JP2008223843A - Rotatably supporting device with generating set - Google Patents

Rotatably supporting device with generating set Download PDF

Info

Publication number
JP2008223843A
JP2008223843A JP2007061342A JP2007061342A JP2008223843A JP 2008223843 A JP2008223843 A JP 2008223843A JP 2007061342 A JP2007061342 A JP 2007061342A JP 2007061342 A JP2007061342 A JP 2007061342A JP 2008223843 A JP2008223843 A JP 2008223843A
Authority
JP
Japan
Prior art keywords
rolling bearing
thermoelectric
bearing housing
spacer
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007061342A
Other languages
Japanese (ja)
Inventor
Kenji Nishimatsu
賢治 西松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007061342A priority Critical patent/JP2008223843A/en
Publication of JP2008223843A publication Critical patent/JP2008223843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/004Electro-dynamic machines, e.g. motors, generators, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/042Housings for rolling element bearings for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure capable of generating electric power by effectively using exhaust heat in use. <P>SOLUTION: A thermoelectric module 1a of the structure for generating electric power by the Seebeck effect based on a temperature difference between both mutual side surfaces, is incorporated into an engaging groove 18 formed on an outer peripheral surface of a spacer 17 in a state of securing heat conductivity between the module and this spacer 17. This spacer 17 is sandwiched between an outer ring 13 of a rolling bearing 8 rising in the temperature in use and an inside surface of a housing 6 for a rolling bearing cooled by being always exposed to outside air in a state of securing the heat conductivity. Thus, the temperature difference is caused between both mutual side surfaces of the thermoelectric module 1a, and an electric current flows in the predetermined direction. Thus, the problem is solved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、回転軸を固定の部分に対して回転自在に支持する為の、回転支持装置の改良に関し、回転支持部で発生する熱エネルギを利用して発電を行なえる構造の実現を図るものである。   The present invention relates to an improvement of a rotation support device for rotatably supporting a rotating shaft with respect to a fixed portion, and to realize a structure capable of generating power using heat energy generated in the rotation support portion. It is.

従来から、自動車のエンジンや工場の炉等から排出される高温ガス中に含まれる熱エネルギを有効に利用する為に、熱エネルギを電力に変換して取り出す熱電発電装置が考えられている。
例えば、特許文献1に記載された構造は、自動車の排気系に熱電素子を配置し、この熱電素子の一方の端子を排ガスにより加熱し、他方の端子を空冷、又は水冷により冷却する。そして、この温度差に応じてゼーベック効果により電力を発生させて、排ガスの有する熱エネルギ(排熱エネルギー)を電気エネルギとして回収する。
2. Description of the Related Art Conventionally, in order to effectively use thermal energy contained in high-temperature gas discharged from an automobile engine, a factory furnace, or the like, a thermoelectric power generation device that converts thermal energy into electric power and takes it out has been considered.
For example, in the structure described in Patent Document 1, a thermoelectric element is arranged in an exhaust system of an automobile, one terminal of the thermoelectric element is heated by exhaust gas, and the other terminal is cooled by air cooling or water cooling. And according to this temperature difference, electric power is generated by the Seebeck effect, and the thermal energy (exhaust heat energy) of the exhaust gas is recovered as electric energy.

又、特許文献2には、自動車の車輪を懸架装置に回転自在に支持する為の、回転速度検出装置付転がり軸受ユニットに、上記ゼーベック効果による排熱発電装置を組み込んだ構造が記載されている。   Patent Document 2 describes a structure in which the exhaust heat power generation device based on the Seebeck effect is incorporated in a rolling bearing unit with a rotation speed detection device for rotatably supporting a vehicle wheel on a suspension device. .

又、上記特許文献2に記載された構造とは異なるが、図7に示す様な熱電モジュール1の構造が従来から広く知られている。この熱電モジュール1は、対向して配置した1対の基板2a、2bと、これら両基板2a、2bの対向面にそれぞれ接続された複数の導電性の接続部材3、3と、両端部に温度差を与える事で、高温側から低温側方向に起電力を発生する複数のp型熱電半導体4、4と、同じく低温側から高温側方向に起電力を発生する複数のn型熱電半導体5、5とを備えている。又、上記各p型熱電半導体4、4とこれら各n型熱電半導体5、5とを交互に並設した状態で、これら各p型熱電半導体4、4及び各n型熱電半導体5、5の同方向端部同士を上記接続部材3、3で、並設方向に沿って交互に、電気的に直列に接続している。
この様な構造の熱電モジュール1は、上記1対の基板2a、2bのうちの、一方の基板2a(図7の上側)を高温に、他方の基板2bを低温にする事で、上記各p型、n型熱電半導体4、5の端部同士の間に温度差を与える。すると、この温度差に基づくゼーベック効果により、これら各p型、n型熱電半導体4、5は所定の方向に起電力を発生し電流を流す。但し、大型機械の回転支持装置部分で発生する熱エネルギを効率良く回収して発電する装置に関しては、従来は知られていなかった。
Although different from the structure described in Patent Document 2, the structure of the thermoelectric module 1 as shown in FIG. 7 has been widely known. The thermoelectric module 1 includes a pair of substrates 2a and 2b arranged opposite to each other, a plurality of conductive connection members 3 and 3 respectively connected to opposing surfaces of both the substrates 2a and 2b, and temperature at both ends. By giving a difference, a plurality of p-type thermoelectric semiconductors 4 and 4 that generate electromotive force in the direction from the high temperature side to the low temperature side, and a plurality of n-type thermoelectric semiconductors 5 that similarly generate electromotive force in the direction from the low temperature side to the high temperature side, And 5. The p-type thermoelectric semiconductors 4, 4 and the n-type thermoelectric semiconductors 5, 5 are alternately arranged in parallel. The end portions in the same direction are electrically connected in series alternately by the connecting members 3 and 3 along the parallel direction.
In the thermoelectric module 1 having such a structure, the one substrate 2a (upper side in FIG. 7) of the pair of substrates 2a and 2b is set to a high temperature, and the other substrate 2b is set to a low temperature. A temperature difference is given between the end portions of the n-type thermoelectric semiconductors 4 and 5. Then, due to the Seebeck effect based on this temperature difference, each of these p-type and n-type thermoelectric semiconductors 4 and 5 generates an electromotive force in a predetermined direction and causes a current to flow. However, a device that efficiently collects heat energy generated in the rotary support device portion of a large machine and generates power has not been known.

特開平6−22572号公報JP-A-6-22572 特開2007−17159号公報JP 2007-17159 A

本発明は、上述の様な事情に鑑み、産業機械等の大型機械の運転時に回転支持部で発生する熱を有効利用して発電でき、しかも軽量に構成できる発電装置付回転支持装置を実現すべく発明したものである。   In view of the circumstances as described above, the present invention realizes a rotation support device with a power generation device that can generate power by effectively using heat generated in a rotation support portion during operation of a large machine such as an industrial machine and can be configured to be lightweight. Invented accordingly.

本発明の発電装置付回転支持装置は、転がり軸受用ハウジングと、回転軸をこの転がり軸受用ハウジングの内側に回転自在に支持する転がり軸受と、発電装置とを備える。
このうちの転がり軸受用ハウジングは、筒状部と、上記回転軸をこの転がり軸受用ハウジングの外に突出させる為の開口部とを備える。
又、上記転がり軸受は、内周面に外輪軌道を有し、上記転がり軸受用ハウジングの筒状部に内嵌固定した外輪と、外周面に内輪軌道を有し、上記回転軸に外嵌固定した内輪と、上記外輪軌道とこの内輪軌道との間に転動自在に設けられた複数個の転動体とを備える。 又、上記発電装置は、間座と、両端部同士の間に温度差を与える事で所定の方向に起電力を発生する、熱電モジュールとを備える。
The rotation support device with a power generator of the present invention includes a rolling bearing housing, a rolling bearing that rotatably supports a rotating shaft inside the rolling bearing housing, and a power generator.
Of these, the rolling bearing housing includes a cylindrical portion and an opening for projecting the rotating shaft out of the rolling bearing housing.
The rolling bearing has an outer ring raceway on the inner peripheral surface, and has an outer ring fitted and fixed to the cylindrical portion of the rolling bearing housing, and an inner ring raceway on the outer peripheral surface, and is fixed to the rotary shaft. And a plurality of rolling elements provided between the outer ring raceway and the inner ring raceway so as to roll freely. The power generator includes a spacer and a thermoelectric module that generates an electromotive force in a predetermined direction by giving a temperature difference between both ends.

特に、本発明の発電装置付回転支持装置に於いては、上記間座は、円筒状で、その外周面に係合溝を円周方向に亙り設け、少なくともこの係合溝の内面を絶縁材で覆っている。この様な間座は、上記転がり軸受用ハウジングの筒状部に内嵌固定すると共に、上記転がり軸受の外輪の軸方向一端面とこの軸方向一端面と対向する上記転がり軸受用ハウジングの内側面との間に挟持している。
又、上記熱電モジュールは、熱電素子と、この熱電素子の両端部に電気的に接続している接続部材とから成り、この熱電モジュールの軸方向両端面が、上記間座の係合溝の内側面のうちの互いに対向する面に、それぞれ直接又は上記接続部材を介して当接している。そして、運転時に発生する、上記熱電モジュールの軸方向両端面同士の温度差に基づくゼーベック効果により熱エネルギを電気エネルギに変換し、上記熱電モジュールの両端部に接続したリード線により、この電気エネルギを取り出す。
In particular, in the rotation support device with a power generator of the present invention, the spacer is cylindrical, and an engagement groove is provided in the circumferential direction on the outer peripheral surface thereof, and at least the inner surface of the engagement groove is an insulating material. Covered with. Such a spacer is fitted and fixed to the cylindrical portion of the rolling bearing housing, and the axial end face of the outer ring of the rolling bearing and the inner face of the rolling bearing housing facing the axial end face. Between them.
The thermoelectric module includes a thermoelectric element and a connecting member electrically connected to both ends of the thermoelectric element, and both end surfaces in the axial direction of the thermoelectric module are within the engagement grooves of the spacer. The side surfaces of the side surfaces are in contact with each other directly or via the connecting member. Then, thermal energy is converted into electrical energy by the Seebeck effect based on the temperature difference between the axial end surfaces of the thermoelectric module that occurs during operation, and the electrical energy is converted by lead wires connected to both ends of the thermoelectric module. Take out.

この様な本発明を実施する場合に、好ましくは、請求項2に記載した様に、熱電モジュールを、それぞれ複数ずつの第一熱電素子と、第二熱電素子と、接続部材とから構成する。このうちの各第一熱電素子は、円周方向に関して所定の間隔で並設され両端部間に温度差を与える事で、第一の方向に起電力を発生する。又、上記各第二熱電素子は、円周方向に隣り合う上記各第一熱電素子同士の間に配置されて、上記第一の方向と反対方向である第二の方向に起電力を発生する。更に、上記各接続部材は、上記第一、第二各熱電素子の同方向端部同士を、これら各第一、第二各熱電素子を、円周方向に隣り合う何れか1対の熱電素子の一端部を除き交互に電気的に直列に接続する。そして、1対のリード線の一端を、この接続部材で接続されていない、上記何れか1対の熱電素子の一端に、それぞれ電気的に接続する。
又、この様な請求項2に記載した発明を実施する場合に、具体的には、請求項3に記載した様に、第一熱電素子をp型熱電半導体とし、第二熱電素子をn型熱電半導体とし、接続部材を金属板とする。
When implementing the present invention as described above, preferably, as described in claim 2, each thermoelectric module is constituted by a plurality of first thermoelectric elements, second thermoelectric elements, and connecting members. Each of the first thermoelectric elements is arranged in parallel at a predetermined interval in the circumferential direction, and generates an electromotive force in the first direction by giving a temperature difference between both ends. The second thermoelectric elements are arranged between the first thermoelectric elements adjacent in the circumferential direction, and generate an electromotive force in a second direction opposite to the first direction. . Furthermore, each said connection member is the pair of thermoelectric elements adjacent to each other in the circumferential direction between the end portions in the same direction of the first and second thermoelectric elements. Are electrically connected in series alternately except for one end of each. Then, one end of the pair of lead wires is electrically connected to one end of any one of the pair of thermoelectric elements not connected by the connection member.
When the invention described in claim 2 is carried out, specifically, as described in claim 3, the first thermoelectric element is a p-type thermoelectric semiconductor and the second thermoelectric element is an n-type. A thermoelectric semiconductor is used, and the connecting member is a metal plate.

又、本発明の対象となる発電装置付回転支持装置が、回転軸の端部を支持する構造の所謂軸端形の場合には、請求項4に記載した様に、上記転がり軸受用ハウジングの一方の開口部に、この開口部を塞ぐ蓋体を設け、この蓋体に、上記転がり軸受用ハウジング内に大気を取り込む為の空気取入口を設ける。
又、転がり軸受用ハウジングの外部に電力供給する場合には、請求項5に記載した様に、転がり軸受用ハウジングの一部に、1対のリード線をこの転がり軸受用ハウジングの外部に出す為の通孔を設ける。
Further, in the case of the so-called shaft end type having a structure for supporting the end portion of the rotating shaft, the rotation support device with a power generation device, which is the subject of the present invention, as described in claim 4, the rolling bearing housing is provided. One opening is provided with a lid that closes the opening, and the lid is provided with an air intake for taking in the atmosphere into the rolling bearing housing.
When power is supplied to the outside of the rolling bearing housing, as described in claim 5, a pair of lead wires are provided outside the rolling bearing housing in a part of the rolling bearing housing. A through hole is provided.

上述の様に構成する本発明の発電装置付回転支持装置の作用は、次の通りである。先ず、転がり軸受の外輪の温度は、運転時に於ける転がり接触部及び滑り接触部での発熱により上昇する。これに伴ない、間座の軸方向両端面のうち、上記外輪と当接する側の端面の温度が上昇し、熱電モジュールの軸方向両端面のうち、上記外輪側の端面の温度も上昇する。
一方で、常に外気に曝されて冷却される転がり軸受用ハウジングの温度は、上記外輪程は上昇しない為、上記間座の軸方向両端面のうち、上記転がり軸受用ハウジングの内側面と当接する側の端面の温度上昇は抑えられる。又、上記熱電モジュールの軸方向両端面のうち、上記転がり軸受用ハウジングの内側面側の端面の温度も抑えられる。
そして、上述の様に生じる、熱電モジュールの軸方向両端面同士の間の温度差に基づくゼーベック効果により、上記熱電モジュールが発電する。この様に本発明では、上記回転支持装置が発生する熱を有効に利用して、発電を行なう事ができる。この為、例えば、この発電した電力を上記発電装置付回転支持装置に付属の電子機器等に供給すれば、外部からこの電子機器等に電力を供給する為のケーブル等を設ける必要がなくなる。
The operation of the rotation support device with a power generator of the present invention configured as described above is as follows. First, the temperature of the outer ring of the rolling bearing rises due to heat generation at the rolling contact portion and the sliding contact portion during operation. Along with this, the temperature of the end face on the side in contact with the outer ring of both end faces in the axial direction of the spacer rises, and the temperature of the end face on the outer ring side of both end faces in the axial direction of the thermoelectric module also rises.
On the other hand, the temperature of the rolling bearing housing that is constantly cooled by being exposed to the outside air does not rise as the outer ring increases, so that it contacts the inner side surface of the rolling bearing housing among the axial end faces of the spacer. The temperature rise on the side end face is suppressed. Moreover, the temperature of the end surface of the inner surface side of the rolling bearing housing among the both end surfaces in the axial direction of the thermoelectric module is also suppressed.
And the said thermoelectric module generates electric power by the Seebeck effect based on the temperature difference between the axial direction both end surfaces of the thermoelectric module which arises as mentioned above. As described above, in the present invention, power generation can be performed by effectively using the heat generated by the rotation support device. For this reason, for example, if the generated power is supplied to an electronic device attached to the rotation support device with the power generator, it is not necessary to provide a cable or the like for supplying power to the electronic device from the outside.

[実施の形態の第1例]
図1〜3は、請求項1〜3、5に対応する、本発明の実施の形態の第1例を示している。本例の発電装置付回転支持装置は、転がり軸受用ハウジング6と、回転軸7をこの転がり軸受用ハウジング6の内側に回転自在に支持する転がり軸受8と、発電装置9とを備える。このうちの転がり軸受用ハウジング6は、一体又は複数の部材で構成している筒状部10と、上記回転軸7をこの転がり軸受用ハウジング6の外に突出させる為の1対の開口部11a、11bとを備えている。
[First example of embodiment]
1 to 3 show a first example of an embodiment of the present invention corresponding to claims 1 to 5. The rotation support device with a power generation device of this example includes a rolling bearing housing 6, a rolling bearing 8 that rotatably supports a rotating shaft 7 inside the rolling bearing housing 6, and a power generation device 9. Among these, the rolling bearing housing 6 includes a cylindrical portion 10 formed of one or a plurality of members, and a pair of openings 11 a for projecting the rotating shaft 7 out of the rolling bearing housing 6. 11b.

又、上記転がり軸受8は、内周面に外輪軌道12を有し、上記転がり軸受用ハウジング6の筒状部10に内嵌固定した外輪13と、外周面に複列の内輪軌道14a、14bを有し、上記回転軸7に外嵌固定した内輪15と、上記外輪軌道13とこれら両内輪軌道14a、14bとの間に転動自在に設けられた複数個の、それぞれが特許請求の範囲の転動体である球面ころ16、16とを備えている。   The rolling bearing 8 has an outer ring raceway 12 on the inner peripheral surface, an outer ring 13 fitted and fixed to the cylindrical portion 10 of the rolling bearing housing 6, and double row inner ring raceways 14a and 14b on the outer peripheral surface. And a plurality of inner rings 15 that are externally fitted and fixed to the rotary shaft 7, and a plurality of rolls provided between the outer ring raceway 13 and the inner ring raceways 14a and 14b. Are provided with spherical rollers 16 and 16 which are rolling elements.

又、上記発電装置9は、間座17と、軸方向両端面同士の間に温度差を与える事で所定の方向に起電力を発生する、熱電モジュール1aとを備えている。このうちの間座17は、銅又は銅系合金、アルミニウム又はアルミニウム系合金等の伝熱性の良好な金属により円筒状に造られて、その外周面に係合溝18を円周方向に亙り設けている。又、上記熱電モジュール1aの構成部材同士、更にはこの熱電モジュール1aと上記転がり軸受用ハウジング6等の周囲とが、上記間座を介して電気的に導通(短絡)しない様に、少なくとも上記係合溝18の内面を、図示しない絶縁材で覆っている。この様な間座17は、上記転がり軸受用ハウジング6の筒状部10に内嵌固定すると共に、上記転がり軸受8の外輪の軸方向一端面19(図1の左端面)とこの端面と対向する上記転がり軸受用ハウジングの内側面20との間に挟持している。
又、上記熱電モジュール1aは、それぞれ複数本ずつの、p型熱電半導体4a、4aとn型熱電半導体5a、5aとを備える。このうちの各p型熱電半導体4a、4aは、円周方向に関して所定の間隔で並設されており、軸方向両端部間に温度差を与える事で、図2〜3の矢印αで示す方向(高温側から低温側方向)に起電力を発生する。この様な各p型熱電半導体4a、4aは、ビスマス、鉛、シリコン、コバルト、亜鉛等から成る。又、上記各n型熱電半導体5a、5aは円周方向に隣り合う上記各p型熱電半導体4a、4aの間に配置されており、図2〜3の矢印βで示す方向(低温側から高温側方向)に起電力を発生する。この様な各n型熱電半導体5a、5aは、テルル化合物、テルル合金、ゲルマニウム合金、アンチモン化合物等から成る。又、これらp型、n型各熱電半導体4a、5aの同方向端部同士を、円周方向に隣り合う何れか1対のp型、n型熱電半導体4a、5a(図3の中央部参照)の一端部を除き、それぞれが接続部材である、複数の金属板21、21により、交互に、電気的に直列に接続している。これら各金属板21、21は、上記間座17と同様に、伝熱性及び導電性の良好な、アルミニウムや銅若しくはこれらの合金により造っている。更に、1対のリード線22、22の一端を、それぞれ、上記金属板21により接続されていない、上記1対のp型、n型熱電半導体4a、5aの一端に、それぞれ電気的に接続している。
Moreover, the said electric power generating apparatus 9 is provided with the spacer 17 and the thermoelectric module 1a which generate | occur | produces an electromotive force in a predetermined direction by giving a temperature difference between axial direction both end surfaces. The spacer 17 is made of a metal having a good heat conductivity such as copper or a copper-based alloy, aluminum or an aluminum-based alloy, and has an engaging groove 18 provided in the circumferential direction on the outer peripheral surface thereof. ing. Further, at least the above-mentioned members are arranged so that the constituent members of the thermoelectric module 1a, and further, the thermoelectric module 1a and the periphery of the rolling bearing housing 6 and the like are not electrically connected (short-circuited) via the spacer. The inner surface of the joint groove 18 is covered with an insulating material (not shown). Such a spacer 17 is internally fitted and fixed to the cylindrical portion 10 of the rolling bearing housing 6, and is opposed to the end surface 19 in the axial direction of the outer ring of the rolling bearing 8 (left end surface in FIG. 1) and this end surface. And the inner surface 20 of the rolling bearing housing.
The thermoelectric module 1a includes a plurality of p-type thermoelectric semiconductors 4a and 4a and n-type thermoelectric semiconductors 5a and 5a. Of these, the p-type thermoelectric semiconductors 4a and 4a are arranged in parallel at a predetermined interval in the circumferential direction, and a temperature difference is provided between both ends in the axial direction, whereby the direction indicated by the arrow α in FIGS. An electromotive force is generated (from the high temperature side to the low temperature side). Each such p-type thermoelectric semiconductor 4a, 4a is made of bismuth, lead, silicon, cobalt, zinc, or the like. The n-type thermoelectric semiconductors 5a and 5a are disposed between the p-type thermoelectric semiconductors 4a and 4a adjacent to each other in the circumferential direction, and the direction indicated by the arrow β in FIGS. Electromotive force is generated in the side direction). Each of such n-type thermoelectric semiconductors 5a and 5a is made of a tellurium compound, a tellurium alloy, a germanium alloy, an antimony compound, or the like. Further, the same direction ends of the p-type and n-type thermoelectric semiconductors 4a and 5a are connected to any one pair of p-type and n-type thermoelectric semiconductors 4a and 5a adjacent to each other in the circumferential direction (see the central portion in FIG. 3). ) Are alternately connected in series by a plurality of metal plates 21 and 21, each of which is a connection member. Each of these metal plates 21 and 21 is made of aluminum, copper, or an alloy thereof having good heat conductivity and conductivity, like the spacer 17. Further, one end of the pair of lead wires 22 and 22 is electrically connected to one end of the pair of p-type and n-type thermoelectric semiconductors 4a and 5a that are not connected by the metal plate 21, respectively. ing.

この様な本例の発電装置付回転支持装置は、次の様に作用する。先ず、上記転がり軸受8の外輪13の温度は、運転時の転がり接触部の発熱により上昇する。これに伴ない、上記間座17の軸方向両端面のうち、上記外輪の軸方向一端面19と当接する端面(図1の右端面)の温度が上昇し、上記熱電モジュール1aの軸方向両端面のうち、上記外輪側の端面(図1の右端面)の温度も上昇する。
一方で、常に外気に曝されて冷却される上記転がり軸受用ハウジング6の温度は、上記外輪13程は上昇しない為、上記間座17の軸方向両端面のうち、前記転がり軸受用ハウジングの内側面20と当接する端面(図1の左端面)の温度上昇は抑えられる。又、上記熱電モジュール1aの軸方向両端面のうち、上記転がり軸受用ハウジングの内側面20側の端面(図1の左端面)の温度上昇も抑えられる。
この結果生じる、上記熱電モジュール1aの軸方向両端部同士の間の温度差に基づくゼーベック効果により、上記熱電モジュール1aを構成する熱電素子である、前記各p型熱電半導体4a、4aは、前記矢印αで示す方向に起電力を発生する。一方、前記各n型熱電半導体5a、5aは前期矢印βで示す方向に起電力を発生する。これら各p型、n型熱電半導体4a、5aは、上記金属板21、21により電気的に直列に接続されている為、上記熱電モジュール1aの所定の方向に直流電流が流れる。
Such a rotation support device with a power generator of this example operates as follows. First, the temperature of the outer ring 13 of the rolling bearing 8 rises due to heat generated by the rolling contact portion during operation. Along with this, the temperature of the end surface (the right end surface in FIG. 1) that contacts the axial end surface 19 of the outer ring among the axial end surfaces of the spacer 17 rises, and the axial ends of the thermoelectric module 1a rise. Among the surfaces, the temperature of the end surface on the outer ring side (the right end surface in FIG. 1) also increases.
On the other hand, the temperature of the rolling bearing housing 6 that is constantly cooled by being exposed to the outside air does not rise as much as the outer ring 13. The temperature rise of the end surface (left end surface in FIG. 1) in contact with the side surface 20 is suppressed. Moreover, the temperature rise of the end surface (the left end surface in FIG. 1) on the inner surface 20 side of the rolling bearing housing among the axial end surfaces of the thermoelectric module 1a is also suppressed.
As a result, the p-type thermoelectric semiconductors 4a and 4a, which are thermoelectric elements constituting the thermoelectric module 1a due to the Seebeck effect based on the temperature difference between the axial ends of the thermoelectric module 1a, An electromotive force is generated in the direction indicated by α. On the other hand, the n-type thermoelectric semiconductors 5a and 5a generate an electromotive force in the direction indicated by the arrow β in the previous period. Since these p-type and n-type thermoelectric semiconductors 4a and 5a are electrically connected in series by the metal plates 21 and 21, a direct current flows in a predetermined direction of the thermoelectric module 1a.

この様に本例の構造は、回転支持装置が発生する排熱を有効に利用して、発電を行なう事ができる。又、発電した電力は、上記1対のリード線22、22により上記転がり軸受用ハウジング6の内部、又は外部に設けた電子機器等に供給する事ができる。例えば、上記転がり軸受用ハウジング6の内部に備えた、回転速度検出用センサ等に電力供給する場合、これらセンサに外部からの電力供給用のハーネスを設ける必要がない。この為、前記回転軸7の回転速度検出の為の構造を単純化できる。   As described above, the structure of this example can generate power by effectively using the exhaust heat generated by the rotation support device. The generated electric power can be supplied to the electronic device or the like provided inside or outside the rolling bearing housing 6 by the pair of lead wires 22 and 22. For example, when power is supplied to a rotational speed detection sensor or the like provided inside the rolling bearing housing 6, it is not necessary to provide an external power supply harness to these sensors. For this reason, the structure for detecting the rotational speed of the rotating shaft 7 can be simplified.

尚、上記転がり軸受用ハウジング6の外部に電力供給する場合は、上記両リード線22、22を、前記開口部11aを通じて上記軸受用ハウジング6外に取り出す。但し、回転軸7の外周面との接触を防止する等の為、この転がり軸受用ハウジング6の一部に必要に応じた数のリード線用通孔33(図5参照)を設ける事もできる。そして、この通孔33に上記両リード線22、22を挿通して、上記電力を外部に取り出す。
又、これら両リード線22、22を上記熱電モジュール1aに接続する事が、空間的に困難である様な場合、又は、上記1対のリード線22、22が周囲の部材と干渉してしまう様な場合には、上記間座17の耐久性等を考慮した上で、この間座17に切り欠き34、34(図2〜3参照)を設ける事もできる。
又、上記間座17に設けている係合溝は、外周面の一部、又は、全周に亙り設ける場合のどちらの構造としても良い。熱電モジュールの発電量は、各熱電素子(本例ではp型熱電半導体4a、n型熱電半導体5a)の起電力の合計になる為、発電量を増やしたい場合は、係合溝を長めに設けて、熱電素子の数を増やす事で対応できる。
又、発電した電力をキャパシタや二次電池等を設けて一時的に貯蔵する様にしておけば、回転支持装置が停止していて発電が行なわれていない様な状態でも、電子機器等に電力を供給する事ができる。
When supplying electric power to the outside of the rolling bearing housing 6, the lead wires 22 and 22 are taken out of the bearing housing 6 through the opening 11a. However, in order to prevent contact with the outer peripheral surface of the rotary shaft 7, a number of lead wire through-holes 33 (see FIG. 5) as necessary can be provided in a part of the rolling bearing housing 6. . The lead wires 22 and 22 are inserted through the through-hole 33 to take out the electric power to the outside.
Further, when it is spatially difficult to connect both the lead wires 22 and 22 to the thermoelectric module 1a, or the pair of lead wires 22 and 22 interfere with surrounding members. In such a case, the notches 34 and 34 (see FIGS. 2 to 3) can be provided in the spacer 17 in consideration of the durability of the spacer 17.
Further, the engagement groove provided in the spacer 17 may have any structure in a case where it is provided over a part of the outer peripheral surface or the entire periphery. The power generation amount of the thermoelectric module is the total electromotive force of each thermoelectric element (in this example, p-type thermoelectric semiconductor 4a and n-type thermoelectric semiconductor 5a). This can be handled by increasing the number of thermoelectric elements.
In addition, if the generated power is temporarily stored with a capacitor, secondary battery, etc., even if the rotation support device is stopped and power generation is not being performed, Can be supplied.

[実施の形態の第2例]
図4〜6は、総ての請求項に対応する、本発明の実施の形態の第2例を示している。本例の回転支持装置の場合、転がり軸受用ハウジング6aの形状は、回転軸7の端部を支持する為の、所謂軸端形である。この転がり軸受用ハウジング6aは、筒状部10と、この筒状部10の両端に設けられた1対の開口部11a、11bと、蓋体23とを備える。
このうちの筒状部10には、1対のリード線22、22を上記転がり軸受用ハウジング6aの外部に通す為のリード線用通孔33(図5参照)を設けている。又、中間部に、内周面を円筒面とした保持部24を設けている。又、内周面の一端部(図4の右端部)に、この保持部24の内周面よりも径方向内側に突出する、内向鍔部26を設けている。又、内周面の他端部(図4の左端部)に、上記保持部24より内径が大きい段付部25を設けている。又、この保持部24の段付部25側の端面(図4の左端面)の円周方向複数個所にねじ孔29、29を、それぞれ軸方向に設けている。
[Second Example of Embodiment]
4 to 6 show a second example of an embodiment of the invention corresponding to all claims. In the case of the rotation support device of this example, the shape of the rolling bearing housing 6a is a so-called shaft end shape for supporting the end portion of the rotation shaft 7. The rolling bearing housing 6 a includes a cylindrical portion 10, a pair of openings 11 a and 11 b provided at both ends of the cylindrical portion 10, and a lid body 23.
Of these, the tubular portion 10 is provided with a lead wire through-hole 33 (see FIG. 5) for allowing the pair of lead wires 22 and 22 to pass through the outside of the rolling bearing housing 6a. Further, a holding portion 24 having an inner peripheral surface of a cylindrical surface is provided at the intermediate portion. In addition, an inward flange portion 26 that protrudes radially inward from the inner peripheral surface of the holding portion 24 is provided at one end portion (the right end portion in FIG. 4) of the inner peripheral surface. A stepped portion 25 having an inner diameter larger than that of the holding portion 24 is provided at the other end portion (left end portion in FIG. 4) of the inner peripheral surface. Further, screw holes 29 and 29 are provided in the axial direction at a plurality of circumferential positions on the end surface (left end surface in FIG. 4) of the holding portion 24 on the stepped portion 25 side.

又、上記両蓋体23は、蓋部27と、インロー部28と、外部から上記転がり軸受用ハウジング6aに大気を取り入れる為の複数の空気取入口32、32とを備えている。
このうち蓋部27は、円板状で、径方向外端部の円周方向複数個所に通孔30、30を、それぞれ軸方向に設けており、上記筒状部10の段付部25に内嵌固定している。
又、上記インロー部28は円筒状であり、外径が上記蓋部27の外径よりも小さい。このインロー部28は、その軸方向一端面(図4の左端面)をこの蓋部27に突き当てた如く、この蓋体27と連続され、この蓋体27の片面で上記インロー部28よりも外径部分を段部31としている。この様なインロー部28は、軸方向他端面を間座17の軸方向一端面(図4の左端面)に当接する様に、上記筒状部10の保持部24に内嵌固定している。
又、上記空気取入口32、32は、上記蓋部27の径方向外端寄り部分及び上記インロー部28を軸方向に貫通している。本例では、図5〜6に示す様に、上記空気取入口32、32を部分円弧状とし、円周方向に間欠的に設けている。
この様な上記蓋体23は、上記通孔30、30に挿通した図示しないねじを上記筒状部10の保持部24に設けているねじ孔29、29に螺合し更に締め付ける事で上記1対の開口部11a、11bのうちの、一方(図4の左側)の開口部11aを塞ぐ様に固定している。
The lid bodies 23 each include a lid portion 27, an inlay portion 28, and a plurality of air intakes 32 and 32 for taking air into the rolling bearing housing 6a from the outside.
Of these, the lid portion 27 is disk-shaped, and has through holes 30 and 30 provided in a plurality of locations in the circumferential direction of the radially outer end portion in the axial direction, and is provided in the stepped portion 25 of the tubular portion 10. The inner fitting is fixed.
The inlay portion 28 is cylindrical and has an outer diameter smaller than the outer diameter of the lid portion 27. The inlay portion 28 is continuous with the lid body 27 such that one end surface in the axial direction (the left end surface in FIG. 4) abuts against the lid portion 27, and one side of the lid body 27 is more than the inlay portion 28. The outer diameter portion is a step portion 31. Such an inlay portion 28 is internally fitted and fixed to the holding portion 24 of the tubular portion 10 so that the other axial end surface is in contact with one axial end surface (left end surface in FIG. 4) of the spacer 17. .
The air intakes 32, 32 penetrate the portion near the radially outer end of the lid portion 27 and the spigot portion 28 in the axial direction. In this example, as shown in FIGS. 5 to 6, the air intake ports 32 and 32 are formed in a partial arc shape and are provided intermittently in the circumferential direction.
Such a lid body 23 is formed by screwing screws (not shown) inserted into the through holes 30 and 30 into screw holes 29 and 29 provided in the holding portion 24 of the cylindrical portion 10 and further tightening them. It fixes so that the opening part 11a of one side (left side of FIG. 4) of the pair of opening parts 11a and 11b may be plugged up.

この様な本例の構造によれば、上記間座17の軸方向一端面(図4の左端面)を、上記空気取入口32、32から上記転がり軸受用ハウジング6a内に侵入する大気によって効率良く冷やす事ができる。一方で、上記間座17の軸方向他端面(図4の右端面)は、転がり軸受8の外輪13からの伝熱で高温になる。この為、上記間座17の軸方向両端面同士の間の温度差が大きくなる。これに伴ない、上記間座17に設けている係合溝18の内側面のうちの互いに対向する面にそれぞれ上記金属板21を介して当接している、上記熱電モジュール1aの軸方向両端面同士の間の温度差も大きくなる。この為、より多くの起電力を、上記熱電モジュール1aで発生させる事ができる。   According to such a structure of this example, one end surface in the axial direction of the spacer 17 (the left end surface in FIG. 4) is made efficient by the atmosphere that enters the rolling bearing housing 6a from the air intake ports 32, 32. Can cool well. On the other hand, the other end surface in the axial direction of the spacer 17 (the right end surface in FIG. 4) becomes high temperature due to heat transfer from the outer ring 13 of the rolling bearing 8. For this reason, the temperature difference between the axial direction both end surfaces of the said spacer 17 becomes large. Accordingly, both end surfaces in the axial direction of the thermoelectric module 1a are in contact with the opposing surfaces of the inner surfaces of the engaging grooves 18 provided in the spacer 17 through the metal plates 21, respectively. The temperature difference between them also increases. For this reason, more electromotive force can be generated by the thermoelectric module 1a.

尚、上記空気取入口32、32の大きさは、上記転がり軸受用ハウジング6aの耐久性等を考慮して設計的に調整できる。又、上記空気取入口32、32を省略する代りに、或は、この空気取入口32、32を設けると共に、上記蓋体23の外面に放熱フィンを設けて、この蓋体23の温度上昇を抑える事もできる。
又、上記空気取入口32、32も放熱フィンも設けない構造とする場合でも、上記間座17の軸方向一端面(図4の左端面)は、常に外気に曝されて冷却される上記蓋体23のインロー部28の軸方向他端面(図4の右端面)に当接している為、温度上昇を抑える事はできる。但し、上記空気取入口32、32、或は放熱フィンを設けた場合よりも効果は小さい。
又、転がり軸受用ハウジング6aの筒状部10に設けた、1対のリード線22、22を上記転がり軸受用ハウジング6aの外部に通す為のリード線用通孔33は、上記熱電モジュール1aを構成する各熱電素子の円周方向の両端部同士が離れている様な構造の場合には、各リード線毎に互いに独立した通孔を設けても良い。又、上記蓋体23の一部にこの通孔を設けても良い。
又、上記蓋体23の径方向中間部に上記回転軸7を上記転がり軸受用ハウジング6aの外部に突出する為の開口部を設ければ、上記回転軸7の中間部を支持する、所謂貫通形の転がり軸受用ハウジングに本例の構造を採用する事もできる。
その他の部分の構成及び作用に就いては、上述した実施の形態の第1例と同様であるから、重複する説明は省略する。
The size of the air intakes 32, 32 can be adjusted in design in consideration of the durability of the rolling bearing housing 6a. Further, instead of omitting the air intake ports 32, 32, or providing the air intake ports 32, 32, and providing heat radiating fins on the outer surface of the lid body 23, the temperature of the lid body 23 is increased. It can also be suppressed.
Further, even when the air intakes 32, 32 and the heat radiating fins are not provided, one end surface in the axial direction of the spacer 17 (the left end surface in FIG. 4) is always exposed to the outside air and cooled. Since it is in contact with the other axial end surface (the right end surface in FIG. 4) of the spigot portion 28 of the body 23, the temperature rise can be suppressed. However, the effect is smaller than the case where the air intake ports 32, 32 or the radiating fins are provided.
Further, a lead wire through-hole 33 for passing a pair of lead wires 22 and 22 provided in the cylindrical portion 10 of the rolling bearing housing 6a to the outside of the rolling bearing housing 6a serves as the thermoelectric module 1a. In the case of the structure in which both ends in the circumferential direction of each thermoelectric element to be configured are separated from each other, a through hole independent from each other may be provided for each lead wire. Further, this through hole may be provided in a part of the lid body 23.
Further, if an opening for projecting the rotary shaft 7 to the outside of the rolling bearing housing 6a is provided at the radial intermediate portion of the lid body 23, a so-called penetration that supports the intermediate portion of the rotary shaft 7 is provided. The structure of this example can also be adopted for a rolling bearing housing of a shape.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, redundant description is omitted.

本発明の実施の形態の第1例を示す、発電装置付回転支持装置の断面図。Sectional drawing of the rotation support apparatus with an electric power generating apparatus which shows the 1st example of embodiment of this invention. 同じく、発電装置のみを取り出して示す斜視図。Similarly, the perspective view which takes out and shows only a power generator. 同じく、図2のA部拡大図。Similarly, the A section enlarged view of FIG. 本発明の実施の形態の第2例を示す、発電装置付回転支持装置の断面図。Sectional drawing of the rotation support apparatus with an electric power generating apparatus which shows the 2nd example of embodiment of this invention. 同じく軸受用ハウジング斜視図。The housing housing perspective view similarly. 同じく、軸受用ハウジングの蓋体のみを示す斜視図。Similarly, the perspective view which shows only the cover body of the housing for bearings. 従来構造の1例を示す、熱電モジュールの正面図。The front view of the thermoelectric module which shows an example of the conventional structure.

符号の説明Explanation of symbols

1、1a 熱電モジュール
2a、2b 基板
3 接続部材
4、4a p型熱電半導体
5、5a n型熱電半導体
6、6a 転がり軸受用ハウジング
7 回転軸
8 転がり軸受
9 発電装置
10 筒状部
11a、11b 開口部
12 外輪軌道
13 外輪
14a、14b 内輪軌道
15 内輪
16 球面ころ
17 間座
18 係合溝
19 外輪の軸方向端面
20 軸受用ハウジングの内側面
21 金属板
22 リード線
23 蓋体
24 保持部
25 段付部
26 内向鍔部
27 蓋部
28 インロー部
29 ねじ孔
30 通孔
31 段部
32 空気取入口
33 リード線用通孔
34 切り欠き
DESCRIPTION OF SYMBOLS 1, 1a Thermoelectric module 2a, 2b Board | substrate 3 Connection member 4, 4a P-type thermoelectric semiconductor 5, 5a N-type thermoelectric semiconductor 6, 6a Rolling bearing housing 7 Rotating shaft 8 Rolling bearing 9 Power generation device 10 Cylindrical part 11a, 11b Opening Part 12 Outer ring raceway 13 Outer ring 14a, 14b Inner ring raceway 15 Inner ring 16 Spherical roller 17 Spacer 18 Engagement groove 19 Axial end face of outer ring 20 Inner side face of bearing housing 21 Metal plate 22 Lead wire 23 Lid body 24 Holding part 25 Step Attached part 26 Inward flange part 27 Cover part 28 Inlay part 29 Screw hole 30 Through hole 31 Step part 32 Air intake 33 Lead wire through hole 34 Notch

Claims (5)

転がり軸受用ハウジングと、回転軸をこの転がり軸受用ハウジングの内側に回転自在に支持する転がり軸受と、発電装置とを備え、
このうちの転がり軸受用ハウジングは、筒状部と、上記回転軸をこの転がり軸受用ハウジングの外に突出させる為の開口部とを備えたものであり、
上記転がり軸受は、内周面に外輪軌道を有し、上記転がり軸受用ハウジングの筒状部に内嵌固定した外輪と、外周面に内輪軌道を有し、上記回転軸に外嵌固定した内輪と、この内輪軌道と上記外輪軌道との間に転動自在に設けられた複数個の転動体とを備えたものであり、
上記発電装置は、間座と、両端部同士の間に温度差を与える事で所定の方向に起電力を発生する、熱電モジュールとを備えたもので、
このうちの間座は、円筒状で、その外周面に係合溝を円周方向に亙り設け、少なくともこの係合溝の内面を絶縁材で覆い、上記転がり軸受用ハウジングの筒状部に内嵌固定すると共に、上記転がり軸受の外輪の軸方向一端面とこの軸方向一端面と対向する上記転がり軸受用ハウジングの内側面との間に挟持しており、
上記熱電モジュールは、熱電素子と、この熱電素子の両端部に電気的に接続している接続部材とから成り、この熱電モジュールの軸方向両端面が、上記間座の係合溝の内側面のうちの互いに対向する面に、それぞれ直接又は上記接続部材を介して当接しており、運転時に発生する上記熱電モジュールの軸方向両端面同士の温度差に基づくゼーベック効果により熱エネルギを電気エネルギに変換し、上記熱電モジュールの両端部に接続したリード線によりこの電気エネルギを取り出す、発電装置付回転支持装置。
A rolling bearing housing; a rolling bearing that rotatably supports a rotating shaft inside the rolling bearing housing; and a power generation device.
Of these, the rolling bearing housing includes a cylindrical portion and an opening for projecting the rotating shaft out of the rolling bearing housing.
The rolling bearing includes an outer ring having an outer ring raceway on an inner peripheral surface thereof, and an inner ring having an inner ring raceway disposed on an outer peripheral surface of the outer ring that is fitted and fixed to the cylindrical portion of the housing for the rolling bearing. And a plurality of rolling elements provided between the inner ring raceway and the outer ring raceway so as to roll freely.
The power generator includes a spacer and a thermoelectric module that generates an electromotive force in a predetermined direction by giving a temperature difference between both ends.
Of these, the spacer has a cylindrical shape, and an engaging groove is provided in a circumferential direction on the outer peripheral surface thereof, and at least the inner surface of the engaging groove is covered with an insulating material, and the cylindrical portion of the rolling bearing housing is internally provided. While being fitted and fixed, it is sandwiched between one axial end surface of the outer ring of the rolling bearing and the inner side surface of the rolling bearing housing facing the one axial end surface,
The thermoelectric module includes a thermoelectric element and a connecting member electrically connected to both ends of the thermoelectric element, and both end surfaces in the axial direction of the thermoelectric module are formed on inner surfaces of the engagement grooves of the spacer. Heat energy is converted into electrical energy by the Seebeck effect based on the temperature difference between the two axial end faces of the thermoelectric module that is in direct contact with each other or through the connecting member. A rotation support device with a power generator that takes out the electrical energy by lead wires connected to both ends of the thermoelectric module.
熱電モジュールが、円周方向に関して所定の間隔で並設され両端部間に温度差を与える事で、第一の方向に起電力を発生する複数の第一熱電素子と、円周方向に隣り合う第一熱電素子同士の間に配置されて、上記第一の方向と反対方向である第二の方向に起電力を発生する複数の第二熱電素子と、これら第一、第二各熱電素子の同方向端部同士を、これら各第一、第二各熱電素子を、円周方向に隣り合う何れか1対の熱電素子の一端部を除き交互に電気的に直列に接続する為の複数の接続部材とから成り、1対のリード線の一端を、上記何れか1対の熱電素子の一端に、それぞれ電気的に接続している、請求項1に記載した発電装置付回転支持装置。   The thermoelectric modules are arranged side by side at a predetermined interval in the circumferential direction, and are adjacent to each other in the circumferential direction with a plurality of first thermoelectric elements that generate an electromotive force in the first direction by giving a temperature difference between both ends. A plurality of second thermoelectric elements arranged between the first thermoelectric elements and generating an electromotive force in a second direction opposite to the first direction, and the first and second thermoelectric elements A plurality of first and second thermoelectric elements are connected in series in the same direction except for one end of any one pair of thermoelectric elements adjacent in the circumferential direction. The rotation support device with a power generator according to claim 1, comprising a connection member, wherein one end of the pair of lead wires is electrically connected to one end of any one of the pair of thermoelectric elements. 第一熱電素子がp型熱電半導体であり、第二熱電素子がn型熱電半導体であり、接続部材が金属板である、請求項2に記載した発電装置付回転支持装置。   The rotation support device with a power generator according to claim 2, wherein the first thermoelectric element is a p-type thermoelectric semiconductor, the second thermoelectric element is an n-type thermoelectric semiconductor, and the connection member is a metal plate. 転がり軸受用ハウジングの一方の開口部に、この開口部を塞ぐ蓋体を設け、この蓋体に、上記転がり軸受用ハウジング内に大気を取り込む為の空気取入口を設けている、請求項1〜3のうちの何れか1項に記載した発電装置付回転支持装置。   A lid body that closes the opening portion is provided at one opening portion of the rolling bearing housing, and an air intake port for taking air into the rolling bearing housing is provided at the lid body. The rotation support device with a power generation device according to any one of 3. 転がり軸受用ハウジングの一部に、リード線をこの転がり軸受用ハウジングの外部に出す為の通孔を設けている、請求項1〜4のうちの何れか1項に記載した発電装置付回転支持装置。   The rotation support with a power generator according to any one of claims 1 to 4, wherein a through-hole is provided in a part of the rolling bearing housing to lead out a lead wire to the outside of the rolling bearing housing. apparatus.
JP2007061342A 2007-03-12 2007-03-12 Rotatably supporting device with generating set Pending JP2008223843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061342A JP2008223843A (en) 2007-03-12 2007-03-12 Rotatably supporting device with generating set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061342A JP2008223843A (en) 2007-03-12 2007-03-12 Rotatably supporting device with generating set

Publications (1)

Publication Number Publication Date
JP2008223843A true JP2008223843A (en) 2008-09-25

Family

ID=39842713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061342A Pending JP2008223843A (en) 2007-03-12 2007-03-12 Rotatably supporting device with generating set

Country Status (1)

Country Link
JP (1) JP2008223843A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063695A1 (en) * 2010-11-10 2012-05-18 Ntn株式会社 Rolling bearing unit
WO2013050418A1 (en) * 2011-10-06 2013-04-11 Aktiebolaget Skf Thermo-electric power harvesting bearing configuration
TWI567315B (en) * 2013-07-23 2017-01-21 國立中正大學 A ball screw that uses a thermoelectric cooler for heat dissipation
WO2019049575A1 (en) * 2017-09-11 2019-03-14 日本電気株式会社 Bearing with measurement function
CN111379790A (en) * 2020-05-12 2020-07-07 高邮市高袁机械制造有限公司 Combined bearing seat

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063695A1 (en) * 2010-11-10 2012-05-18 Ntn株式会社 Rolling bearing unit
JP2012102803A (en) * 2010-11-10 2012-05-31 Ntn Corp Rolling bearing unit
WO2013050418A1 (en) * 2011-10-06 2013-04-11 Aktiebolaget Skf Thermo-electric power harvesting bearing configuration
CN103987978A (en) * 2011-10-06 2014-08-13 Skf公司 Thermo-electric power harvesting bearing configuration
CN103987979A (en) * 2011-10-06 2014-08-13 Skf公司 Thermo-electric power harvesting bearing configuration
US9343646B2 (en) 2011-10-06 2016-05-17 Aktiebolaget Skf Thermo-electric power harvesting bearing configuration
TWI567315B (en) * 2013-07-23 2017-01-21 國立中正大學 A ball screw that uses a thermoelectric cooler for heat dissipation
WO2019049575A1 (en) * 2017-09-11 2019-03-14 日本電気株式会社 Bearing with measurement function
JP2019049318A (en) * 2017-09-11 2019-03-28 日本電気株式会社 Bearing with measurement function
US11105376B2 (en) 2017-09-11 2021-08-31 Nec Corporation Bearing with measurement function
CN111379790A (en) * 2020-05-12 2020-07-07 高邮市高袁机械制造有限公司 Combined bearing seat

Similar Documents

Publication Publication Date Title
EP2764266B1 (en) Thermo-electric power harvesting bearing configuration
JP5373936B1 (en) Controller-integrated rotating electrical machine
JP2008223843A (en) Rotatably supporting device with generating set
JP5930115B2 (en) Motor with inverter
US11162510B2 (en) Power source-integrated vacuum pump
JPWO2017169990A1 (en) motor
US11323010B2 (en) Electric Machine
JP2017184542A (en) motor
FR3009906A1 (en) ROTARY ELECTRIC MACHINE WITH INTEGRATED CONTROL ORDER
JP4114334B2 (en) Rolling bearing
JP2006113736A (en) Sensor-equipped device
JP2008192378A (en) Power supply device
JP2006226437A (en) Conductive bearing
JP7290530B2 (en) Bearing device and spacer
JP7346106B2 (en) Bearing device and spindle device
JP2004278570A (en) Cooling mechanism for bearing device
WO2019232720A1 (en) Bearing generating electricity using thermoelectric effect
JP7489763B2 (en) Bearing device and machine tool
JP2010203492A (en) Rolling bearing device
KR20080002040U (en) Electric rotary joint
JP6791670B2 (en) Rolling bearing
JP2021034634A (en) Thermoelectric conversion element
JP2000237930A (en) Cooling structure of spindle
JP2007315567A (en) Angular ball bearing
JP2014084914A (en) Pulley unit and power generator including the same