at the same time.

以下、本発明に係る半導体装置の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a semiconductor device according to the present invention will be described with reference to the drawings.

図1は、本発明に係る光電変換素子10A(10)の一実施形態を示す概略断面図である。
本発明の光電変換素子10は、導電性の第一基材11からなる対極12と、前記第一基材と異なる面積を有し、絶縁性の透明な第二基材13と、該第二基材13の一面に透明導電膜14を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層15とを備え、該多孔質酸化物半導体層15が前記第一基材11の一面と対向して配される作用極16と、前記対極11と前記作用極16との間の少なくとも一部に配された電解質層17と、から構成される。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a photoelectric conversion element 10A (10) according to the present invention.
The photoelectric conversion element 10 of the present invention includes a counter electrode 12 made of a conductive first base material 11, an insulating transparent second base material 13 having an area different from that of the first base material, and the second base material 13. A porous oxide semiconductor layer 15 disposed on one surface of a base material 13 via a transparent conductive film 14 and carrying a pigment at least partially, the porous oxide semiconductor layer 15 being the first base material 11 The working electrode 16 is disposed so as to face one surface, and the electrolyte layer 17 is disposed on at least a part between the counter electrode 11 and the working electrode 16.

そして本発明の光電変換素子は、前記第一基材と前記第二基材のうち狭い面積を有するいずれか一方の基材の側面部と、前記電解質層とを少なくとも被覆するように配された封止部材18を備え、前記封止部材18は、複数の層から構成されることを特徴とする。   And the photoelectric conversion element of this invention was distribute | arranged so that the side part of either one base material which has a narrow area among said 1st base material and said 2nd base material, and the said electrolyte layer might be coat | covered at least. A sealing member 18 is provided, and the sealing member 18 includes a plurality of layers.

図1に示す光電変換素子10A(10)では、前記第一基材11は、前記第二基材13よりも狭い面積を有している。また、光電変換素子10A(10)において、封止部材18は、最内層である封止層19aと、該最内層を被覆して配される外層である封止層19bとの2層から構成されているが、これに限定されるものではなく、封止部材18は3層以上から構成されていてもよい。   In the photoelectric conversion element 10 </ b> A (10) illustrated in FIG. 1, the first base material 11 has a smaller area than the second base material 13. Further, in the photoelectric conversion element 10A (10), the sealing member 18 includes two layers of a sealing layer 19a that is an innermost layer and a sealing layer 19b that is an outer layer disposed so as to cover the innermost layer. However, the present invention is not limited to this, and the sealing member 18 may be composed of three or more layers.

作用極16よりも狭い面積を有する対極12と電解質層17との側面部を少なくとも被覆するように、封止部材18を配し、該封止部材18を、複数の層から構成することで、最内層より外側に位置する外層は、電解液に直接曝されない形態が得られる。ゆえに、常に電解液に晒される最内層には、耐電解液性に優れた材料を、また、最内層より外側の外層には、接着性や耐外気性に優れた材料を必要に応じて選択するとともに、各層の膜厚や材料の組み合わせを、各層の被覆する領域に応じて自由に設けることができる。これにより封止部の接着性が向上し、電解液による接着強度の低下を防止できる。その結果、光電変換素子10は優れた封止信頼性を有するものとなる。   By disposing the sealing member 18 so as to cover at least the side surface portions of the counter electrode 12 having a smaller area than the working electrode 16 and the electrolyte layer 17, and forming the sealing member 18 from a plurality of layers, The outer layer located outside the innermost layer is in a form that is not directly exposed to the electrolyte. Therefore, select the material with excellent electrolytic solution resistance for the innermost layer that is always exposed to the electrolytic solution, and select the material with excellent adhesiveness and air resistance for the outer layer outside the innermost layer as required. In addition, the thickness of each layer and the combination of materials can be freely provided according to the area covered by each layer. Thereby, the adhesiveness of a sealing part improves and the fall of the adhesive strength by electrolyte solution can be prevented. As a result, the photoelectric conversion element 10 has excellent sealing reliability.

前記封止部材18を構成する複数の封止層は、同一の材料から構成されてもよいし、前記封止部材の最内層と、該最内層を被覆して配される外層の少なくとも一層とは、異なる材料から構成されてもよい。
複数の封止層を、同一の材料から構成することで、材料の取り扱い条件など大きな変更なく良好な封止部を構成することができる。
The plurality of sealing layers constituting the sealing member 18 may be made of the same material, or the innermost layer of the sealing member and at least one of the outer layers arranged to cover the innermost layer. May be composed of different materials.
By configuring the plurality of sealing layers from the same material, a favorable sealing portion can be configured without significant changes such as material handling conditions.

また、最内層と外層の少なくとも一層とを異なる材料から構成することで、最内層と外層とで異なる機能を備えた材料を使用することができるので、特性に応じ適正な材料を選択することができる。また、各層の膜厚や材料の組み合わせを、各層の被覆する領域に応じて自由に設けることができる。
例えば、最内層では、硬化させる際にヨウ素電解質に阻害されるような反応系を選べないという制約があるが(ヨウ素電解質に反応阻害される例としては、例えば、ラジカル反応により重合・硬化させるような系を挙げることができる)、外層では、上記のような制約を回避できるため、接着強度やバリア性、柔軟性などの指標で適正な材料を選べばよく、より広い選択肢を得ることができる。
In addition, by configuring at least one of the innermost layer and the outer layer from different materials, it is possible to use materials having different functions in the innermost layer and the outer layer, so it is possible to select an appropriate material according to the characteristics. it can. Moreover, the film thickness of each layer and the combination of materials can be freely provided according to the area | region which each layer coat | covers.
For example, in the innermost layer, there is a restriction that a reaction system that is inhibited by the iodine electrolyte cannot be selected at the time of curing. (Examples of reaction inhibition by the iodine electrolyte include, for example, polymerization and curing by radical reaction. In the outer layer, the above-mentioned restrictions can be avoided, so it is only necessary to select an appropriate material based on indices such as adhesive strength, barrier properties, and flexibility, and a wider choice can be obtained. .

封止層の材料としては、特に限定されるものではないが、例えば、アクリル系、エポキシ系、ウレタン系、オレフィン系、シロキサン系の樹脂などを単独、または複数用いることができ、加熱、光照射、二液混合、加湿、酸素除去、湿度除去などにより硬化するものを選ぶことができる。硬化反応系の樹脂のみでなく、熱可塑性の樹脂シートなどを適用しても構わない。さらに、樹脂以外でも緻密層を形成できるような無機系材料(例えば、低融点ガラスなど)を用いることもできる。低融点ガラスを用いる場合の一例としては、低融点ガラスフリットを含むペーストを印刷機やディスペンサなどを用いて被着面に塗布し、レーザー照射などにより局所的に加熱することで緻密な封止層を形成することができる。   The material of the sealing layer is not particularly limited. For example, acrylic, epoxy, urethane, olefin, and siloxane resins can be used alone or in plural, and heating, light irradiation can be used. Those that cure by two-component mixing, humidification, oxygen removal, humidity removal, etc. can be selected. Not only a curing reaction type resin but also a thermoplastic resin sheet may be applied. Further, an inorganic material (for example, low melting point glass) that can form a dense layer other than the resin can also be used. As an example when using low-melting glass, a paste containing a low-melting glass frit is applied to the adherend surface using a printing machine, a dispenser, etc., and is densely sealed by locally heating by laser irradiation or the like. Can be formed.

前記封止部材18の一部または全部は、前記一方の基板(第一基材11)の、他方の基板(第二基材13)とは反対側の面上の外縁部も被覆するように配されていることが好ましい。これにより、封止性が向上し、電解液による封止信頼性の低下を確実に防止することができる。   Part or all of the sealing member 18 also covers the outer edge of the one substrate (first base material 11) on the surface opposite to the other substrate (second base material 13). It is preferable that it is arranged. Thereby, sealing performance improves and it can prevent reliably the sealing reliability fall by electrolyte solution.

図2に示す光電変換素子10B(10)は、外層である封止層19bを、第一基材11の、第二基材13とは反対側の面上の外縁部も被覆するように配した例である。また、図3に示す光電変換素子10C(10)は、内層である封止層19aと、外層である封止層19bとの両方を、第一基材11の、第二基材13とは反対側の面上の外縁部も被覆するように配した例である。   The photoelectric conversion element 10B (10) shown in FIG. 2 is arranged so that the sealing layer 19b, which is the outer layer, covers the outer edge portion of the surface of the first base material 11 opposite to the second base material 13. This is an example. In addition, the photoelectric conversion element 10C (10) illustrated in FIG. 3 includes both the sealing layer 19a that is the inner layer and the sealing layer 19b that is the outer layer, and the second base material 13 of the first base material 11. In this example, the outer edge on the opposite surface is also covered.

このような封止部材18は、図4に示す光電変換素子10D(10)のように、作用極16と電解質層17及び対極12とが重ねて配された積層体の内部に食い込んだ形状でも構わない。   Such a sealing member 18 may have a shape that bites into a laminated body in which the working electrode 16, the electrolyte layer 17, and the counter electrode 12 are overlaid, as in the photoelectric conversion element 10 </ b> D (10) illustrated in FIG. 4. I do not care.

なお、本発明では、素子構造中に少なくとも上述したような封止構造を含めばよく、その外側に別の構造を有しても構わない。例えば、上記の封止構造を一次封止として、素子の更なる外側に別途封止層(二次封止層)を設ける、或いは、二次封止を兼ねた筐体内に該素子を組み込む(収納する)などしても構わない。   In the present invention, at least the sealing structure as described above may be included in the element structure, and another structure may be provided outside the element structure. For example, the sealing structure described above is used as primary sealing, and a sealing layer (secondary sealing layer) is separately provided on the outer side of the element, or the element is incorporated in a housing that also serves as secondary sealing ( You can store it).

作用極16は、透明基材(第二基材)13、および、その一方の面に形成された透明導電膜14と、増感色素を担持させた多孔質酸化物半導体層15とから概略構成されている。   The working electrode 16 is schematically composed of a transparent substrate (second substrate) 13, a transparent conductive film 14 formed on one surface thereof, and a porous oxide semiconductor layer 15 carrying a sensitizing dye. Has been.

透明基材13としては、光透過性の素材からなる基板が用いられ、ガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、光電変換素子10の透明基材として用いられるものであればいかなるものでも用いることができる。透明基材13は、これらの中から電解液への耐性などを考慮して適宜選択される。また、透明基材13としては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が80%以上の基板がより好ましい。   As the transparent base material 13, a substrate made of a light-transmitting material is used, and glass, polyethylene terephthalate, polycarbonate, polyether sulfone, etc., as long as they are usually used as a transparent base material for the photoelectric conversion element 10. But it can also be used. The transparent substrate 13 is appropriately selected from these in consideration of resistance to the electrolytic solution and the like. Moreover, as a transparent base material 13, the board | substrate which is excellent in the light transmittance as much as possible is preferable on a use, and the board | substrate whose transmittance | permeability is 80% or more is more preferable.

透明導電膜14は、透明基材13に導電性を付与するために、その一方の面に形成された薄膜である。透明導電性基板の透明性を著しく損なわない構造とするために、透明導電膜14は、導電性金属酸化物からなる薄膜であることが好ましい。
透明導電膜14を形成する導電性金属酸化物としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、などが用いられる。また、透明導電膜14は、FTOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜であることが好ましい。
The transparent conductive film 14 is a thin film formed on one surface of the transparent base material 13 in order to impart conductivity. In order to obtain a structure that does not significantly impair the transparency of the transparent conductive substrate, the transparent conductive film 14 is preferably a thin film made of a conductive metal oxide.
Examples of the conductive metal oxide that forms the transparent conductive film 14 include tin-added indium oxide (ITO), fluorine-added tin oxide (FTO), and the like. The transparent conductive film 14 is preferably a single layer film made of only FTO or a laminated film in which a film made of FTO is laminated on a film made of ITO.

透明導電膜14を、FTOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜とすることにより、可視域における光の吸収量が少なく、導電率が高く、耐熱性に優れる透明導電性基板を構成することができる。   By making the transparent conductive film 14 a single-layer film made of only FTO or a laminated film in which a film made of FTO is laminated on a film made of ITO, the amount of light absorption in the visible region is small, and the conductivity And a transparent conductive substrate having high heat resistance can be formed.

多孔質酸化物半導体層15は、透明導電膜14の上に設けられており、その表面には増感色素が担持されている。多孔質酸化物半導体層15を形成する半導体としては特に限定されず、通常、光電変換素子用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを用いることができる。 The porous oxide semiconductor layer 15 is provided on the transparent conductive film 14, and a sensitizing dye is supported on the surface thereof. The semiconductor for forming the porous oxide semiconductor layer 15 is not particularly limited, and any semiconductor can be used as long as it is usually used for forming a porous oxide semiconductor for a photoelectric conversion element. As such a semiconductor, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), or the like can be used. .

多孔質酸化物半導体層15を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、この塗膜を乾燥、焼成する方法などを適用することができる。   As a method for forming the porous oxide semiconductor layer 15, for example, a dispersion in which commercially available oxide semiconductor fine particles are dispersed in a desired dispersion medium or a colloidal solution that can be prepared by a sol-gel method is used as necessary. After adding a desired additive, a method such as a screen printing method, an ink jet printing method, a roll coating method, a doctor blade method, or a spray coating method is applied, and then the coating film is dried and baked. Can be applied.

増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポルフィリン、フタロシアニンなどの含金属錯体、エオシン、クマリン、ローダミン、メロシアニンなどの誘導体といった有機色素などを適用することができ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。   As sensitizing dyes, ruthenium complexes containing bipyridine structure, terpyridine structure, etc. as ligands, metal-containing complexes such as porphyrin, phthalocyanine, organic dyes such as eosin, coumarin, rhodamine, merocyanine and other organic dyes can be applied. Of these, those exhibiting behavior suitable for the application and the semiconductor used can be selected without particular limitation.

電解質層17は、多孔質酸化物半導体層15を含む両電極間に電解液を含浸させてなるものか、または、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)したものが用いられる。   The electrolyte layer 17 is formed by impregnating an electrolyte solution between both electrodes including the porous oxide semiconductor layer 15, or the electrolyte solution is gelled (pseudo-solidified) using an appropriate gelling agent. Things are used.

上記電解液としては、酸化還元種を含む有機溶媒、室温溶融塩(イオン液体)などを用いることができる。また、このような電解液を適当なゲル化剤(高分子ゲル化剤、低分子ゲル化剤、各種ナノ粒子、カーボンナノチューブなど)を導入することにより疑固体化したもの、いわゆるゲル電解質を用いても構わない。溶媒として特に限定されるものは無いが、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどの有機溶媒、イミダゾリウム系カチオンやピロリジニウム系カチオン、ピリジニウム系カチオンなどといった四級化された窒素原子を有するカチオンなどとヨウ化物イオン、ビストリフルオロメタンスルホニルイミドアニオン、ジシアノアミドアニオン、チオシアン酸アニオンなどからなる常温溶融塩などを選ぶことができる。酸化還元種も特に限定されるものでは無いが、ヨウ素/ヨウ化物イオン、臭素/臭化物イオンなどを加えて形成されるものを選ぶことができ、例えば前者であればヨウ化物塩(リチウム塩、四級化イミダゾリウム塩の誘導体、テトラアルキルアンモニウム塩などを単独、あるいは、複合して用いることができる。電解液には、さらに、必要に応じて、4−tert−ブチルピリジン、N−メチルベンズイミダゾール、グアニジニウム塩の誘導体など種々の添加物を加えても構わない。
ただし、イオン液体を電解液に適用する場合には(不揮発性であるため)特に残留しやすい。また、電解質層への混入が懸念されるので溶媒などでの洗浄も好ましくない。したがって、取り扱いには注意を要する。
As the electrolytic solution, an organic solvent containing a redox species, a room temperature molten salt (ionic liquid), or the like can be used. In addition, the electrolyte is made solid by introducing an appropriate gelling agent (polymer gelling agent, low molecular gelling agent, various nanoparticles, carbon nanotubes, etc.), so-called gel electrolyte is used. It doesn't matter. There are no particular limitations on the solvent, but organic solvents such as acetonitrile, methoxyacetonitrile, propionitrile, propylene carbonate, ethylene carbonate, diethyl carbonate, γ-butyrolactone, imidazolium cations, pyrrolidinium cations, pyridinium cations, etc. A room temperature molten salt composed of a cation having a quaternized nitrogen atom and the like, an iodide ion, a bistrifluoromethanesulfonylimide anion, a dicyanoamide anion, a thiocyanate anion, and the like can be selected. The redox species is not particularly limited, but one formed by adding iodine / iodide ions, bromine / bromide ions, etc. can be selected. For example, in the former case, an iodide salt (lithium salt, quaternary salt) is selected. Graded imidazolium salt derivatives, tetraalkylammonium salts, etc. can be used singly or in combination, and the electrolyte may further include 4-tert-butylpyridine, N-methylbenzimidazole, if necessary. Various additives such as guanidinium salt derivatives may be added.
However, when an ionic liquid is applied to the electrolyte, it is particularly likely to remain (because it is non-volatile). Further, since there is a concern of mixing into the electrolyte layer, washing with a solvent or the like is not preferable. Therefore, care must be taken in handling.

対極12は、図5に示す光電変換素子10E(10)のように、導電性の第一基材11と、この一方の面上(前記作用極16と反対側の面)に配された、第一基材11と異なる金属からなる被膜20とから構成されていることが好ましい。
第一基材11としては、導電性を有するヨウ素電解液に対して化学的に安定な金属板が好適に用いられるが、チタン板やニッケル板から構成されることがより好ましい。
前記被膜20は、Cuなどのはんだ付け可能な単一金属、または該金属を主成分とする合金から構成されることが好ましい。
また、第一基材11の他方の面(前記作用極16と対向する面)上には、白金やカーボン、導電性高分子などの層が設けられる。
Like the photoelectric conversion element 10E (10) shown in FIG. 5, the counter electrode 12 is disposed on the conductive first base material 11 and one of the surfaces (the surface opposite to the working electrode 16). It is preferable that the first base material 11 and the coating film 20 made of a different metal are used.
As the first base material 11, a metal plate that is chemically stable with respect to the conductive iodine electrolyte solution is preferably used, but more preferably a titanium plate or a nickel plate.
The coating 20 is preferably composed of a solderable single metal such as Cu, or an alloy containing the metal as a main component.
In addition, a layer of platinum, carbon, conductive polymer, or the like is provided on the other surface of the first substrate 11 (the surface facing the working electrode 16).

以上のような構成とすることにより、前記被膜20は、はんだとチタン基板との接合層として機能する。これにより、対極12の被膜20上にリード線をはんだ付けすることが可能となり、対極12と外部配線との電気的接続性を向上することができる。
前記被膜20は、リード線のはんだ付けを可能とすればよく、第一基材11の全面に形成されていてもよいし、一部にのみ形成されていても構わない。
By setting it as the above structures, the said film 20 functions as a joining layer of a solder and a titanium substrate. Thereby, it becomes possible to solder a lead wire on the coating 20 of the counter electrode 12, and the electrical connectivity between the counter electrode 12 and the external wiring can be improved.
The coating 20 only needs to enable soldering of the lead wires, and may be formed on the entire surface of the first base material 11 or may be formed only on a part thereof.

なお、上述してきた光電変換素子は、第一基材11(対極)が、第二基材13(作用極)よりも狭い面積を有していたが、図6に示す光電変換素子10F(10)のように、第二基材13(作用極)が、第一基材11(対極)よりも狭い面積を有していてもよい。この場合も同様に、対極12よりも狭い面積を有する作用極16と電解質層17との側面部を少なくとも被覆するように、封止部材18を配し、該封止部材18を、複数の層から構成することで、封止部の接着性が向上し、電解液による封止信頼性の低下を防止することができる。   In the photoelectric conversion element described above, the first base material 11 (counter electrode) has a smaller area than the second base material 13 (working electrode), but the photoelectric conversion element 10F (10 shown in FIG. 6). ), The second base material 13 (working electrode) may have a smaller area than the first base material 11 (counter electrode). Also in this case, similarly, the sealing member 18 is arranged so as to cover at least the side surfaces of the working electrode 16 having a smaller area than the counter electrode 12 and the electrolyte layer 17, and the sealing member 18 is formed of a plurality of layers. By comprising, the adhesiveness of a sealing part improves and it can prevent the sealing reliability fall by electrolyte solution.

このような構成の光電変換素子10Fでは、第二基材13は、金属、樹脂、ガラス、セラミックス、カーボンなど任意の基板。少なくともセル内側面は導電性を有し、且つ、ヨウ素電解質に対して化学的、電気化学的に不活性であること。望ましくは金属基板、カーボン基板であることが好ましい。より好ましくは、チタン、ニッケル、モリブデンから選ばれる金属基板。セル外側面には銅層などより導電性に優れ、はんだ付けなど外部配との接合も容易な材料を形成すると更に好適である。   In the photoelectric conversion element 10F having such a configuration, the second base material 13 is an arbitrary substrate such as metal, resin, glass, ceramics, or carbon. At least the inner surface of the cell has conductivity and is chemically and electrochemically inert to the iodine electrolyte. Desirably, a metal substrate or a carbon substrate is preferable. More preferably, a metal substrate selected from titanium, nickel, and molybdenum. It is more preferable to form a material on the outer surface of the cell that is superior in conductivity to a copper layer or the like and that can be easily joined to an external arrangement such as soldering.

次に、この実施形態の光電変換素子10Aの製造方法について説明する。
まず、透明基材(第二基材)13の一方の面上に透明導電膜14を形成した透明導電性基板を用意する。
透明導電膜14を形成する方法としては、特に限定されるものではなく、例えば、スパッタリング法、CVD(化学気相成長)法、スプレー熱分解法(SPD法)、蒸着法などの薄膜形成法が挙げられる。
Next, a manufacturing method of the photoelectric conversion element 10A of this embodiment will be described.
First, a transparent conductive substrate having a transparent conductive film 14 formed on one surface of a transparent substrate (second substrate) 13 is prepared.
The method for forming the transparent conductive film 14 is not particularly limited, and examples thereof include thin film formation methods such as sputtering, CVD (chemical vapor deposition), spray pyrolysis (SPD), and vapor deposition. Can be mentioned.

次いで、透明導電膜14上に、多孔質酸化物半導体層15を形成する。この多孔質酸化物半導体層15の形成は、主に塗布工程と乾燥・焼成工程からなる。
塗布工程とは、例えばTiO粉末と界面活性剤などを所定の比率で混ぜ合わせてなるTiOのペーストを、透明導電膜14の表面に塗布するものである。その際、塗布法としては、例えば、ドクターブレード法やスクリーン印刷法などの方法が挙げられる。
Next, the porous oxide semiconductor layer 15 is formed on the transparent conductive film 14. The formation of the porous oxide semiconductor layer 15 mainly includes a coating process and a drying / firing process.
The coating process, for example, a TiO 2 powder and a surfactant or the like formed by mixed at a predetermined ratio of the TiO 2 paste is intended to be applied to the surface of the transparent conductive film 14. In this case, examples of the coating method include a doctor blade method and a screen printing method.

乾燥・焼成工程とは、例えば大気雰囲気中や窒素気流中に適当時間、室温又は加熱下にて放置し、塗膜を乾燥させた後、電気炉などを用い適当時間、400〜500℃程度の温度にて焼成する方法が挙げられる。   The drying / firing step is, for example, in an air atmosphere or a nitrogen stream for an appropriate time, left at room temperature or under heating, dried the coating film, and then used an electric furnace or the like for an appropriate time of about 400 to 500 ° C. The method of baking at temperature is mentioned.

次に、この塗布工程と乾燥・焼成工程により形成された多孔質酸化物半導体層15に対して色素担持を行う。
色素担持用の色素溶液は、例えばアセトニトリルとt−ブタノールを容積比で1:1とした溶媒に対して適当量の色素(例えば、ルテニウム錯体)粉末を加えて調整したものを予め準備しておく。
容器内に入れた色素溶液に、上記の多孔質酸化物半導体層15を浸した状態とし、暗所にて例えば一昼夜浸漬する。その後、色素溶液から取り出した多孔質酸化物半導体層15は、アセトニトリルとt−ブタノールからなる混合溶媒などを用い洗浄する。
上述した工程により、色素担持したTiO薄膜からなる多孔質酸化物半導体層15を透明基板上に設けてなる作用極16(窓極とも呼ぶ)を得る。
Next, a dye is supported on the porous oxide semiconductor layer 15 formed by the coating process and the drying / firing process.
As a dye solution for supporting a dye, for example, a solution prepared by adding an appropriate amount of dye (for example, ruthenium complex) powder to a solvent in which acetonitrile and t-butanol have a volume ratio of 1: 1 is prepared in advance. .
The porous oxide semiconductor layer 15 is immersed in the dye solution placed in the container, and immersed in a dark place, for example, all day and night. Thereafter, the porous oxide semiconductor layer 15 taken out from the dye solution is washed using a mixed solvent of acetonitrile and t-butanol.
Through the above-described steps, a working electrode 16 (also referred to as a window electrode) obtained by providing a porous oxide semiconductor layer 15 made of a dye-supported TiO 2 thin film on a transparent substrate is obtained.

一方、チタン板などの金属板からなる第一基材11の一方の面(前記作用極と反対側の面)に、Cuなどのはんだ付け可能な単一金属、または該金属を主成分とする合金から構成される被膜20をスパッタリング法などにより形成するとともに、第一基材11の他方の面(前記作用極16と対向する面)上に、白金やカーボン、導電性高分子などの層を形成することにより、対極12を得る。   On the other hand, on one surface (surface opposite to the working electrode) of the first base material 11 made of a metal plate such as a titanium plate, a solderable single metal such as Cu, or the metal as a main component. A film 20 made of an alloy is formed by sputtering or the like, and a layer of platinum, carbon, conductive polymer or the like is formed on the other surface of the first base material 11 (the surface facing the working electrode 16). The counter electrode 12 is obtained by forming.

色素担持させたTiO薄膜からなる多孔質酸化物半導体層15が上方をなすように作用極16を配置してから、多孔質酸化物半導体層15上に電解質(電解液、ゲル電解質など)を展開し、この多孔質酸化物半導体層15と第一基材11が対向するように、対極12を作用極16に重ねて設ける。
その後、作用極16と対極12の重なった外周付近に、複数の封止層からなる封止部材18を配することにより封止する。
このとき、封止層を、前記対極12の前記作用極16と反対側の面上であって、外縁部も被覆するように形成することが好ましい。これにより、これにより、封止性が向上し、電解液による封止信頼性の低下を確実に防止することができる。
After the working electrode 16 is arranged so that the porous oxide semiconductor layer 15 made of a dye-supported TiO 2 thin film is located above, an electrolyte (electrolyte, gel electrolyte, etc.) is placed on the porous oxide semiconductor layer 15. The counter electrode 12 is provided so as to overlap the working electrode 16 so that the porous oxide semiconductor layer 15 and the first base material 11 face each other.
Thereafter, sealing is performed by disposing a sealing member 18 composed of a plurality of sealing layers in the vicinity of the outer periphery where the working electrode 16 and the counter electrode 12 overlap.
At this time, it is preferable that the sealing layer is formed on the surface of the counter electrode 12 opposite to the working electrode 16 so as to cover the outer edge portion. Thereby, sealing property improves and it can prevent reliably the fall of the sealing reliability by electrolyte solution.

ここで、本発明では、封止部材18の形成において、封止層19a(最内層)を形成した後、少なくとも封止層19b(外層)が配される部分において電解質成分の除去を行い、その後、封止層19aを被覆するように封止層19を設けることを特徴とする。   Here, in the present invention, after forming the sealing layer 19a (innermost layer) in the formation of the sealing member 18, the electrolyte component is removed at least in the portion where the sealing layer 19b (outer layer) is disposed, and thereafter The sealing layer 19 is provided so as to cover the sealing layer 19a.

すなわち、第一層を形成後に第二層以降を別途形成する。その際、被着面(対極の作用極対向面とは反対面、作用極上の対極が重ならない外周面、第一層表面など)を洗浄、拭き取りなどの手段により、染み出した、またははみ出した電解質を除去する。第一層は、封止工程中での電解質はみ出しを防ぐ仮止めとしての役割を持ち、本封止の役割は第二層以降が担う。これにより、被着面上の残存電解質が封止樹脂の接着強度を大幅に低下させる、つまりは界面の接着状態を悪化させて封止信頼性を低下させるという問題を解決できる。   That is, after the first layer is formed, the second and subsequent layers are separately formed. At that time, the adherend surface (the surface opposite to the working electrode facing surface of the counter electrode, the outer peripheral surface where the counter electrode on the working electrode does not overlap, the surface of the first layer, etc.) exudes or exudes by means such as cleaning or wiping. Remove the electrolyte. The first layer has a role as a temporary stop to prevent the electrolyte from protruding during the sealing process, and the second and subsequent layers play the role of the main sealing. As a result, it is possible to solve the problem that the residual electrolyte on the adherend surface significantly lowers the adhesive strength of the sealing resin, that is, deteriorates the adhesive state of the interface and lowers the sealing reliability.

上記の被着面は、特性に影響を与えない範囲で小面積とするべきであるが、一方で、液状または凝固体状の電解質を用いた場合には、組み立て工程中で少なからず染み出し、はみ出し分が生じてしまう。被着面積を大きくすれば、接合信頼性は向上するが発電面積(少なくとも対極と重なっていない部分は発電しない)が低下するし、被着面積が小さ過ぎれば封止(接合)信頼性の確保が難しい。   The adherend surface should have a small area within a range that does not affect the properties, but on the other hand, when a liquid or solid electrolyte is used, it oozes out a little during the assembly process, Overhang will occur. If the deposition area is increased, the bonding reliability is improved, but the power generation area (at least the part that does not overlap with the counter electrode) is reduced. If the deposition area is too small, the sealing (bonding) reliability is ensured. Is difficult.

このようにして得られる光電変換素子は、前記第一基材と前記第二基材のうち狭い面積を有するいずれか一方の基材の側面部と、前記電解質層とを少なくとも被覆するように配された封止部材18を備え、該封止部材18を、複数の層から構成することで、封止部の接着性が向上し、電解液による接着強度の低下を防止することができる。これにより優れた封止信頼性を有するものとなる。   The photoelectric conversion element thus obtained is arranged so as to cover at least the side surface of one of the first base and the second base having a narrow area and the electrolyte layer. By providing the sealing member 18 that is formed, and forming the sealing member 18 from a plurality of layers, the adhesiveness of the sealing portion can be improved, and a decrease in the adhesive strength due to the electrolytic solution can be prevented. As a result, excellent sealing reliability is obtained.

以上、本発明に係る光電変換素子について説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更可能である。   The photoelectric conversion element according to the present invention has been described above. However, the present invention is not limited to the above example, and can be appropriately changed as necessary.

様々な封止樹脂について接着性テストを行なった。
封止樹脂A(紫外線硬化型の接着樹脂)、封止樹脂B(紫外線硬化型の接着樹脂)、封止樹脂C(熱硬化型の接着樹脂)、封止樹脂D(熱可塑性樹脂シート“ハイミラン1652”)のそれぞれについて、条件を変えてガラス基板/Ti箔間での接着強度を測定した。
Various adhesive resins were tested for adhesion.
Sealing resin A (UV curable adhesive resin), sealing resin B (UV curable adhesive resin), sealing resin C (thermosetting adhesive resin), sealing resin D (thermoplastic resin sheet “HIMILAN” For each of 1652 "), the adhesive strength between the glass substrate and the Ti foil was measured under different conditions.

条件1は、クリーンなガラス面に樹脂層を形成した際の接着強度であり、条件2は、ガ
ラス面上イオン液体型のヨウ素電解液を滴下し、軽く拭き取った後に樹脂層を形成した際の接着強度である。接着強度は90°のピールテストにより評価した。その結果を表1に示す。
Condition 1 is the adhesive strength when a resin layer is formed on a clean glass surface, and Condition 2 is when the resin layer is formed after dripping and wiping lightly an ionic liquid type iodine electrolytic solution on the glass surface. Adhesive strength. The adhesive strength was evaluated by a 90 ° peel test. The results are shown in Table 1.

Figure 2008226782
Figure 2008226782

また、上記のような封止樹脂を用いて色素増感型光電変換素子を作製し、封止性を評価した。
(実施例1)
本例では、図3に示すような光電変換素子(構造1)を作製した。
ガラス基板(140mm角)上に、スプレー熱分解法によりFTO/ITO透明導電膜を成膜した。この透明導電膜基板上にTiOナノ粒子からなる多孔質層を約10μmの厚さに形成した。具体的には、スクリーン印刷法によりTiOナノ粒子を含む塗膜を形成し、乾燥後、500℃で焼成することにより多孔質膜を得た。また、併せて銀の集電グリッドと配線保護層も形成した。多孔質TiO層には増感色素としてルテニウム錯体(N719色素)を担持させた。以上を作用極とした。
Moreover, the dye-sensitized photoelectric conversion element was produced using the above sealing resin, and sealing property was evaluated.
Example 1
In this example, a photoelectric conversion element (structure 1) as shown in FIG. 3 was produced.
An FTO / ITO transparent conductive film was formed on a glass substrate (140 mm square) by spray pyrolysis. A porous layer made of TiO 2 nanoparticles was formed on the transparent conductive film substrate to a thickness of about 10 μm. Specifically, a coating film containing TiO 2 nanoparticles was formed by a screen printing method, dried, and then fired at 500 ° C. to obtain a porous film. In addition, a silver current grid and a wiring protective layer were also formed. A ruthenium complex (N719 dye) was supported as a sensitizing dye on the porous TiO 2 layer. The above was taken as the working electrode.

厚さ40μmの金属Ti箔の、一方の面に銅層を、他方の面にPt層をそれぞれ形成した。以上を対極とした。Pt形成面を作用極と対向させて使用する。
また、イオン液体HMIm−I中にIを溶解させて液体電解質を調製した。
作製した作用極と対極との間に電解質を介在させて積層し、少なくとも対極と電解質層との側面部を覆うように封止樹脂Aからなる封止層(内層)を形成し、内装を覆うように、封止樹脂Aからなる封止層(外層)を形成して封止することで試験用の色素増感型光電変換素子を得た。なお、内層を形成した後、外層を形成する前に、被着面に付着したヨウ素電解液を、アセトニトリルを染み込ませたクリーンワイパーを用いて拭き取った。
A copper layer was formed on one surface and a Pt layer was formed on the other surface of a 40 μm-thick metal Ti foil. The above was taken as the counter electrode. The Pt forming surface is used facing the working electrode.
Further, a liquid electrolyte was prepared by dissolving I 2 in the ionic liquid HMIm-I.
The manufactured working electrode and the counter electrode are stacked with an electrolyte interposed therebetween, and a sealing layer (inner layer) made of the sealing resin A is formed so as to cover at least the side surface portion of the counter electrode and the electrolyte layer, thereby covering the interior. Thus, the dye-sensitized photoelectric conversion element for a test was obtained by forming the sealing layer (outer layer) which consists of sealing resin A, and sealing. In addition, after forming an inner layer, before forming an outer layer, the iodine electrolyte solution adhering to a to-be-adhered surface was wiped off using the clean wiper which soaked acetonitrile.

(実施例2)
本例では、封止層(外層)として、封止樹脂Bを用いたこと以外は、実施例1と同様にして色素増感型光電変換素子を作製した。
(Example 2)
In this example, a dye-sensitized photoelectric conversion element was produced in the same manner as in Example 1 except that the sealing resin B was used as the sealing layer (outer layer).

(実施例3)
本例では、封止層(外層)として、封止樹脂Cを用いたこと以外は、実施例1と同様にして色素増感型光電変換素子を作製した。
(Example 3)
In this example, a dye-sensitized photoelectric conversion element was produced in the same manner as in Example 1 except that the sealing resin C was used as the sealing layer (outer layer).

(実施例4)
本例では、封止層(外層)として、封止樹脂Dを用いたこと以外は、実施例1と同様にして色素増感型光電変換素子を作製した。
Example 4
In this example, a dye-sensitized photoelectric conversion element was produced in the same manner as in Example 1 except that the sealing resin D was used as the sealing layer (outer layer).

(実施例5)
本例では、液体電解質に代えて、ゲル電解質を使用したこと以外は、実施例1と同様にして色素増感型光電変換素子を作製した。
なお、ゲル電解質は、上記液体電解質に5wt%のSiOナノ粒子を混合することで、擬固体(ゲル)電解質とした。
(Example 5)
In this example, a dye-sensitized photoelectric conversion element was produced in the same manner as in Example 1 except that a gel electrolyte was used instead of the liquid electrolyte.
The gel electrolyte was a pseudo solid (gel) electrolyte by mixing 5 wt% SiO 2 nanoparticles with the liquid electrolyte.

(実施例6)
本例では、図6に示すような、裏面入射型の光電変換素子(構造2)を作製した。
厚さ40μmの金属Ti箔の一方の面上に上記と同様の容量で多孔質TiO層を形成し、同様に増感色素を担持させた。金属Ti箔の一方の面上には銅層を形成した。以上を作用極(Ti作用極)とした。
PEN基板上にITO透明導電膜とAg集電グリッド、配線保護層を形成し、さらに、その基板上にはPt層を形成した。以上を対極とした。
(Example 6)
In this example, a back-illuminated photoelectric conversion element (structure 2) as shown in FIG. 6 was produced.
A porous TiO 2 layer was formed on one surface of a 40 μm-thick metal Ti foil with the same capacity as described above, and a sensitizing dye was supported in the same manner. A copper layer was formed on one surface of the metal Ti foil. The above was defined as a working electrode (Ti working electrode).
An ITO transparent conductive film, an Ag current collecting grid, and a wiring protective layer were formed on the PEN substrate, and a Pt layer was further formed on the substrate. The above was taken as the counter electrode.

作製した作用極と対極との間に電解質を介在させて積層し、少なくとも対極と電解質層との側面部を覆うように封止樹脂Aからなる封止層(内層)を形成し、内装を覆うように、封止樹脂Aからなる封止層(外層)を形成して封止することで試験用の色素増感型光電変換素子を得た。なお、内層を形成した後、外層を形成する前に、被着面に付着したヨウ素電解液を、アセトニトリルを染み込ませたクリーンワイパーを用いて拭き取った。   The manufactured working electrode and the counter electrode are stacked with an electrolyte interposed therebetween, and a sealing layer (inner layer) made of the sealing resin A is formed so as to cover at least the side surface portion of the counter electrode and the electrolyte layer, thereby covering the interior. Thus, the dye-sensitized photoelectric conversion element for a test was obtained by forming the sealing layer (outer layer) which consists of sealing resin A, and sealing. In addition, after forming an inner layer, before forming an outer layer, the iodine electrolyte solution adhering to a to-be-adhered surface was wiped off using the clean wiper which soaked acetonitrile.

(比較例1)
本例では、封止層の形成において、内層を形成した後、外層を形成する前に、被着面に付着したヨウ素電解液を拭き取らなかったこと以外は、実施例1と同様にして色素増感型光電変換素子を作製した。
(Comparative Example 1)
In this example, in the formation of the sealing layer, after forming the inner layer and before forming the outer layer, the dye was the same as in Example 1 except that the iodine electrolyte attached to the adherend was not wiped off. A sensitized photoelectric conversion element was produced.

(比較例2)
本例では、封止層として、封止樹脂Aからなる1層のみとしたこと以外は、実施例1と同様にして色素増感型光電変換素子を作製した。
(Comparative Example 2)
In this example, a dye-sensitized photoelectric conversion element was produced in the same manner as in Example 1 except that only one layer made of the sealing resin A was used as the sealing layer.

(比較例3)
本例では、封止層として、封止樹脂Aからなる1層のみとしたこと以外は、実施例5と同様にして色素増感型光電変換素子を作製した。
(Comparative Example 3)
In this example, a dye-sensitized photoelectric conversion element was produced in the same manner as in Example 5 except that only one sealing resin A layer was used as the sealing layer.

(比較例4)
本例では、封止層として、封止樹脂Aからなる1層のみとしたこと以外は、実施例6と同様にして色素増感型光電変換素子を作製した。
実施例1〜6および比較例1〜4により作製した各素子の構造並びに封止樹脂を、表2に纏めて示す。
(Comparative Example 4)
In this example, a dye-sensitized photoelectric conversion element was produced in the same manner as in Example 6 except that only one sealing resin A layer was used as the sealing layer.
Table 2 summarizes the structure of each element and the sealing resin produced in Examples 1 to 6 and Comparative Examples 1 to 4.

Figure 2008226782
Figure 2008226782

以上のようにして作製された実施例および比較例の光電変換素子について、以下に示す(a)〜(d)の4点が明らかとなった。   About the photoelectric conversion element of the Example produced as mentioned above and a comparative example, four points of (a)-(d) shown below became clear.

*本段落は削除します。 * This paragraph will be deleted.

(a)実施例の素子では、比較例の素子に比べていずれも高い接着強度が得られていることが分かった。外層を形成する前に、被着面に付着した電解液を拭き取らなかった比較例1では、ヨウ素電解液が残存した面上では接着強度が著しく低下した。
(b)色素増感太陽電池の試験セル作製後、封止部をピンセットでつまんだところ、比較例の素子は容易に封止樹脂が剥離してしまい、適正な封止状態を得られていないことが判明した。一方で、実施例の素子については同様の操作をしても剥離するようなことはなかった。
(c)構造1の素子を50℃に維持した恒温層に保持したところ、素子内に残った空気が膨張したため比較例の封止部からは電解液の染み出しが確認されたが、実施例の各素子については異常がみられなかった。
(d)構造2の素子を緩やかに撓ませたところ、実施例の素子については異常が見られなかったが、比較例の素子では封止樹脂が剥離して電解液の染み出しが確認された。
以上の結果により、本発明による封止構造の有効性が確認された。
(A) In the element of an Example, it turned out that all have high adhesive strength compared with the element of a comparative example. In Comparative Example 1 in which the electrolytic solution adhering to the adherend surface was not wiped off before forming the outer layer, the adhesive strength was remarkably reduced on the surface where the iodine electrolytic solution remained.
(B) After preparing the test cell of the dye-sensitized solar cell, the sealing part was pinched with tweezers. As a result, the sealing resin peeled off easily in the element of the comparative example, and an appropriate sealing state was not obtained. It has been found. On the other hand, the element of the example was not peeled off even if the same operation was performed.
(C) When the element having the structure 1 was held in a constant temperature layer maintained at 50 ° C., the air remaining in the element expanded, and thus the leakage of the electrolyte was confirmed from the sealing portion of the comparative example. No abnormality was found in each of the elements.
(D) When the element of the structure 2 was gently bent, no abnormality was found in the element of the example. However, in the element of the comparative example, the sealing resin was peeled off, and leakage of the electrolyte was confirmed. .
From the above results, the effectiveness of the sealing structure according to the present invention was confirmed.

本発明は、光電変換素子およびその製造方法に適用可能である。   The present invention is applicable to a photoelectric conversion element and a manufacturing method thereof.

本発明に係る光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element which concerns on this invention. 本発明に係る光電変換素子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the photoelectric conversion element which concerns on this invention. 本発明に係る光電変換素子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the photoelectric conversion element which concerns on this invention. 本発明に係る光電変換素子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the photoelectric conversion element which concerns on this invention. 本発明に係る光電変換素子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the photoelectric conversion element which concerns on this invention. 本発明に係る光電変換素子の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the photoelectric conversion element which concerns on this invention. 従来の光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional photoelectric conversion element.

符号の説明Explanation of symbols

10 光電変換素子、11 第一基材、12 対極、13 第二基材、14 透明導電膜、15 多孔質酸化物半導体層、16 作用極、17 電解質層、18 封止部材、19 封止層、20 被膜。   DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element, 11 1st base material, 12 Counter electrode, 13 2nd base material, 14 Transparent electrically conductive film, 15 Porous oxide semiconductor layer, 16 Working electrode, 17 Electrolyte layer, 18 Sealing member, 19 Sealing layer 20 coating.

Claims (5)

導電性の第一基材を有する対極と、
前記第一基材と異なる面積を有し、絶縁性の透明な第二基材と、該第二基材の一面に透明導電膜を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層とを備え、該多孔質酸化物半導体層が前記第一基材の一面と対向して配される作用極と、
前記対極と前記作用極との間の少なくとも一部に配された電解質層と、から構成され、
前記第一基材と前記第二基材のうち狭い面積を有するいずれか一方の基材の側面部と、前記電解質層の側方とを少なくとも被覆するように配された封止部材を備え、
前記封止部材は、複数の層から構成されることを特徴とする光電変換素子。
A counter electrode having a conductive first substrate;
A porous substrate having an area different from that of the first substrate, an insulating transparent second substrate, a porous substrate disposed on one surface of the second substrate via a transparent conductive film, and at least partially supporting a dye A working electrode provided with an oxide semiconductor layer, wherein the porous oxide semiconductor layer is disposed to face one surface of the first substrate;
An electrolyte layer disposed at least in part between the counter electrode and the working electrode,
A sealing member arranged to cover at least a side surface portion of one of the base materials having a narrow area between the first base material and the second base material, and a side of the electrolyte layer;
The said sealing member is comprised from a some layer, The photoelectric conversion element characterized by the above-mentioned.
前記封止部材の一部または全部は、前記一方の基板の、他方の基板とは反対側の面上の外縁部も被覆するように配されていることを特徴とする請求項1に記載の光電変換素子。   2. The sealing member according to claim 1, wherein a part or all of the sealing member is disposed so as to cover an outer edge portion of the surface of the one substrate opposite to the other substrate. Photoelectric conversion element. 前記封止部材を構成する複数の層は、同一の材料からなることを特徴とする請求項1に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the plurality of layers constituting the sealing member are made of the same material. 前記封止部材の最内層と、該最内層を被覆して配される外層の少なくとも一層とは、異なる材料からなることを特徴とする請求項1に記載の光電変換素子。   2. The photoelectric conversion element according to claim 1, wherein the innermost layer of the sealing member and at least one of the outer layers disposed so as to cover the innermost layer are made of different materials. 導電性の第一基材を有する対極と、
前記第一基材と異なる面積を有し、絶縁性の透明な第二基材と、該第二基材の一面に透明導電膜を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層とを備え、該多孔質酸化物半導体層が前記第一基材の一面と対向して配される作用極と、
前記対極と前記作用極との間の少なくとも一部に配された電解質層と、から構成され、
前記第一基材と前記第二基材のうち狭い面積を有するいずれか一方の基材の側面部と、前記電解質層の側方とを少なくとも被覆するように配された封止部材を備え、
前記封止部材は、複数の層から構成される光電変換素子の製造方法であって、
前記封止部材は、最内層を形成した後、少なくとも外層が配される部分において電解質成分の除去を行い、その後、最内層を被覆するように外層を設けることを特徴とする光電変換素子の製造方法。
A counter electrode having a conductive first substrate;
A porous substrate having an area different from that of the first substrate, an insulating transparent second substrate, a porous substrate disposed on one surface of the second substrate via a transparent conductive film, and at least partially supporting a dye A working electrode provided with an oxide semiconductor layer, wherein the porous oxide semiconductor layer is disposed to face one surface of the first substrate;
An electrolyte layer disposed at least in part between the counter electrode and the working electrode,
A sealing member arranged to cover at least a side surface portion of one of the base materials having a narrow area between the first base material and the second base material, and a side of the electrolyte layer;
The sealing member is a method for manufacturing a photoelectric conversion element composed of a plurality of layers,
After the innermost layer is formed, the sealing member removes an electrolyte component at least in a portion where the outer layer is disposed, and then provides the outer layer so as to cover the innermost layer. Method.
JP2007067268A 2007-03-15 2007-03-15 Photoelectric conversion element and manufacturing method thereof Active JP5185550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067268A JP5185550B2 (en) 2007-03-15 2007-03-15 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067268A JP5185550B2 (en) 2007-03-15 2007-03-15 Photoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008226782A true JP2008226782A (en) 2008-09-25
JP5185550B2 JP5185550B2 (en) 2013-04-17

Family

ID=39845133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067268A Active JP5185550B2 (en) 2007-03-15 2007-03-15 Photoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5185550B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235104A (en) * 2007-03-22 2008-10-02 Matsushita Electric Works Ltd Photoelectric conversion element and manufacturing method thereof
WO2010041729A1 (en) * 2008-10-09 2010-04-15 ソニー株式会社 Functional device and manufacturing method therefor
WO2010098311A1 (en) * 2009-02-24 2010-09-02 株式会社フジクラ Photoelectric conversion element
JP2010198834A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Method for manufacturing photoelectric conversion element module
JP2010198821A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Photoelectric conversion element
WO2011013389A1 (en) * 2009-07-28 2011-02-03 株式会社フジクラ Multilayer sheet for encapsulation of electronic device and method for manufacturing electronic device using same
JP2011086518A (en) * 2009-10-16 2011-04-28 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell, and material for dye-sensitized solar cell
WO2015174219A1 (en) * 2014-05-12 2015-11-19 株式会社村田製作所 Solar power generation module and production method for solar power generation module
JP6439035B1 (en) * 2017-12-28 2018-12-19 株式会社フジクラ Photoelectric conversion element
CN111630680A (en) * 2018-01-30 2020-09-04 株式会社丰田自动织机 Power storage module and method for manufacturing power storage module
KR20200133180A (en) * 2019-05-15 2020-11-26 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120418A (en) * 2004-10-20 2006-05-11 Norio Shimizu Dye-sensitized solar cell
JP2006302530A (en) * 2005-04-15 2006-11-02 Sharp Corp Dye-sensitized solar cell and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120418A (en) * 2004-10-20 2006-05-11 Norio Shimizu Dye-sensitized solar cell
JP2006302530A (en) * 2005-04-15 2006-11-02 Sharp Corp Dye-sensitized solar cell and its manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235104A (en) * 2007-03-22 2008-10-02 Matsushita Electric Works Ltd Photoelectric conversion element and manufacturing method thereof
WO2010041729A1 (en) * 2008-10-09 2010-04-15 ソニー株式会社 Functional device and manufacturing method therefor
US9153387B2 (en) 2009-02-24 2015-10-06 Fujikura Ltd. Photoelectric conversion element
WO2010098311A1 (en) * 2009-02-24 2010-09-02 株式会社フジクラ Photoelectric conversion element
JP2010198834A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Method for manufacturing photoelectric conversion element module
JP2010198821A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Photoelectric conversion element
WO2011013389A1 (en) * 2009-07-28 2011-02-03 株式会社フジクラ Multilayer sheet for encapsulation of electronic device and method for manufacturing electronic device using same
US8268661B2 (en) 2009-07-28 2012-09-18 Fujikura Ltd. Sealing laminated sheet for electronic device and electronic device production method using same
JP5258960B2 (en) * 2009-07-28 2013-08-07 株式会社フジクラ Laminated sheet for sealing electronic device and method for manufacturing electronic device using the same
JP2011049140A (en) * 2009-07-28 2011-03-10 Fujikura Ltd Multilayer sheet for encapsulation of dye-sensitized solar cell, and method of manufacturing dye-sensitized solar cell using the same
JP2011086518A (en) * 2009-10-16 2011-04-28 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell, and material for dye-sensitized solar cell
WO2015174219A1 (en) * 2014-05-12 2015-11-19 株式会社村田製作所 Solar power generation module and production method for solar power generation module
JP6439035B1 (en) * 2017-12-28 2018-12-19 株式会社フジクラ Photoelectric conversion element
CN111630680A (en) * 2018-01-30 2020-09-04 株式会社丰田自动织机 Power storage module and method for manufacturing power storage module
CN111630680B (en) * 2018-01-30 2023-01-06 株式会社丰田自动织机 Power storage module and method for manufacturing power storage module
US11955593B2 (en) 2018-01-30 2024-04-09 Kabushiki Kaisha Toyota Jidoshokki Power storage module and method for manufacturing power storage module
KR20200133180A (en) * 2019-05-15 2020-11-26 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system
KR102262589B1 (en) * 2019-05-15 2021-06-10 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system
KR20210069024A (en) * 2019-05-15 2021-06-10 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system
KR102582625B1 (en) * 2019-05-15 2023-09-22 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system

Also Published As

Publication number Publication date
JP5185550B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5185550B2 (en) Photoelectric conversion element and manufacturing method thereof
JP5033813B2 (en) Photoelectric conversion element
JP2009110796A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
KR20100091883A (en) Dye-sensitized photoelectric conversion device module and method for manufacturing the same, photoelectric conversion device module and method for manufacturing the same, and electronic device
EP2451005A1 (en) Wet type solar battery module
JP5225577B2 (en) Photoelectric conversion element and method for producing counter electrode for photoelectric conversion element
JPWO2009069551A1 (en) Electrode substrate for photoelectric conversion element
WO2012118050A1 (en) Dye-sensitized solar cell and process of manufacturing same, and dye-sensitized solar cell module and process of manufacturing same
JP5144986B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
JP5346457B2 (en) Photoelectric conversion element
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP2008176948A (en) Dye-sensitized solar cell and its manufacturing method
JP5160045B2 (en) Photoelectric conversion element
JP5465446B2 (en) Photoelectric conversion element
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP5485425B2 (en) Photoelectric conversion element
JP2009016174A (en) Photoelectric conversion element
WO2013114733A1 (en) Photoelectric conversion element module
JP6289175B2 (en) Photoelectric conversion element and photoelectric conversion module
JP6697335B2 (en) Photoelectric conversion element
JP6584883B2 (en) Electrolyte for dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element using the same
JP6521644B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell system
JP2013200960A (en) Photoelectric conversion element module and manufacturing method thereof
JP6338458B2 (en) Photoelectric conversion element, photoelectric conversion module, and method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

R151 Written notification of patent or utility model registration

Ref document number: 5185550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250