JP2008224189A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2008224189A
JP2008224189A JP2007066870A JP2007066870A JP2008224189A JP 2008224189 A JP2008224189 A JP 2008224189A JP 2007066870 A JP2007066870 A JP 2007066870A JP 2007066870 A JP2007066870 A JP 2007066870A JP 2008224189 A JP2008224189 A JP 2008224189A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
refrigerant
air
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007066870A
Other languages
Japanese (ja)
Inventor
Michihiko Yamamoto
道彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007066870A priority Critical patent/JP2008224189A/en
Priority to CNA2008100857372A priority patent/CN101266082A/en
Priority to KR1020080023914A priority patent/KR100949638B1/en
Publication of JP2008224189A publication Critical patent/JP2008224189A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Defrosting Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device advantageous for defrosting the frost of an air heat exchanger while performing condensation operation in a condensation heat exchanger in a defrosting mode. <P>SOLUTION: This refrigerating cycle device has a compressor 1, the condensation heat exchanger 2, an expansion valve 3, and an evaporation heat exchanger 4. The evaporation heat exchange 4 has the air heat exchanger 41 and a heat source heat exchanger 42. A bypass passage 71 and a bypass valve 72 are arranged for connecting a delivery port 1o of the compressor 1 to the air heat exchanger 41. When performing the defrosting mode, a control part 6 eliminates or reduces a flow rate for supplying a refrigerant to the air heat exchanger 41 while making the refrigerant flow to the heat source heat exchanger 42, and supplies the high-temperature high-pressure refrigerant from the compressor 1 to the air heat exchanger 41 via the bypass passage 71 and the bypass valve 72 by opening the bypass valve 72. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は冷凍サイクル装置に関する。冷凍サイクル装置は、冷媒の圧縮工程、凝縮工程、膨張工程、蒸発工程を行う装置を意味する。   The present invention relates to a refrigeration cycle apparatus. The refrigeration cycle apparatus means an apparatus that performs a refrigerant compression process, a condensation process, an expansion process, and an evaporation process.

冷凍サイクル装置として、冷媒を圧縮させる圧縮工程を行う圧縮機と、圧縮機を経た冷媒を凝縮させる凝縮工程を行う熱交換器と、凝縮工程を経た冷媒を膨張させる膨張弁と、膨張弁を経た冷媒を蒸発させる蒸発工程を行う空気熱交換器(室外熱交換器)とをもつものが知られている。このような冷凍サイクル装置としては特許文献1〜3が挙げられる。   As a refrigeration cycle device, a compressor that performs a compression process that compresses refrigerant, a heat exchanger that performs a condensation process that condenses the refrigerant that has passed through the compressor, an expansion valve that expands the refrigerant that has undergone the condensation process, and an expansion valve One having an air heat exchanger (outdoor heat exchanger) for performing an evaporation process for evaporating the refrigerant is known. Patent Documents 1 to 3 are examples of such a refrigeration cycle apparatus.

このものによれば、圧縮機を経た高温高圧の冷媒は凝縮用熱交換器において凝縮工程を行い、凝縮熱を放出させ、暖房等を行う。凝縮工程を経た冷媒は膨張弁で膨張されて低圧化する。膨張弁により低圧化された冷媒は、蒸発器としての空気熱交換器に至り、蒸発工程を行い、冷媒の気体化が進行する。その後、冷媒は圧縮機に戻り、再び圧縮される。ここで、上記した運転が継続していくと、空気熱交換器付近の空気が空気熱交換器により冷却され、条件によっては、空気の湿分が空気熱交換器の表面に霜を生成することがある。上記したように空気熱交換器の表面における霜が成長すると、空気熱交換器の熱交換能力が低下するため、冷凍サイクル装置の運転に影響を与えるため、除霜を行うことが好ましい。   According to this, the high-temperature and high-pressure refrigerant that has passed through the compressor performs a condensation process in the heat exchanger for condensation, releases the condensation heat, and performs heating and the like. The refrigerant that has undergone the condensing process is expanded by the expansion valve to reduce the pressure. The refrigerant whose pressure has been reduced by the expansion valve reaches an air heat exchanger as an evaporator, performs an evaporation step, and gasification of the refrigerant proceeds. Thereafter, the refrigerant returns to the compressor and is compressed again. Here, as the above operation continues, the air near the air heat exchanger is cooled by the air heat exchanger, and depending on the conditions, the moisture of the air generates frost on the surface of the air heat exchanger. There is. As described above, when frost grows on the surface of the air heat exchanger, the heat exchange capacity of the air heat exchanger is reduced, which affects the operation of the refrigeration cycle apparatus. Therefore, defrosting is preferably performed.

そこで、特許文献1、特許文献2は、圧縮機の吐出ポートと空気熱交換器とを繋ぐバイパス通路をメイン通路の他に設け、バイパス通路にバイパス弁を設けている。そして除霜条件が成立したときには、バイパス弁を開放し、圧縮機の吐出ポートから吐出された高温高圧の気体状の冷媒をバイパス通路を介して空気熱交換器に流すことにより、空気熱交換器の霜を除霜することにしている。   Therefore, in Patent Document 1 and Patent Document 2, a bypass passage connecting the discharge port of the compressor and the air heat exchanger is provided in addition to the main passage, and a bypass valve is provided in the bypass passage. When the defrosting condition is satisfied, the air heat exchanger is opened by opening the bypass valve and allowing the high-temperature and high-pressure gaseous refrigerant discharged from the discharge port of the compressor to flow to the air heat exchanger via the bypass passage. The frost is defrosted.

また、特許文献3は、2個の蒸発器を並列に設け、除霜時には、指令に基づいて吐出ガス冷媒を2個の蒸発器の双方に導入し、2個の蒸発器の霜を除霜することにしている。
特開昭59−219668号公報 特開2001−27452号公報 特許3271296号公報
Further, in Patent Document 3, two evaporators are provided in parallel, and at the time of defrosting, discharge gas refrigerant is introduced into both of the two evaporators based on a command, and the frost of the two evaporators is defrosted. I am going to do it.
JP 59-219668 A JP 2001-27452 A Japanese Patent No. 3271296

しかしながら上記した各特許文献によれば、除霜は必ずしも効率的ではない。更に特許文献3に係る技術によれば、蒸発工程を行う複数の蒸発器が設けられているが、除霜時には、圧縮機の吐出ポートから吐出された高温高圧の気体状の冷媒を逆流させ、バルブを介して2個の蒸発器にそれぞれ供給する。このため除霜時には、2個の蒸発器による蒸発工程が実行されない。ひいては凝縮用熱交換器における凝縮量が制約され、除霜時に冷凍サイクル装置の能力(暖房能力)が大きく低下するおそれがある。   However, according to each patent document mentioned above, defrosting is not necessarily efficient. Furthermore, according to the technique according to Patent Document 3, a plurality of evaporators that perform the evaporation step are provided, but at the time of defrosting, the high-temperature and high-pressure gaseous refrigerant discharged from the discharge port of the compressor is caused to flow backward, Each of the two evaporators is supplied via a valve. For this reason, the evaporation process by two evaporators is not performed at the time of defrosting. As a result, the amount of condensation in the heat exchanger for condensation is restricted, and the capacity (heating capacity) of the refrigeration cycle apparatus may be greatly reduced during defrosting.

本発明は上記した実情に鑑みてなされたものであり、蒸発工程を行う蒸発用熱交換器が、空気と熱交換する空気熱交換器と、熱源からの熱と熱交換する熱源熱交換器とを備える場合において、着霜状態の空気熱交換器に対して除霜しつつも、熱源熱交換器において蒸発工程を実施し、この結果、凝縮用熱交換器における凝縮作用を行いつつ空気熱交換器の霜を除霜させるのに有利な冷凍サイクル装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an evaporation heat exchanger that performs an evaporation process includes an air heat exchanger that exchanges heat with air, a heat source heat exchanger that exchanges heat with heat from a heat source, and the like. When the frosted air heat exchanger is defrosted, the evaporation process is performed in the heat source heat exchanger, and as a result, the air heat exchange is performed while performing the condensing action in the condensing heat exchanger. It is an object of the present invention to provide a refrigeration cycle apparatus that is advantageous for defrosting a vessel.

(1)様相1に係る冷凍サイクル装置は、冷媒を圧縮させる圧縮工程を行う圧縮機と、圧縮機を経た冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器と、凝縮工程を経た冷媒を膨張させる膨張弁と、膨張弁を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器と、除霜モードを実行する制御部とを具備しており、
蒸発工程を行う蒸発用熱交換器は、空気と熱交換する空気熱交換器と、熱源からの熱と熱交換する熱源熱交換器とを備える冷凍サイクル装置において、
凝縮用熱交換器を迂回して圧縮機の吐出ポートと空気熱交換器とを繋ぐバイパス通路と、バイパス通路から空気熱交換器に流れる冷媒の流量を調整するバイパス弁とを具備しており、
除霜モードを実施するにあたり、制御部は、凝縮用熱交換器および膨張弁を経た冷媒を前記熱源熱交換器に流して蒸発工程を実施しつつ、凝縮用熱交換器および膨張弁を経た冷媒を空気熱交換器に供給する流量を無しまたは低減させる操作と、バイパス弁を開放させることにより、圧縮機の吐出ポートから吐出された高温高圧の冷媒をバイパス通路およびバイパス弁を介して空気熱交換器に供給して空気熱交換器を除霜する操作とを実施することを特徴とする。
(1) The refrigeration cycle apparatus according to aspect 1 expands a compressor that performs a compression process that compresses the refrigerant, a heat exchanger for condensation that performs a condensation process that condenses the refrigerant that has passed through the compressor, and a refrigerant that has undergone the condensation process. An expansion valve to evaporate, an evaporating heat exchanger that performs an evaporating process for evaporating the refrigerant that has passed through the expansion valve, and a control unit that executes a defrosting mode,
The evaporation heat exchanger that performs the evaporation step is an refrigeration cycle apparatus including an air heat exchanger that exchanges heat with air, and a heat source heat exchanger that exchanges heat with heat from the heat source.
A bypass passage that bypasses the heat exchanger for condensation and connects the discharge port of the compressor and the air heat exchanger, and a bypass valve that adjusts the flow rate of the refrigerant flowing from the bypass passage to the air heat exchanger,
In carrying out the defrosting mode, the control unit flows the refrigerant that has passed through the heat exchanger for condensation and the expansion valve to the heat source heat exchanger and performs the evaporation step, while the refrigerant that has passed through the heat exchanger for condensation and the expansion valve. Excess or no flow to supply air to the air heat exchanger and open the bypass valve to exchange high-temperature and high-pressure refrigerant discharged from the compressor discharge port via the bypass passage and bypass valve And an operation for defrosting the air heat exchanger by supplying the air to the chamber.

除霜モードにおいては、凝縮用熱交換器および膨張弁を経た冷媒を空気熱交換器に供給する流量を無しまたは低減させる操作を実施する。従って、空気熱交換器における蒸発は制限される。更に、バイパス弁を開放させることにより、圧縮機の吐出ポートから吐出された高温高圧の冷媒(圧縮機で圧縮された冷媒)をバイパス通路およびバイパス弁を介して空気熱交換器に供給する操作を実施する。これにより高温高圧の冷媒が空気熱交換器に供給されるため、空気熱交換器の霜が低減または除去される。   In the defrosting mode, an operation is performed to eliminate or reduce the flow rate of supplying the refrigerant that has passed through the heat exchanger for condensation and the expansion valve to the air heat exchanger. Thus, evaporation in the air heat exchanger is limited. Further, by opening the bypass valve, an operation of supplying high-temperature and high-pressure refrigerant (refrigerant compressed by the compressor) discharged from the discharge port of the compressor to the air heat exchanger via the bypass passage and the bypass valve. carry out. Thereby, since the high-temperature and high-pressure refrigerant is supplied to the air heat exchanger, frost in the air heat exchanger is reduced or removed.

この場合、凝縮用熱交換器および膨張弁を経た冷媒を熱源熱交換器に流すため、熱源熱交換器において蒸発が良好に行われ、冷凍サイクル装置の運転が良好に維持される。凝縮用熱交換器および膨張弁を経た冷媒を空気熱交換器に供給する流量を無しとする場合には、凝縮用熱交換器および膨張弁を経た冷媒(一般的には気液混合状態)と、圧縮機からの高温高圧の冷媒とが空気熱交換器において実質的に混合しない。このため、高温高圧の冷媒が空気熱交換器に集中して流れ、空気熱交換器の霜を効率よく除去できる。   In this case, since the refrigerant having passed through the heat exchanger for condensation and the expansion valve flows to the heat source heat exchanger, the heat source heat exchanger performs evaporation well, and the operation of the refrigeration cycle apparatus is maintained well. When there is no flow rate to supply the refrigerant that has passed through the heat exchanger for condensation and the expansion valve to the air heat exchanger, the refrigerant that has passed through the heat exchanger for condensation and the expansion valve (generally a gas-liquid mixed state) The high-temperature and high-pressure refrigerant from the compressor is not substantially mixed in the air heat exchanger. For this reason, the high-temperature and high-pressure refrigerant flows in a concentrated manner in the air heat exchanger, and frost on the air heat exchanger can be efficiently removed.

(2)様相2に係る冷凍サイクル装置によれば、上記した様相において、空気温度を検知する空気温度センサが設けられており、制御部は、(i)空気温度が相対的に高いときには、空気温度が相対的に低いときよりも除霜モードを実施する単位時間あたりの実施頻度を低め、(ii)空気温度が相対的に低いときには、空気温度が相対的に高いときよりも除霜モードを実施する単位時間あたりの実施頻度を高めることを特徴とする。空気温度が低いほど空気熱交換器に着霜し易く、空気温度が高いほど空気熱交換器に着霜しにくいためである。   (2) According to the refrigeration cycle apparatus according to aspect 2, in the above aspect, the air temperature sensor that detects the air temperature is provided, and the control unit (i) The frequency of performing the defrosting mode per unit time is lower than when the temperature is relatively low, and (ii) when the air temperature is relatively low, the defrosting mode is set lower than when the air temperature is relatively high. It is characterized by increasing the frequency of implementation per unit time. This is because the lower the air temperature, the easier it is to frost on the air heat exchanger, and the higher the air temperature, the more difficult it is to frost on the air heat exchanger.

(3)様相3に係る冷凍サイクル装置によれば、上記した様相において、(i)膨張弁は、凝縮用熱交換器と空気熱交換器との間に設けられた第1膨張弁と、凝縮用熱交換器と熱源熱交換器との間に設けられた第2膨張弁とを備えており、(ii)除霜モードを実施するにあたり、制御部は、第1膨張弁の開度を0にするか、第1膨張弁の開度を通常運転モードの場合よりも減少させると共に、第2膨張弁の開度を通常運転モードの場合よりも増加させることを特徴とする。第1膨張弁の開度を0にするか、第1膨張弁の開度を通常運転モードの場合よりも減少させる。このため、高温高圧の冷媒が空気熱交換器に集中して流れ、空気熱交換器の霜を効率よく除去できる。第2膨張弁の開度を通常運転モードの場合よりも増加させるため、熱源熱交換器に供給される冷媒量が確保され、熱源熱交換器における蒸発工程が良好に実施されるため、冷凍サイクル装置の能力が低下することが抑制されている。   (3) According to the refrigeration cycle apparatus according to aspect 3, in the above aspect, (i) the expansion valve includes a first expansion valve provided between the heat exchanger for condensation and the air heat exchanger, A second expansion valve provided between the heat exchanger for heat and the heat source heat exchanger, and (ii) when performing the defrosting mode, the control unit sets the opening of the first expansion valve to 0. Alternatively, the opening degree of the first expansion valve is decreased as compared with that in the normal operation mode, and the opening degree of the second expansion valve is increased as compared with that in the normal operation mode. The opening degree of the first expansion valve is set to 0, or the opening degree of the first expansion valve is decreased as compared with the case of the normal operation mode. For this reason, the high-temperature and high-pressure refrigerant flows in a concentrated manner in the air heat exchanger, and frost on the air heat exchanger can be efficiently removed. In order to increase the opening degree of the second expansion valve as compared with the case of the normal operation mode, the amount of refrigerant supplied to the heat source heat exchanger is ensured, and the evaporation process in the heat source heat exchanger is favorably performed. It is suppressed that the capability of an apparatus falls.

(4)様相4に係る冷凍サイクル装置によれば、上記した様相において、除霜モードを実施するにあたり、制御部は、(i)除霜モードの初期では、除霜モードの終期の場合よりも第2膨張弁の開度を減少させることにより、熱源熱交換器から吐出される冷媒の温度を除霜モードの終期の場合よりも高め、(ii)除霜モードの終期では、除霜モードの初期の場合よりも第2膨張弁の開度を増加させることにより、熱源熱交換器から吐出される冷媒の温度を除霜モードの初期の場合よりも低下させ、(iii)圧縮機の吸込ポートに吸い込まれる冷媒の温度の変動を抑制することを特徴とする。除霜モードの初期では、着霜状態の空気熱交換器の霜を融解させるため、空気熱交換器から吐出される冷媒の温度が相対的に低い。このため第2膨張弁の開度を相対的に減少させ、熱源熱交換器から吐出される冷媒の温度を相対的に高める。この結果、空気熱交換器から吐出された冷媒と熱源熱交換器から吐出された冷媒とが均温化される。   (4) According to the refrigeration cycle apparatus according to aspect 4, in performing the defrost mode in the above-described aspect, the control unit (i) in the initial stage of the defrost mode, than in the final stage of the defrost mode. By reducing the opening degree of the second expansion valve, the temperature of the refrigerant discharged from the heat source heat exchanger is made higher than in the final stage of the defrost mode, and (ii) at the final stage of the defrost mode, The temperature of the refrigerant discharged from the heat source heat exchanger is made lower than that in the initial stage of the defrosting mode by increasing the opening of the second expansion valve as compared with the initial case, and (iii) the suction port of the compressor It is characterized by suppressing fluctuations in the temperature of the refrigerant sucked into the tank. In the initial stage of the defrosting mode, the frost of the frosted air heat exchanger is melted, so the temperature of the refrigerant discharged from the air heat exchanger is relatively low. For this reason, the opening degree of the second expansion valve is relatively decreased, and the temperature of the refrigerant discharged from the heat source heat exchanger is relatively increased. As a result, the temperature of the refrigerant discharged from the air heat exchanger and the temperature of the refrigerant discharged from the heat source heat exchanger are equalized.

また除霜モードの終期では、空気熱交換器の霜の融解がかなり進行しているため、空気熱交換器から吐出される冷媒の温度が相対的に高い。このため第2膨張弁の開度を相対的に増加させ、熱源熱交換器に供給される冷媒量を増加させる。よって熱源熱交換器から吐出される冷媒の温度を相対的に低下させる。この結果、空気熱交換器から吐出された冷媒と熱源熱交換器から吐出された冷媒が均温化される。この結果、除霜モードの初期と終期において、圧縮機の吸込ポートに吸い込まれる冷媒の温度の変動を抑制することができる。故に圧縮機の部品の耐久性および寿命を向上させることができる。   Further, at the end of the defrosting mode, the melting of frost in the air heat exchanger has progressed considerably, so the temperature of the refrigerant discharged from the air heat exchanger is relatively high. For this reason, the opening degree of the second expansion valve is relatively increased, and the amount of refrigerant supplied to the heat source heat exchanger is increased. Therefore, the temperature of the refrigerant discharged from the heat source heat exchanger is relatively lowered. As a result, the temperature of the refrigerant discharged from the air heat exchanger and the temperature of the refrigerant discharged from the heat source heat exchanger are equalized. As a result, it is possible to suppress fluctuations in the temperature of the refrigerant sucked into the suction port of the compressor in the initial stage and the final stage of the defrost mode. Therefore, the durability and life of the compressor parts can be improved.

(5)様相5に係る冷凍サイクル装置によれば、上記した様相において、空気用熱交換器の温度を検知する熱交温度センサが設けられており、除霜モードを実施するにあたり、制御部は、(i)熱交温度センサの検知温度が相対的に低いときには、熱交温度センサの検知温度が相対的に高いときよりも、第2膨張弁の開度を減少させることにより、熱源熱交換器から吐出される冷媒の温度を、熱交温度センサの検知温度が相対的に高いときよりも高め、(ii)熱交温度センサの検知温度が相対的に高いときには、熱交温度センサの検知温度が相対的に低いときよりも、第2膨張弁の開度を増加させることにより、熱源熱交換器から吐出される冷媒の温度を、熱交温度センサの検知温度が相対的に低いときよりも低下させ、(iii)圧縮機の吸込ポートに吸い込まれる冷媒の温度の変動を抑制することを特徴とする。熱交温度センサの検知温度が相対的に低いとき(例えば、除霜モードの初期)では、空気熱交換器の霜を積極的に融解させるため、空気熱交換器から吐出される冷媒の温度が相対的に低い。このため第2膨張弁の開度を相対的に減少させ、熱源熱交換器に供給される冷媒量を減少させ、熱源熱交換器から吐出される冷媒の温度を相対的に高める。この結果、空気熱交換器から吐出された冷媒と熱源熱交換器から吐出された冷媒が均温化される。   (5) According to the refrigeration cycle apparatus according to aspect 5, in the aspect described above, a heat exchange temperature sensor that detects the temperature of the heat exchanger for air is provided, and in performing the defrost mode, the control unit (I) When the temperature detected by the heat exchange temperature sensor is relatively low, heat source heat exchange is performed by reducing the opening of the second expansion valve, compared to when the temperature detected by the heat exchange temperature sensor is relatively high. The temperature of the refrigerant discharged from the container is higher than when the temperature detected by the heat exchanger temperature sensor is relatively high, and (ii) when the temperature detected by the heat exchanger temperature sensor is relatively high, the temperature detected by the heat exchanger temperature sensor The temperature of the refrigerant discharged from the heat source heat exchanger is increased by increasing the opening of the second expansion valve than when the temperature is relatively low, compared to when the temperature detected by the heat exchange temperature sensor is relatively low. (Iii) Compressor Which comprises suppressing a variation in the temperature of the refrigerant sucked into the suction port. When the detected temperature of the heat exchange temperature sensor is relatively low (for example, at the beginning of the defrosting mode), the frost of the air heat exchanger is actively melted, so that the temperature of the refrigerant discharged from the air heat exchanger is Relatively low. For this reason, the opening degree of the second expansion valve is relatively decreased, the amount of refrigerant supplied to the heat source heat exchanger is decreased, and the temperature of the refrigerant discharged from the heat source heat exchanger is relatively increased. As a result, the temperature of the refrigerant discharged from the air heat exchanger and the temperature of the refrigerant discharged from the heat source heat exchanger are equalized.

また熱交温度センサの検知温度が相対的に高いとき(例えば、除霜モードの終期)では、空気熱交換器の霜の融解がかなり進行しているため、空気熱交換器から吐出される冷媒の温度が相対的に高い。このため第2膨張弁の開度を相対的に増加させ、熱源熱交換器に供給される冷媒量を増加させ、熱源熱交換器から吐出される冷媒の温度を相対的に低める。この結果、空気熱交換器から吐出された冷媒と熱源熱交換器から吐出された冷媒とが均温化される。この結果、除霜モードにおいて、圧縮機の吸込ポートに吸い込まれる冷媒の温度の変動を抑制することができる。このように熱交換温度センサの検知温度の高低に応じて第2膨張弁の開度を調整すれば、熱交換温度センサの検知温度の変動の影響をできるだけ避けつつ、除霜できる。   Further, when the temperature detected by the heat exchange temperature sensor is relatively high (for example, at the end of the defrosting mode), the frost melting of the air heat exchanger has progressed considerably, so that the refrigerant discharged from the air heat exchanger The temperature is relatively high. For this reason, the opening degree of the second expansion valve is relatively increased, the amount of refrigerant supplied to the heat source heat exchanger is increased, and the temperature of the refrigerant discharged from the heat source heat exchanger is relatively lowered. As a result, the temperature of the refrigerant discharged from the air heat exchanger and the temperature of the refrigerant discharged from the heat source heat exchanger are equalized. As a result, in the defrost mode, it is possible to suppress the temperature fluctuation of the refrigerant sucked into the suction port of the compressor. In this way, by adjusting the opening of the second expansion valve according to the detected temperature level of the heat exchange temperature sensor, defrosting can be performed while avoiding the influence of fluctuations in the detected temperature of the heat exchange temperature sensor as much as possible.

(6)様相6に係る冷凍サイクル装置によれば、上記した様相において、空気用熱交換器の温度を検知する熱交温度センサが設けられており、除霜モードを実施するにあたり、制御部は、(i)熱交換温度センサの検知温度が相対的に高いときには、熱交換温度センサの検知温度が相対的に低いときよりもバイパス弁の開度を減少させ、(ii)熱交換温度センサの検知温度が相対的に低いときには、熱交換温度センサの検知温度が相対的に高いときよりも、バイパス弁の開度を増加させることを特徴とする。熱交換温度センサの検知温度が相対的に高いときには、空気熱交換器の霜の融解がかなり進行している。このためバイパス弁の開度を減少させ、バイパス通路から空気熱交換器に流れる高温高圧の冷媒の流量を相対的に低減させる。これに対して熱交換温度センサの検知温度が相対的に低いときには、空気熱交換器の霜の融解があまり進行していない。このためバイパス弁の開度を増加させ、バイパス通路から空気熱交換器に流れる高温高圧の冷媒の流量を相対的に増加させる。これにより着霜状態の空気熱交換器の霜を効果的に除去できる。このように熱交換温度センサの検知温度の高低に応じてバイパス弁の開度を調整すれば、熱交換温度センサの検知温度の変動の影響をできるだけ避けつつ、除霜できる。   (6) According to the refrigeration cycle apparatus according to aspect 6, in the above-described aspect, a heat exchange temperature sensor that detects the temperature of the air heat exchanger is provided, and in performing the defrost mode, the control unit (I) When the detected temperature of the heat exchange temperature sensor is relatively high, the opening degree of the bypass valve is decreased compared to when the detected temperature of the heat exchange temperature sensor is relatively low, and (ii) the heat exchange temperature sensor When the detected temperature is relatively low, the opening degree of the bypass valve is increased more than when the detected temperature of the heat exchange temperature sensor is relatively high. When the temperature detected by the heat exchange temperature sensor is relatively high, the frost melting of the air heat exchanger has progressed considerably. For this reason, the opening degree of the bypass valve is reduced, and the flow rate of the high-temperature and high-pressure refrigerant flowing from the bypass passage to the air heat exchanger is relatively reduced. On the other hand, when the detection temperature of the heat exchange temperature sensor is relatively low, frost melting of the air heat exchanger does not progress much. For this reason, the opening degree of the bypass valve is increased, and the flow rate of the high-temperature and high-pressure refrigerant flowing from the bypass passage to the air heat exchanger is relatively increased. Thereby, the frost of the air heat exchanger in a frosted state can be effectively removed. In this way, if the opening degree of the bypass valve is adjusted according to the detected temperature of the heat exchange temperature sensor, defrosting can be performed while avoiding the influence of fluctuations in the detected temperature of the heat exchange temperature sensor as much as possible.

(7)様相7に係る冷凍サイクル装置によれば、上記した様相において、除霜モードを実施するにあたり、制御部は、(i)冷凍サイクル装置の冷媒循環量が多いときには、冷媒循環量が少ないときよりもバイパス弁の開度を増加させ、(ii)冷媒循環量が少ないときには、冷媒循環量が多いときよりもバイパス弁の開度を減少させることを特徴とする。冷凍サイクル装置の冷媒循環量が多いときには、空気熱交換器に相対的に着霜し易いため、バイパス通路から空気熱交換器に流れる高温高圧の冷媒の流量を相対的に増加させる。これに対して、冷凍サイクル装置の冷媒循環量が少ないときには、空気熱交換器に相対的に着霜し難いため、バイパス通路から空気熱交換器に流れる高温高圧の冷媒の流量を相対的に減少させる。このように当該冷媒循環量に応じてバイパス弁の開度を調整すれば、当該冷媒循環量の変動の影響をできるだけ避けつつ、除霜できる。   (7) According to the refrigeration cycle apparatus according to aspect 7, in performing the defrost mode in the above aspect, the control unit (i) has a small refrigerant circulation amount when the refrigerant circulation amount of the refrigeration cycle apparatus is large. And (ii) when the refrigerant circulation amount is small, the opening degree of the bypass valve is decreased more than when the refrigerant circulation amount is large. When the refrigerant circulation amount of the refrigeration cycle apparatus is large, the air heat exchanger is relatively frosted, so the flow rate of the high-temperature and high-pressure refrigerant flowing from the bypass passage to the air heat exchanger is relatively increased. In contrast, when the refrigerant circulation amount of the refrigeration cycle apparatus is small, it is relatively difficult to form frost on the air heat exchanger, so the flow rate of the high-temperature and high-pressure refrigerant flowing from the bypass passage to the air heat exchanger is relatively reduced. Let If the opening degree of the bypass valve is adjusted according to the refrigerant circulation amount in this way, defrosting can be performed while avoiding the influence of fluctuations in the refrigerant circulation amount as much as possible.

(8)様相8に係る冷凍サイクル装置によれば、上記した様相において、除霜モードを実施するにあたり、制御部は、圧縮機の吐出ポート側の冷媒高圧と圧縮機の吸込ポート側の冷媒低圧との間の圧力差を求め、(i)圧力差が高いときには、圧力差が少ないときよりもバイパス弁の開度を減少させ、(ii)圧力差が低いときには、圧力差が高いときよりもバイパス弁の開度を増加させることを特徴とする。当該圧力差が高いときには、圧力差が少ないときよりも、高温高圧の冷媒がバイパス弁から急激に吐出されるため、バイパス弁の開度を相対的に減少させる。これに対して、当該圧力差が低いときには、圧力差が高いときよりも、高温高圧の冷媒がバイパス弁から急激に吐出されにくいため、バイパス弁の開度を相対的に増加させる。このように当該圧力差に応じてバイパス弁の開度を調整すれば、当該圧力差の変動の影響をできるだけ避けつつ、除霜できる。   (8) According to the refrigeration cycle apparatus according to aspect 8, in performing the defrosting mode in the aspect described above, the control unit sets the refrigerant high pressure on the discharge port side of the compressor and the refrigerant low pressure on the suction port side of the compressor. (I) When the pressure difference is high, decrease the opening of the bypass valve than when the pressure difference is small, and (ii) When the pressure difference is low, than when the pressure difference is high The opening degree of the bypass valve is increased. When the pressure difference is high, the high-temperature and high-pressure refrigerant is more rapidly discharged from the bypass valve than when the pressure difference is small, so the opening degree of the bypass valve is relatively decreased. On the other hand, when the pressure difference is low, the high-temperature and high-pressure refrigerant is less likely to be rapidly discharged from the bypass valve than when the pressure difference is high, so the opening degree of the bypass valve is relatively increased. Thus, if the opening degree of a bypass valve is adjusted according to the said pressure difference, it can defrost, avoiding the influence of the fluctuation | variation of the said pressure difference as much as possible.

本発明によれば、除霜モードにおいて、凝縮用熱交換器および膨張弁を経た冷媒を空気熱交換器に供給する流量を無しまたは低減させる操作を、制御部は実施する。更に、バイパス弁を開放させることにより、圧縮機の吐出ポートから吐出された高温高圧の冷媒をバイパス通路およびバイパス弁を介して空気熱交換器に供給する操作を、制御部は実施する。これにより高温高圧の冷媒が空気熱交換器に供給されるため、空気熱交換器の霜が効率よく低減または除去される。   According to the present invention, in the defrosting mode, the control unit performs an operation of eliminating or reducing the flow rate of supplying the refrigerant having passed through the heat exchanger for condensation and the expansion valve to the air heat exchanger. Further, the controller performs an operation of supplying the high-temperature and high-pressure refrigerant discharged from the discharge port of the compressor to the air heat exchanger through the bypass passage and the bypass valve by opening the bypass valve. Thereby, since the high-temperature and high-pressure refrigerant is supplied to the air heat exchanger, frost in the air heat exchanger is efficiently reduced or removed.

上記した除霜モードを実施しているときには、凝縮用熱交換器および膨張弁を経た冷媒を熱源熱交換器に流し続けるため、熱源熱交換器において蒸発工程が良好に実施され、冷媒蒸発量が確保される。故に、凝縮用熱交換器の凝縮作用(例えば暖房作用)が良好に得られ、冷凍サイクル装置の運転が良好に維持される。   When the defrosting mode described above is performed, the refrigerant that has passed through the heat exchanger for condensation and the expansion valve continues to flow to the heat source heat exchanger, so that the evaporation process is performed well in the heat source heat exchanger, and the amount of refrigerant evaporation is reduced. Secured. Therefore, the condensing action (for example, heating action) of the heat exchanger for condensing can be obtained satisfactorily, and the operation of the refrigeration cycle apparatus can be maintained well.

本発明によれば、蒸発工程を行う蒸発用熱交換器が、空気と熱交換する空気熱交換器と、熱源(例えば加熱水、電気ヒータ、太陽エネルギ、コージェネ)からの熱と熱交換する熱源熱交換器とを備える場合において、空気熱交換器に対して除霜しつつも、熱源熱交換器において蒸発工程を実施する。この結果、凝縮用熱交換器における凝縮作用を行いつつ、空気熱交換器の霜を除霜させるのに有利となる。   According to the present invention, an evaporating heat exchanger that performs an evaporating process includes an air heat exchanger that exchanges heat with air, and a heat source that exchanges heat with heat from a heat source (for example, heating water, electric heater, solar energy, cogeneration). In the case of providing a heat exchanger, the evaporation step is performed in the heat source heat exchanger while defrosting the air heat exchanger. As a result, it is advantageous for defrosting the frost of the air heat exchanger while performing the condensation action in the heat exchanger for condensation.

冷凍サイクル装置は、冷媒の圧縮工程、冷媒の凝縮工程、冷媒の膨張工程、冷媒の蒸発工程の冷凍サイクルを実施する装置であり、加熱機能または冷却機能をもつ。加熱機能としては暖房機能が例示される。冷凍サイクル装置としては、暖房機能をもつ空気調和装置、冷凍装置が例示される。冷凍サイクルの蒸発温度は凍結点以下を意味するものではなく、水の凍結点よりも高温となる形態も含む。冷凍サイクル装置は、通常運転モードを実施しつつ、設定時間(例えば30分間)経過すると、定期的に除霜モードを実施しても良い。また、通常運転モードの開始から設定時間経過すると、除霜モードを実施しても良い。また、着霜判定モードを実施し、着霜有りと判定されるときには、除霜モードを実施しても良い。   The refrigeration cycle apparatus is an apparatus that performs a refrigeration cycle of a refrigerant compression process, a refrigerant condensation process, a refrigerant expansion process, and a refrigerant evaporation process, and has a heating function or a cooling function. The heating function is exemplified as the heating function. Examples of the refrigeration cycle apparatus include an air conditioning apparatus having a heating function and a refrigeration apparatus. The evaporation temperature of the refrigeration cycle does not mean the freezing point or lower, and includes a form in which the temperature is higher than the freezing point of water. The refrigeration cycle apparatus may periodically perform the defrosting mode when a set time (for example, 30 minutes) has elapsed while performing the normal operation mode. Further, the defrosting mode may be performed when a set time has elapsed from the start of the normal operation mode. Further, when the frost determination mode is performed and it is determined that frost is present, the defrost mode may be performed.

蒸発工程を行う蒸発用熱交換器は、空気(外気)と熱交換する室外熱交換器(空気熱交換器)と、熱源からの熱と熱交換する熱源熱交換器とを備える形態が例示される。熱源としては、加熱水、ヒータ、太陽エネルギ、ガスエンジンコージェネ(発電と熱利用)等が例示される。加熱水としては、エンジン冷却水、燃料電池システムにおける温水、貯湯槽の温水が例示される。   Examples of the heat exchanger for evaporation that performs the evaporation step include an outdoor heat exchanger (air heat exchanger) that exchanges heat with air (outside air), and a heat source heat exchanger that exchanges heat with heat from the heat source. The Examples of the heat source include heated water, a heater, solar energy, gas engine cogeneration (power generation and heat utilization), and the like. Examples of the heating water include engine cooling water, hot water in a fuel cell system, and hot water in a hot water tank.

以下、本発明の実施例1について図1を参照して説明する。図1は冷凍サイクル装置(冷却サイクル装置)のシステム図を示す。図1に示すように、冷凍サイクル装置は、気体状の冷媒を圧縮させて高温高圧とする圧縮工程を行う圧縮機1と、圧縮機1を経た高温高圧の冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器2と、凝縮工程を経た冷媒を膨張させて低圧化させる膨張弁3と、膨張弁3を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器4と、膨張弁3の開度を制御する制御部6とを備えている。制御部6はメモリ60とタイマ機能を有するCPU61とをもつ。   Embodiment 1 of the present invention will be described below with reference to FIG. FIG. 1 shows a system diagram of a refrigeration cycle apparatus (cooling cycle apparatus). As shown in FIG. 1, the refrigeration cycle apparatus includes a compressor 1 that performs a compression process that compresses a gaseous refrigerant to a high temperature and a high pressure, and a condensation process that condenses the high temperature and high pressure refrigerant that has passed through the compressor 1. The heat exchanger 2 for expansion, the expansion valve 3 for expanding and reducing the pressure of the refrigerant that has undergone the condensation process, the heat exchanger 4 for evaporation that performs the evaporation process for evaporating the refrigerant that has passed through the expansion valve 3, and the opening of the expansion valve 3 And a control unit 6 for controlling the degree. The control unit 6 has a memory 60 and a CPU 61 having a timer function.

図1に示すように、凝縮用熱交換器2は室内に配置されており、室内熱交換器として機能する。凝縮用熱交換器2はファン2fをもち、室内の空気(媒体)との熱交換性を高めている。蒸発工程を行う蒸発用熱交換器4は、空気と熱交換する空気熱交換器41と、熱源からの熱と熱交換する熱源熱交換器42とを備えている。空気熱交換器41は室外に配置されているため、第1室外熱交換器として機能する。熱源熱交換器42は室外に配置されているため、第2室外熱交換器として機能する。空気熱交換器41はファン41fをもち、室内の空気(媒体)との熱交換性を高めている。   As shown in FIG. 1, the heat exchanger 2 for condensation is arrange | positioned indoors and functions as an indoor heat exchanger. The heat exchanger 2 for condensing has a fan 2f and enhances heat exchange with the indoor air (medium). The evaporation heat exchanger 4 that performs the evaporation step includes an air heat exchanger 41 that exchanges heat with air, and a heat source heat exchanger 42 that exchanges heat with heat from the heat source. Since the air heat exchanger 41 is disposed outdoors, it functions as a first outdoor heat exchanger. Since the heat source heat exchanger 42 is disposed outside, it functions as a second outdoor heat exchanger. The air heat exchanger 41 has a fan 41f and enhances heat exchange with indoor air (medium).

熱源熱交換器42は、温水状態の加熱水(加熱液)が流れると共に熱発生源45に繋がる加熱水通路43(加熱液通路)をもつ。熱発生源45はガスエンジン等のエンジンでも良いし、電気ヒータでも良いし、燃料電池システム、ガスエンジンコージェネ(発電と熱利用)でも良い。加熱水は、熱発生源45から受熱して温水状態とされているため、熱源熱交換器42において冷媒の蒸発を促進させる熱源として機能する。加熱水通路43には供給弁44v(加熱液供給要素)およびポンプ44p(加熱液搬送源)設けられている。供給弁44vの開度およびポンプ44pの駆動力は、熱源熱交換器42に伝達される伝熱量、熱源熱交換器42における冷媒蒸発量に影響を与える。従って、供給弁44vおよびポンプ44pは、熱源熱交換器42に伝達される伝熱量を調整する熱量調整手段として機能する。   The heat source heat exchanger 42 has a heated water passage 43 (heated fluid passage) that is connected to the heat generation source 45 while flowing heated water (heated liquid) in a hot water state. The heat generation source 45 may be an engine such as a gas engine, an electric heater, a fuel cell system, or a gas engine cogeneration (power generation and heat utilization). Since the heated water receives heat from the heat generation source 45 and is in a warm water state, it functions as a heat source that promotes evaporation of the refrigerant in the heat source heat exchanger 42. The heating water passage 43 is provided with a supply valve 44v (heating liquid supply element) and a pump 44p (heating liquid conveyance source). The opening degree of the supply valve 44v and the driving force of the pump 44p affect the amount of heat transferred to the heat source heat exchanger 42 and the amount of refrigerant evaporated in the heat source heat exchanger 42. Accordingly, the supply valve 44v and the pump 44p function as a heat amount adjusting unit that adjusts the amount of heat transferred to the heat source heat exchanger 42.

更に図1に示すように、空気熱交換器41が配置されている空気(外気)の温度T1を検知する空気温度センサ51が設けられている。空気熱交換器41の温度T2を検知することにより、空気熱交換器41の蒸発温度を検知する熱交温度センサ52が設けられている。熱交温度センサ52は、空気熱交換器41における冷媒の蒸発を考慮し、空気熱交換器41の出口41o側に設けられている。但しこれに限らず、空気熱交換器41における熱交換通路長さが100として相対表示されるときには、空気熱交換器41の出口41oから入口41iに向けて70以内または50以内の位置に、熱交温度センサ52のセンサ部を配置することもできる。空気温度センサ51および熱交温度センサ52の温度信号は制御部6に入力される。制御部6は第1膨張弁31、第2膨張弁32、圧縮機1、供給弁44v、ポンプ44pを制御する。   Further, as shown in FIG. 1, an air temperature sensor 51 is provided for detecting the temperature T1 of the air (outside air) where the air heat exchanger 41 is arranged. A heat exchange temperature sensor 52 that detects the evaporation temperature of the air heat exchanger 41 by detecting the temperature T2 of the air heat exchanger 41 is provided. The heat exchanger temperature sensor 52 is provided on the outlet 41o side of the air heat exchanger 41 in consideration of the evaporation of the refrigerant in the air heat exchanger 41. However, the present invention is not limited to this, and when the heat exchange passage length in the air heat exchanger 41 is relatively displayed as 100, the heat is placed at a position within 70 or 50 from the outlet 41o of the air heat exchanger 41 toward the inlet 41i. The sensor part of the alternating temperature sensor 52 can also be arranged. Temperature signals from the air temperature sensor 51 and the heat exchanger temperature sensor 52 are input to the control unit 6. The control unit 6 controls the first expansion valve 31, the second expansion valve 32, the compressor 1, the supply valve 44v, and the pump 44p.

図1に示すように、空気熱交換器41および熱源熱交換器42は、互いに並列とされているものの、凝縮用熱交換器2に対しては直列とされている。凝縮用熱交換器2と空気熱交換器41との間には第1膨張弁31(電子膨張弁)が設けられている。凝縮用熱交換器2と熱源熱交換器42との間には第2膨張弁32(電子膨張弁)が設けられている。圧縮機1の吐出ポート1oと空気熱交換器41とを繋ぐバイパス通路71が凝縮用熱交換器2を迂回するように設けられている。バイパス通路71を流れる冷媒は、凝縮用熱交換器2を流れずに凝縮用熱交換器2を迂回して空気熱交換器41の入口41iに至る。図1に示すように、バイパス通路71の上流71uは、凝縮用熱交換器2と圧縮機1の吐出ポート1oとの間に繋がれている。バイパス通路71の下流71dは、第1膨張弁31と熱源熱交換器41の入口41iとの間に繋がれている。バイパス通路71から空気熱交換器41の入口41iに流れる冷媒の流量を調整するバイパス弁72がバイパス通路71に設けられている。第1膨張弁31、第2膨張弁32、バイパス弁72は、開度が連続的にまたは多段階的に可変な可変弁とすることができる。但し、場合によっては、開度が100%および0%に切り替えられるオンオフ弁でも良い。   As shown in FIG. 1, the air heat exchanger 41 and the heat source heat exchanger 42 are in parallel with each other, but are in series with the heat exchanger 2 for condensation. A first expansion valve 31 (electronic expansion valve) is provided between the condensation heat exchanger 2 and the air heat exchanger 41. A second expansion valve 32 (electronic expansion valve) is provided between the condensation heat exchanger 2 and the heat source heat exchanger 42. A bypass passage 71 that connects the discharge port 1 o of the compressor 1 and the air heat exchanger 41 is provided so as to bypass the condensation heat exchanger 2. The refrigerant flowing through the bypass passage 71 bypasses the condensation heat exchanger 2 without flowing through the condensation heat exchanger 2 and reaches the inlet 41 i of the air heat exchanger 41. As shown in FIG. 1, the upstream 71 u of the bypass passage 71 is connected between the condensation heat exchanger 2 and the discharge port 1 o of the compressor 1. A downstream 71 d of the bypass passage 71 is connected between the first expansion valve 31 and the inlet 41 i of the heat source heat exchanger 41. A bypass valve 72 that adjusts the flow rate of the refrigerant flowing from the bypass passage 71 to the inlet 41 i of the air heat exchanger 41 is provided in the bypass passage 71. The first expansion valve 31, the second expansion valve 32, and the bypass valve 72 can be variable valves whose opening degree is variable continuously or in multiple stages. However, depending on circumstances, an on / off valve whose opening degree is switched between 100% and 0% may be used.

通常運転モードによれば、圧縮機1が駆動して高温高圧の気体状の冷媒を生成する。圧縮機1で圧縮された気体状の高温高圧の冷媒は、圧縮機1の吐出ポート1oから吐出され、凝縮用熱交換器2において凝縮工程を行い、凝縮熱を放出させる。このように暖房運転が実施される。ファン2fの回転により凝縮熱の放出が確保される。凝縮工程を経た冷媒は、分岐点9aで分岐される。分岐点9aは第1膨張弁31および第2膨張弁32の上流に位置する。分岐された冷媒は、第1膨張弁31で膨張されて低圧化された後(一般的には気液混合状態)に空気熱交換器41に流されて空気熱交換器41において熱交換を行ない、蒸発する。また、分岐された冷媒は、第2膨張弁32で膨張されて低圧化された後(一般的には気液混合状態)に熱源熱交換器42に流され熱源熱交換器42において熱交換を行い、蒸発する。   According to the normal operation mode, the compressor 1 is driven to generate a high-temperature and high-pressure gaseous refrigerant. The gaseous high-temperature and high-pressure refrigerant compressed by the compressor 1 is discharged from the discharge port 1o of the compressor 1 and performs a condensation step in the condensation heat exchanger 2 to release the condensation heat. Thus, the heating operation is performed. The rotation of the fan 2f ensures the release of condensation heat. The refrigerant that has undergone the condensing step is branched at the branch point 9a. The branch point 9 a is located upstream of the first expansion valve 31 and the second expansion valve 32. The branched refrigerant is expanded by the first expansion valve 31 and reduced in pressure (generally in a gas-liquid mixed state), and then flows into the air heat exchanger 41 to perform heat exchange in the air heat exchanger 41. ,Evaporate. Further, the branched refrigerant is expanded by the second expansion valve 32 to be reduced in pressure (generally in a gas-liquid mixed state), and then flows to the heat source heat exchanger 42 to exchange heat in the heat source heat exchanger 42. Do and evaporate.

これにより冷媒の蒸発工程が空気熱交換器41および熱源熱交換器42の双方において実施される。即ち、第1膨張弁31により低圧化された冷媒は、蒸発器としての空気熱交換器41に至り蒸発工程を行い、冷媒の気体化が進行する。第2膨張弁32により低圧化された冷媒は、蒸発器としての熱源熱交換器42に至り蒸発工程を行い、冷媒の気体化が進行する。その後、蒸発が進行した冷媒は圧縮機1の吸込ポート1sに戻り、再び圧縮され、吐出ポート1oから凝縮用熱交換器2に向けて吐出される。このように通常運転モードの暖房運転が行われる。   Thereby, the evaporation process of the refrigerant is performed in both the air heat exchanger 41 and the heat source heat exchanger 42. That is, the refrigerant whose pressure has been reduced by the first expansion valve 31 reaches the air heat exchanger 41 as an evaporator, performs an evaporation process, and gasification of the refrigerant proceeds. The refrigerant whose pressure has been reduced by the second expansion valve 32 reaches the heat source heat exchanger 42 as an evaporator, performs an evaporation process, and the gasification of the refrigerant proceeds. Thereafter, the evaporated refrigerant returns to the suction port 1s of the compressor 1, is compressed again, and is discharged from the discharge port 1o toward the condensation heat exchanger 2. Thus, the heating operation in the normal operation mode is performed.

ここで、上記した通常運転モードの暖房運転が継続していくと、空気熱交換器41付近の空気が空気熱交換器41により冷却される。運転条件によっては、空気の湿分が空気熱交換器41の表面に霜を生成することがある。そこで、着霜が認められたときには、制御部6は除霜モードを実施する。あるいは、設定時間が経過すると、制御部6は除霜モードを実施する。   Here, when the heating operation in the normal operation mode described above continues, the air near the air heat exchanger 41 is cooled by the air heat exchanger 41. Depending on the operating conditions, moisture in the air may generate frost on the surface of the air heat exchanger 41. Then, when frost formation is recognized, the control part 6 implements defrost mode. Or if setting time passes, the control part 6 will implement defrosting mode.

上記した除霜モードにおいては、制御部6は次のa操作、b操作、c操作を実施する。a操作、b操作、c操作の順に行うことが好ましいが、必ずしもこれに限定されず、同時に行っても良い。   In the defrosting mode described above, the control unit 6 performs the following a operation, b operation, and c operation. Although it is preferable to perform a operation, b operation, and c operation in this order, it is not necessarily limited to this, and you may perform it simultaneously.

(a操作)第1膨張弁31を閉鎖して第1膨張弁31の開度を0とする。これにより凝縮用熱交換器2および第1膨張弁31を経た冷媒(一般的には気液混合状態)を、入口41iから空気熱交換器41に供給する流量を無しとする。このため除霜モードでは、空気熱交換器41の蒸発工程は実施されない。   (A Operation) The first expansion valve 31 is closed and the opening of the first expansion valve 31 is set to zero. This eliminates the flow rate of the refrigerant (generally the gas-liquid mixed state) that has passed through the heat exchanger for condensation 2 and the first expansion valve 31 from the inlet 41i to the air heat exchanger 41. For this reason, the evaporation process of the air heat exchanger 41 is not performed in the defrosting mode.

(b操作)第2膨張弁32を開放状態に維持する。これにより凝縮用熱交換器2および第2膨張弁32を経て低圧化された冷媒(気液混合状態)を、入口42iから熱源熱交換器42に流す。このため熱源熱交換器42に流れた冷媒は、加熱水通路43の加熱水を熱源として加熱され、熱源熱交換器42において冷媒の蒸発が進行し、蒸発工程が実施される。このため除霜モードでは、空気熱交換器41の蒸発工程は実施されないものの、熱源熱交換器42の蒸発工程は実施される。これにより冷凍サイクル装置における蒸発工程が良好に実施され、凝縮用熱交換器2における凝縮作用が得られ、暖房運転の能力が良好に維持される。なお、第2膨張弁32の開度は、通常運転モードの場合と同一でも良いし、通常運転モードの場合よりも増加させても良い。   (B operation) The 2nd expansion valve 32 is maintained in an open state. As a result, the refrigerant (gas-liquid mixed state), which has been reduced in pressure through the condensation heat exchanger 2 and the second expansion valve 32, flows from the inlet 42 i to the heat source heat exchanger 42. For this reason, the refrigerant that has flowed to the heat source heat exchanger 42 is heated using the heated water in the heating water passage 43 as a heat source, and the evaporation of the refrigerant proceeds in the heat source heat exchanger 42, whereby the evaporation step is performed. For this reason, in the defrost mode, although the evaporation process of the air heat exchanger 41 is not performed, the evaporation process of the heat source heat exchanger 42 is performed. As a result, the evaporation step in the refrigeration cycle apparatus is carried out satisfactorily, the condensing action in the condensing heat exchanger 2 is obtained, and the heating operation capability is maintained well. The opening degree of the second expansion valve 32 may be the same as that in the normal operation mode, or may be increased as compared with the normal operation mode.

(c操作)バイパス通路71のバイパス弁72を開放させる。これにより圧縮機1の吐出ポート1oから吐出された高温高圧の気体状の冷媒(例えば60〜90℃)を、バイパス通路71およびバイパス弁72を介して空気熱交換器41の入口41iに供給する。これにより空気熱交換器41の表面に生成していた霜が融解される。この場合、気体状の冷媒は空気熱交換器41において凝縮熱を放出して液化する。   (C operation) The bypass valve 72 of the bypass passage 71 is opened. Thereby, the high-temperature and high-pressure gaseous refrigerant (for example, 60 to 90 ° C.) discharged from the discharge port 1 o of the compressor 1 is supplied to the inlet 41 i of the air heat exchanger 41 through the bypass passage 71 and the bypass valve 72. . Thereby, the frost generated on the surface of the air heat exchanger 41 is melted. In this case, the gaseous refrigerant liquefies by releasing condensation heat in the air heat exchanger 41.

上記した本実施例によれば、除霜モードを実施するときには、圧縮機1の吐出ポート1oから吐出された高温高圧の気体状の冷媒が、着霜状態の空気熱交換器41の入口41iから空気熱交換器41の内部に流れ、空気熱交換器41の霜を効率よく融解できる。   According to the above-described embodiment, when the defrosting mode is performed, the high-temperature and high-pressure gaseous refrigerant discharged from the discharge port 1o of the compressor 1 passes through the inlet 41i of the frosted air heat exchanger 41. It flows into the inside of the air heat exchanger 41, and the frost of the air heat exchanger 41 can be efficiently thawed.

更に本実施例によれば、除霜モードを実施するときには、第1膨張弁31を閉鎖して第1膨張弁31の開度を0とする。これにより凝縮用熱交換器2および第1膨張弁31を経た冷媒(一般的には気液混合状態)を、入口41iから空気熱交換器41に供給する流量を無しとする。このためバイパス通路71およびバイパス弁72を介して空気熱交換器41に供給する単位時間あたりのバイパス冷媒(以下、単にバイパス冷媒という)の流量を小さくしたとしても、空気熱交換器41を効果的に暖めて除霜できる。このように除霜モード時においてバイパス冷媒の単位時間当たりの流量を小さくできるため、暖房機能を発揮する凝縮用熱交換器2に供給される冷媒流量、凝縮冷媒量が多く確保され、除霜モード時における暖房能力が良好に維持される。更に、除霜モード時においてバイパス冷媒の単位時間当たりの流量を小さくできるため、凝縮用熱交換器2および第1膨張弁31を経た冷媒(一般的には気液混合状態)に合流するバイパス冷媒の流量が少量とされる。このため、合流する際に発生する気流音が抑制される。   Furthermore, according to the present embodiment, when the defrost mode is performed, the first expansion valve 31 is closed and the opening degree of the first expansion valve 31 is set to zero. This eliminates the flow rate of the refrigerant (generally the gas-liquid mixed state) that has passed through the heat exchanger for condensation 2 and the first expansion valve 31 from the inlet 41i to the air heat exchanger 41. For this reason, even if the flow rate of the bypass refrigerant (hereinafter simply referred to as bypass refrigerant) per unit time supplied to the air heat exchanger 41 via the bypass passage 71 and the bypass valve 72 is reduced, the air heat exchanger 41 is effectively used. Can be defrosted by warming up. In this way, since the flow rate per unit time of the bypass refrigerant can be reduced in the defrost mode, a large amount of refrigerant flow and amount of condensed refrigerant supplied to the heat exchanger 2 for condensing exhibiting the heating function are secured, and the defrost mode is achieved. The heating capacity at the time is maintained well. Furthermore, since the flow rate per unit time of the bypass refrigerant can be reduced in the defrost mode, the bypass refrigerant that merges with the refrigerant (generally a gas-liquid mixed state) that has passed through the heat exchanger for condensation 2 and the first expansion valve 31. The flow rate is small. For this reason, the airflow sound generated when joining is suppressed.

上記したように暖房運転能力をあまり低下させずに空気熱交換器41を除霜できるため、除霜モードを定期的に高頻度で行うことが可能となる。更に、空気熱交換器41に僅かの霜が生成された状態(うっすらと着霜した状態)でも、あるいは、着霜が検知されない段階であっても、除霜モードを実施することができ、霜の成長を抑えるのに有利となる。   As described above, since the air heat exchanger 41 can be defrosted without significantly reducing the heating operation capacity, the defrost mode can be periodically performed at a high frequency. Furthermore, the defrost mode can be performed even in a state where a slight amount of frost is generated in the air heat exchanger 41 (a state where light frost is formed), or even when frost is not detected. It is advantageous to suppress the growth of.

第1膨張弁31を閉じると、空気熱交換器41側において冷媒が滞留するおそれがある。いわゆる冷媒の寝込みである。この場合、冷凍サイクル装置における冷媒量が不足するおそれがあり、運転能力が低下するおそれがある。この点本実施例によれば、第1膨張弁31を閉じつつも、バイパス通路71のバイパス弁72を開放させることにより、圧縮機1の吐出ポート1oから吐出された高温高圧の冷媒を、バイパス通路71およびバイパス弁72を介して空気熱交換器41の入口41iに流入させることにしている。このため上記した冷媒の寝込み(滞留)は抑制される。   When the first expansion valve 31 is closed, there is a possibility that the refrigerant may stay on the air heat exchanger 41 side. This is the so-called refrigerant stagnation. In this case, the amount of refrigerant in the refrigeration cycle apparatus may be insufficient, and the driving capability may be reduced. In this regard, according to the present embodiment, the high-temperature and high-pressure refrigerant discharged from the discharge port 1o of the compressor 1 is bypassed by opening the bypass valve 72 of the bypass passage 71 while closing the first expansion valve 31. The air is introduced into the inlet 41 i of the air heat exchanger 41 through the passage 71 and the bypass valve 72. For this reason, the stagnation (stagnation) of the refrigerant described above is suppressed.

なお、上記したa操作において、除霜モードを実施するときには、第1膨張弁31を全閉して第1膨張弁31の開度を0としているが、これに限らず、第1膨張弁31の開度を微小量(例えば、通常運転モード時の開度を基準として5%以下)とし、凝縮用熱交換器2および第1膨張弁31を経た冷媒を空気熱交換器41に供給する流量を微小量としても良い。   In the operation a described above, when the defrost mode is performed, the first expansion valve 31 is fully closed and the opening degree of the first expansion valve 31 is set to 0. However, the present invention is not limited thereto, and the first expansion valve 31 is not limited thereto. Is a minute amount (for example, 5% or less with respect to the opening in the normal operation mode), and the flow rate for supplying the refrigerant that has passed through the heat exchanger for condensation 2 and the first expansion valve 31 to the air heat exchanger 41 May be a minute amount.

実施例2は図1を準用する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。着霜判定モードを実施し、着霜有りと判定されるときには、除霜モードを実施する。以下、着霜判定モードについて説明する。空気熱交換器41の表面に着霜が発生すると、空気熱交換器41の熱交換効率が低下するため、暖房運転能力が低下する。故に、空気熱交換器41における冷媒の蒸発工程が損なわれ、冷媒の蒸発量が抑制され、空気熱交換器41における冷媒の圧力が次第に低下する。この場合、空気熱交換器41における蒸発温度(熱交温度センサ52の検知温度)が次第に低下する。従って空気温度T1と熱交温度センサ52の検知温度T2との間の温度差ΔTが増加する。このため、着霜判定モードにおいては、空気熱交換器41において着霜が発生していことがΔTに基づいて制御部6により検知される。   Example 2 applies mutatis mutandis to FIG. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. When the frosting determination mode is performed and it is determined that frosting is present, the defrosting mode is performed. Hereinafter, the frost determination mode will be described. When frost formation occurs on the surface of the air heat exchanger 41, the heat exchange efficiency of the air heat exchanger 41 is lowered, and thus the heating operation capacity is lowered. Therefore, the refrigerant evaporation process in the air heat exchanger 41 is impaired, the refrigerant evaporation amount is suppressed, and the refrigerant pressure in the air heat exchanger 41 gradually decreases. In this case, the evaporation temperature in the air heat exchanger 41 (the temperature detected by the heat exchanger temperature sensor 52) gradually decreases. Therefore, the temperature difference ΔT between the air temperature T1 and the detected temperature T2 of the heat exchanger temperature sensor 52 increases. For this reason, in the frost determination mode, the controller 6 detects that frost is generated in the air heat exchanger 41 based on ΔT.

本実施例によれば、図1に示すように、熱源(加熱水)の熱と冷媒の熱とを熱交換する熱源熱交換器42が設けられている。この場合、冷媒の蒸発工程は、空気と熱交換する空気熱交換器41と、熱源からの熱と熱交換する熱源熱交換器42との双方において行われる。この場合、運転が継続すると、熱源熱交換器42の熱源(温水状態の加熱水)からの熱の伝達により空気熱交換器41の冷媒圧力が増加し、空気熱交換器41の冷媒の温度が上昇してしまうことがある。この場合、空気熱交換器41の表面において着霜が発生していたにもかかわらず、空気温度T1と空気熱交換器41における蒸発温度T2との温度差ΔT(ΔT=T1−T2)が減少する。このため、空気熱交換器41において着霜が発生しているにもかかわらず、当該着霜が良好に検知されないおそれがある。   According to the present embodiment, as shown in FIG. 1, the heat source heat exchanger 42 for exchanging heat between the heat of the heat source (heating water) and the heat of the refrigerant is provided. In this case, the refrigerant evaporation process is performed in both the air heat exchanger 41 that exchanges heat with air and the heat source heat exchanger 42 that exchanges heat with heat from the heat source. In this case, if the operation is continued, the refrigerant pressure of the air heat exchanger 41 increases due to the transfer of heat from the heat source (heated water in the hot water state) of the heat source heat exchanger 42, and the temperature of the refrigerant of the air heat exchanger 41 increases. May rise. In this case, the temperature difference ΔT (ΔT = T1−T2) between the air temperature T1 and the evaporation temperature T2 in the air heat exchanger 41 is decreased despite the occurrence of frost formation on the surface of the air heat exchanger 41. To do. For this reason, although frost formation has occurred in the air heat exchanger 41, the frost formation may not be detected well.

そこで、本実施例によれば、制御部6は暖房運転を実施しつつも、着霜判定モードを定期的または不定期的に行う。この場合、暖房運転中において、制御部6は、第1膨張弁31を経た冷媒を空気熱交換器41に流して空気熱交換器41において熱交換を行ない蒸発させると共に、第2膨張弁32を閉鎖して熱源熱交換器42に冷媒を流さない。あるいは、第2膨張弁32の開度を通常運転モードの暖房運転の場合よりもかなり小さくして、熱源熱交換器42に流れる冷媒量を減少させる。この場合、熱源熱交換器42の熱源(加熱水)の熱が空気熱交換器41に積極的に伝播されない。このため、熱源熱交換器42から空気熱交換器41への単位時間あたりの伝熱量は、通常運転モードの暖房運転の場合よりもかなり減少させることができる。この場合、蒸発工程における熱源は、基本的には空気熱交換器41に依存することになる。ここで、仮に、空気熱交換器41の表面に着霜が発生した場合には、空気熱交換器41における熱交換効率が低下する。故に、空気熱交換器41における冷媒の蒸発工程が損なわれ、冷媒蒸発量が低下し、空気熱交換器41における冷媒の圧力が次第に低下する。この場合、空気熱交換器41における蒸発温度、つまり熱交温度センサ52で検知される温度T2が次第に低下する。ここで、空気温度T1は基本的に変動しないと推定されるため、空気温度T1と熱交温度センサ52の温度T2(空気熱交換器41における蒸発温度)との温度差ΔTが増加する。   Therefore, according to the present embodiment, the controller 6 performs the frost determination mode regularly or irregularly while performing the heating operation. In this case, during the heating operation, the control unit 6 causes the refrigerant that has passed through the first expansion valve 31 to flow to the air heat exchanger 41 to perform heat exchange in the air heat exchanger 41 and evaporate, and The refrigerant is not flown into the heat source heat exchanger 42 by closing. Or the opening degree of the 2nd expansion valve 32 is made considerably smaller than the case of the heating operation of normal operation mode, and the refrigerant | coolant amount which flows into the heat-source heat exchanger 42 is decreased. In this case, the heat of the heat source (heating water) of the heat source heat exchanger 42 is not actively propagated to the air heat exchanger 41. For this reason, the heat transfer amount per unit time from the heat source heat exchanger 42 to the air heat exchanger 41 can be significantly reduced as compared with the heating operation in the normal operation mode. In this case, the heat source in the evaporation process basically depends on the air heat exchanger 41. Here, if frost formation occurs on the surface of the air heat exchanger 41, the heat exchange efficiency in the air heat exchanger 41 decreases. Therefore, the refrigerant evaporation process in the air heat exchanger 41 is impaired, the refrigerant evaporation amount is reduced, and the refrigerant pressure in the air heat exchanger 41 is gradually reduced. In this case, the evaporation temperature in the air heat exchanger 41, that is, the temperature T2 detected by the heat exchange temperature sensor 52 gradually decreases. Here, since it is estimated that the air temperature T1 basically does not fluctuate, the temperature difference ΔT between the air temperature T1 and the temperature T2 of the heat exchange temperature sensor 52 (evaporation temperature in the air heat exchanger 41) increases.

このように着霜判定モードにおいて第2膨張弁32の閉弁方向へ動作させれば、上記した温度差ΔTが増加する。このため、空気熱交換器41の表面において着霜が発生していることが、ΔTに基づいて、制御部6により良好に検知される。ここで、ΔTの大きさが所定値以上であれば、空気熱交換器41の表面において着霜していると判定される。ΔTの大きさが所定値未満であれば、空気熱交換器41の表面において着霜していないと判定される。   As described above, when the second expansion valve 32 is operated in the frosting determination mode in the frosting determination mode, the temperature difference ΔT described above increases. For this reason, it is well detected by the control unit 6 based on ΔT that frost formation has occurred on the surface of the air heat exchanger 41. Here, if the magnitude of ΔT is equal to or greater than a predetermined value, it is determined that frost is formed on the surface of the air heat exchanger 41. If the magnitude of ΔT is less than the predetermined value, it is determined that frost is not formed on the surface of the air heat exchanger 41.

図2および図3は実機で行った試験例のデータを示す。図2の横軸は時間(相対表示)を示し、縦軸は温度(相対表示)を示す。空気温度T1の変化は特性線T10として示される。空気熱交換器41の蒸発温度T2は特性線T20として示される。時刻t0〜時刻t1では第1膨張弁31および第2膨張弁32が開放され、凝縮用熱交換器2で凝縮熱を放出する通常運転モードの暖房運転が実施されている。この場合には、熱源熱交換器42を流れる加熱水通路43の温水状態の加熱水の熱の変動の影響を受けるため、時刻t0〜時刻t1においては空気熱交換器41の温度T2が相対的に高温となる。時刻t1〜時刻t2において着霜判定モードAが実施されている。着霜判定モードAでは、時刻t1において第1膨張弁31が開放されるものの、第2膨張弁32が開放状態から閉鎖状態に切り替えられる。着霜判定モードAでは、第2膨張弁32が閉鎖されているため、基本的には熱源熱交換器42に冷媒が流れなくなる。このため、熱源熱交換器42を流れる加熱水(熱源)の熱の変動の影響を、空気熱交換器41の冷媒は受けにくい。故に、時刻t1〜時刻t2間において空気熱交換器41の温度T2が相対的に低温化する。しかしまだ空気熱交換器41の表面に着霜されていないため、図2に示す温度差ΔTa(ΔTa=T1−T2)は小さいといえる。   FIG. 2 and FIG. 3 show data of test examples performed on actual machines. The horizontal axis of FIG. 2 indicates time (relative display), and the vertical axis indicates temperature (relative display). The change in the air temperature T1 is shown as a characteristic line T10. The evaporation temperature T2 of the air heat exchanger 41 is shown as a characteristic line T20. From time t0 to time t1, the first expansion valve 31 and the second expansion valve 32 are opened, and the heating operation in the normal operation mode in which the condensation heat exchanger 2 releases the heat of condensation is performed. In this case, the temperature T2 of the air heat exchanger 41 is relatively at time t0 to time t1 because it is affected by the heat fluctuation of the heated water in the heated water passage 43 flowing through the heat source heat exchanger 42. It becomes very hot. The frost determination mode A is performed from time t1 to time t2. In the frosting determination mode A, the first expansion valve 31 is opened at time t1, but the second expansion valve 32 is switched from the open state to the closed state. In the frosting determination mode A, since the second expansion valve 32 is closed, the refrigerant basically does not flow to the heat source heat exchanger 42. For this reason, the refrigerant of the air heat exchanger 41 is not easily affected by the heat fluctuation of the heating water (heat source) flowing through the heat source heat exchanger 42. Therefore, the temperature T2 of the air heat exchanger 41 is relatively lowered between time t1 and time t2. However, since the surface of the air heat exchanger 41 is not yet frosted, it can be said that the temperature difference ΔTa (ΔTa = T1−T2) shown in FIG. 2 is small.

時刻t2〜時刻t3では着霜判定モードAが終了しており、通常運転モードの暖房運転が実施されている。従って第1膨張弁31および第2膨張弁32が開放され、凝縮用熱交換器2で凝縮熱を放出する暖房運転が実施されている。時刻t2〜時刻t3の間に、空気熱交換器41の表面に着霜させた。   From time t2 to time t3, the frost determination mode A is completed, and the heating operation in the normal operation mode is performed. Therefore, the 1st expansion valve 31 and the 2nd expansion valve 32 are opened, and the heating operation which discharge | releases condensation heat with the heat exchanger 2 for condensation is implemented. The surface of the air heat exchanger 41 was frosted between time t2 and time t3.

時刻t3では第1膨張弁31が開放されているものの、第2膨張弁32が閉鎖される。即ち、時刻t3〜時刻t4において着霜判定モードBが実施されている。着霜判定モードBでは、前記したように第2膨張弁32が閉鎖され、基本的には熱源熱交換器42に冷媒が流れなくなる。このため、熱源熱交換器42を流れる加熱水(熱源)の熱の変動の影響を、空気熱交換器41は受けにくい。このため、時刻t3〜時刻t4間において特性線T20として示すように、空気熱交換器41の温度T2が相対的に低温化される。この場合、着霜判定モードBにおけるΔTbは、着霜判定モードAにおけるΔTaよりも増加する(ΔTb>ΔTa)。このように本試験例によれば、空気熱交換器41の表面に着霜されていない場合には、温度差ΔT(ΔT=T1−T2)は小さいものとして制御部6に検知される。これに対して空気熱交換器41の表面に着霜されている場合には、ΔTb、即ち、温度差ΔT(ΔT=T1−T2)は大きいものとして制御部6に検知される。このように空気熱交換器41の着霜が成長していると、温度差ΔTが大きくなるため、温度差ΔTが大きくなると、バイパス弁72の開度を制御部6は増加させることが好ましい。ΔTが小さいと、バイパス弁72の開度を制御部6は減少させることが好ましい。   At time t3, the first expansion valve 31 is opened, but the second expansion valve 32 is closed. That is, the frosting determination mode B is performed from time t3 to time t4. In the frosting determination mode B, the second expansion valve 32 is closed as described above, and basically the refrigerant does not flow to the heat source heat exchanger 42. For this reason, the air heat exchanger 41 is not easily affected by the fluctuation of the heat of the heating water (heat source) flowing through the heat source heat exchanger 42. For this reason, between the time t3 and the time t4, as shown as the characteristic line T20, the temperature T2 of the air heat exchanger 41 is relatively lowered. In this case, ΔTb in the frost determination mode B increases more than ΔTa in the frost determination mode A (ΔTb> ΔTa). Thus, according to this test example, when the surface of the air heat exchanger 41 is not frosted, the temperature difference ΔT (ΔT = T1-T2) is detected by the control unit 6 as being small. On the other hand, when frost is formed on the surface of the air heat exchanger 41, ΔTb, that is, the temperature difference ΔT (ΔT = T1-T2) is detected by the control unit 6 as being large. When the frost formation of the air heat exchanger 41 is growing as described above, the temperature difference ΔT increases. Therefore, when the temperature difference ΔT increases, the controller 6 preferably increases the opening degree of the bypass valve 72. When ΔT is small, the controller 6 preferably decreases the opening degree of the bypass valve 72.

図3の横軸は時間(相対表示)を示し、縦軸は温度(相対表示)および冷媒の圧力(相対表示)を示す。図3において、特性線P1は圧縮機1の吐出ポート1o側の高圧冷媒の圧力を示す。特性線P2は圧縮機1の吸込ポート1s側の低圧冷媒の圧力を示す。特性線T40は凝縮用熱交換器2からの空気の温度(吹出温度)T4を示す。図3から理解できるように、通常運転モードの暖房運転中において着霜判定モードA,Bを実施したとしても、凝縮用熱交換器2からの空気の温度は特性線T40として示されているように、あまり変化がない。つまり通常運転モードの暖房運転中において着霜判定モードA,Bを実施したとしても、暖房運転能力の低下を抑制させることができることを意味する。   The horizontal axis of FIG. 3 indicates time (relative display), and the vertical axis indicates temperature (relative display) and refrigerant pressure (relative display). In FIG. 3, the characteristic line P <b> 1 indicates the pressure of the high-pressure refrigerant on the discharge port 1 o side of the compressor 1. A characteristic line P2 indicates the pressure of the low-pressure refrigerant on the suction port 1s side of the compressor 1. A characteristic line T40 indicates the temperature (blowing temperature) T4 of the air from the heat exchanger 2 for condensation. As can be understood from FIG. 3, even if the frost determination modes A and B are performed during the heating operation in the normal operation mode, the temperature of the air from the heat exchanger 2 for condensation seems to be shown as a characteristic line T40. There is not much change. That is, even if the frost determination modes A and B are performed during the heating operation in the normal operation mode, it means that the decrease in the heating operation capacity can be suppressed.

本実施例では次の形態を採用しても良い。   In the present embodiment, the following form may be adopted.

(i)上記した温度差の判定は、着霜判定モードを開始してから設定時間経過後に行う。設定時間としては例えば3分、5分、7分が例示される。設定時間としては1〜10分が望ましく、より望ましくは2〜7分、3〜5分が良い。設定時間が短すぎると、温度差が小さすぎて判定精度が落ちるので好ましくない。設定時間が長すぎると、通常運転モードの停止時間が長くなり、暖房運転上好ましくない。   (I) The above-described temperature difference determination is performed after a set time has elapsed since the start of the frost determination mode. Examples of the set time include 3 minutes, 5 minutes, and 7 minutes. The set time is preferably 1 to 10 minutes, more preferably 2 to 7 minutes and 3 to 5 minutes. If the set time is too short, the temperature difference is too small and the determination accuracy is lowered. If the set time is too long, the stop time in the normal operation mode becomes long, which is not preferable for heating operation.

(ii)上記した温度差の測定は、空気熱交換器41の蒸発温度が安定したときに行うこともできる。蒸発温度が安定したときとは、例えば、設定時間(例えば10秒間)ごとに温度変化量を計測し、1分間あたりの温度変化量がプラスマイナス1℃以内となったときをいう。なお、両温度の計測時間間隔は設定時間よりもはるかに短い時間(例えば0.1秒)で行う。   (Ii) The above temperature difference measurement can also be performed when the evaporation temperature of the air heat exchanger 41 is stabilized. When the evaporation temperature is stabilized, for example, the temperature change amount is measured every set time (for example, 10 seconds), and the temperature change amount per minute is within ± 1 ° C. The measurement time interval for both temperatures is much shorter than the set time (for example, 0.1 second).

(iii)空気温度と空気熱交換器41の蒸発温度との温度差で判定する代わりに、着霜判定モード開始の空気熱交換器41の蒸発温度と、着霜判定モード開始から設定時間経過後における空気熱交換器41の蒸発温度との温度差で判定しても良い。この場合も上記した(i)(ii)は同様に当てはまる。   (Iii) Instead of making a determination based on the temperature difference between the air temperature and the evaporation temperature of the air heat exchanger 41, the evaporating temperature of the air heat exchanger 41 at the start of the frost determination mode, and after the set time has elapsed from the start of the frost determination mode You may determine by the temperature difference with the evaporation temperature of the air heat exchanger 41 in. In this case, the above (i) and (ii) are similarly applied.

(iv)空気温度と空気熱交換器41の蒸発温度との温度差で判定する代わりに、着霜判定モード開始時における空気温度と空気熱交換器41の蒸発温度との温度差ΔToを求める。更に着霜判定モード開始から設定時間経過後における空気温度と空気熱交換器の蒸発温度との温度差ΔTを求める。そして両者の比(ΔT/ΔTo)が設定値よりも大きいか否かで判定しても良い。例えば、当該比が2より大きいと、制御部6は着霜していると判定する。この場合も上記した(i)(ii)は同様に当てはまる。   (Iv) Instead of determining by the temperature difference between the air temperature and the evaporation temperature of the air heat exchanger 41, a temperature difference ΔTo between the air temperature and the evaporation temperature of the air heat exchanger 41 at the start of the frosting determination mode is obtained. Further, a temperature difference ΔT between the air temperature and the evaporation temperature of the air heat exchanger after the set time has elapsed from the start of the frosting determination mode is obtained. The determination may be made based on whether or not the ratio (ΔT / ΔTo) between the two is greater than the set value. For example, if the ratio is greater than 2, the control unit 6 determines that frost formation has occurred. In this case, the above (i) and (ii) are similarly applied.

(v)空気温度と空気熱交換器41の蒸発温度との温度差で判定する代わりに、着霜判定モード開始時における空気熱交換器41の蒸発温度の変化率で判定しても良い。例えば変化率が2℃/分よりも大きいと、着霜していると判定する。この変化率は、着霜判定モード開始してから設定時間経過後までの変化率とすることができる。設定時間としては温度差による判定の時よりも短い時間(例えば1分間)で行うことができる。   (V) Instead of determining by the temperature difference between the air temperature and the evaporation temperature of the air heat exchanger 41, the determination may be made by the rate of change of the evaporation temperature of the air heat exchanger 41 at the start of the frost determination mode. For example, if the rate of change is greater than 2 ° C./min, it is determined that frost formation has occurred. This rate of change can be the rate of change from the start of the frost determination mode until the set time has elapsed. As the set time, it can be performed in a shorter time (for example, 1 minute) than the determination by the temperature difference.

実施例3は図1を準用する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。図4は制御部6のCPU61が実行する制御形態Aのフローチャートを示す。YはYESに相当する。NはNOに相当する。図4に示すように、先ず、制御部6は電源投入と共に通常運転モードの暖房運転を実施する(ステップS2)。制御部6は、暖房運転の開始から設定時間β1(例えば30分)以上経過したか否か、または、除霜モードの終了から設定時間β1経過したか否か、または、着霜判定モード(着霜無し)の終了から設定時間β1(例えば30分)以上経過したか否か、判定する(ステップS4)。設定時間β1経過していれば(ステップS4のYES)、制御部6は着霜判定モードを実施する(ステップS6)。着霜判定モードでは、制御部6は、第1膨張弁31を開放させつつ、第2膨張弁32を閉鎖するか第2膨張弁32の開度を暖房通常モードにおける開度よりもかなり小さくする、更に、空気温度センサ51で検知された空気温度T1と、熱交温度センサ52により検知された温度T2とを読み込む。T1−T2の温度差ΔTを求める。   Example 3 applies FIG. 1 mutatis mutandis. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. FIG. 4 shows a flowchart of a control form A executed by the CPU 61 of the control unit 6. Y corresponds to YES. N corresponds to NO. As shown in FIG. 4, first, the controller 6 performs heating operation in the normal operation mode when the power is turned on (step S2). The controller 6 determines whether or not a set time β1 (for example, 30 minutes) has elapsed since the start of the heating operation, whether or not the set time β1 has elapsed since the end of the defrosting mode, It is determined whether or not a set time β1 (for example, 30 minutes) has elapsed since the end of (no frost) (step S4). If the set time β1 has elapsed (YES in step S4), the control unit 6 performs a frost determination mode (step S6). In the frosting determination mode, the controller 6 opens the first expansion valve 31 and closes the second expansion valve 32 or makes the opening of the second expansion valve 32 considerably smaller than the opening in the heating normal mode. Further, the air temperature T1 detected by the air temperature sensor 51 and the temperature T2 detected by the heat exchange temperature sensor 52 are read. A temperature difference ΔT between T1 and T2 is obtained.

次に、ΔTがしきい値温度α1(例えば7℃)よりも大きいか否か判定する(ステップS8)。温度差ΔTがしきい値温度α1(例えば7℃)よりも大きくなければ(ステップS8のNO)、第2膨張弁32を開放させ(ステップS9)、ステップS2に戻る。これに対して温度差ΔTがしきい値温度α1(例えば7℃)よりも大きいとき(ステップS8のYES)、制御部6は、空気熱交換器41の表面に着霜されていると推定し、除霜モードを実行する(ステップS10)。除霜モードにおいては、a操作を実施すべく、第1膨張弁31を閉鎖して第1膨張弁31の開度を0とする。更にb操作を実施すべく、第2膨張弁32を開度を増加させる。更にc操作を実施すべく、バイパス通路71のバイパス弁72を開放させる。これにより圧縮機1の吐出ポート1oから吐出された高温高圧の冷媒(例えば60〜90℃)を空気熱交換器41に供給し、空気熱交換器41の霜を融解させる。温度差ΔT(ΔT=T1−T2)がしきい値温度α2(例えば2℃)以下となれば、温度T2が昇温しており、空気熱交換器41の除霜が完了したと推定し、制御部6は除霜モードを終了し(ステップS12のYES)し、ステップS2に戻る。   Next, it is determined whether or not ΔT is higher than a threshold temperature α1 (for example, 7 ° C.) (step S8). If the temperature difference ΔT is not greater than the threshold temperature α1 (for example, 7 ° C.) (NO in step S8), the second expansion valve 32 is opened (step S9), and the process returns to step S2. On the other hand, when the temperature difference ΔT is larger than the threshold temperature α1 (for example, 7 ° C.) (YES in step S8), the control unit 6 estimates that the surface of the air heat exchanger 41 is frosted. Then, the defrosting mode is executed (step S10). In the defrosting mode, the first expansion valve 31 is closed to make the opening degree of the first expansion valve 31 zero in order to perform the operation a. Further, the opening degree of the second expansion valve 32 is increased in order to perform the operation b. Further, the bypass valve 72 of the bypass passage 71 is opened to perform the c operation. Thereby, the high-temperature and high-pressure refrigerant (for example, 60 to 90 ° C.) discharged from the discharge port 1o of the compressor 1 is supplied to the air heat exchanger 41, and the frost of the air heat exchanger 41 is melted. If the temperature difference ΔT (ΔT = T1−T2) is equal to or lower than the threshold temperature α2 (for example, 2 ° C.), it is estimated that the temperature T2 has increased and that the defrosting of the air heat exchanger 41 has been completed, The control part 6 complete | finishes defrost mode (YES of step S12), and returns to step S2.

図5は制御部6のCPU61が実行する制御形態Bのフローチャートを示す。図5に示すように、先ず、制御部6は電源投入と共に通常運転モードの暖房運転を実施する(ステップSB2)。制御部6は、暖房運転の開始から設定時間β1(例えば30分)以上経過したか否か、または、除霜モードの終了から設定時間β1経過したか否か、または、着霜判定モード(着霜無し)の終了から設定時間β1(例えば30分)以上経過したか否か、判定する(ステップSB4)。設定時間β1経過していれば、制御部6は着霜判定モードを実施する(ステップSB6)。着霜判定モードでは、制御部6は、第1膨張弁31を開放させつつ、第2膨張弁32を閉鎖するか、あるいは、第2膨張弁32の開度を暖房通常モードの暖房運転における開度よりもかなり小さくする。更に温度差ΔTを検知する。   FIG. 5 shows a flowchart of a control mode B executed by the CPU 61 of the control unit 6. As shown in FIG. 5, first, the control unit 6 performs the heating operation in the normal operation mode when the power is turned on (step SB2). The controller 6 determines whether or not a set time β1 (for example, 30 minutes) has elapsed since the start of the heating operation, whether or not the set time β1 has elapsed since the end of the defrosting mode, It is determined whether or not a set time β1 (for example, 30 minutes) has elapsed since the end of (no frost) (step SB4). If setting time (beta) 1 has passed, the control part 6 will implement frosting determination mode (step SB6). In the frosting determination mode, the control unit 6 closes the second expansion valve 32 while opening the first expansion valve 31, or opens the opening of the second expansion valve 32 in the heating operation in the heating normal mode. Make it considerably smaller than the degree. Further, the temperature difference ΔT is detected.

着霜判定モードの連続実行回数がしきい値回数η1(例えば5回)未満であれば(ステップSB8のNO)、空気熱交換器41の表面において着霜していないと推定されるため、制御部6は除霜モードを実行せず、第2膨張弁32を開放し(ステップSB9)、ステップSB2に戻る。しかし着霜判定モードが連続実行回数がしきい値回数η1以上であれば(ステップSB8のYES)、空気熱交換器41の表面において着霜している可能性が高いと推定されるため、制御部6は除霜モードを実行する(ステップSB10)。除霜モードでは、第1膨張弁31を閉鎖する。更に第2膨張弁32を開度を通常モードよりも増加させる。更にバイパス通路71のバイパス弁72を開放させる。空気熱交換器41の出口41o側の温度T2がしきい値温度α3(例えば0℃)を越えていれば、空気熱交換器41の除霜が完了したと判定し、制御部6はステップSB2に戻る。上記した制御形態Bでは、着霜判定モードの連続実行回数はカウントされている。除霜モードが実行されると、着霜判定モードの連続実行回数のカウントはリセットされる。着霜判定モードにより着霜判定されて除霜モードを実行しても、上記カウントはリセットされる。この制御を行う理由は、着霜判定モードで万一着霜が見逃されても(例えば、冷媒不足などの場合に着霜判定ミスが生じるおそれがある)、除霜を確実に行うためである。   If the number of continuous executions of the frosting determination mode is less than the threshold number η1 (for example, 5 times) (NO in step SB8), it is estimated that the surface of the air heat exchanger 41 is not frosted. The unit 6 does not execute the defrosting mode, opens the second expansion valve 32 (step SB9), and returns to step SB2. However, if the number of continuous executions in the frosting determination mode is equal to or greater than the threshold number η1 (YES in step SB8), it is estimated that there is a high possibility of frosting on the surface of the air heat exchanger 41. Unit 6 executes the defrosting mode (step SB10). In the defrost mode, the first expansion valve 31 is closed. Furthermore, the opening degree of the second expansion valve 32 is increased as compared with the normal mode. Further, the bypass valve 72 of the bypass passage 71 is opened. If the temperature T2 on the outlet 41o side of the air heat exchanger 41 exceeds a threshold temperature α3 (for example, 0 ° C.), it is determined that the defrosting of the air heat exchanger 41 is completed, and the control unit 6 performs step SB2. Return to. In the control mode B described above, the number of continuous executions of the frost determination mode is counted. When the defrost mode is executed, the count of the number of continuous executions of the frost determination mode is reset. Even if the frost determination is performed in the frost determination mode and the defrost mode is executed, the count is reset. The reason for performing this control is to surely perform defrosting even if frost formation is missed in the frost determination mode (for example, a frost determination error may occur when the refrigerant is insufficient). .

実施例4は図1を準用する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。上記したように除霜モードにおいて、第1膨張弁31を閉鎖させるため、空気熱交換器41における蒸発量が期待できない。そこで、外部熱源熱交換器42における冷媒蒸発量を確保する必要がある。このため制御部6は熱発生源45の熱発生量を増加させ、加熱水通路43における加熱水の温度を上昇させる。これにより熱源熱交換器42の熱交換効率を増加させ、熱源熱交換器42の冷媒蒸発量を増加させる。   Example 4 applies FIG. 1 mutatis mutandis. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. As described above, since the first expansion valve 31 is closed in the defrosting mode, the amount of evaporation in the air heat exchanger 41 cannot be expected. Therefore, it is necessary to secure the amount of refrigerant evaporation in the external heat source heat exchanger 42. Therefore, the control unit 6 increases the amount of heat generated by the heat generation source 45 and increases the temperature of the heating water in the heating water passage 43. Thereby, the heat exchange efficiency of the heat source heat exchanger 42 is increased, and the refrigerant evaporation amount of the heat source heat exchanger 42 is increased.

あるいは、熱発生源45の発熱量が基本的には変化しないときには、加熱水通路43における供給弁44vの開度を通常運転モードの場合よりも増加させる操作と、ポンプ44pの単位時間あたりの回転数を通常運転モードの場合よりも増加させる操作とのうち一方または双方を実施しても良い。これにより加熱水通路43の加熱水から熱源熱交換器42に供給される熱量が増加し、熱源熱交換器42の熱交換効率、冷媒凝縮量が増加される。この結果、蒸発工程における冷媒蒸発量の不足が補われる。   Alternatively, when the heat generation amount of the heat generation source 45 does not basically change, an operation for increasing the opening degree of the supply valve 44v in the heating water passage 43 as compared with that in the normal operation mode and the rotation per unit time of the pump 44p. One or both of the operations for increasing the number more than in the normal operation mode may be performed. As a result, the amount of heat supplied from the heated water in the heated water passage 43 to the heat source heat exchanger 42 is increased, and the heat exchange efficiency and the refrigerant condensation amount of the heat source heat exchanger 42 are increased. As a result, the shortage of the refrigerant evaporation amount in the evaporation step is compensated.

更に除霜モードの開始時には、着霜量が多いため、バイパス弁72の開度を増加させて高温高圧の冷媒を空気熱交換器41に多めに供給する。これに対して除霜モードの時間が経過すると、着霜量が減少していくため、バイパス弁72の開度を次第に減少させて高温高圧の冷媒を空気熱交換器41に少なめに供給する。 図6はメモリ60の所定のエリアに格納されている除霜用マップを示す。この除霜用マップには、除霜モードの開始時刻からの経過時間ta(除霜モード中)と、バイパス弁72の開度Bとの関係が格納されている。除霜モードの開始時刻からの経過からの経過時間taが短い(除霜モード中)ときには、霜の解凍があまり進行していないので、バイパス弁72の開度Bを大きくする。除霜モードの経過時間taが長くなると、霜の解凍がかなり進行してくるので、バイパス弁72の開度Bを小さくさせる。この除霜マップの結果が実質的に得られるような演算式により、経過時間taに基づいてバイパス弁72の開度Bを求めても良い。本実施例では、他の条件は基本的にはあまり変化しないように維持されている状態で、経過時間taとバイパス弁72の開度Bとの関係を設定している。   Furthermore, since the amount of frost formation is large at the start of the defrosting mode, the opening degree of the bypass valve 72 is increased to supply a large amount of high-temperature and high-pressure refrigerant to the air heat exchanger 41. On the other hand, since the amount of frost formation decreases when the time of the defrost mode elapses, the opening degree of the bypass valve 72 is gradually decreased, and the high-temperature and high-pressure refrigerant is supplied to the air heat exchanger 41 in a small amount. FIG. 6 shows a defrosting map stored in a predetermined area of the memory 60. In this defrosting map, the relationship between the elapsed time ta (during the defrosting mode) from the start time of the defrosting mode and the opening B of the bypass valve 72 is stored. When the elapsed time ta from the elapse of the start time of the defrost mode is short (during the defrost mode), since the frost has not been thawed much, the opening B of the bypass valve 72 is increased. When the elapsed time ta in the defrosting mode becomes longer, frost defrosting proceeds considerably, so the opening B of the bypass valve 72 is reduced. The opening degree B of the bypass valve 72 may be obtained based on the elapsed time ta by an arithmetic expression that substantially obtains the result of the defrost map. In the present embodiment, the relationship between the elapsed time ta and the opening degree B of the bypass valve 72 is set while other conditions are basically maintained so as not to change so much.

実施例5は図1を準用する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。空気の温度を空気温度センサ51で検知する。そして除霜モードにおいて、空気温度が相対的に高いときには、空気温度が相対的に低いときよりも、制御部6は、単位時間において除霜モードを実施する実施頻度を減少させる。これに対して、空気温度センサ51で検知した空気温度が相対的に低いときには、空気温度が相対的に高いときよりも、制御部6は、単位時間において除霜モードを実施する実施頻度を増加させる。その理由としては、空気温度が高いほど空気熱交換器に着霜しにくいものの、空気温度が低いほど空気熱交換器41に着霜し易いためである。図7はメモリ60の所定のエリアに格納されている除霜用マップを示す。この除霜用マップには、空気温度T1と、除霜モード間の間隔設定時間tとの関係が格納されている。空気温度T1が低温となるつれて、間隔設定時間tが短くなり、空気温度T1が高温となるつれて、間隔設定時間tが長くなるように設定されている。この除霜マップの結果が実質的に得られるような演算式により、空気温度T1に基づいて間隔設定時間tを求めても良い。本実施例では、他の条件は基本的にはあまり変化しないように維持されている状態で、空気温度T1と除霜モード間の間隔設定時間tとの関係を設定している。   Example 5 applies FIG. 1 mutatis mutandis. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. The air temperature sensor 51 detects the air temperature. In the defrosting mode, when the air temperature is relatively high, the control unit 6 decreases the frequency of performing the defrosting mode in unit time, compared to when the air temperature is relatively low. On the other hand, when the air temperature detected by the air temperature sensor 51 is relatively low, the control unit 6 increases the frequency of performing the defrosting mode in unit time compared to when the air temperature is relatively high. Let The reason is that the higher the air temperature is, the more difficult it is to form frost on the air heat exchanger, but the lower the air temperature is, the easier it is to form frost on the air heat exchanger 41. FIG. 7 shows a defrosting map stored in a predetermined area of the memory 60. In this defrosting map, the relationship between the air temperature T1 and the interval setting time t between the defrosting modes is stored. The interval setting time t is set shorter as the air temperature T1 becomes lower, and the interval setting time t becomes longer as the air temperature T1 becomes higher. You may obtain | require the space | interval setting time t based on the air temperature T1 with the calculating formula which can obtain the result of this defrost map substantially. In the present embodiment, the relationship between the air temperature T1 and the interval setting time t between the defrost modes is set with other conditions basically maintained so as not to change so much.

実施例6は図1を準用する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。空気熱交換器41の出口41oから吐出される冷媒の温度は、熱交温度センサ52で検知される。除霜モードの初期では、空気熱交換器41に生成されている霜をかなり融解させるため、除霜モードの終期よりも、空気熱交換器41の出口41oから吐出される冷媒の温度が相対的に低い。このため除霜モードの初期では、除霜モードの終期よりも、第2膨張弁32の開度を相対的に減少させる。これにより熱源熱交換器42を流れる単位時間あたりの冷媒の流量を相対的に減少させ、熱源熱交換器42の出口42oから吐出される冷媒の温度を相対的に高める。この結果、空気熱交換器41の出口41oから吐出された冷媒と、熱源熱交換器42の出口42oから吐出された冷媒とが均温化される。   Example 6 applies FIG. 1 mutatis mutandis. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. The temperature of the refrigerant discharged from the outlet 41o of the air heat exchanger 41 is detected by a heat exchange temperature sensor 52. In the initial stage of the defrosting mode, the frost generated in the air heat exchanger 41 is considerably melted. Therefore, the temperature of the refrigerant discharged from the outlet 41o of the air heat exchanger 41 is relatively higher than that in the final stage of the defrosting mode. Very low. For this reason, at the initial stage of the defrost mode, the opening degree of the second expansion valve 32 is relatively decreased as compared with the final stage of the defrost mode. Thereby, the flow rate of the refrigerant per unit time flowing through the heat source heat exchanger 42 is relatively decreased, and the temperature of the refrigerant discharged from the outlet 42o of the heat source heat exchanger 42 is relatively increased. As a result, the temperature of the refrigerant discharged from the outlet 41o of the air heat exchanger 41 and the temperature of the refrigerant discharged from the outlet 42o of the heat source heat exchanger 42 are equalized.

これに対して除霜モードの終期では、除霜モードの初期よりも、空気熱交換器41の霜の融解がかなり進行しているため、空気熱交換器41の出口41oから吐出される冷媒の温度が相対的に高くなる。このため除霜モードの終期では、除霜モードの初期よりも、第2膨張弁32の開度を相対的に増加させ、熱源熱交換器42を流れる単位時間あたりの冷媒の流量を相対的に増加させ、熱源熱交換器42の出口42oから吐出される冷媒の温度を相対的に低める。この結果、空気熱交換器41の出口41oから吐出された冷媒と、熱源熱交換器42の出口42oから吐出された冷媒とが合流点9cで合流すると、冷媒の温度ができるだけ均温化される。この結果、除霜モードの初期と終期とにおいて、圧縮機1の吸込ポート1sに吸い込まれる冷媒の温度の変動を抑制することができ、良好な冷凍サイクルが得られる。なお圧縮機1の吸込ポート1sに吸い込まれる冷媒の温度が過剰に上昇すると、圧縮機1のシールリング等の耐久性に影響を与えるおそれがあり、また、通常運転モードの能力を低下させるおそれがある。   On the other hand, in the final stage of the defrosting mode, the melting of the frost of the air heat exchanger 41 is proceeding considerably more than in the initial stage of the defrosting mode, so that the refrigerant discharged from the outlet 41o of the air heat exchanger 41 is increased. The temperature becomes relatively high. Therefore, at the end of the defrost mode, the opening degree of the second expansion valve 32 is relatively increased compared to the initial stage of the defrost mode, and the flow rate of the refrigerant per unit time flowing through the heat source heat exchanger 42 is relatively set. The temperature of the refrigerant discharged from the outlet 42o of the heat source heat exchanger 42 is relatively lowered. As a result, when the refrigerant discharged from the outlet 41o of the air heat exchanger 41 and the refrigerant discharged from the outlet 42o of the heat source heat exchanger 42 merge at the junction 9c, the temperature of the refrigerant is equalized as much as possible. . As a result, in the initial stage and the final stage of the defrosting mode, fluctuations in the temperature of the refrigerant sucked into the suction port 1s of the compressor 1 can be suppressed, and a good refrigeration cycle can be obtained. If the temperature of the refrigerant sucked into the suction port 1s of the compressor 1 rises excessively, the durability of the seal ring or the like of the compressor 1 may be affected, and the capability of the normal operation mode may be reduced. is there.

図8はメモリ60の所定のエリアに格納されている除霜用マップを示す。この除霜用マップには、除霜モードの開始時刻からの経過時間taと第2膨張弁32の開度Mとの関係が格納されている。除霜モードの開始時刻からの経過時間taが長くなるにつれて、第2膨張弁32の開度Mが増加して大きくなるように設定されている経過時間taが短くなるにつれて、第2膨張弁32の開度Mが減少して小さくなるように設定されている。この除霜マップの結果が実質的に得られるような演算式により、経過時間taに基づいて第2膨張弁32の開度Mを求めても良い。本実施例では、他の条件は基本的にはあまり変化しないように維持されている状態で、経過時間taと第2膨張弁32の開度Mとの関係を設定している。   FIG. 8 shows a defrosting map stored in a predetermined area of the memory 60. In this defrosting map, the relationship between the elapsed time ta from the start time of the defrosting mode and the opening degree M of the second expansion valve 32 is stored. As the elapsed time ta from the start time of the defrosting mode increases, the second expansion valve 32 increases as the elapsed time ta set so that the opening degree M of the second expansion valve 32 increases and increases. Is set so that the degree of opening M decreases. The opening degree M of the second expansion valve 32 may be obtained based on the elapsed time ta by an arithmetic expression that substantially obtains the result of the defrost map. In the present embodiment, the relationship between the elapsed time ta and the opening degree M of the second expansion valve 32 is set while other conditions are basically maintained so as not to change so much.

実施例7は図1を準用する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。前述したように熱交温度センサ52は空気用熱交換器41の蒸発温度を検知することができる。除霜モードを実施するにあたり、熱交温度センサ52の検知温度T2が相対的に低いとき(例えば、除霜モードの初期)には、空気熱交換器41の霜を融解させるため、空気熱交換器41の出口41oから吐出される冷媒の温度が相対的に低い。このため第2膨張弁32の開度を相対的に減少させ、熱源熱交換器42の出口42oから吐出される冷媒の流量を減少させ、熱源熱交換器42の出口42oから吐出される冷媒の温度を相対的に高める。この結果、空気熱交換器41の出口41oから吐出された冷媒と、熱源熱交換器42の出口42oから吐出された冷媒とが、合流点9cで合流すると、冷媒の温度は均温化される。   Example 7 applies mutatis mutandis to FIG. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. As described above, the heat exchanger temperature sensor 52 can detect the evaporation temperature of the air heat exchanger 41. In performing the defrosting mode, when the detected temperature T2 of the heat exchanger temperature sensor 52 is relatively low (for example, at the beginning of the defrosting mode), the air heat exchanger 41 is melted so that the air heat exchange is performed. The temperature of the refrigerant discharged from the outlet 41o of the vessel 41 is relatively low. For this reason, the opening degree of the second expansion valve 32 is relatively reduced, the flow rate of the refrigerant discharged from the outlet 42o of the heat source heat exchanger 42 is reduced, and the refrigerant discharged from the outlet 42o of the heat source heat exchanger 42 is reduced. Increase the temperature relatively. As a result, when the refrigerant discharged from the outlet 41o of the air heat exchanger 41 and the refrigerant discharged from the outlet 42o of the heat source heat exchanger 42 merge at the junction 9c, the temperature of the refrigerant is equalized. .

これに対して、熱交温度センサ52の検知温度T2が相対的に高いとき(例えば、除霜モードの霜の終期)には、空気熱交換器41の霜の融解がかなり進行しているため、空気熱交換器41の出口41oから吐出される冷媒の温度が相対的に高い。このため第2膨張弁32の開度を相対的に増加させ、熱源熱交換器42から吐出される冷媒の流量を増加させ、熱源熱交換器42から吐出される冷媒の温度を相対的に低める。この結果、空気熱交換器41の出口41oから吐出された冷媒と、熱源熱交換器42の出口42oから吐出された冷媒とが合流点9cで合流するときには、冷媒の温度が均温化される。この結果、除霜モードにおいて、圧縮機1の吸込ポート1sに吸い込まれる冷媒の温度の変動を抑制することができる。このように熱交換温度センサ52の検知温度T2の高低に応じて第2膨張弁32の開度を調整して熱源熱交換器42を流れる冷媒の流量を調整すれば、熱交換温度センサ52の検知温度T2の変動の影響をできるだけ避けつつ、除霜を実施できる。   On the other hand, when the detected temperature T2 of the heat exchanger temperature sensor 52 is relatively high (for example, the end of frost in the defrost mode), the frost melting of the air heat exchanger 41 has progressed considerably. The temperature of the refrigerant discharged from the outlet 41o of the air heat exchanger 41 is relatively high. For this reason, the opening degree of the second expansion valve 32 is relatively increased, the flow rate of the refrigerant discharged from the heat source heat exchanger 42 is increased, and the temperature of the refrigerant discharged from the heat source heat exchanger 42 is relatively lowered. . As a result, when the refrigerant discharged from the outlet 41o of the air heat exchanger 41 and the refrigerant discharged from the outlet 42o of the heat source heat exchanger 42 merge at the junction 9c, the temperature of the refrigerant is equalized. . As a result, in the defrosting mode, the temperature fluctuation of the refrigerant sucked into the suction port 1s of the compressor 1 can be suppressed. Thus, if the flow rate of the refrigerant flowing through the heat source heat exchanger 42 is adjusted by adjusting the opening of the second expansion valve 32 in accordance with the detected temperature T2 of the heat exchange temperature sensor 52, the heat exchange temperature sensor 52 The defrosting can be performed while avoiding the influence of the fluctuation of the detected temperature T2 as much as possible.

図9はメモリ60の所定のエリアに格納されている除霜用マップを示す。この除霜用マップには、熱交換温度センサ52の検知温度T2と第2膨張弁32の開度Mとの関係が格納されている。熱交換温度センサ52の検知温度T2が高くなるにつれて、第2膨張弁32の開度Mが増加するように設定されている。この除霜マップの結果が実質的に得られるような演算式により、検知温度T2に基づいて第2膨張弁32の開度Mを求めても良い。本実施例では、他の条件は基本的にはあまり変化しないように維持されている状態で、検知温度T2と第2膨張弁32の開度Mとの関係を設定している。   FIG. 9 shows a defrosting map stored in a predetermined area of the memory 60. In this defrosting map, the relationship between the detected temperature T2 of the heat exchange temperature sensor 52 and the opening degree M of the second expansion valve 32 is stored. It is set so that the opening degree M of the second expansion valve 32 increases as the detection temperature T2 of the heat exchange temperature sensor 52 increases. The opening degree M of the second expansion valve 32 may be obtained based on the detected temperature T2 by an arithmetic expression that substantially obtains the result of the defrost map. In this embodiment, the relationship between the detected temperature T2 and the opening degree M of the second expansion valve 32 is set while other conditions are basically maintained so as not to change so much.

実施例8は図1を準用する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。前述したように熱交温度センサ52は、空気熱交換器41の蒸発温度を検知する。除霜モードを実施しているときには、熱交換温度センサ52の検知温度T2が相対的に高いときには、熱交換温度センサ52の検知温度T2が相対的に低いときよりも、空気熱交換器41の霜の融解がかなり進行しており、このため制御部6はバイパス弁72の開度を相対的に減少させる。これによりバイパス通路71から空気熱交換器41に流れる高温高圧の冷媒の単位時間あたりの流量を相対的に減少させる。   Example 8 applies FIG. 1 mutatis mutandis. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. As described above, the heat exchanger temperature sensor 52 detects the evaporation temperature of the air heat exchanger 41. When the defrost mode is performed, when the detected temperature T2 of the heat exchange temperature sensor 52 is relatively high, the air heat exchanger 41 has a higher temperature than when the detected temperature T2 of the heat exchange temperature sensor 52 is relatively low. The melting of the frost has progressed considerably, so that the control unit 6 relatively reduces the opening degree of the bypass valve 72. Thereby, the flow rate per unit time of the high-temperature and high-pressure refrigerant flowing from the bypass passage 71 to the air heat exchanger 41 is relatively reduced.

これに対して、熱交換温度センサ52の検知温度T2が相対的に低いときには、熱交換温度センサ52の検知温度T2が相対的に高いときよりも、空気熱交換器41の霜の融解があまり進行していない。このため制御部6はバイパス弁72の開度を相対的に増加させる。これによりバイパス通路71から空気熱交換器41に流れる高温高圧の冷媒の単位時間あたりの流量を相対的に増加させ、空気熱交換器41の霜を効果的に除去できる。このように熱交換温度センサ52の検知温度T2の高低に応じてバイパス弁72の開度を調整すれば、熱交換温度センサ52の検知温度T2の変動の影響をできるだけ避けつつ、除霜を実施できる。   On the other hand, when the detection temperature T2 of the heat exchange temperature sensor 52 is relatively low, the frost of the air heat exchanger 41 is less melted than when the detection temperature T2 of the heat exchange temperature sensor 52 is relatively high. Not progressing. For this reason, the control part 6 increases the opening degree of the bypass valve 72 relatively. Thereby, the flow rate per unit time of the high-temperature and high-pressure refrigerant flowing from the bypass passage 71 to the air heat exchanger 41 is relatively increased, and the frost of the air heat exchanger 41 can be effectively removed. In this way, if the opening degree of the bypass valve 72 is adjusted according to the detected temperature T2 of the heat exchange temperature sensor 52, defrosting is performed while avoiding the influence of fluctuation of the detected temperature T2 of the heat exchange temperature sensor 52 as much as possible. it can.

図10(A)はメモリ60の所定のエリアに格納されている除霜用マップを示す。この除霜用マップには、熱交換温度センサ52の検知温度T2とバイパス弁72の開度Bとの関係が格納されている。熱交換温度センサ52の検知温度T2が低くなるにつれて、空気熱交換器41における霜量が多いと推定されるため、バイパス弁72の開度Bが増加して大きくなるように設定されている。この除霜マップの結果が実質的に得られるような演算式に基づいて、検知温度T2からバイパス弁72の開度Bを求めても良い。この場合、他の条件は基本的にはあまり変化しないように維持されている状態で、検知温度T2とバイパス弁72の開度Bとの関係を設定している。   FIG. 10A shows a defrosting map stored in a predetermined area of the memory 60. In this defrosting map, the relationship between the detected temperature T2 of the heat exchange temperature sensor 52 and the opening degree B of the bypass valve 72 is stored. Since the amount of frost in the air heat exchanger 41 is estimated to increase as the detection temperature T2 of the heat exchange temperature sensor 52 decreases, the opening B of the bypass valve 72 is set to increase and increase. The opening degree B of the bypass valve 72 may be obtained from the detected temperature T2 based on an arithmetic expression that can substantially obtain the result of the defrost map. In this case, the relationship between the detected temperature T2 and the opening degree B of the bypass valve 72 is set while the other conditions are basically maintained so as not to change so much.

また図2および図3に示す試験結果によれば、着霜判定モードBにおける温度差ΔTbは、着霜判定モードAにおける温度差ΔTaよりも増加している(ΔTb>ΔTa)。このためΔTが大きいほうが霜が成長しており、ΔTが小さいほうが霜が成長していないと判定される。そこで、ΔTが相対的に小さいときには、着霜があまり成長していないため、制御部6はバイパス弁72の開度を相対的に減少させることにしても良い。これに対して、ΔTが相対的に大きいときには、着霜が成長しているため、制御部6はバイパス弁72の開度を相対的に増加させることにしても良い。これによりバイパス通路71から空気熱交換器41に流れる高温高圧の冷媒の単位時間あたりの流量を相対的に増加させ、空気熱交換器41の霜を効果的に除去できる。   Further, according to the test results shown in FIGS. 2 and 3, the temperature difference ΔTb in the frost determination mode B is larger than the temperature difference ΔTa in the frost determination mode A (ΔTb> ΔTa). Therefore, it is determined that frost is growing when ΔT is large and frost is not growing when ΔT is small. Therefore, when ΔT is relatively small, frost formation has not grown so much, and therefore the control unit 6 may relatively decrease the opening degree of the bypass valve 72. On the other hand, when ΔT is relatively large, since frost formation has grown, the control unit 6 may relatively increase the opening degree of the bypass valve 72. Thereby, the flow rate per unit time of the high-temperature and high-pressure refrigerant flowing from the bypass passage 71 to the air heat exchanger 41 is relatively increased, and the frost of the air heat exchanger 41 can be effectively removed.

図10(B)はメモリ60の所定のエリアに格納されている除霜用マップを示す。この除霜用マップには、ΔT(ΔT=T1−T2)とバイパス弁72の開度Bとの関係が格納されている。ΔT(ΔT=T1−T2)が大きくなるにつれて、バイパス弁72の開度Bが増加して大きくなるように設定されている。この除霜マップの結果が実質的に得られるような演算式に基づいて、ΔTからバイパス弁72の開度Bを求めても良い。この場合、他の条件は基本的にはあまり変化しないように維持されている状態で、ΔTとバイパス弁72の開度Bとの関係を設定している。   FIG. 10B shows a defrosting map stored in a predetermined area of the memory 60. In this defrosting map, the relationship between ΔT (ΔT = T1−T2) and the opening degree B of the bypass valve 72 is stored. The opening degree B of the bypass valve 72 is set to increase and increase as ΔT (ΔT = T1-T2) increases. The opening degree B of the bypass valve 72 may be obtained from ΔT based on an arithmetic expression that can substantially obtain the result of the defrost map. In this case, the relationship between ΔT and the opening degree B of the bypass valve 72 is set while other conditions are basically maintained so as not to change so much.

実施例9は図1を準用する。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。冷凍サイクル装置の冷媒循環量が多いときには、冷媒循環量が少ないときよりも、空気熱交換器41に相対的に着霜し易い傾向がある。このため、バイパス通路71から空気熱交換器41に流れる高温高圧の冷媒の単位時間あたりの流量を相対的に増加させる。   Example 9 applies FIG. 1 mutatis mutandis. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. When the refrigerant circulation amount of the refrigeration cycle apparatus is large, the air heat exchanger 41 tends to be frosted more easily than when the refrigerant circulation amount is small. For this reason, the flow rate per unit time of the high-temperature and high-pressure refrigerant flowing from the bypass passage 71 to the air heat exchanger 41 is relatively increased.

これに対して冷凍サイクル装置の冷媒循環量が少ないときには、冷媒循環量が多いときよりも、空気熱交換器41における蒸発量が相対的に少なく、空気熱交換器41に相対的に着霜し難い。このため、バイパス通路71から空気熱交換器41に流れる高温高圧の冷媒の単位時間あたりの流量を相対的に減少させる。このように当該冷媒循環量に応じてバイパス弁72の開度を調整すれば、当該冷媒循環量の変動の影響をできるだけ避けつつ、除霜できる。冷媒循環量は、圧縮機1の単位時間あたりの回転数と冷媒圧力とに基づいて求められる。   On the other hand, when the refrigerant circulation amount of the refrigeration cycle apparatus is small, the evaporation amount in the air heat exchanger 41 is relatively small compared to when the refrigerant circulation amount is large, and the air heat exchanger 41 is relatively frosted. hard. For this reason, the flow rate per unit time of the high-temperature and high-pressure refrigerant flowing from the bypass passage 71 to the air heat exchanger 41 is relatively reduced. If the opening degree of the bypass valve 72 is adjusted according to the refrigerant circulation amount as described above, defrosting can be performed while avoiding the influence of the fluctuation of the refrigerant circulation amount as much as possible. The refrigerant circulation amount is obtained based on the rotation speed per unit time of the compressor 1 and the refrigerant pressure.

図11はメモリ60の所定のエリアに格納されている除霜用マップを示す。この除霜用マップには、冷媒循環量Vとバイパス弁72の開度Bとの関係が格納されている。冷媒循環量Vが増加するにつれて、空気熱交換器41に霜が生成され易いため、バイパス弁72の開度Bが増加するように設定されている。この除霜マップの結果が実質的に得られるような演算式により、冷媒循環量に基づいてバイパス弁72の開度Bを求めても良い。本実施例では、他の条件は基本的にはあまり変化しないように維持されている状態で、冷媒循環量Vとバイパス弁72の開度Bとの関係を設定している。   FIG. 11 shows a defrosting map stored in a predetermined area of the memory 60. In this defrosting map, the relationship between the refrigerant circulation amount V and the opening degree B of the bypass valve 72 is stored. Since the frost is likely to be generated in the air heat exchanger 41 as the refrigerant circulation amount V increases, the opening B of the bypass valve 72 is set to increase. The opening degree B of the bypass valve 72 may be obtained based on the refrigerant circulation amount by an arithmetic expression that substantially obtains the result of the defrost map. In this embodiment, the relationship between the refrigerant circulation amount V and the opening degree B of the bypass valve 72 is set while other conditions are basically maintained so as not to change so much.

図12は実施例10を示す。本実施例1は実施例と基本的には同様の構成および作用効果をもつため、図1を準用する。以下、異なる部分を中心として説明する。図1に示すように、圧縮機1の吐出ポート1o側の冷媒高圧を検知する第1圧力センサ11が設けられている。圧縮機1の吸込ポート1s側の冷媒低圧を検知する第2圧力センサ12が設けられている。制御部6は冷媒高圧と冷媒低圧との間の圧力差ΔPを求める。当該圧力差ΔPが高いときには、当該圧力差ΔPが少ないときよりも、高温高圧の気体状の冷媒がバイパス弁72から急激に噴出されるため、バイパス弁72の開度を相対的に減少させる。   FIG. 12 shows a tenth embodiment. Since the first embodiment has basically the same configuration and operation effects as the first embodiment, FIG. 1 is applied mutatis mutandis. In the following, different parts will be mainly described. As shown in FIG. 1, the 1st pressure sensor 11 which detects the refrigerant | coolant high pressure by the side of the discharge port 1o of the compressor 1 is provided. A second pressure sensor 12 that detects the refrigerant low pressure on the suction port 1 s side of the compressor 1 is provided. The control unit 6 obtains a pressure difference ΔP between the refrigerant high pressure and the refrigerant low pressure. When the pressure difference ΔP is high, since the high-temperature and high-pressure gaseous refrigerant is ejected more rapidly from the bypass valve 72 than when the pressure difference ΔP is small, the opening degree of the bypass valve 72 is relatively decreased.

これに対して、当該圧力差ΔPが低いときには、圧力差ΔPが高いときよりも、高温高圧の冷媒がバイパス弁72から急激に噴出されにくいため、バイパス弁72の開度を相対的に増加させる。このように当該圧力差ΔPに応じてバイパス弁72の開度を調整すれば、当該圧力差ΔPの変動の影響をできるだけ避けつつ、高温高圧の冷媒を空気熱交換器41に供給できる。   On the other hand, when the pressure difference ΔP is low, the high-temperature and high-pressure refrigerant is less likely to be rapidly ejected from the bypass valve 72 than when the pressure difference ΔP is high. . By adjusting the opening degree of the bypass valve 72 according to the pressure difference ΔP in this way, high-temperature and high-pressure refrigerant can be supplied to the air heat exchanger 41 while avoiding the influence of fluctuations in the pressure difference ΔP as much as possible.

図12はメモリ60の所定のエリアに格納されている除霜用マップを示す。この除霜用マップには、当該圧力差ΔPとバイパス弁72の開度Bとの関係が格納されている。当該圧力差ΔPが増加するにつれて、バイパス弁72の開度Bが減少するように設定されている。この除霜マップの結果が実質的に得られるような演算式により、圧力差ΔPに基づいてバイパス弁72の開度Bを求めても良い。本実施例では、他の条件は基本的にはあまり変化しないように維持されている状態で、圧力差ΔPとバイパス弁72の開度Bとの関係を設定している。   FIG. 12 shows a defrosting map stored in a predetermined area of the memory 60. In this defrosting map, the relationship between the pressure difference ΔP and the opening degree B of the bypass valve 72 is stored. The opening degree B of the bypass valve 72 is set to decrease as the pressure difference ΔP increases. The opening degree B of the bypass valve 72 may be obtained based on the pressure difference ΔP by an arithmetic expression that substantially obtains the result of the defrost map. In the present embodiment, the relationship between the pressure difference ΔP and the opening degree B of the bypass valve 72 is set while other conditions are basically maintained so as not to change so much.

図13は実施例11を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。熱源熱交換器42は、燃料電池システム46の貯湯槽で貯蔵されている加熱水が流れる加熱水流路46aをもつ。加熱水流路46aを流れる加熱水の熱は、熱源熱交換器42において冷媒の蒸発を促進させる熱源として機能する。加熱水流路46aには加熱水供給弁47vおよびポンプ47pが設けられている。通常運転モードの暖房運転によれば、加熱水供給弁47vを開放させると共にポンプ47pを駆動させ、熱源熱交換器42に加熱水を供給し、熱源熱交換器42における冷媒の気化を促進させる。着霜判定モードによれば、加熱水供給弁47vを閉鎖させると共にポンプ47pをオフとする。あるいは、加熱水供給弁47vの開度およびポンプ47pの単位時間あたりの回転数を、通常運転モードの暖房運転の場合よりも低減させる。これにより着霜判定モードにおいて熱源熱交換器42から空気熱交換器41への伝熱が抑制される。前述したように空気熱交換器41への伝熱が抑制されると、ΔTが増加し、着霜の検知精度が高まる。   FIG. 13 shows an eleventh embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. The heat source heat exchanger 42 has a heated water passage 46 a through which heated water stored in the hot water storage tank of the fuel cell system 46 flows. The heat of the heated water flowing through the heated water channel 46a functions as a heat source that promotes evaporation of the refrigerant in the heat source heat exchanger 42. A heating water supply valve 47v and a pump 47p are provided in the heating water channel 46a. According to the heating operation in the normal operation mode, the heating water supply valve 47v is opened and the pump 47p is driven to supply the heating water to the heat source heat exchanger 42, thereby promoting the vaporization of the refrigerant in the heat source heat exchanger 42. According to the frosting determination mode, the heating water supply valve 47v is closed and the pump 47p is turned off. Alternatively, the opening degree of the heating water supply valve 47v and the rotation speed per unit time of the pump 47p are reduced as compared with the heating operation in the normal operation mode. Thereby, heat transfer from the heat source heat exchanger 42 to the air heat exchanger 41 is suppressed in the frost determination mode. As described above, when the heat transfer to the air heat exchanger 41 is suppressed, ΔT increases and the detection accuracy of frost increases.

除霜モードにおいては、a操作を実施すべく、第1膨張弁31を閉鎖して第1膨張弁31の開度を0とする。更にb操作を実施すべく、第2膨張弁32を開度を通常運転モードよりも増加させる。更にc操作を実施すべく、バイパス通路71のバイパス弁72を開放させる。これにより圧縮機1の吐出ポート1oから吐出された高温高圧の冷媒(例えば60〜90℃)を空気熱交換器41に供給し、空気熱交換器41の霜を融解させる。   In the defrosting mode, the first expansion valve 31 is closed to make the opening degree of the first expansion valve 31 zero in order to perform the operation a. Further, in order to perform the b operation, the opening degree of the second expansion valve 32 is increased from that in the normal operation mode. Further, the bypass valve 72 of the bypass passage 71 is opened to perform the c operation. Thereby, the high-temperature and high-pressure refrigerant (for example, 60 to 90 ° C.) discharged from the discharge port 1o of the compressor 1 is supplied to the air heat exchanger 41, and the frost of the air heat exchanger 41 is melted.

図14は実施例12を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。膨張弁31Bは、空気熱交換器41および熱源熱交換器42に供給する冷媒流量を分配する。通常運転時には、空気熱交換器41および熱源熱交換器42に供給する冷媒流量を均等化させる。着霜判定モードのときには、空気熱交換器41に流す冷媒流量を高め、熱源熱交換器42に流す冷媒流量を低下させる。除霜モード時には、空気熱交換器41に流す冷媒流量を無しまたは微量とし、熱源熱交換器42に流す冷媒流量を増加させ、バイパイ弁72を開放させる。   FIG. 14 shows a twelfth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. The expansion valve 31B distributes the refrigerant flow rate supplied to the air heat exchanger 41 and the heat source heat exchanger 42. During normal operation, the refrigerant flow rate supplied to the air heat exchanger 41 and the heat source heat exchanger 42 is equalized. In the frosting determination mode, the flow rate of refrigerant flowing through the air heat exchanger 41 is increased, and the flow rate of refrigerant flowing through the heat source heat exchanger 42 is decreased. In the defrosting mode, the flow rate of refrigerant flowing through the air heat exchanger 41 is set to none or a minute amount, the flow rate of refrigerant flowing through the heat source heat exchanger 42 is increased, and the bypass pipe 72 is opened.

熱源熱交換器42はヒータ48をもつ。ヒータ48の熱は、熱源熱交換器42において冷媒の蒸発を促進させる熱源として機能する。通常運転モードの暖房運転によれば、ヒータ48を発熱させて、熱源熱交換器42における冷媒の気化を促進させる。着霜判定モードによれば、ヒータ48をオフとするか、あるいは、ヒータ48の発熱量を通常運転モードの暖房運転の場合よりも低減させる。これにより着霜判定モードにおいて熱源熱交換器42から空気熱交換器41への伝熱が抑制される。防霜モードでは、ヒータ48の発熱量を高めて熱源熱交換器42における冷媒蒸発量を増加できるので、暖房能力の低下が抑制される。   The heat source heat exchanger 42 has a heater 48. The heat of the heater 48 functions as a heat source that promotes evaporation of the refrigerant in the heat source heat exchanger 42. According to the heating operation in the normal operation mode, the heater 48 generates heat, and the vaporization of the refrigerant in the heat source heat exchanger 42 is promoted. According to the frosting determination mode, the heater 48 is turned off or the amount of heat generated by the heater 48 is reduced as compared with the heating operation in the normal operation mode. Thereby, heat transfer from the heat source heat exchanger 42 to the air heat exchanger 41 is suppressed in the frost determination mode. In the defrosting mode, the amount of heat generated by the heater 48 can be increased and the amount of refrigerant evaporated in the heat source heat exchanger 42 can be increased, so that a decrease in heating capacity is suppressed.

図15は実施例13を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。以下、異なる部分を中心として説明する。空気熱交換器41および熱源熱交換器42は直列に配置されている。空気熱交換器41に対して並列通路41xが空気熱交換器41および第1膨張弁31を迂回するようにバイパス路として設けられている。並列通路41xには第3膨張弁36が設けられている。通常運転モードのときには、圧縮機1の吐出ポート1oから吐出された高温高圧の冷媒は、凝縮用熱交換器2で凝縮熱を放出し、第1膨張弁31、空気熱交換器41を通過し、第2膨張弁32、熱源熱交換器42を通過し、圧縮機1の吸込ポート1sに戻る。凝縮用熱交換器2で凝縮熱が放出され、暖房運転が行われる。この場合、バイパス弁72および第3膨張弁36は閉鎖している。   FIG. 15 shows a thirteenth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. In the following, different parts will be mainly described. The air heat exchanger 41 and the heat source heat exchanger 42 are arranged in series. A parallel passage 41x is provided as a bypass passage so as to bypass the air heat exchanger 41 and the first expansion valve 31 with respect to the air heat exchanger 41. A third expansion valve 36 is provided in the parallel passage 41x. In the normal operation mode, the high-temperature and high-pressure refrigerant discharged from the discharge port 1o of the compressor 1 releases the condensation heat in the condensation heat exchanger 2 and passes through the first expansion valve 31 and the air heat exchanger 41. , Passes through the second expansion valve 32 and the heat source heat exchanger 42, and returns to the suction port 1 s of the compressor 1. Condensation heat is released in the heat exchanger 2 for condensation, and heating operation is performed. In this case, the bypass valve 72 and the third expansion valve 36 are closed.

これに対して除霜モード時には、第1膨張弁31を閉鎖し、第3膨張弁36を開放させ、バイパス弁72を開放させる。圧縮機1の吐出ポート1oから吐出された高温高圧の気体状の冷媒は、凝縮用熱交換器2、並列通路41x、第2膨張弁36を経て熱源熱交換器42に至り、熱源熱交換器42において蒸発工程が実施される。また、圧縮機1の吐出ポート1oから吐出された高温高圧の気体状の冷媒は、バイパイ通路71およびバイパス弁72を経て空気熱交換器41に供給され、空気熱交換器41の霜を融解させ、空気熱交換器41の出口41oから第2膨張弁32、熱源熱交換器42に供給される。   In contrast, in the defrosting mode, the first expansion valve 31 is closed, the third expansion valve 36 is opened, and the bypass valve 72 is opened. The high-temperature and high-pressure gaseous refrigerant discharged from the discharge port 1o of the compressor 1 reaches the heat source heat exchanger 42 via the condensation heat exchanger 2, the parallel passage 41x, and the second expansion valve 36, and the heat source heat exchanger. At 42, an evaporation step is performed. Further, the high-temperature and high-pressure gaseous refrigerant discharged from the discharge port 1o of the compressor 1 is supplied to the air heat exchanger 41 through the bypass pipe 71 and the bypass valve 72 to melt the frost in the air heat exchanger 41. The air is supplied from the outlet 41o of the air heat exchanger 41 to the second expansion valve 32 and the heat source heat exchanger 42.

図16は実施例14を示す。本実施例は実施例1と基本的には同様の構成および作用効果をもつ。図16は、冷凍サイクル装置の代表例を示す空気調和装置(ガスエンジンヒートポンプ)の配管図を示す。空気調和装置は、室内の空調を行う複数の室内機80と、室内で空調を行う冷媒を調整する室外機81とを備えている。図16に示すように、室内機80は室内に配置されており、空調のために冷媒と室内の空気との熱交換を行う凝縮用熱交換器として機能する室内熱交換器2Xと、冷媒を膨張させる室内膨張弁116とを基本要素として有する。なお、室内機80の数は何台でも良い。   FIG. 16 shows a fourteenth embodiment. This embodiment basically has the same configuration and operational effects as the first embodiment. FIG. 16 is a piping diagram of an air conditioner (gas engine heat pump) showing a typical example of a refrigeration cycle apparatus. The air conditioner includes a plurality of indoor units 80 that perform indoor air conditioning, and an outdoor unit 81 that adjusts a refrigerant that performs indoor air conditioning. As shown in FIG. 16, the indoor unit 80 is disposed indoors, and for the air conditioning, the indoor heat exchanger 2X that functions as a heat exchanger for condensation that performs heat exchange between the refrigerant and the indoor air, and the refrigerant An indoor expansion valve 116 to be expanded is included as a basic element. The number of indoor units 80 may be any number.

室外機81は室外に配置されている。室外機81は、気体燃料を燃料として駆動されるエンジン100(駆動源)と、気体状の冷媒と液状の冷媒とを分離した状態で冷媒を収容するアキュームレータ101と、エンジン100で駆動され駆動に伴いアキュムレータ101の気体状の冷媒を吸入して圧縮する複数の圧縮機1と、空調のために冷媒の熱交換を行う室外熱交換器として機能する空気熱交換器41と、熱源熱交換器42とを基本要素として有する。圧縮機1は、エンジン100によりタイミングベルト等の動力伝達部材102を介して連動される。故に、エンジン100は圧縮機1の駆動源として機能する。圧縮機1は、アキュムレータ101から気体状の冷媒を圧縮室に吸い込む吸込ポート1sと、圧縮室で圧縮された高圧の気体状の冷媒を吐出させる吐出ポート1oとを有する。   The outdoor unit 81 is arranged outdoors. The outdoor unit 81 is driven and driven by the engine 100 (drive source) driven by gaseous fuel, the accumulator 101 that stores the refrigerant in a state where the gaseous refrigerant and the liquid refrigerant are separated, and the engine 100. Accordingly, a plurality of compressors 1 that suck and compress the gaseous refrigerant in the accumulator 101, an air heat exchanger 41 that functions as an outdoor heat exchanger that performs heat exchange of the refrigerant for air conditioning, and a heat source heat exchanger 42. As basic elements. The compressor 1 is interlocked by the engine 100 via a power transmission member 102 such as a timing belt. Therefore, the engine 100 functions as a drive source for the compressor 1. The compressor 1 has a suction port 1s that sucks gaseous refrigerant from the accumulator 101 into a compression chamber, and a discharge port 1o that discharges high-pressure gaseous refrigerant compressed in the compression chamber.

後述するように暖房運転時において室内機80から室外機81に冷媒が帰還する帰還方向(矢印K1方向)において、空気熱交換器41の上流には、電子調整弁としての第1膨張弁31および逆止弁103が並列に配置されている。逆止弁103は、室外機81の空気熱交換器41から室内機80への冷媒の流れを許容するものの、室内機80から室外機81の空気熱交換器41への冷媒の流れを遮断する。第1膨張弁31は電気的制御により開度が連続的または多段階に調整可能である。なお、空気熱交換器41に向けて送風するファン41f、室内熱交換器2Xに向けて送風するファン2fが設けられている。本実施例においても、図16に示すように、圧縮機1の吐出ポート1o側のオイルセパレータ105と空気熱交換器41とを繋ぐバイパス通路71が設けられている。バイパス通路71にはバイパス弁72が設けられている。バイパス弁72が開放すると、オイルセパレータ105から空気熱交換器41に冷媒が流れる。   As will be described later, in the return direction (arrow K1 direction) in which the refrigerant returns from the indoor unit 80 to the outdoor unit 81 during the heating operation, upstream of the air heat exchanger 41, the first expansion valve 31 as an electronic adjustment valve and A check valve 103 is arranged in parallel. The check valve 103 allows the flow of refrigerant from the air heat exchanger 41 of the outdoor unit 81 to the indoor unit 80, but blocks the flow of refrigerant from the indoor unit 80 to the air heat exchanger 41 of the outdoor unit 81. . The opening degree of the first expansion valve 31 can be adjusted continuously or in multiple stages by electrical control. A fan 41f that blows air toward the air heat exchanger 41 and a fan 2f that blows air toward the indoor heat exchanger 2X are provided. Also in the present embodiment, as shown in FIG. 16, a bypass passage 71 that connects the oil separator 105 on the discharge port 1 o side of the compressor 1 and the air heat exchanger 41 is provided. A bypass valve 72 is provided in the bypass passage 71. When the bypass valve 72 is opened, the refrigerant flows from the oil separator 105 to the air heat exchanger 41.

(暖房運転時)
先ず、室内を暖房するときについて説明する。気体燃料を燃料としてエンジン100が駆動すると、圧縮機1が駆動し、アキュムレータ101の気体状の冷媒がアキュムレータ101の吸入ポート101s、圧縮機1の吸入ポート1sから流路9eを経て吸入され、圧縮機1の圧縮室で圧縮される。圧縮されて高温高圧となった気体状の冷媒は、圧縮機1の吐出ポート1oから吐出され、流路9f、オイルセパレータ105に至る。前述したようにオイルセパレータ105において冷媒からオイルが分離される。そしてオイルが分離された気体状の高温高圧の冷媒は、四方弁111の第3ポート111tを通り、流路9h、バルブ115b、流路9iを経て、凝縮用熱交換器として機能する室内熱交換器2Xに至り、室内熱交換器2Xで室内の空気と熱交換されて凝縮(液化)する。凝縮熱は室内に放出されるため、室内が加熱される。このように暖房運転される。暖房運転時には、室内熱交換器2Xを経て液化が進行した冷媒は、液相状態または気液二相状態となり、室内膨張弁116に至り、室内機80の室内膨張弁116で膨張されて低圧となる。さらに、低圧となった冷媒は、流路9k、バルブ115a、流路9mを経て矢印K1方向(暖房運転時に、室内機80から室外機81に帰還する方向)に流れ、第1膨張弁31に至り、第1膨張弁31で膨張されて低圧化し、空気熱交換器41に至る。冷媒は空気熱交換器41で蒸発して空気と熱交換する。従って空気熱交換器41は室内機80の暖房運転時には蒸発器として機能する。更に冷媒は、流路9n、四方弁111の第1ポート111f、第2ポート111s、流路9wを経て、アキュムレータ101の帰還ポート101rに帰還する。帰還した冷媒は、アキュムレータ101で液状の冷媒と気体状の冷媒とに分離された状態で収容される。
(During heating operation)
First, the case where the room is heated will be described. When the engine 100 is driven using gaseous fuel as the fuel, the compressor 1 is driven, and the gaseous refrigerant in the accumulator 101 is sucked from the suction port 101s of the accumulator 101 and the suction port 1s of the compressor 1 through the flow path 9e and compressed. It is compressed in the compression chamber of the machine 1. The gaseous refrigerant compressed to high temperature and high pressure is discharged from the discharge port 1o of the compressor 1 and reaches the flow path 9f and the oil separator 105. As described above, oil is separated from the refrigerant in the oil separator 105. The gaseous high-temperature and high-pressure refrigerant from which the oil has been separated passes through the third port 111t of the four-way valve 111, passes through the flow path 9h, the valve 115b, and the flow path 9i, and performs indoor heat exchange that functions as a heat exchanger for condensation. It reaches the condenser 2X, and heat is exchanged with indoor air in the indoor heat exchanger 2X to condense (liquefy). Since the condensation heat is released into the room, the room is heated. Heating operation is performed in this way. During the heating operation, the refrigerant that has been liquefied through the indoor heat exchanger 2X is in a liquid phase state or a gas-liquid two phase state, reaches the indoor expansion valve 116, and is expanded by the indoor expansion valve 116 of the indoor unit 80 to have a low pressure. Become. Further, the low-pressure refrigerant flows through the flow path 9k, the valve 115a, and the flow path 9m in the direction of the arrow K1 (in the direction of returning from the indoor unit 80 to the outdoor unit 81 during the heating operation) and flows to the first expansion valve 31. The pressure is expanded by the first expansion valve 31 to reduce the pressure, and the air heat exchanger 41 is reached. The refrigerant evaporates in the air heat exchanger 41 and exchanges heat with air. Therefore, the air heat exchanger 41 functions as an evaporator during the heating operation of the indoor unit 80. Further, the refrigerant returns to the return port 101r of the accumulator 101 through the flow path 9n, the first port 111f, the second port 111s of the four-way valve 111, and the flow path 9w. The returned refrigerant is stored in a state where it is separated into a liquid refrigerant and a gaseous refrigerant by the accumulator 101.

図16に示すように、空気熱交換器41に対して熱源熱交換器42が並列に配置されている。ここで、第2膨張弁32が開放されると、冷媒が流路9pを介して熱源熱交換器42に流れる。第2膨張弁32が閉鎖されると、冷媒が流路9pを介して熱源熱交換器42に流れない。図16に示すように、熱源熱交換器42に繋がる加熱水通路43には、搬送源として機能するポンプ44p、エンジン100、第1弁300、第2弁400が設けられている。エンジン100を冷却させた加熱水通路43のエンジン加熱水の温度が低いときには、第1弁300のポート301およびポート302を連通させるものの、ポート303を閉鎖する。この場合、熱源熱交換器42およびラジエータ150には加熱水が流れない。加熱水通路43の加熱水の温度が上昇してくると、第1弁300のポート301およびポート302を連通させるものの、第1弁300のポート301およびポート303を連通させる。しかし第2弁400のポート401およびポート402を連通させるものの、第2弁400のポート401およびポート403を非連通とさせる。これにより暖かい加熱水が熱源熱交換器42の流路42wに流れるが、放熱量が大きなラジエータ150には流れない。熱源熱交換器42の流路42wは、熱源熱交換器42における冷媒を加熱する熱源として機能する。加熱水通路43の加熱水の温度が更に上昇してくると、第2弁400のポート401およびポート402を連通させるとともに、ポート401およびポート403を連通させる。これにより暖かい加熱水が熱源熱交換器42の流路42wに流れると共に、流路43rを介してラジエータ150にも流れ、流路43tを介してポンプ44p側に帰還する。なお、単位時間あたりの熱交換量については、ラジエータ150は熱源熱交換器42よりも大きくされている。従ってラジエータ150の放熱量は熱源熱交換器42よりも大きくされている。なお、加熱水通路43の加熱水の温度が過剰に上昇すると、ラジエータ150側のプレッシャキャップ151が開放し、リザーバ152に貯留される。再び加熱水の温度が冷えると、ラジエータ150側のプレッシャキャップ151が開放し、リザーバ152に貯留されていた加熱水がラジエータ150側に戻る。   As shown in FIG. 16, a heat source heat exchanger 42 is arranged in parallel with the air heat exchanger 41. Here, when the second expansion valve 32 is opened, the refrigerant flows to the heat source heat exchanger 42 via the flow path 9p. When the second expansion valve 32 is closed, the refrigerant does not flow to the heat source heat exchanger 42 via the flow path 9p. As shown in FIG. 16, a pump 44 p, an engine 100, a first valve 300, and a second valve 400 functioning as a conveyance source are provided in the heated water passage 43 connected to the heat source heat exchanger 42. When the temperature of the engine heating water in the heating water passage 43 that has cooled the engine 100 is low, the port 301 and the port 302 of the first valve 300 are communicated, but the port 303 is closed. In this case, heated water does not flow through the heat source heat exchanger 42 and the radiator 150. When the temperature of the heating water in the heating water passage 43 rises, the port 301 and the port 302 of the first valve 300 are communicated, but the port 301 and the port 303 of the first valve 300 are communicated. However, although the port 401 and the port 402 of the second valve 400 are communicated, the port 401 and the port 403 of the second valve 400 are not communicated. Accordingly, warm heated water flows through the flow path 42w of the heat source heat exchanger 42, but does not flow through the radiator 150 having a large heat release amount. The flow path 42w of the heat source heat exchanger 42 functions as a heat source for heating the refrigerant in the heat source heat exchanger 42. When the temperature of the heated water in the heated water passage 43 further increases, the port 401 and the port 402 of the second valve 400 are communicated, and the port 401 and the port 403 are communicated. Thus, warm heated water flows into the flow path 42w of the heat source heat exchanger 42, and also flows into the radiator 150 through the flow path 43r, and returns to the pump 44p side through the flow path 43t. Note that the radiator 150 is larger than the heat source heat exchanger 42 with respect to the heat exchange amount per unit time. Therefore, the heat radiation amount of the radiator 150 is made larger than that of the heat source heat exchanger 42. When the temperature of the heated water in the heated water passage 43 rises excessively, the pressure cap 151 on the radiator 150 side is opened and stored in the reservoir 152. When the temperature of the heated water cools again, the pressure cap 151 on the radiator 150 side is opened, and the heated water stored in the reservoir 152 returns to the radiator 150 side.

上記した除霜モードを実施するにあたり、実施例1と同様に、制御部6は次のa操作、b操作、c操作を実施する。
(a操作)第1膨張弁31を閉鎖して第1膨張弁31の開度を0とする。このため除霜モードでは、空気熱交換器41の蒸発工程は実施されない。
(b操作)第2膨張弁32を開放状態に維持する。これにより凝縮用熱交換器2および第2膨張弁32を経て低圧化された冷媒(気液混合状態)を熱源熱交換器42に流す。このため熱源熱交換器42に流れた冷媒は、加熱水通路43の加熱水を熱源として加熱されるため、熱源熱交換器42において冷媒の蒸発が進行する。このため除霜モードでは、空気熱交換器41の蒸発工程は実施されないものの、熱源熱交換器42の蒸発工程は実施される。これにより凝縮用熱交換器としての室内熱交換器2Xにおける凝縮作用が得られ、冷凍サイクル装置における蒸発工程が良好に実施され、暖房運転の能力が維持される。
(c操作)バイパス通路71のバイパス弁72を開放させる。これにより圧縮機1の吐出ポート1oから吐出された高温高圧の冷媒(例えば60〜90℃)を、バイパス通路71およびバイパス弁72を介して空気熱交換器41に供給する。これにより空気熱交換器41の表面に生成していた霜が融解される。
In carrying out the defrosting mode described above, the control unit 6 performs the following a operation, b operation, and c operation as in the first embodiment.
(A Operation) The first expansion valve 31 is closed and the opening of the first expansion valve 31 is set to zero. For this reason, the evaporation process of the air heat exchanger 41 is not performed in the defrosting mode.
(B operation) The 2nd expansion valve 32 is maintained in an open state. As a result, the refrigerant (gas-liquid mixed state), which has been reduced in pressure through the condensation heat exchanger 2 and the second expansion valve 32, flows to the heat source heat exchanger 42. For this reason, since the refrigerant that has flowed to the heat source heat exchanger 42 is heated using the heated water in the heating water passage 43 as a heat source, evaporation of the refrigerant proceeds in the heat source heat exchanger 42. For this reason, in the defrost mode, although the evaporation process of the air heat exchanger 41 is not performed, the evaporation process of the heat source heat exchanger 42 is performed. Thereby, the condensing action in the indoor heat exchanger 2X as the heat exchanger for condensation is obtained, the evaporation step in the refrigeration cycle apparatus is performed well, and the heating operation capability is maintained.
(C operation) The bypass valve 72 of the bypass passage 71 is opened. Thereby, the high-temperature and high-pressure refrigerant (for example, 60 to 90 ° C.) discharged from the discharge port 1 o of the compressor 1 is supplied to the air heat exchanger 41 via the bypass passage 71 and the bypass valve 72. Thereby, the frost generated on the surface of the air heat exchanger 41 is melted.

上記した除霜モードを実施するときには、圧縮機1から吐出された高温高圧の気体状の冷媒が、着霜状態の空気熱交換器41から空気熱交換器41の内部に流れ、空気熱交換器41の霜を効率よく融解できる。なお、暖房運転の通常運転モードでは、第2膨張弁32は設定開度に開いている。   When the defrosting mode described above is carried out, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 flows from the frosted air heat exchanger 41 into the air heat exchanger 41, and the air heat exchanger. 41 frost can be efficiently melted. In the normal operation mode of the heating operation, the second expansion valve 32 is opened to the set opening.

(室内機80の冷房運転時)
次に、室内機80で室内を冷房運転するときについて説明する。燃料気体を燃料としてエンジン100が駆動すると、圧縮機1が駆動し、アキュムレータ101の気体状の冷媒がアキュムレータ101の吸入ポート101s、圧縮機1の吸入ポート1sから吸入され、圧縮機1の圧縮室で圧縮される。圧縮されて高温高圧となった気体状の冷媒は、圧縮機1の吐出ポート1oから吐出され、流路9f、オイルセパレータ105に至る。オイルセパレータ105において冷媒からオイルが分離される。そしてオイルが分離された高温高圧の冷媒は、流路9u、流路切替弁としての四方弁111の第1ポート111f、流路9nを通り、空気熱交換器41に至る。そして高温高圧の冷媒は、空気熱交換器41で空気と熱交換されて冷却され、液化する。液化が進行した冷媒(液相状態または気液二相状態)は、逆止弁103、流路9m、更に、バルブ115a、流路9kを経て室内膨張弁116に至り、室内膨張弁116において膨張されて低温となる。
(When cooling indoor unit 80)
Next, a description will be given of a case where the indoor unit 80 performs a cooling operation in the room. When the engine 100 is driven using fuel gas as fuel, the compressor 1 is driven, and the gaseous refrigerant in the accumulator 101 is sucked from the suction port 101 s of the accumulator 101 and the suction port 1 s of the compressor 1, and the compression chamber of the compressor 1 is driven. It is compressed with. The gaseous refrigerant compressed to high temperature and high pressure is discharged from the discharge port 1o of the compressor 1 and reaches the flow path 9f and the oil separator 105. Oil is separated from the refrigerant in the oil separator 105. The high-temperature and high-pressure refrigerant from which the oil has been separated passes through the flow path 9u, the first port 111f of the four-way valve 111 as the flow path switching valve, and the flow path 9n, and reaches the air heat exchanger 41. The high-temperature and high-pressure refrigerant is heat-exchanged with air by the air heat exchanger 41 to be cooled and liquefied. The liquefied refrigerant (liquid phase state or gas-liquid two-phase state) reaches the indoor expansion valve 116 via the check valve 103, the flow path 9m, the valve 115a and the flow path 9k, and expands in the indoor expansion valve 116. It becomes low temperature.

更に、室内熱交換器2Xに至り、室内熱交換器2Xにおいて室内の空気と熱交換されて室内を冷却する。更に冷媒は、流路9i、バルブ115b、流路9h、四方弁111の第3ポート111t、四方弁111の第2ポート111s、流路9wを経て、アキュムレータ101の帰還ポート101rに帰還する。アキュムレータ101に帰還した冷媒は、アキュムレータ101で液状の冷媒と気体状の冷媒とに分離された状態で収容される。なお、冷房運転では、第2膨張弁32は全閉状態である。   Furthermore, it reaches the indoor heat exchanger 2X, and heat is exchanged with indoor air in the indoor heat exchanger 2X to cool the room. Furthermore, the refrigerant returns to the return port 101r of the accumulator 101 through the flow path 9i, the valve 115b, the flow path 9h, the third port 111t of the four-way valve 111, the second port 111s of the four-way valve 111, and the flow path 9w. The refrigerant returned to the accumulator 101 is accommodated in a state where it is separated into a liquid refrigerant and a gaseous refrigerant by the accumulator 101. In the cooling operation, the second expansion valve 32 is fully closed.

(その他)
本発明は上記し且つ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。空気熱交換器41は1個搭載されているが、複数個でも良い。熱源熱交換器42は1個搭載されているが、複数個でも良い。冷凍サイクル装置は空気調和機に限定されるものではなく、冷凍装置に適用しても良い。空気調和機は少なくとも暖房運転するものであればよい。圧縮機1はエンジンで駆動されるもの、モータで駆動されるものでも良い。
(Other)
The present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications without departing from the scope of the invention. Although one air heat exchanger 41 is mounted, a plurality of air heat exchangers 41 may be used. Although one heat source heat exchanger 42 is mounted, a plurality of heat source heat exchangers 42 may be used. The refrigeration cycle apparatus is not limited to an air conditioner, and may be applied to a refrigeration apparatus. The air conditioner may be at least a heating operation. The compressor 1 may be driven by an engine or driven by a motor.

本発明は空気調和装置等の冷凍サイクル装置に利用できる。   The present invention can be used for a refrigeration cycle apparatus such as an air conditioner.

実施例1に係り、冷凍サイクル装置の概念を示す構成図である。1 is a configuration diagram illustrating a concept of a refrigeration cycle apparatus according to Embodiment 1. FIG. 実施例2に係り、試験データを示すグラフである。6 is a graph showing test data according to Example 2. 実施例2に係り、試験データを示すグラフである。6 is a graph showing test data according to Example 2. 実施例3に係り、制御部が実行する制御形態Aに係るフローチャートである。10 is a flowchart according to a control mode A executed by a control unit according to a third embodiment. 実施例3に係り、制御部が実行する制御形態Bに係るフローチャートである。12 is a flowchart according to a control mode B executed by the control unit according to the third embodiment. 実施例4に係り、除霜マップを示す図である。It is a figure which concerns on Example 4 and shows a defrost map. 実施例5に係り、除霜マップを示す図である。It is a figure which concerns on Example 5 and shows a defrost map. 実施例6に係り、除霜マップを示す図である。It is a figure which concerns on Example 6 and shows a defrost map. 実施例7に係り、除霜マップを示す図である。It is a figure which concerns on Example 7 and shows a defrost map. 実施例8に係り、除霜マップを示す図である。It is a figure which concerns on Example 8 and shows a defrost map. 実施例9に係り、除霜マップを示す図である。It is a figure which concerns on Example 9 and shows a defrost map. (A)(B)は実施例10に係り、除霜マップを示す図である。(A) (B) is a figure concerning Example 10 and is a figure showing a defrost map. 実施例11に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which shows the concept of a refrigeration cycle apparatus according to Example 11. 実施例12に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which concerns on Example 12 and shows the concept of a refrigeration cycle apparatus. 実施例13に係り、冷凍サイクル装置の概念を示す構成図である。It is a block diagram which concerns on Example 13 and shows the concept of a refrigerating-cycle apparatus. 実施例14に係り、空気調和装置の概念を示す構成図である。It is a block diagram which concerns on Example 14 and shows the concept of an air conditioning apparatus.

符号の説明Explanation of symbols

1は圧縮機、2は凝縮用熱交換器、3は膨張弁、31は第1膨張弁、32は第2膨張弁、4は蒸発用熱交換器、41は空気熱交換器、42は熱源熱交換器、51は空気温度センサ、52は熱交換温度センサ、6は制御部、71はバイパス通路、72はバイパス弁を示す。   1 is a compressor, 2 is a heat exchanger for condensation, 3 is an expansion valve, 31 is a first expansion valve, 32 is a second expansion valve, 4 is a heat exchanger for evaporation, 41 is an air heat exchanger, 42 is a heat source A heat exchanger, 51 is an air temperature sensor, 52 is a heat exchange temperature sensor, 6 is a control unit, 71 is a bypass passage, and 72 is a bypass valve.

Claims (8)

冷媒を圧縮させる圧縮工程を行う圧縮機と、前記圧縮機を経た冷媒を凝縮させる凝縮工程を行う凝縮用熱交換器と、前記凝縮工程を経た冷媒を膨張させる膨張弁と、前記膨張弁を経た冷媒を蒸発させる蒸発工程を行う蒸発用熱交換器と、除霜モードを実行する制御部とを具備しており、
前記蒸発工程を行う蒸発用熱交換器は、空気と熱交換する空気熱交換器と、熱源からの熱と熱交換する熱源熱交換器とを備える冷凍サイクル装置において、
前記凝縮用熱交換器を迂回して前記圧縮機の吐出ポートと前記空気熱交換器とを繋ぐバイパス通路と、前記バイパス通路から前記空気熱交換器に流れる冷媒の流量を調整するバイパス弁とを具備しており、
前記除霜モードを実施するにあたり、前記制御部は、前記凝縮用熱交換器および前記膨張弁を経た冷媒を前記熱源熱交換器に流して蒸発工程を実施しつつ、前記凝縮用熱交換器および前記膨張弁を経た冷媒を前記空気熱交換器に供給する流量を無しまたは低減させる操作と、前記バイパス弁を開放させることにより、前記圧縮機の前記吐出ポートから吐出された高温高圧の冷媒を前記バイパス通路および前記バイパス弁を介して前記空気熱交換器に供給して前記空気熱交換器を除霜する操作とを実施することを特徴とする冷凍サイクル装置。
A compressor that performs a compression process for compressing the refrigerant, a heat exchanger for condensation that performs a condensation process for condensing the refrigerant that has passed through the compressor, an expansion valve that expands the refrigerant that has undergone the condensation process, and the expansion valve An evaporation heat exchanger that performs an evaporation step for evaporating the refrigerant, and a control unit that executes a defrosting mode,
In the refrigeration cycle apparatus, the evaporation heat exchanger that performs the evaporation step includes an air heat exchanger that exchanges heat with air, and a heat source heat exchanger that exchanges heat with heat from the heat source.
A bypass passage that bypasses the heat exchanger for condensation and connects the discharge port of the compressor and the air heat exchanger, and a bypass valve that adjusts the flow rate of the refrigerant flowing from the bypass passage to the air heat exchanger. Has
In carrying out the defrosting mode, the control unit causes the refrigerant that has passed through the condensation heat exchanger and the expansion valve to flow through the heat source heat exchanger to perform an evaporation step, and the condensation heat exchanger and The operation of removing or reducing the flow rate of supplying the refrigerant having passed through the expansion valve to the air heat exchanger, and opening the bypass valve allows the high-temperature and high-pressure refrigerant discharged from the discharge port of the compressor to be A refrigeration cycle apparatus that performs an operation of supplying the air heat exchanger via the bypass passage and the bypass valve to defrost the air heat exchanger.
請求項1において、空気温度を検知する空気温度センサが設けられており、
前記制御部は、
(i)空気温度が相対的に高いときには、空気温度が相対的に低いときよりも前記除霜モードを実施する単位時間あたりの実施頻度を低め、
(ii)空気温度が相対的に低いときには、空気温度が相対的に高いときよりも前記除霜モードを実施する単位時間あたりの実施頻度を高めることを特徴とする冷凍サイクル装置。
In Claim 1, the air temperature sensor which detects air temperature is provided,
The controller is
(I) When the air temperature is relatively high, the execution frequency per unit time for performing the defrosting mode is lower than when the air temperature is relatively low,
(Ii) A refrigeration cycle apparatus characterized in that when the air temperature is relatively low, the frequency of performing the defrosting mode per unit time is increased compared to when the air temperature is relatively high.
請求項1または2において、(i)前記膨張弁は、前記凝縮用熱交換器と前記空気熱交換器との間に設けられた第1膨張弁と、前記凝縮用熱交換器と前記熱源熱交換器との間に設けられた第2膨張弁とを備えており、
(ii)前記除霜モードを実施するにあたり、前記制御部は、前記第1膨張弁の開度を0にするか、前記第1膨張弁の開度を通常運転モードの場合よりも減少させると共に、前記第2膨張弁の開度を通常運転モードの場合よりも増加させることを特徴とする冷凍サイクル装置。
3. The expansion valve according to claim 1, wherein the expansion valve includes a first expansion valve provided between the condensation heat exchanger and the air heat exchanger, the condensation heat exchanger, and the heat source heat. A second expansion valve provided between the exchanger and
(Ii) In carrying out the defrosting mode, the control unit sets the opening of the first expansion valve to 0 or reduces the opening of the first expansion valve as compared with the case of the normal operation mode. The refrigeration cycle apparatus characterized in that the opening of the second expansion valve is increased as compared with the case of the normal operation mode.
請求項3において、前記除霜モードを実施するにあたり、前記制御部は、
(i)前記除霜モードの初期では、前記除霜モードの終期の場合よりも前記第2膨張弁の開度を減少させることにより、前記熱源熱交換器から吐出される冷媒の温度を前記除霜モードの終期の場合よりも高め、
(ii)前記除霜モードの終期では、前記除霜モードの初期の場合よりも前記第2膨張弁の開度を増加させることにより、前記熱源熱交換器から吐出される冷媒の温度を前記除霜モードの初期の場合よりも低下させ、
(iii)前記圧縮機の吸込ポートに吸い込まれる冷媒の温度の変動を抑制することを特徴とする冷凍サイクル装置。
In carrying out the said defrost mode in Claim 3, the said control part is
(I) In the initial stage of the defrost mode, the temperature of the refrigerant discharged from the heat source heat exchanger is reduced by reducing the opening of the second expansion valve compared to the end of the defrost mode. Higher than in the end of frost mode,
(Ii) At the final stage of the defrost mode, the temperature of the refrigerant discharged from the heat source heat exchanger is reduced by increasing the opening of the second expansion valve as compared with the initial case of the defrost mode. Lower than the initial frost mode,
(Iii) A refrigeration cycle apparatus that suppresses fluctuations in the temperature of refrigerant sucked into a suction port of the compressor.
請求項3において、前記空気用熱交換器の温度を検知する熱交温度センサが設けられており、
前記除霜モードを実施するにあたり、前記制御部は、
(i)前記熱交温度センサの検知温度が相対的に低いときには、前記熱交温度センサの検知温度が相対的に高いときよりも、前記第2膨張弁の開度を減少させることにより、前記熱源熱交換器から吐出される冷媒の温度を、前記熱交温度センサの検知温度が相対的に高いときよりも高め、
(ii)前記熱交温度センサの検知温度が相対的に高いときには、前記熱交温度センサの検知温度が相対的に低いときよりも、前記第2膨張弁の開度を増加させることにより、前記熱源熱交換器から吐出される冷媒の温度を、前記熱交温度センサの検知温度が相対的に高いときよりも低下させ、
(iii)前記圧縮機の吸込ポートに吸い込まれる冷媒の温度の変動を抑制することを特徴とする冷凍サイクル装置。
In Claim 3, the heat exchange temperature sensor which detects the temperature of the heat exchanger for the air is provided,
In carrying out the defrosting mode, the control unit
(I) When the temperature detected by the heat exchange temperature sensor is relatively low, by reducing the opening of the second expansion valve than when the temperature detected by the heat exchange temperature sensor is relatively high, Increasing the temperature of the refrigerant discharged from the heat source heat exchanger than when the detection temperature of the heat exchange temperature sensor is relatively high,
(Ii) When the detected temperature of the heat exchange temperature sensor is relatively high, by increasing the opening of the second expansion valve than when the detected temperature of the heat exchange temperature sensor is relatively low, Lowering the temperature of the refrigerant discharged from the heat source heat exchanger than when the temperature detected by the heat exchanger temperature sensor is relatively high,
(Iii) A refrigeration cycle apparatus that suppresses fluctuations in the temperature of refrigerant sucked into a suction port of the compressor.
請求項1〜3のうちの一項において、前記空気用熱交換器の蒸発温度を検知する熱交温度センサが設けられており、
前記除霜モードを実施するにあたり、前記制御部は、
(i)前記熱交換温度センサの検知温度が相対的に高いときには、前記熱交換温度センサの検知温度が相対的に低いときよりも前記バイパス弁の開度を減少させ、
(ii)前記熱交換温度センサの検知温度が相対的に低いときには、前記熱交換温度センサの検知温度が相対的に高いときよりも、前記バイパス弁の開度を増加させることを特徴とする冷凍サイクル装置。
In one of Claims 1-3, the heat exchange temperature sensor which detects the evaporation temperature of the said heat exchanger for air is provided,
In carrying out the defrosting mode, the control unit
(I) When the detected temperature of the heat exchange temperature sensor is relatively high, the opening degree of the bypass valve is decreased than when the detected temperature of the heat exchange temperature sensor is relatively low,
(Ii) When the temperature detected by the heat exchange temperature sensor is relatively low, the opening degree of the bypass valve is increased more than when the temperature detected by the heat exchange temperature sensor is relatively high. Cycle equipment.
請求項1〜3のうちの一項において、前記除霜モードを実施するにあたり、前記制御部は、
(i)前記冷凍サイクル装置の冷媒循環量が多いときには、冷媒循環量が少ないときよりも前記バイパス弁の開度を増加させ、
(ii)冷媒循環量が少ないときには、冷媒循環量が多いときよりも前記バイパス弁の開度を減少させることを特徴とする冷凍サイクル装置。
In one of Claims 1-3, in implementing the said defrost mode, the said control part is
(I) When the refrigerant circulation amount of the refrigeration cycle apparatus is large, the opening degree of the bypass valve is increased than when the refrigerant circulation amount is small,
(Ii) A refrigeration cycle apparatus that reduces the opening degree of the bypass valve when the refrigerant circulation amount is small than when the refrigerant circulation amount is large.
請求項1〜3のうちの一項において、前記除霜モードを実施するにあたり、前記制御部は、前記圧縮機の吐出ポート側の冷媒高圧と前記圧縮機の吸込ポート側の冷媒低圧との間の圧力差を求め、
(i)圧力差が高いときには、圧力差が低いときよりも前記バイパス弁の開度を減少させ、
(ii)圧力差が低いときには、圧力差が高いときよりも前記バイパス弁の開度を増加させることを特徴とする冷凍サイクル装置。
In one of Claims 1-3, in implementing the said defrost mode, the said control part is between the refrigerant | coolant high pressure by the side of the discharge port of the said compressor, and the refrigerant | coolant low pressure by the side of the suction port of the said compressor. The pressure difference of
(I) When the pressure difference is high, decrease the opening of the bypass valve than when the pressure difference is low,
(Ii) The refrigeration cycle apparatus, wherein the opening degree of the bypass valve is increased when the pressure difference is low than when the pressure difference is high.
JP2007066870A 2007-03-15 2007-03-15 Refrigerating cycle device Pending JP2008224189A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007066870A JP2008224189A (en) 2007-03-15 2007-03-15 Refrigerating cycle device
CNA2008100857372A CN101266082A (en) 2007-03-15 2008-03-13 Refrigeration circulation device
KR1020080023914A KR100949638B1 (en) 2007-03-15 2008-03-14 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066870A JP2008224189A (en) 2007-03-15 2007-03-15 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2008224189A true JP2008224189A (en) 2008-09-25

Family

ID=39843020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066870A Pending JP2008224189A (en) 2007-03-15 2007-03-15 Refrigerating cycle device

Country Status (3)

Country Link
JP (1) JP2008224189A (en)
KR (1) KR100949638B1 (en)
CN (1) CN101266082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007381A (en) * 2009-06-24 2011-01-13 Panasonic Corp Refrigerating cycle device
KR101216048B1 (en) * 2011-03-04 2012-12-27 주식회사 에어텍 Hybrid of Heat-pump system
KR101454606B1 (en) * 2013-04-29 2014-10-27 (주) 예스티 Temperature Control System And Temperature Control Method
CN107965955A (en) * 2017-11-22 2018-04-27 合肥华凌股份有限公司 Frost-removal structure and its operating method and refrigeration plant
WO2023047981A1 (en) * 2021-09-24 2023-03-30 株式会社デンソー Heat pump cycle device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297549B (en) * 2011-09-15 2013-06-12 青岛海信日立空调***有限公司 Defrosting method for air conditioner
CN104321599B (en) * 2012-04-17 2016-12-28 丹佛斯公司 For the controller of vapor compression system with for the method controlling vapor compression system
DE102012024664A1 (en) * 2012-12-17 2014-06-18 Volkswagen Aktiengesellschaft Air conditioning device and method of operation therefor
EP2960602B1 (en) * 2013-02-25 2020-10-07 Mitsubishi Electric Corporation Air conditioner
KR101504479B1 (en) * 2013-05-14 2015-03-20 주식회사 리윈 Heat pump with frost delaying function and two cycles system having thereof
CN113669843A (en) * 2020-04-30 2021-11-19 青岛海尔空调电子有限公司 Control method of air conditioning system and air conditioning system
CN113566455B (en) * 2021-08-18 2023-04-07 深圳市蓝石环保科技有限公司 Heat pump system, control method, electronic device, and evaporation processing system
CN114857761B (en) * 2022-06-02 2023-11-28 青岛海信日立空调***有限公司 Air Conditioning System
CN115183402B (en) * 2022-07-04 2024-05-14 青岛海尔空调电子有限公司 Control method and control device for defrosting of air conditioner and air conditioner
CN115789993B (en) * 2022-11-24 2024-05-28 清华大学 Heat pump unit combining solar energy and air source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545027A (en) * 1991-08-08 1993-02-23 Daikin Ind Ltd Operation control device of freezer
JPH1163744A (en) * 1997-08-12 1999-03-05 Nakano Refrigerators Co Ltd Defrosting control method for show case
JP2001280768A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerator
JP2005274039A (en) * 2004-03-25 2005-10-06 Aisin Seiki Co Ltd Air-conditioner with defrosting function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774858B2 (en) * 2005-08-16 2011-09-14 パナソニック株式会社 Air conditioner
JP2007051825A (en) * 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Air-conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545027A (en) * 1991-08-08 1993-02-23 Daikin Ind Ltd Operation control device of freezer
JPH1163744A (en) * 1997-08-12 1999-03-05 Nakano Refrigerators Co Ltd Defrosting control method for show case
JP2001280768A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerator
JP2005274039A (en) * 2004-03-25 2005-10-06 Aisin Seiki Co Ltd Air-conditioner with defrosting function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007381A (en) * 2009-06-24 2011-01-13 Panasonic Corp Refrigerating cycle device
KR101216048B1 (en) * 2011-03-04 2012-12-27 주식회사 에어텍 Hybrid of Heat-pump system
KR101454606B1 (en) * 2013-04-29 2014-10-27 (주) 예스티 Temperature Control System And Temperature Control Method
CN107965955A (en) * 2017-11-22 2018-04-27 合肥华凌股份有限公司 Frost-removal structure and its operating method and refrigeration plant
WO2023047981A1 (en) * 2021-09-24 2023-03-30 株式会社デンソー Heat pump cycle device

Also Published As

Publication number Publication date
CN101266082A (en) 2008-09-17
KR20080084734A (en) 2008-09-19
KR100949638B1 (en) 2010-03-26

Similar Documents

Publication Publication Date Title
JP2008224189A (en) Refrigerating cycle device
JP4978777B2 (en) Refrigeration cycle equipment
CN102272534B (en) Air conditioning apparatus
EP1967801B1 (en) Hot water system
JP5809872B2 (en) Heating device
JP5595140B2 (en) Heat pump type hot water supply / air conditioner
EP3059521B1 (en) Air conditioning device
JP6580149B2 (en) Refrigeration cycle equipment
CN102734969B (en) The hot-water central heating system of freezing cycle device and this freezing cycle device of outfit
KR100821728B1 (en) Air conditioning system
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
JP7034227B1 (en) Air conditioner and management device
JP2007107771A (en) Refrigeration cycle device
JP2017015299A (en) Cooling device
WO2006031002A1 (en) Continuously operating type showcase
JP2013137123A (en) Refrigerating apparatus
JP6524670B2 (en) Air conditioner
EP2375187B1 (en) Heat pump apparatus and operation control method of heat pump apparatus
JP2008175402A (en) Operating method of refrigerating cycle device
JP5496161B2 (en) Refrigeration cycle system
JP5641636B2 (en) Facility horticulture air heat source heat pump system and operation method thereof
KR100821729B1 (en) Air conditioning system
JP2014031930A (en) Refrigeration cycle device
JP2018173195A (en) Refrigerator
JP2011127778A (en) Fluid utilization system and operation control method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306