JP2008224345A - Acceleration detection unit, and acceleration sensor - Google Patents

Acceleration detection unit, and acceleration sensor Download PDF

Info

Publication number
JP2008224345A
JP2008224345A JP2007061338A JP2007061338A JP2008224345A JP 2008224345 A JP2008224345 A JP 2008224345A JP 2007061338 A JP2007061338 A JP 2007061338A JP 2007061338 A JP2007061338 A JP 2007061338A JP 2008224345 A JP2008224345 A JP 2008224345A
Authority
JP
Japan
Prior art keywords
fixed
acceleration
stress
members
movable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007061338A
Other languages
Japanese (ja)
Inventor
Yoshikuni Saito
佳邦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2007061338A priority Critical patent/JP2008224345A/en
Publication of JP2008224345A publication Critical patent/JP2008224345A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration detection unit and an acceleration sensor, having excellent acceleration detection sensitivity, capable of determining an acceleration direction, and capable of offsetting an other axial acceleration. <P>SOLUTION: This acceleration detection unit/acceleration sensor is provided with the first and second fixed members 4, 5 not displaced by applying an acceleration, the first and second movable members 20, 21 supported onto the respective fixed members respectively by the first and second beams 15, 16, and the first and second stress sensing elements 30, 31 having a stress sensing part and a fixed end integrated with both end parts of the stress sensing part, the respective fixed members are arranged with a diagonal positional relation and is integrated by a connecting part 10, the respective movable members are arranged within a diagonal space formed with the respective fixed members, both fixed ends of the first stress sensing element are supported respectively by the first fixed member and the second movable member, and both fixed ends of the second stress sensing element are supported respectively by the second fixed member and the first movable member. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、加速度検知ユニット及び加速度センサに関し、特に印加する応力が2つの応力感応素子に互いに逆に作用するように構成した加速度検知ユニットと、該加速度検知ユニットを用いた加速度センサに関する。   The present invention relates to an acceleration detection unit and an acceleration sensor, and more particularly to an acceleration detection unit configured so that applied stresses act on two stress sensitive elements in opposite directions, and an acceleration sensor using the acceleration detection unit.

加速度センサは従来から自動車、航空機、ロッケットから各種プラントの異常振動監視等まで、広く使用されている。特許文献1には、図5に示すような一体形プッシュプル力変換器が開示されている。この力変換器は、取付部材72、74と、力感知部材76、78と、から成る本体70を有している。力感知部材78は、取付部材72に接続した第1の端部82と、取付部材74に接続した第2の端部84と、第1及び第2の端部82、84の間に形成された一対の振動ビーム86を有している。力感知部材76の第1の端部92は、変換器軸心80と平行に取付部材74から取付部材72に向かって延びるアーム98の端部に接続されている。力感知部材76の第2の端部94は、変換器軸心80と平行に取付部材72から取付部材74に向かって延びるアーム100の端部に接続されている。力感知部材76、78の力感知軸心は、変換器軸心80と平行に形成した振動ビーム86、96と平行となるように構成されている。   Conventionally, acceleration sensors have been widely used from automobiles, airplanes, and rockets to monitoring abnormal vibrations of various plants. Patent Document 1 discloses an integrated push-pull force transducer as shown in FIG. The force transducer has a main body 70 composed of mounting members 72 and 74 and force sensing members 76 and 78. The force sensing member 78 is formed between a first end 82 connected to the mounting member 72, a second end 84 connected to the mounting member 74, and the first and second ends 82, 84. A pair of vibration beams 86 is provided. The first end 92 of the force sensing member 76 is connected to the end of an arm 98 extending from the mounting member 74 toward the mounting member 72 in parallel with the transducer axis 80. The second end 94 of the force sensing member 76 is connected to the end of the arm 100 extending from the mounting member 72 toward the mounting member 74 in parallel with the transducer axis 80. The force sensing axes of the force sensing members 76 and 78 are configured to be parallel to vibration beams 86 and 96 formed in parallel to the transducer axis 80.

取付部材72、74は構造部分102、104に取付けられていて、力変換器が構造部分102、104によって伝達される引張力又は圧縮力の測定を行う。取付部材72に作用する力は、力感知部材76の第2の端部94と、力感知部材78の第1の端部82に伝達される。同様に、取付部材74に作用する力は力感知部材76の第1の端部92と、力感知部材78の第2の端部84に伝達される。連結構造に形成されているため、力感知軸心80に直交した取付部材72、74に作用する力は引張力であれ、圧縮力であれ、一方の感知部材には圧縮力が、他方の感知部材には引張力が作用すると開示されている。   The attachment members 72, 74 are attached to the structural portions 102, 104 and a force transducer measures the tensile or compressive force transmitted by the structural portions 102, 104. The force acting on the mounting member 72 is transmitted to the second end 94 of the force sensing member 76 and the first end 82 of the force sensing member 78. Similarly, the force acting on the mounting member 74 is transmitted to the first end 92 of the force sensing member 76 and the second end 84 of the force sensing member 78. Since the connection structure is formed, the force acting on the mounting members 72 and 74 orthogonal to the force sensing axis 80 is either a tensile force or a compressive force, and the compressive force is applied to one sensing member while the other sensing force is detected. It is disclosed that a tensile force acts on the member.

なお、本体70は一体構造をしており、例えば、水晶やシリコンウエファからなる基板をエッチングして形成することができる。また、力感知部材76、78は複振動ビーム型の例を示しているが、表面音響変換器、単振動ビーム変換器、ピエゾ抵抗歪み計のような他の変換器のものも使用できる。
特表平3−501531号公報
The main body 70 has an integral structure, and can be formed by etching a substrate made of quartz or silicon wafer, for example. Further, although the force sensing members 76 and 78 are examples of the double vibration beam type, other transducers such as a surface acoustic transducer, a single vibration beam transducer, and a piezoresistive strain gauge can be used.
Japanese National Patent Publication No. 3-501531

しかしながら、特許文献1に記載の一体形プッシュプル力変換器では、2つの力感知部材76、78と、取付部材72、74とを一体構造として形成しているため、2つの力感知部材間で振動エネルギの漏洩が起こり易く、互いに干渉が起こる虞があるという問題があった。   However, in the integrated push-pull force transducer described in Patent Document 1, the two force sensing members 76 and 78 and the attachment members 72 and 74 are formed as an integral structure, and therefore, between the two force sensing members. There is a problem that vibration energy is likely to leak and there is a risk of interference with each other.

本発明は、加速度検知感度が高く、他軸の加速度成分を相殺し、且2つの応力感応素子間の干渉を大幅に低減した加速度検知ユニットと加速度センサを構成するため、加速度の印加によって変位しない第1及び第2の固定部材と、前記第1及び第2の固定部材に第1及び第2の梁にて夫々支持される第1及び第2の可動部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した第1及び第2の応力感応素子と、を備え、前記第1の固定部材と前記第2の固定部材とは、対角位置関係で配置されると共に連結部によって一体化され、前記第1の可動部材と前記第2の可動部材とは、前記各固定部材によって形成される対角スペース内に配置され、前記第1の固定部材は、前記第1の梁を介して前記第1の可動部材を支持し、前記第2の固定部材は、前記第2の梁を介して前記第2の可動部材を支持し、前記第1及び第2の梁は、前記第1及び第2の可動部材に加速度が印加されると前記各可動部材を加速度検出軸方向へ変位させるよう変形可能な可撓性を有する構成であり、前記第1の応力感応素子は前記第1の固定部材と前記第2の可動部材によって両固定端を夫々支持されると共に、前記第2の応力感応素子は前記第2の固定部材と前記第1の可動部材によって両固定端を夫々支持した加速度検知ユニットを構成する。
このように加速度検知ユニットを構成し加速度を印加すると、第1の応力感応素子に加わる応力は、第2の応力感応素子に加わる応力と逆向きの応力、つまり第1の応力感応素子に圧縮応力が作用すると、第2の応力感応素子には伸張応力が作用し、各応力感応素子の共振周波数の差周波数を用いることにより、加速度検出感度を2倍にすることができるという効果がある。
The present invention constitutes an acceleration detection unit and an acceleration sensor that have high acceleration detection sensitivity, cancel the acceleration component of the other axis, and greatly reduce interference between the two stress sensitive elements, so that they are not displaced by application of acceleration. First and second fixing members; first and second movable members supported by the first and second fixing members by first and second beams, respectively; a stress sensitive portion and the stress sensitive First and second stress sensitive elements having fixed ends integrated at both ends of the first portion, and the first fixing member and the second fixing member are arranged in a diagonal position relationship. And the first movable member and the second movable member are arranged in a diagonal space formed by each of the fixed members, and the first fixed member is Supporting the first movable member via the first beam; The second fixed member supports the second movable member via the second beam, and acceleration is applied to the first and second movable members by the first and second beams. Then, the movable member has a flexible structure that can be deformed so as to displace each movable member in the direction of the acceleration detection axis, and the first stress sensitive element is formed by the first fixed member and the second movable member. The fixed ends are supported respectively, and the second stress sensitive element constitutes an acceleration detection unit in which both the fixed ends are supported by the second fixed member and the first movable member.
When the acceleration detection unit is configured and acceleration is applied in this way, the stress applied to the first stress sensitive element is the stress opposite to the stress applied to the second stress sensitive element, that is, compressive stress applied to the first stress sensitive element. As a result, tensile stress acts on the second stress sensitive element, and the acceleration detection sensitivity can be doubled by using the difference frequency of the resonance frequency of each stress sensitive element.

また、本発明は、加速度の印加によって変位しない第1及び第2の固定部材と、前記第1及び第2の固定部材に第1及び第2の梁にて夫々支持される第1及び第2の可動部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した第1及び第2の応力感応素子と、を備え、前記第1の固定部材と前記第2の固定部材とは、対角位置関係で配置されると共に連結部によって一体化され、前記第1の可動部材と前記第2の可動部材とは、前記各固定部材によって形成される対角スペース内に配置され、前記第1の固定部材は、前記第1の梁を介して前記第1の可動部材を支持し、前記第2の固定部材は、前記第2の梁を介して前記第2の可動部材を支持し、前記第1及び第2の梁は、前記第1及び第2の可動部材に加速度が印加されると前記各可動部材を加速度検出軸方向へ変位させるよう変形可能な可撓性を有する構成であり、前記第1の応力感応素子は前記第1の固定部材と前記第1の可動部材によって両固定端を夫々支持されると共に、前記第2の応力感応素子は前記第2の固定部材と前記第2の可動部材によって両固定端を夫々支持した加速度検知ユニットを構成する。
このように加速度検知ユニットを構成し加速度を印加すると、第1の応力感応素子に加わる応力は、第2の応力感応素子に加わる応力と逆向きの応力、つまり第1の応力感応素子に圧縮応力が作用すると、第2の応力感応素子には伸張応力が作用するようになり、各応力感応素子の共振周波数の差周波数を用いることにより、加速度検出感度を2倍にすることができるという効果がある。
In the present invention, the first and second fixing members that are not displaced by the application of acceleration, and the first and second beams supported by the first and second beams by the first and second fixing members, respectively. And a first and second stress-sensitive elements having fixed ends integrated at both ends of the stress-sensitive portion and the stress-sensitive portion, the first fixed member and the second The fixed members of the first movable member and the second movable member are arranged in a diagonal positional relationship and integrated by a connecting portion, and the first movable member and the second movable member are in a diagonal space formed by the fixed members. The first fixed member supports the first movable member via the first beam, and the second fixed member is the second beam via the second beam. A movable member is supported, and the first and second beams apply acceleration to the first and second movable members. The first stress sensitive element is formed by the first fixed member and the first movable member so that each movable member is deformable so as to be displaced in the direction of the acceleration detection axis. The fixed ends are supported respectively, and the second stress sensitive element constitutes an acceleration detection unit in which both the fixed ends are supported by the second fixed member and the second movable member.
When the acceleration detection unit is configured and acceleration is applied in this way, the stress applied to the first stress sensitive element is the stress opposite to the stress applied to the second stress sensitive element, that is, compressive stress applied to the first stress sensitive element. As a result, an extensional stress is applied to the second stress-sensitive element, and the acceleration detection sensitivity can be doubled by using the difference frequency of the resonance frequency of each stress-sensitive element. is there.

また、前記第1及び第2の梁の奥行き方向の寸法は、前記加速度検出軸方向の前記第1及び第2の梁の幅の寸法以上の長さを有した加速度検知ユニットを構成する。
このように加速度検知ユニットを構成することにより、第1及び第2の可動部材の奥行き方向(Y軸方向)への変位を阻止することが可能であり、奥行き方向の加速度の検出を大幅に低減することができる。
Moreover, the dimension of the depth direction of the said 1st and 2nd beam comprises the acceleration detection unit which has the length more than the dimension of the width | variety of the said 1st and 2nd beam of the said acceleration detection axis direction.
By configuring the acceleration detection unit in this way, it is possible to prevent the displacement of the first and second movable members in the depth direction (Y-axis direction), and greatly reduce the detection of acceleration in the depth direction. can do.

また、前記第1及び第2の梁の形状は、前記加速度検出軸方向と直交する奥行き方向の両面が双曲線状に凹んだ形状を備えた加速度検知ユニットを構成する。
このように加速度検知ユニットを構成することにより、第1及び第2の可動部材の加速度検出軸方向へ撓みが容易となり、小さな加速度の検出精度が向上すると共に、奥行き方向の加速度の検出を抑制するという効果がある。
Moreover, the shape of the said 1st and 2nd beam comprises the acceleration detection unit provided with the shape where both surfaces of the depth direction orthogonal to the said acceleration detection axial direction were dented in a hyperbola shape.
By configuring the acceleration detection unit in this way, the first and second movable members can be easily bent in the direction of the acceleration detection axis, the detection accuracy of small acceleration is improved, and the detection of acceleration in the depth direction is suppressed. There is an effect.

また、前記第1及び第2の応力感応素子は、2つの前記固定端、及び各固定端間を連設する振動領域を備えた圧電基板からなる応力感応部と、該圧電基板の振動領域上に形成した励振電極と、を備えた圧電振動素子を用いて加速度検知ユニットを構成する。
このように圧電振動素子を用いて加速度検知ユニットを構成することにより、加速度検知ユニットの加速度検出精度が改善されると共に、リニアリティー、温度特性、再現性、エージング特性等が改善されるという効果がある。
The first and second stress sensitive elements include a stress sensitive part including a piezoelectric substrate having two fixed ends and a vibration region continuously connecting the fixed ends, and a vibration region of the piezoelectric substrate. An acceleration detection unit is configured using a piezoelectric vibration element including the excitation electrode formed in the above.
By configuring the acceleration detection unit using the piezoelectric vibration element as described above, the acceleration detection accuracy of the acceleration detection unit is improved, and linearity, temperature characteristics, reproducibility, aging characteristics, and the like are improved. .

また、前記第1及び第2の応力感応素子は、2つの前記固定端、及び各固定端間を連設する2つの振動ビームを備えた圧電基板からなる応力感応部と、該圧電基板の振動領域上に形成した励振電極と、を備えた双音叉型圧電振動素子を用いて加速度検知ユニットを構成する。
このように双音叉型圧電振動素子を用いて加速度検知ユニットを構成することにより、加速度検知ユニットの広範囲の加速度検出精度が改善されると共に、一段とリニアリティー、温度特性、再現性、エージング特性等が改善されるという効果がある。
The first and second stress sensitive elements include a stress sensitive part including a piezoelectric substrate having two fixed ends and two vibration beams connected between the fixed ends, and vibration of the piezoelectric substrate. An acceleration detection unit is configured using a double tuning fork type piezoelectric vibration element including an excitation electrode formed on the region.
By constructing an acceleration detection unit using a double tuning fork type piezoelectric vibration element in this way, the acceleration detection accuracy of the acceleration detection unit over a wide range is improved, and linearity, temperature characteristics, reproducibility, aging characteristics, etc. are further improved. There is an effect that.

前記第1及び第2の応力感応素子の共振周波数を互いに異ならせた応力感応素子を用いて加速度検知ユニットを構成する。
このように加速度検知ユニットを構成することにより、第1及び第2の応力感応素子の共振周波数の差を用いることにより、加速度の大きさのみならず加速度の方向も検出することができる。
更に、第1及び第2の応力感応素子の共振周波数が異なることで、素子間の音響的干渉を防止することができる。
An acceleration detection unit is configured using stress sensitive elements in which the resonance frequencies of the first and second stress sensitive elements are different from each other.
By configuring the acceleration detection unit in this way, it is possible to detect not only the magnitude of acceleration but also the direction of acceleration by using the difference between the resonance frequencies of the first and second stress sensitive elements.
Furthermore, since the resonance frequencies of the first and second stress sensitive elements are different, acoustic interference between the elements can be prevented.

また、前記加速度検知ユニットと、該加速度検知ユニットを気密的に封止するハウジングと、前記第1及び第2の応力感応素子を構成する励振電極と夫々電気的に接続される2つの発振回路と、ミキサと、ローパスフィルタと、を備えた加速度センサを構成する。
このように加速度センサを構成することにより、加速度センサの検出感度の向上、広範囲の加速度検出精度の改善と共に、温度特性、再現性、エージング特性等が改善し、加速度の大きさのみならず方向も検出することができる。
The acceleration detection unit, a housing that hermetically seals the acceleration detection unit, and two oscillation circuits that are electrically connected to the excitation electrodes constituting the first and second stress sensitive elements, respectively. And an acceleration sensor including a mixer and a low-pass filter.
By configuring the acceleration sensor in this manner, the detection sensitivity of the acceleration sensor, the improvement of the acceleration detection accuracy in a wide range, and the temperature characteristics, reproducibility, aging characteristics, etc. are improved, and not only the magnitude of acceleration but also the direction. Can be detected.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明に係る加速度検知ユニット1の構成を示す斜視図である。加速度検知ユニット1は、加速度の印加によって変位しない直方体状の第1及び第2の固定部材4、5と、第1及び第2の固定部材4、5に第1及び第2の梁15、16にて夫々支持される直方体状の第1及び第2の可動部材20、21と、応力感応部34、37及び各応力感応部34、37の各両端部に夫々一体化された固定端32、33、及び35、36を有した第1及び第2の応力感応素子30、31と、を備えている。第1の固定部材4と第2の固定部材5とは、対角位置関係に配置されると共に、薄い直方体状の連結部10によって一体化された構造となっている。そして、第1の可動部材20と第2の可動部材21とは、各固定部材4、5によって形成される対角スペースS内に配置される(第1の固定部材4と第2の固定部材5とを結ぶ線と、第1の可動部材20と第2の可動部材21とを結ぶ線とが交差するように第1の固定部材4と第2の固定部材5と第1の可動部材20及び第2の可動部材21とが配置されている)。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a configuration of an acceleration detection unit 1 according to the present invention. The acceleration detection unit 1 includes rectangular parallelepiped first and second fixing members 4 and 5 that are not displaced by application of acceleration, and first and second beams 15 and 16 on the first and second fixing members 4 and 5. The first and second movable members 20 and 21 having a rectangular parallelepiped shape supported by each of the first and second members, the stress sensitive portions 34 and 37, and the fixed ends 32 integrated with the respective end portions of the stress sensitive portions 34 and 37, respectively. And first and second stress sensitive elements 30, 31 having 33, 35, 36. The first fixing member 4 and the second fixing member 5 are arranged in a diagonal positional relationship and have a structure integrated by a thin rectangular parallelepiped connecting portion 10. And the 1st movable member 20 and the 2nd movable member 21 are arrange | positioned in the diagonal space S formed by each fixed member 4 and 5 (the 1st fixed member 4 and the 2nd fixed member) 5, and the line connecting the first movable member 20 and the second movable member 21 intersect with each other, the first fixed member 4, the second fixed member 5, and the first movable member 20. And the second movable member 21 is disposed).

第1の固定部材4は、その下面中央部に一体化された第1の梁15を介して第1の可動部材20を支持し、第2の固定部材5は、その上面中央部に一体化された第2の梁16を介して第2の可動部材21を支持する構造になっている。第1及び第2の梁15、16は、第1及び第2の可動部材20、21に加速度が印加されると、各可動部材15、16を加速度検出軸方向(X軸方向)へ変位させるように変形可能な可撓性を有する構造を有している。第1の応力感応素子30は、第1の固定部材4の上面と第2の可動部材21の上面とによって両固定端32、33を夫々支持され、第2の応力感応素子31は、第2の固定部材5の下面と第1の可動部材20の下面とによって両固定端35、36を夫々支持されている。   The first fixing member 4 supports the first movable member 20 via the first beam 15 integrated at the center of the lower surface, and the second fixing member 5 is integrated at the center of the upper surface. The second movable member 21 is supported through the second beam 16 formed. When acceleration is applied to the first and second movable members 20 and 21, the first and second beams 15 and 16 displace the movable members 15 and 16 in the acceleration detection axis direction (X-axis direction). Thus, it has a flexible structure that can be deformed. The first stress sensitive element 30 is supported at both fixed ends 32 and 33 by the upper surface of the first fixed member 4 and the upper surface of the second movable member 21, respectively. Both fixed ends 35 and 36 are supported by the lower surface of the fixed member 5 and the lower surface of the first movable member 20, respectively.

直方体状の第1の固定部材4の上部隅には、第1の応力感応素子30の一方の固定端32を所定の位置に固定する素子支持部6が形成されている。素子支持部6は、固定端32下面を支持する支持面6aと、固定端32の周縁を支持するL字突状のストッパ部6bとからなり、支持面6aのX軸方向の寸法は、第1の応力感応素子30の振動を妨げないように第1の応力感応素子30の固定端32の長さ(X軸方向)と同程度とする。また、直方体状の第2の可動部材21の上部で奥行き方向(Y軸方向)の端部には第1の応力感応素子30の固定端33を所定の位置で位置決めするためのストッパ23が形成されている。さらに、第1の応力感応素子30の振動を妨げないように、第1の感応素子30の振動ビーム34の下部に相当する第2の可動部材21の上端を研削し、第1の応力感応素子30の振動ビーム34と第2の可動部材21の上端との間に段差部24を形成する。第1の固定部材4の上部隅に形成した支持面6aと、第2の可動部材21の上面とを結ぶ平面は、加速度検出軸方向(X軸方向)と平行になるように形成され、それらの面に第1の感応素子30の両固定端32、33を接着固定する。   At the upper corner of the first fixing member 4 having a rectangular parallelepiped shape, an element support 6 that fixes one fixing end 32 of the first stress sensitive element 30 at a predetermined position is formed. The element support portion 6 includes a support surface 6a that supports the lower surface of the fixed end 32 and an L-shaped stopper portion 6b that supports the periphery of the fixed end 32. The dimension of the support surface 6a in the X-axis direction is The length of the fixed end 32 of the first stress sensitive element 30 (X-axis direction) is approximately the same so as not to hinder the vibration of the first stress sensitive element 30. Further, a stopper 23 for positioning the fixed end 33 of the first stress sensitive element 30 at a predetermined position is formed at the end of the second movable member 21 having a rectangular parallelepiped shape in the depth direction (Y-axis direction). Has been. Further, the upper end of the second movable member 21 corresponding to the lower part of the vibration beam 34 of the first sensitive element 30 is ground so as not to disturb the vibration of the first stress sensitive element 30, A step portion 24 is formed between 30 vibration beams 34 and the upper end of the second movable member 21. A plane connecting the support surface 6a formed at the upper corner of the first fixed member 4 and the upper surface of the second movable member 21 is formed so as to be parallel to the acceleration detection axis direction (X-axis direction). The fixed ends 32 and 33 of the first sensitive element 30 are bonded and fixed to the surface.

対角線に沿った位置関係に配置された第1及び第2の固定部材4、5を連結する連結部10は、第1及び第2の固定部材4、5の対向する角部同士を一体化し、印加される加速度により変形しないような構造、強度とする。例えば第1及び第2の梁15、16の厚さに対して連結部10の厚さが厚い構成であれば、加速度の印加に伴い、先に第1及び第2の梁15、16が撓むことで慣性力を吸収するので連結部10が撓んでしまうことがない。なお、第1の応力感応素子30の振動エネルギが第1の固定部材4と、連結部10と、第2の固定部材5とを経て第2の応力感応素子31まで伝達しないように、連結部10の一部に破線で示した凹所10aを形成し、連結部10における音響インピーダンスをミスマッチさせることにより、第1の応力感応素子30と第2の応力感応素子31との間での振動エネルギの漏洩に伴う音響結合を低減することができる。   The connecting portion 10 that connects the first and second fixing members 4 and 5 arranged in a positional relationship along the diagonal line integrates the opposing corner portions of the first and second fixing members 4 and 5, and The structure and strength will not be deformed by the applied acceleration. For example, if the thickness of the connecting portion 10 is thicker than the thickness of the first and second beams 15 and 16, the first and second beams 15 and 16 are bent first in accordance with the application of acceleration. As a result, the inertial force is absorbed, so that the connecting portion 10 is not bent. It should be noted that the connecting portion is arranged so that the vibration energy of the first stress sensitive element 30 is not transmitted to the second stress sensitive element 31 through the first fixing member 4, the connecting portion 10, and the second fixing member 5. A recess 10a indicated by a broken line is formed in a part of the line 10, and the acoustic impedance at the connecting portion 10 is mismatched, whereby vibration energy between the first stress sensitive element 30 and the second stress sensitive element 31 is obtained. The acoustic coupling accompanying the leakage of can be reduced.

第1の可動部材20を第1の固定部材4に支持する第1の梁15と、第2の可動部材21を第2の固定部材5に支持する第2の梁16は、加速度検出軸方向(X軸方向)と直交する奥行き方向(Y方向)への第1及び第2の可動部材の変位を阻止するような構造にする。つまり、第1及び第2の梁15、16の奥行き方向の寸法は、加速度検出軸方向(X軸方向)への夫々の幅寸法(厚さ)以上の長さを有するように形成する。また、第1及び第2の梁15、16の形状は、加速度検出軸方向と直交する奥行き方向の両面が双曲線状に凹んだ形状に形成する。これは、加速度が印加された際に加速度検出軸方向に撓み易いようにするためである。   The first beam 15 that supports the first movable member 20 on the first fixed member 4 and the second beam 16 that supports the second movable member 21 on the second fixed member 5 are in the acceleration detection axial direction. The structure is such that displacement of the first and second movable members in the depth direction (Y direction) orthogonal to the (X axis direction) is prevented. That is, the first and second beams 15 and 16 are formed so that the dimension in the depth direction is longer than the width dimension (thickness) in the acceleration detection axis direction (X-axis direction). The first and second beams 15 and 16 are formed in a shape in which both surfaces in the depth direction perpendicular to the acceleration detection axis direction are recessed in a hyperbola shape. This is to facilitate bending in the direction of the acceleration detection axis when acceleration is applied.

直方体状の第2の固定部材5の下部隅には、第2の応力感応素子31の一方の固定端35を所定の位置にて固定する素子支持部7が形成されている。素子支持部7は、固定端35の一面を支持する支持面7aと、固定端35の周縁を支持する突状としてのストッパ部7bとからなり、支持面7aのX軸方向の寸法は、第2の応力感応素子31の振動を妨げないように第2の応力感応素子31の固定端の長さ(X軸方向)と同程度とする。また、直方体状の第1の可動部材20の下部で奥行き方向(Y軸方向)の端部に第2の応力感応素子31の他方の固定端36を所定の位置で位置決めするためのストッパを形成すると共に、第2の応力感応素子31の振動を妨げないように、第2の感応素子31の振動ビーム37の上部に当たる第1の可動部材20の下端を研削し、第2の応力感応素子31の振動ビーム37と第1の可動部材21の下端との間に段差部22を形成する。第2の固定部材5の下部隅に形成した素子支持部7の支持面7aと、第1の可動部材20の上面とを結ぶ平面は、加速度検出軸方向(X軸方向)に平行になるように形成され、それらの面に第2の感応素子31の両固定端35、36を接着固定する。
なお、図1の説明では第1及び第2の固定部材4、5と、第1及び第2の可動部材20、21との形状を直方体として説明したが、必ずしも直方体である必要はない。第1及び第2の応力感応素子30、31が、夫々第1及び第2の固定部材4、5と、第1及び第2の可動部材21、20とに固定され、且つ加速度検出軸方向に平行になるように形成された形状であればよい。
An element support 7 for fixing one fixed end 35 of the second stress sensitive element 31 at a predetermined position is formed at the lower corner of the rectangular parallelepiped second fixing member 5. The element support portion 7 includes a support surface 7a that supports one surface of the fixed end 35, and a protruding stopper portion 7b that supports the periphery of the fixed end 35. The dimension of the support surface 7a in the X-axis direction is as follows. The length of the fixed end of the second stress sensitive element 31 (X-axis direction) is approximately the same so as not to hinder the vibration of the second stress sensitive element 31. In addition, a stopper for positioning the other fixed end 36 of the second stress sensitive element 31 at a predetermined position is formed at the end in the depth direction (Y-axis direction) below the first movable member 20 having a rectangular parallelepiped shape. In addition, the lower end of the first movable member 20 that hits the upper part of the vibration beam 37 of the second sensitive element 31 is ground so as not to disturb the vibration of the second stress sensitive element 31, and the second stress sensitive element 31. A step portion 22 is formed between the vibration beam 37 and the lower end of the first movable member 21. A plane connecting the support surface 7a of the element support portion 7 formed at the lower corner of the second fixed member 5 and the upper surface of the first movable member 20 is parallel to the acceleration detection axis direction (X-axis direction). The two fixed ends 35 and 36 of the second sensitive element 31 are bonded and fixed to those surfaces.
In the description of FIG. 1, the shapes of the first and second fixing members 4 and 5 and the first and second movable members 20 and 21 are described as a rectangular parallelepiped, but the shape is not necessarily a rectangular parallelepiped. The first and second stress sensitive elements 30 and 31 are fixed to the first and second fixed members 4 and 5 and the first and second movable members 21 and 20, respectively, and in the acceleration detection axis direction. Any shape formed so as to be parallel may be used.

図1に示した第1の実施形態に係る加速度検知ユニット1では、第1(第2)の応力感応素子30(31)は、2つの固定端32、33(35、36)及び各固定端間を連設する2つの振動ビームを備えた圧電基板からなる応力感応部34(37)と、該圧電基板の振動領域上に形成した励振電極と、を備えた双音叉型水晶振動素子を用いている。
双音叉型水晶振動素子は、伸張・圧縮応力に対する感度が良好であり、高度計用、或いは深度計用の応力感応素子として使用した場合には分解能力が優れるために僅かな気圧差から高度差、深度差を知ることができる。また、双音叉型水晶振動素子が呈する周波数温度特性は、上に凸の二次曲線となり、その頂点温度が常温(25℃)になるように各パラメータを設定する。
In the acceleration detection unit 1 according to the first embodiment shown in FIG. 1, the first (second) stress sensitive element 30 (31) includes two fixed ends 32 and 33 (35 and 36) and each fixed end. A double tuning fork type crystal vibrating element provided with a stress sensitive part 34 (37) made of a piezoelectric substrate provided with two vibrating beams connected in series and an excitation electrode formed on a vibrating region of the piezoelectric substrate is used. ing.
The double tuning fork type quartz vibrating element has good sensitivity to tensile and compressive stress, and when used as a stress sensitive element for altimeters or depth gauges, it has excellent decomposability, so a slight pressure difference to an altitude difference, You can know the depth difference. Further, the frequency temperature characteristic exhibited by the double tuning fork type crystal resonator element is an upwardly convex quadratic curve, and each parameter is set so that the apex temperature becomes room temperature (25 ° C.).

双音叉型水晶振動素子の2本の振動ビームに外力Fを加えたときの共振周波数fFは以下の如くである。
F=f0(1−(KL2F)/(2EI))1/2 (1)
ここで、f0は外力がないときの双音叉型水晶振動素子の共振周波数、Kは基本波モードによる定数(=0.0458)、Lは振動ビームの長さ、Eは縦弾性定数、Iは断面2次モーメントである。断面2次モーメントIはI=dw3/12より、式(1)は次式のように変形することができる。ここで、dは振動ビームの厚さ、wは幅である。
F=f0(1−SFσ)1/2 (2)
但し、応力感度SFと、応力σとは夫々次式で表される。
F=12(K/E)(L/w)2 (3)
σ=F/(2A) (4)
ここで、Aは振動ビームの断面積(=w・d)である。以上から双音叉型振動子に作用する力Fを圧縮方向のとき負、伸張方向(引張り方向)を正としたとき、力Fと共振周波数fFの関係は、力Fが圧縮力で共振周波数fFが減少し、伸張(引張り)力では増加する。また応力感度SFは振動ビームのL/wの2乗に比例する。しかし、応力感応素子としては、双音叉型水晶振動子に限らず、伸張・圧縮応力によって周波数が変化する圧電振動素子であればどのようなものを用いても良い。
また、応力と頂点温度との関係は、双音叉型水晶振動素子に伸張応力を付加すると頂点温度は低音側へシフトし、圧縮応力を加えると高温側へシフトする特性を有している。
The resonance frequency f F when the external force F is applied to the two vibrating beams of the double tuning fork type quartz vibrating element is as follows.
f F = f 0 (1- (KL 2 F) / (2EI)) 1/2 (1)
Here, f 0 is the resonance frequency of the double tuning fork type quartz vibrating element when there is no external force, K is a constant in the fundamental wave mode (= 0.0458), L is the length of the vibrating beam, E is the longitudinal elastic constant, and I is the cross section. Second moment. Second moment I are from I = dw 3/12, the equation (1) can be modified as follows. Here, d is the thickness of the vibration beam, and w is the width.
f F = f 0 (1−S F σ) 1/2 (2)
However, the stress sensitivity SF and the stress σ are respectively expressed by the following equations.
S F = 12 (K / E) (L / w) 2 (3)
σ = F / (2A) (4)
Here, A is the sectional area (= w · d) of the vibration beam. From the above, when the force F acting on the double tuning fork vibrator is negative in the compression direction and positive in the extension direction (tensile direction), the relationship between the force F and the resonance frequency f F is that the force F is a compression force and the resonance frequency. f F decreases and increases with stretching (tensile) force. The stress sensitivity S F is proportional to the square of the vibration beam L / w. However, the stress-sensitive element is not limited to the double tuning fork type crystal resonator, and any piezoelectric vibration element whose frequency is changed by extension / compression stress may be used.
Further, the relationship between the stress and the apex temperature has a characteristic that the apex temperature shifts to the low tone side when an extensional stress is applied to the double tuning fork type crystal vibrating element and shifts to the high temperature side when compressive stress is applied.

図1に示す加速度検知ユニット1の第1及び第2の可動部材20、21の質量を共に同一に構成し、第1の固定部材4と第2の固定部材5とにX軸の−方向(X軸の矢印方向とは逆方向)の加速度(正の加速度)を印加すると、慣性の法則に基づき第1及び第2の可動部材20、21は、第1及び第2の梁15、16が撓むことによりX軸の+方向(X軸の矢印方向)に僅かに動く。このとき、第1の応力感応素子30には圧縮応力が、第2の応力感応素子31には伸張応力が夫々作用する。つまり、第1の応力感応素子30と、第2の応力感応素子31には、大きさは同じで互いに逆の応力が作用することになる。従って、第1の応力感応素子30の共振周波数は減少し、第2の応力感応素子31の共振周波数は増加するように作用する。   The masses of the first and second movable members 20 and 21 of the acceleration detection unit 1 shown in FIG. 1 are configured to be the same, and the first fixing member 4 and the second fixing member 5 are in the negative direction of the X axis ( When an acceleration (positive acceleration) in the direction opposite to the X-axis arrow direction is applied, the first and second movable members 20 and 21 are connected to the first and second beams 15 and 16 based on the law of inertia. By bending, it moves slightly in the + direction of the X axis (the arrow direction of the X axis). At this time, compressive stress acts on the first stress sensitive element 30 and tensile stress acts on the second stress sensitive element 31. That is, the first stress-sensitive element 30 and the second stress-sensitive element 31 have the same size but opposite stresses. Accordingly, the resonance frequency of the first stress sensitive element 30 is decreased and the resonance frequency of the second stress sensitive element 31 is increased.

例えば、第1及び第2の応力感応素子30、31の無負荷時の共振周波数F1、F2を共に40kHzに設定する。−X軸方向(X軸の矢印方向とは逆方向)にある加速度(α)が印加され、共振周波数F1がf1=38kHzに、F2がf2=42kHzに変化したとする。差周波数の絶対値|f2−f1|は4kHzになる。反対に、+X軸方向(X軸の矢印方向)に同じ大きさの加速度(α)が印加されると、共振周波数F1がf1=42kHzに、共振周波数F2がf2=38kHzに変化する。差周波数の絶対値|f2−f1|は4kHzになる。このように、2つの応力感応素子30、31を用いて差動構造の加速度検知ユニットを構成すると、応力感応素子が1つの場合の変化量2kHzに比べて、加速度検出感度は2倍となる。   For example, the resonance frequencies F1 and F2 when the first and second stress sensitive elements 30 and 31 are not loaded are both set to 40 kHz. It is assumed that acceleration (α) in the −X-axis direction (the direction opposite to the X-axis arrow direction) is applied, and the resonance frequency F1 is changed to f1 = 38 kHz and F2 is changed to f2 = 42 kHz. The absolute value | f2-f1 | of the difference frequency is 4 kHz. On the other hand, when the acceleration (α) having the same magnitude is applied in the + X-axis direction (X-axis arrow direction), the resonance frequency F1 changes to f1 = 42 kHz and the resonance frequency F2 changes to f2 = 38 kHz. The absolute value | f2-f1 | of the difference frequency is 4 kHz. As described above, when the acceleration detection unit having the differential structure is configured by using the two stress sensitive elements 30 and 31, the acceleration detection sensitivity is doubled compared to the change amount 2 kHz in the case of one stress sensitive element.

加速度はベクトルであり、大きさと方向を有している。ベクトルの方向を検出するには、第1及び第2の応力感応素子30、31の無負荷時の共振周波数に差を予め設定しておけばよい。例えば、第1及び第2の応力感応素子30、31の無負荷時の共振周波数F1、F2を夫々40kHz、50kHzとする。−X軸方向(X軸の矢印方向とは逆方向)にある加速度(α)が印加され、共振周波数F1がf1=38kHzに、F2がf2=52kHzに変化したとする。この場合、差周波数(f2−f1)は14kHzになる。反対に、+X軸方向(X軸の矢印方向)に同じ大きさの加速度(α)が印加されると、共振周波数F1がf1=42kHzに、F2がf2=48kHzに変化する。この場合、差周波数(f2−f1)は6kHzになる。このように、無負荷時の差周波数10kHzを中心として、+αの加速度が印加すると14kHz、−αの加速度が印加すると6kHzに変化するため、10kHzを基準として加速度の方向を検知することが可能である。また、差周波数(f2−f1)を用いることにより、他軸方向に大きな力が加えられた場合でも、2つの応力感応素子の感度が同じであれば他軸出力や温度変化に影響した変動周波数を相殺することができるので、加速度を高精度に検出することができる。また、加速度検知ユニットの加速度検出感度を高めるには可動部材の質量を重くすればよい。   Acceleration is a vector and has a magnitude and direction. In order to detect the vector direction, a difference may be set in advance in the resonance frequency when the first and second stress sensitive elements 30 and 31 are not loaded. For example, the resonance frequencies F1 and F2 when the first and second stress sensitive elements 30 and 31 are unloaded are set to 40 kHz and 50 kHz, respectively. It is assumed that acceleration (α) in the −X-axis direction (the direction opposite to the arrow direction of the X-axis) is applied, and the resonance frequency F1 changes to f1 = 38 kHz and F2 changes to f2 = 52 kHz. In this case, the difference frequency (f2-f1) is 14 kHz. On the other hand, when the acceleration (α) having the same magnitude is applied in the + X-axis direction (X-axis arrow direction), the resonance frequency F1 changes to f1 = 42 kHz and F2 changes to f2 = 48 kHz. In this case, the difference frequency (f2-f1) is 6 kHz. In this way, centering on the difference frequency of 10 kHz when no load is applied, the acceleration direction changes to 14 kHz when + α acceleration is applied, and to 6 kHz when −α acceleration is applied. Therefore, it is possible to detect the direction of acceleration with reference to 10 kHz. is there. In addition, by using the difference frequency (f2-f1), even when a large force is applied in the direction of the other axis, if the sensitivity of the two stress sensitive elements is the same, the fluctuation frequency that has affected the output of the other axis and the temperature change Therefore, acceleration can be detected with high accuracy. Moreover, what is necessary is just to make the mass of a movable member heavy in order to raise the acceleration detection sensitivity of an acceleration detection unit.

図2は、加速度センサの回路構成を示す図であり、加速度検知ユニット1の第1及び第2の応力感応素子30、31と、第1及び第2の発振回路OSC1、OSC2と、ミキサMIXと、ローパスフィルタLPFと、周波数−電圧変換器F/Vと、を備えている。いま、加速度が印加されたとき、第1及び第2の発振回路OSC1、OSC2の発振周波数をf1、f2とする。この周波数f1、f2をミキサMIXにて混合すると、(f2−f1)、(f1+f2)等の周波数が得られ、ローパスフィルタLPFを通すことにより差周波数(f2−f1)のみを取り出すことができる。該差周波数(f2−f1)を周波数−電圧変換器F/Vにより電圧に変換して出力OUTとし、この出力電圧を外部の装置により加速度に変換する。   FIG. 2 is a diagram illustrating a circuit configuration of the acceleration sensor, and the first and second stress sensitive elements 30 and 31 of the acceleration detection unit 1, the first and second oscillation circuits OSC1 and OSC2, and the mixer MIX. And a low-pass filter LPF and a frequency-voltage converter F / V. Now, when acceleration is applied, the oscillation frequencies of the first and second oscillation circuits OSC1, OSC2 are set to f1, f2. When the frequencies f1 and f2 are mixed by the mixer MIX, frequencies (f2−f1) and (f1 + f2) are obtained, and only the difference frequency (f2−f1) can be extracted by passing through the low pass filter LPF. The difference frequency (f2-f1) is converted into a voltage by the frequency-voltage converter F / V to be output OUT, and this output voltage is converted into acceleration by an external device.

加速度検知ユニット1の特徴の一つは、第1及び第2の応力感応素子30、31間の干渉を極めて小さくできることである。第1の応力感応素子30により励振される振動エネルギの極一部は固定端から漏洩するが、振動が伝搬する第1の経路は、固定部材4、連結部10、固定部材5、第2の応力感応素子31と伝搬する経路であり、第1の固定部材4と第2の固定部材5とを対角位置関係にした長い伝搬路のため、且つ連結部10での振動エネルギの伝搬経路の幅が狭く音響インピーダンスが異なるために漏洩した振動エネルギが大幅に減衰し、第1及び第2の応力感応素子30、31間の干渉を抑制することができる。第2の経路は、第2の可動部材21、梁16、第2の固定部材、第2の応力感応素子31と伝搬する経路であり、この経路も第1の可動部材20と第2の可動部材21とを対角位置関係にした長い伝搬路のため、且つ第1の梁15と第2の梁16及び連結部10での振動エネルギの伝搬経路の幅が狭く音響インピーダンスが大きく異なるため、漏洩した振動エネルギを大幅に減衰させ、第1及び第2の応力感応素子30、31間の干渉を抑制することができる。   One of the features of the acceleration detection unit 1 is that the interference between the first and second stress sensitive elements 30 and 31 can be made extremely small. A very small part of the vibration energy excited by the first stress sensitive element 30 leaks from the fixed end, but the first path through which the vibration propagates is the fixed member 4, the connecting portion 10, the fixed member 5, and the second It is a path that propagates with the stress sensitive element 31, and is a long propagation path in which the first fixing member 4 and the second fixing member 5 are diagonally positioned, and the propagation path of vibration energy at the connecting portion 10. Since the width is narrow and the acoustic impedance is different, the leaked vibration energy is greatly attenuated, and interference between the first and second stress sensitive elements 30 and 31 can be suppressed. The second path is a path that propagates through the second movable member 21, the beam 16, the second fixed member, and the second stress sensitive element 31, and this path is also the first movable member 20 and the second movable member. Because of the long propagation path in which the member 21 is diagonally positioned and the width of the propagation path of vibration energy in the first beam 15, the second beam 16, and the connecting portion 10 is narrow, the acoustic impedance is greatly different. The leaked vibration energy can be greatly attenuated, and interference between the first and second stress sensitive elements 30 and 31 can be suppressed.

2つ目の特徴は、可動部材20、21の質量を変化させることにより、加速度検知ユニット1の加速度検知ユニットの検出感度を調整できることである。例えば、感度を上げるには可動部材20、21の質量を大きくすればよい。
3つ目の特徴は、上記したように加速度の大きさと方向を測定できる点である。
4つ目の特徴は、従来例のシリコン製の応力感応素子は、数ミクロン撓んでから応力が検出される性能であるのに対し、本加速度検知ユニット1では小さな加速度による梁15、16の極微小な撓みも双音叉型水晶振動素子30、31により検出され、応答速度が速く、且つ精度、再現性がよいことである。
5つ目の特徴は、応力感応素子を2つ用いて差動型構造の加速度検知ユニット1を構成しているため、2つの応力感応素子に同一感度の素子を用いれば、他軸、例えばY軸方向の加速度に対しては、2つの応力感応素子の周波数変化は同じとなり、2つの周波数の差を用いれば相殺することができる点である。
The second feature is that the detection sensitivity of the acceleration detection unit of the acceleration detection unit 1 can be adjusted by changing the mass of the movable members 20 and 21. For example, the mass of the movable members 20 and 21 may be increased to increase sensitivity.
The third feature is that the magnitude and direction of acceleration can be measured as described above.
The fourth feature is that the conventional stress sensing element made of silicon is capable of detecting stress after being bent by several microns, whereas in the present acceleration detection unit 1, the beams 15 and 16 are slightly affected by small acceleration. Even small deflections are detected by the double tuning fork type crystal vibrating elements 30 and 31, and the response speed is fast, and the accuracy and reproducibility are good.
The fifth feature is that the acceleration detection unit 1 having a differential structure is configured by using two stress sensitive elements. Therefore, if two stress sensitive elements have the same sensitivity, the other axis, for example, Y With respect to the acceleration in the axial direction, the frequency changes of the two stress sensitive elements are the same, and can be offset by using the difference between the two frequencies.

図3(a)、(b)は、図1に示す加速度検知ユニット1を横に倒して構成した加速度センサ40の側面図と、平面図である。加速度センサ40は、加速度検知ユニット1と、加速度検知ユニット1を気密的に封止するハウジング50と、第1及び第2の応力感応素子30、31に形成した電極端子38とハウジング50の一部である電極形成部60とを電気的に接続するためのボンディングワイヤ65とを備えている。その他、加速度センサを構成する為の発振回路とミキサと、ローパスフィルタと、をハウジング50の内部または外部に備えている。尚、2つの発振回路と、ミキサと、ローパスフィルタとをハウジング50の内部に載置した場合は、ハウジング50の内部配線及びワイヤ65にて発振回路と加速度検知ユニット1とを電気的に接続する。そして周波数−電圧変換機F/Vの出力端子またはローパスフィルタの出力端子とハウジング50の外部端子52とをハウジング50の内部配線を介して電気的に接続する。なお、加速度センサ40のハウジング50には蓋51が取り付けられて内部が気密封止される。   FIGS. 3A and 3B are a side view and a plan view of an acceleration sensor 40 configured by tilting the acceleration detection unit 1 shown in FIG. 1 sideways. The acceleration sensor 40 includes an acceleration detection unit 1, a housing 50 that hermetically seals the acceleration detection unit 1, electrode terminals 38 formed on the first and second stress sensitive elements 30 and 31, and a part of the housing 50. A bonding wire 65 for electrically connecting the electrode forming unit 60. In addition, an oscillation circuit, a mixer, and a low-pass filter for constituting the acceleration sensor are provided inside or outside the housing 50. When the two oscillation circuits, the mixer, and the low-pass filter are mounted inside the housing 50, the oscillation circuit and the acceleration detection unit 1 are electrically connected by the internal wiring of the housing 50 and the wire 65. . Then, the output terminal of the frequency-voltage converter F / V or the output terminal of the low-pass filter and the external terminal 52 of the housing 50 are electrically connected through the internal wiring of the housing 50. A lid 51 is attached to the housing 50 of the acceleration sensor 40 so that the inside is hermetically sealed.

図4は、本発明の第2の実施形態に係る加速度検知ユニット2の構造を示す斜視図である。図1と同一構造の部材には同じ符号を付して説明する。加速度検知ユニット2は、加速度の印加によって変位しない直方体状の第1及び第2の固定部材4、5と、第1及び第2の固定部材4、5に対して第1及び第2の梁15、16を介して夫々支持される直方体状の第1及び第2の可動部材20、21と、応力感応部34、37及び応力感応部の両端部に一体化された固定端32、33、35、36を夫々有した第1及び第2の応力感応素子30、31と、を備えている。第1の固定部材4と第2の固定部材5とは、対角位置関係に配置されると共に薄い直方体状の連結部10によって一体化されている。第1の可動部材20と、第2の可動部材21とは、各固定部材4、5によって形成される対角スペースS内に配置されている第1の固定部材4と第2の固定部材5とを結ぶ線と、第1の可動部材20と第2の可動部材21とを結ぶ線とが交差するように第1の固定部材4と第2の固定部材5と第1の可動部材20及び第2の可動部材21とが配置されている)。   FIG. 4 is a perspective view showing the structure of the acceleration detection unit 2 according to the second embodiment of the present invention. Components having the same structure as in FIG. The acceleration detection unit 2 includes a rectangular parallelepiped first and second fixing members 4 and 5 that are not displaced by application of acceleration, and first and second beams 15 with respect to the first and second fixing members 4 and 5. , 16 are respectively supported by the rectangular parallelepiped first and second movable members 20 and 21, stress sensitive portions 34 and 37, and fixed ends 32, 33 and 35 integrated at both ends of the stress sensitive portion. , 36, and first and second stress sensitive elements 30, 31, respectively. The 1st fixing member 4 and the 2nd fixing member 5 are integrated by the thin rectangular parallelepiped connection part 10 while arrange | positioning at diagonal position relationship. The first movable member 20 and the second movable member 21 are a first fixed member 4 and a second fixed member 5 that are arranged in a diagonal space S formed by the fixed members 4 and 5. The first fixed member 4, the second fixed member 5, the first movable member 20, and the line connecting the first movable member 20 and the second movable member 21 intersect with each other. The second movable member 21 is disposed).

第1の固定部材4は、第1の梁15を介して第1の可動部材20を支持し、第2の固定部材5は、第2の梁16を介して第2の可動部材21を支持する。第1及び第2の梁15、16は、第1及び第2の可動部材20、21に加速度が印加されると各可動部材20、21を加速度検出軸方向へ変位させるよう変形可能な可撓性を有する構造に形成される。そして、第1の応力感応素子30は、第1の固定部材4と、第1の可動部材20とによって両固定端32、33を夫々支持されると共に、第2の応力感応素子31は、第2の固定部材5と、第2の可動部材21とによって両固定端35、36を夫々支持されている。   The first fixed member 4 supports the first movable member 20 via the first beam 15, and the second fixed member 5 supports the second movable member 21 via the second beam 16. To do. The first and second beams 15 and 16 are flexible and can be deformed so as to displace the movable members 20 and 21 in the acceleration detection axis direction when acceleration is applied to the first and second movable members 20 and 21. It is formed in the structure which has property. The first stress sensitive element 30 is supported by the first fixed member 4 and the first movable member 20 at both fixed ends 32 and 33, and the second stress sensitive element 31 is Both fixed ends 35 and 36 are supported by the two fixed members 5 and the second movable member 21, respectively.

直方体状の第1の固定部材4の加速度検出軸方向(X軸)の右側面には、第1の応力感応素子30の一方の固定端32を所定の位置にて固定する素子支持部8が形成されている。素子支持部8は、平坦部な支持面8aと一段低い段差部8bとからなり、段差部8bのZ軸方向の寸法は、第1の応力感応素子30の振動を妨げないように第1の応力感応素子30の固定端32の長さ(Z軸方向)と同程度とする。また、第1の可動部材20の右側面に、第1の応力感応素子30を所定の位置に固定するための素子支持部25が形成されている。さらに、第1の応力感応素子30の振動を妨げないように、第1の感応素子30の振動ビーム34に相当する第1の可動部材20の右側面を研削し、第1の応力感応素子30の振動ビーム34と第1の可動部材20の右側面との間に間隙25aを形成する。第1の固定部材4の右側面に形成した平端部8aの面と、第1の可動部材20の右側面に形成した素子支持部25の面とを結ぶ平面は、加速度検出軸方向(X軸方向)に直交するように形成され、それらの面に第1の感応素子30の両固定端32、33を接着固定する。
なお、図示しないが、図1の実施形態におけるストッパ23に相当する突起を設けるのが好ましい。
On the right side surface of the rectangular parallelepiped first fixing member 4 in the acceleration detection axis direction (X axis), there is an element support portion 8 that fixes one fixed end 32 of the first stress sensitive element 30 at a predetermined position. Is formed. The element support portion 8 includes a flat support surface 8a and a stepped portion 8b that is one step lower. The dimension of the stepped portion 8b in the Z-axis direction does not hinder the vibration of the first stress sensitive element 30. The length is approximately the same as the length (Z-axis direction) of the fixed end 32 of the stress sensitive element 30. Further, an element support portion 25 for fixing the first stress sensitive element 30 at a predetermined position is formed on the right side surface of the first movable member 20. Further, the right side surface of the first movable member 20 corresponding to the vibration beam 34 of the first sensitive element 30 is ground so as not to hinder the vibration of the first stress sensitive element 30, and the first stress sensitive element 30. A gap 25 a is formed between the vibrating beam 34 and the right side surface of the first movable member 20. A plane connecting the surface of the flat end portion 8a formed on the right side surface of the first fixed member 4 and the surface of the element support portion 25 formed on the right side surface of the first movable member 20 is an acceleration detection axis direction (X axis). The fixed ends 32 and 33 of the first sensitive element 30 are bonded and fixed to those surfaces.
Although not shown, it is preferable to provide a protrusion corresponding to the stopper 23 in the embodiment of FIG.

直方体状の第2の固定部材5の加速度検出軸方向(X軸)の左側面には、第2の応力感応素子31の一方の固定端35を所定の位置にて固定する素子支持部9が形成されている。素子支持部9は、平坦部9aと段差部9bとからなり、段差部9bのZ軸方向の寸法は、第2の応力感応素子31の振動を妨げないように第2の応力感応素子31の固定端35の長さ(Z軸方向)と同程度とする。また、第2の可動部材21の左側面に、第2の応力感応素子31を所定の位置に固定するための素子支持部26が形成されている。さらに、第2の応力感応素子31の振動を妨げないように、第2の感応素子31の振動ビーム37に相当する第2の可動部材21の左側面を研削し、第2の応力感応素子31の振動ビーム37と第2の可動部材21の左側面との間に間隙26aを形成する。第2の固定部材5の左側面に形成した平端部9aの面と、第2の可動部材21の左側面に形成した素子支持部26の面とを結ぶ平面は、加速度検出軸方向(X軸方向)に直交するように形成され、それらの面に第2の感応素子31の両固定端35、36を接着固定する。   On the left side surface in the acceleration detection axis direction (X-axis) of the rectangular parallelepiped second fixing member 5 is an element support portion 9 that fixes one fixing end 35 of the second stress sensitive element 31 at a predetermined position. Is formed. The element support portion 9 includes a flat portion 9a and a step portion 9b. The dimension of the step portion 9b in the Z-axis direction of the second stress sensitive element 31 does not hinder the vibration of the second stress sensitive element 31. The length is approximately the same as the length of the fixed end 35 (Z-axis direction). An element support 26 for fixing the second stress sensitive element 31 at a predetermined position is formed on the left side surface of the second movable member 21. Further, the left side surface of the second movable member 21 corresponding to the vibration beam 37 of the second sensitive element 31 is ground so as not to disturb the vibration of the second stress sensitive element 31, and the second stress sensitive element 31 is ground. A gap 26 a is formed between the vibration beam 37 and the left side surface of the second movable member 21. A plane connecting the surface of the flat end portion 9a formed on the left side surface of the second fixing member 5 and the surface of the element support portion 26 formed on the left side surface of the second movable member 21 is an acceleration detection axis direction (X axis). The two fixed ends 35 and 36 of the second sensitive element 31 are bonded and fixed to those surfaces.

図4に示した第2の実施例の加速度検知ユニット2から連結部10を取り除いて、2つの別個の加速度検知ユニットとし、第1及び第2の固定部材4、5をそれぞれハウジングに固定して加速度センサを構成しても、差動型の加速度センサとして機能させることができる。   The connecting portion 10 is removed from the acceleration detection unit 2 of the second embodiment shown in FIG. 4 to obtain two separate acceleration detection units, and the first and second fixing members 4 and 5 are fixed to the housing, respectively. Even if the acceleration sensor is configured, it can function as a differential acceleration sensor.

本発明に係る加速度検知ユニットの構造を示した概略斜視図。The schematic perspective view which showed the structure of the acceleration detection unit which concerns on this invention. 加速度センサの回路構成を示す回路図。The circuit diagram which shows the circuit structure of an acceleration sensor. 加速度センサの構成を示す側面図及び平面図。The side view and top view which show the structure of an acceleration sensor. 第2の実施形態の加速度検知ユニットの構造を示した概略斜視図。The schematic perspective view which showed the structure of the acceleration detection unit of 2nd Embodiment. 従来の一体形プッシュプル力変換器の構成図。The block diagram of the conventional integrated push-pull force converter.

符号の説明Explanation of symbols

1、2 加速度検知ユニット、4、5 固定部材、6、7、8、9、25、26 素子支持部、6a 支持面 、6b ストッパ部、8a 平坦部、8b 段差部、10 連結部、15、16 梁、20、21 可動部材、22、24 段差部、23 ストッパ、25a、26a 間隙、30、31 応力感応素子、32、33、35、36 固定端、34、37 応力感応部、38 電極端子、40 加速度センサ、50 ハウジング、51 蓋、52 外部端子、60 電極形成部、65 ボンディングワイヤ、OSC1、OSC2 発振回路、MIX ミキサ、LPF ローパスフィルタ、F/V 周波数−電圧変換器   1, 2 Acceleration detection unit 4, 5, fixing member 6, 7, 8, 9, 25, 26 element support part 6 a support surface 6 b stopper part 8 a flat part 8 b step part 10 connection part 15 16 Beam, 20, 21 Movable member, 22, 24 Stepped portion, 23 Stopper, 25a, 26a Gap, 30, 31 Stress sensitive element, 32, 33, 35, 36 Fixed end, 34, 37 Stress sensitive portion, 38 Electrode terminal , 40 Acceleration sensor, 50 Housing, 51 Lid, 52 External terminal, 60 Electrode forming part, 65 Bonding wire, OSC1, OSC2 Oscillator, MIX mixer, LPF low-pass filter, F / V frequency-voltage converter

Claims (8)

加速度の印加によって変位しない第1及び第2の固定部材と、前記第1及び第2の固定部材に第1及び第2の梁にて夫々支持される第1及び第2の可動部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した第1及び第2の応力感応素子と、を備え、
前記第1の固定部材と前記第2の固定部材とは、対角位置関係で配置されると共に連結部によって一体化され、
前記第1の可動部材と前記第2の可動部材とは、前記各固定部材によって形成される対角スペース内に配置され、
前記第1の固定部材は、前記第1の梁を介して前記第1の可動部材を支持し、
前記第2の固定部材は、前記第2の梁を介して前記第2の可動部材を支持し、
前記第1及び第2の梁は、前記第1及び第2の可動部材に加速度が印加されると前記各可動部材を加速度検出軸方向へ変位させるよう変形可能な可撓性を有する構成であり、
前記第1の応力感応素子は、前記第1の固定部材と前記第2の可動部材によって両固定端を夫々支持され、前記第2の応力感応素子は、前記第2の固定部材と前記第1の可動部材によって両固定端を夫々支持されていることを特徴とする加速度検知ユニット。
First and second fixed members that are not displaced by application of acceleration; first and second movable members that are supported by the first and second fixed members by first and second beams; and stress. First and second stress sensitive elements having fixed ends integrated at both ends of the sensitive part and the stress sensitive part,
The first fixing member and the second fixing member are arranged in a diagonal positional relationship and integrated by a connecting portion,
The first movable member and the second movable member are arranged in a diagonal space formed by the respective fixed members,
The first fixed member supports the first movable member via the first beam,
The second fixed member supports the second movable member via the second beam,
The first and second beams have a flexible structure that can be deformed so as to displace each movable member in the acceleration detection axis direction when acceleration is applied to the first and second movable members. ,
The first stress-sensitive element is supported at both fixed ends by the first fixed member and the second movable member, respectively, and the second stress-sensitive element includes the second fixed member and the first fixed member. The acceleration detecting unit is characterized in that both fixed ends are respectively supported by movable members.
加速度の印加によって変位しない第1及び第2の固定部材と、前記第1及び第2の固定部材に第1及び第2の梁にて夫々支持される第1及び第2の可動部材と、応力感応部及び該応力感応部の両端部に一体化された固定端を有した第1及び第2の応力感応素子と、を備え、
前記第1の固定部材と前記第2の固定部材とは、対角位置関係で配置されると共に連結部によって一体化され、
前記第1の可動部材と前記第2の可動部材とは、前記各固定部材によって形成される対角スペース内に配置され、
前記第1の固定部材は、前記第1の梁を介して前記第1の可動部材を支持し、
前記第2の固定部材は、前記第2の梁を介して前記第2の可動部材を支持し、
前記第1及び第2の梁は、前記第1及び第2の可動部材に加速度が印加されると前記各可動部材を加速度検出軸方向へ変位させるよう変形可能な可撓性を有する構成であり、
前記第1の応力感応素子は、前記第1の固定部材と前記第1の可動部材によって両固定端を夫々支持され、前記第2の応力感応素子は、前記第2の固定部材と前記第2の可動部材によって両固定端を夫々支持されていることを特徴とする加速度検知ユニット。
First and second fixed members that are not displaced by application of acceleration; first and second movable members that are supported by the first and second fixed members by first and second beams; and stress. First and second stress sensitive elements having fixed ends integrated at both ends of the sensitive part and the stress sensitive part,
The first fixing member and the second fixing member are arranged in a diagonal positional relationship and integrated by a connecting portion,
The first movable member and the second movable member are arranged in a diagonal space formed by the respective fixed members,
The first fixed member supports the first movable member via the first beam,
The second fixed member supports the second movable member via the second beam,
The first and second beams have a flexible structure that can be deformed so as to displace each movable member in the acceleration detection axis direction when acceleration is applied to the first and second movable members. ,
The first stress sensitive element is supported at both fixed ends by the first fixed member and the first movable member, respectively, and the second stress sensitive element is configured by the second fixed member and the second fixed member. The acceleration detecting unit is characterized in that both fixed ends are respectively supported by movable members.
前記第1及び第2の梁の奥行き方向の寸法は、前記加速度検出軸方向の前記第1及び第2の梁の幅の寸法以上の長さを有することを特徴とする請求項1又は2に記載の加速度検知ユニット。   The dimension in the depth direction of the first and second beams has a length equal to or greater than the width dimension of the first and second beams in the acceleration detection axis direction. The described acceleration detection unit. 前記第1及び第2の梁の形状は、前記加速度検出軸方向と直交する奥行き方向へ延びる面が双曲線状に凹んだ形状を備えていることを特徴とする請求項1又は2に記載の加速度検知ユニット。   The acceleration according to claim 1 or 2, wherein the first and second beams have a shape in which a surface extending in a depth direction orthogonal to the acceleration detection axis direction is recessed in a hyperbola shape. Detection unit. 前記第1及び第2の応力感応素子は、2つの前記固定端、及び各固定端間を連設する振動領域を備えた圧電基板からなる応力感応部と、該圧電基板の振動領域上に形成した励振電極と、を備えた圧電振動素子であることを特徴とする請求項1乃至4の何れか一項に記載の加速度検知ユニット。   The first and second stress-sensitive elements are formed on the vibration region of the piezoelectric substrate, the stress-sensitive portion including a piezoelectric substrate having two fixed ends and a vibration region continuously connecting the fixed ends. 5. The acceleration detection unit according to claim 1, wherein the acceleration detection unit is a piezoelectric vibration element including the excitation electrode. 前記第1及び第2の応力感応素子は、2つの前記固定端、及び各固定端間を連設する2つの振動ビームを備えた圧電基板からなる応力感応部と、該圧電基板の振動領域上に形成した励振電極と、を備えた双音叉型圧電振動素子であることを特徴とする請求項1乃至4の何れか一項に記載の加速度検知ユニット。   The first and second stress-sensitive elements include a stress-sensitive portion including a piezoelectric substrate having two fixed ends and two vibration beams connected between the fixed ends, and a vibration region of the piezoelectric substrate. The acceleration detecting unit according to any one of claims 1 to 4, wherein the acceleration detecting unit is a double tuning fork type piezoelectric vibrating element provided with an excitation electrode. 前記第1及び第2の応力感応素子の共振周波数を互いに異ならせたことを特徴とする請求項1乃至6の何れか一項に記載の加速度検知ユニット。   The acceleration detection unit according to claim 1, wherein resonance frequencies of the first and second stress sensitive elements are made different from each other. 請求項1乃至7の何れか一項に記載された加速度検知ユニットと、該加速度検知ユニットを気密的に封止するハウジングと、前記第1及び第2の応力感応素子を構成する励振電極と夫々電気的に接続される2つの発振回路と、ミキサと、ローパスフィルタと、を備えたことを特徴とする加速度センサ。   The acceleration detection unit according to any one of claims 1 to 7, a housing that hermetically seals the acceleration detection unit, and an excitation electrode that constitutes the first and second stress-sensitive elements, respectively. An acceleration sensor comprising: two oscillation circuits that are electrically connected, a mixer, and a low-pass filter.
JP2007061338A 2007-03-12 2007-03-12 Acceleration detection unit, and acceleration sensor Withdrawn JP2008224345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061338A JP2008224345A (en) 2007-03-12 2007-03-12 Acceleration detection unit, and acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061338A JP2008224345A (en) 2007-03-12 2007-03-12 Acceleration detection unit, and acceleration sensor

Publications (1)

Publication Number Publication Date
JP2008224345A true JP2008224345A (en) 2008-09-25

Family

ID=39843157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061338A Withdrawn JP2008224345A (en) 2007-03-12 2007-03-12 Acceleration detection unit, and acceleration sensor

Country Status (1)

Country Link
JP (1) JP2008224345A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3465597A (en) * 1965-05-25 1969-09-09 Singer General Precision Vibrating-column accelerometer
US4221131A (en) * 1979-05-29 1980-09-09 The Singer Company Vibrating beam accelerometer
JPS59126261A (en) * 1983-01-06 1984-07-20 サンドストランド・デ−タ・コントロ−ル・インコ−ポレ−テツド Accelerometer with needle resonator power transducer
JPH048972A (en) * 1990-04-25 1992-01-13 Hitachi Ltd Rotary valve
JPH04361165A (en) * 1991-06-07 1992-12-14 Japan Aviation Electron Ind Ltd Oscillator type accelerometer
US5176031A (en) * 1990-11-05 1993-01-05 Sundstrand Corporation Viscously coupled dual beam accelerometer
US5594170A (en) * 1994-06-15 1997-01-14 Alliedsignal Inc. Kip cancellation in a pendulous silicon accelerometer
JPH10221360A (en) * 1997-01-31 1998-08-21 Tokimec Inc Accelerometer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3465597A (en) * 1965-05-25 1969-09-09 Singer General Precision Vibrating-column accelerometer
US4221131A (en) * 1979-05-29 1980-09-09 The Singer Company Vibrating beam accelerometer
JPS59126261A (en) * 1983-01-06 1984-07-20 サンドストランド・デ−タ・コントロ−ル・インコ−ポレ−テツド Accelerometer with needle resonator power transducer
JPH048972A (en) * 1990-04-25 1992-01-13 Hitachi Ltd Rotary valve
US5176031A (en) * 1990-11-05 1993-01-05 Sundstrand Corporation Viscously coupled dual beam accelerometer
JPH04361165A (en) * 1991-06-07 1992-12-14 Japan Aviation Electron Ind Ltd Oscillator type accelerometer
US5594170A (en) * 1994-06-15 1997-01-14 Alliedsignal Inc. Kip cancellation in a pendulous silicon accelerometer
JPH10221360A (en) * 1997-01-31 1998-08-21 Tokimec Inc Accelerometer

Similar Documents

Publication Publication Date Title
JP5305028B2 (en) pressure sensor
US8297124B2 (en) Pressure sensor
US7915965B2 (en) Oscillator having reduced sensitivity to acceleration
US20120096945A1 (en) Pressure sensor
JP5375624B2 (en) Acceleration sensor and acceleration detection device
JP4973718B2 (en) Pressure detection unit and pressure sensor
US8850896B2 (en) Physical quantity detector
RU2632264C1 (en) Sensor with mobile sensitive component working in mixed vibration and pendular mode, and methods of controlling such sensor
US7856886B2 (en) Pressure sensor having a diaphragm having a pressure-receiving portion receiving a pressure and a thick portion adjacent to the pressure-receiving portion
JP2006170984A (en) System and method for detecting pressure
JP2010243276A (en) Relative pressure sensor, relative pressure measuring device, and relative pressure measuring method
JP2008170203A (en) Acceleration detection unit and acceleration sensor
JP2011169671A (en) Inertia sensor and inertia sensor device
JP2008224345A (en) Acceleration detection unit, and acceleration sensor
JPS60186725A (en) Pressure sensor
JP2014126423A (en) Pressure sensor and vacuum apparatus
JP2008261839A (en) Manufacturing method of acceleration sensing unit
JP5208466B2 (en) Tuning fork type vibration gyro
JP2008197031A (en) Acceleration detecting unit and acceleration sensor
JP2008170166A (en) Acceleration detection unit and acceleration sensor
JP2011149708A (en) Force detection unit and force detector
JP5321812B2 (en) Physical quantity sensor and physical quantity measuring device
JP2013156197A (en) Pressure sensor, pressure gauge, and electronic apparatus
JP5282715B2 (en) Force detection unit and force detection device
JP4848973B2 (en) Acceleration detection unit and acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090723

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A977 Report on retrieval

Effective date: 20110907

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111115