JP2008223070A - Valuable metal recovery method and apparatus for raw material treatment apparatus - Google Patents

Valuable metal recovery method and apparatus for raw material treatment apparatus Download PDF

Info

Publication number
JP2008223070A
JP2008223070A JP2007061728A JP2007061728A JP2008223070A JP 2008223070 A JP2008223070 A JP 2008223070A JP 2007061728 A JP2007061728 A JP 2007061728A JP 2007061728 A JP2007061728 A JP 2007061728A JP 2008223070 A JP2008223070 A JP 2008223070A
Authority
JP
Japan
Prior art keywords
raw material
valuable metal
medium
gas
metal recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007061728A
Other languages
Japanese (ja)
Inventor
Toshiichiro Ueno
俊一朗 上野
Noritaka Nakamura
至高 中村
Koji Takewaki
幸治 竹脇
Tetsuya Hirata
哲也 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007061728A priority Critical patent/JP2008223070A/en
Publication of JP2008223070A publication Critical patent/JP2008223070A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valuable metal recovery method and apparatus capable of recovering the valuable metal included in raw materials and effectively utilizing limited resources. <P>SOLUTION: The method comprises: a halogen compound adding means 15 of adding a halogen compound into the middle of a downcomer 7 to react the compound with fuel (raw material), and converting the high boiling point compound of the valuable metal included in the fuel (raw material) to a halogenated salt of a low boiling point thereby increasing a migration rate to a combustion exhaust gas (high-temperature gas) side; and a dust separating means 16 of separating and recovering the halogenated salt from the inside of the combustion exhaust gas separated from a fluid medium in a medium separating apparatus 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原料処理装置の有価金属回収方法及び装置に関するものである。   The present invention relates to a valuable metal recovery method and apparatus for a raw material processing apparatus.

近年、低品位の重質油や今まであまり利用されていなかったペトロコークス等を燃料として使用することが提案されている。しかし、これらの燃料中には、ニッケル(Ni)、バナジウム(V)、ナトリウム(Na)、カリウム(K)等の金属類が含まれており、これらの燃料を通常のボイラ等で燃焼させた場合、バナジウムとナトリウムやカリウムによって生成される低融点化合物によって、下流のボイラチューブに高温腐食が生じる問題が懸念される。   In recent years, it has been proposed to use low grade heavy oil or petro coke which has not been used so far as fuel. However, these fuels contain metals such as nickel (Ni), vanadium (V), sodium (Na), and potassium (K), and these fuels were burned in a normal boiler or the like. In this case, there is a concern that a low temperature compound generated by vanadium and sodium or potassium causes high temperature corrosion in the downstream boiler tube.

前述の如き低品位の燃料は、ガス化することによって高品位な燃料に変換することが可能となるため、従来においては、例えば、高温ガス化装置内で、高温(およそ1100〜1300[℃])のもと、前記燃料(原料)と酸素とを部分酸化反応[C+1/2・O2→CO]させることにより可燃性のガス化ガスを生成したり、或いは、ガス化炉と燃焼炉とを備えたいわゆる二塔式の低温ガス化装置において、前記ガス化炉の内部で、ガス化炉の底部へ供給される蒸気や燃料(原料)自体から蒸発する水分の存在下で低温(およそ800〜900[℃])を保持することにより水性ガス化反応[C+H2O=H2+CO]や水素転換反応[CO+H2O=H2+CO2]を生じさせ、H2やCO等の可燃性のガス化ガスを生成する技術の開発が進められている。 Since the low-grade fuel as described above can be converted into a high-grade fuel by gasification, conventionally, for example, in a high-temperature gasifier, a high temperature (approximately 1100 to 1300 [° C.]) is used. ) To generate a combustible gasification gas by subjecting the fuel (raw material) and oxygen to a partial oxidation reaction [C + 1/2 · O 2 → CO], or a gasification furnace and a combustion furnace In a so-called two-column low-temperature gasifier, in the presence of water vaporized from the steam or fuel (raw material) itself supplied to the bottom of the gasifier inside the gasifier, about 800 ˜900 [° C.]) causes water gasification reaction [C + H 2 O = H 2 + CO] and hydrogen conversion reaction [CO + H 2 O = H 2 + CO 2 ], and combustibility such as H 2 and CO. Of technology to generate gasified gas It has been promoted.

尚、重質油を部分酸化によってガス化する装置の一般的技術水準を示すものとしては、例えば、特許文献1がある。
特開平7−150148号公報
For example, Patent Document 1 shows a general technical level of an apparatus for gasifying heavy oil by partial oxidation.
JP-A-7-150148

しかしながら、前述の如き高温ガス化装置において重質油やペトロコークス等の燃料を使用した場合、高温でのガス化であるため、燃料中に含まれる金属類が気化してガス化ガス側へ移行し、製品となる精製ガスの品位を低下させるだけでなく、ガス精製部の構成機器(例えば、ボイラチューブ)の劣化を早めるという問題があった。   However, when fuel such as heavy oil or petro coke is used in the high-temperature gasifier as described above, the gas contained in the fuel is vaporized and shifted to the gasified gas side because it is gasified at a high temperature. However, there is a problem that not only the quality of the refined gas to be a product is lowered, but also deterioration of components (for example, a boiler tube) of the gas purification unit is accelerated.

又、低温ガス化装置において重質油やペトロコークス等の燃料を使用した場合、低温でガス化を行うため、ガス化ガス側への金属類の移行は抑制され、製品となる精製ガスの品位を低下させたり、ガス精製部の構成機器(例えば、ボイラチューブ)の劣化を早めるという問題は生じにくいが、ガス化残渣としての可燃性固形分を流動媒体と一緒に燃焼炉へ導き、該燃焼炉の流動層で燃焼させると、金属類が流動媒体と一緒に系内を循環し続け、その回収が困難となっていた。   In addition, when fuel such as heavy oil or petro coke is used in the low-temperature gasifier, the gasification is performed at a low temperature, so that the migration of metals to the gasification gas side is suppressed, and the quality of the refined gas that is the product However, the combustible solid content as a gasification residue is introduced to the combustion furnace together with the fluidized medium to prevent the combustion. When burned in the fluidized bed of the furnace, metals continued to circulate in the system together with the fluidized medium, making it difficult to recover.

因みに、前記燃料中に含まれるニッケル(Ni)、バナジウム(V)、ナトリウム(Na)、カリウム(K)等の金属類のうち、特にニッケル(Ni)、バナジウム(V)等は有価金属であって、稀少価値が高く、産業上さまざまな方面で使われており、うまく濃縮回収できると、利用価値が高い。   Incidentally, among metals such as nickel (Ni), vanadium (V), sodium (Na), and potassium (K) contained in the fuel, nickel (Ni), vanadium (V), etc. are valuable metals. Therefore, it has a high rare value and is used in various fields in the industry.

本発明は、斯かる実情に鑑み、原料中に含まれる有価金属を回収し得、限られた資源の有効利用を図り得る原料処理装置の有価金属回収方法及び装置を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a valuable metal recovery method and apparatus for a raw material processing apparatus capable of recovering valuable metals contained in raw materials and effectively utilizing limited resources. .

本発明は、原料を加熱処理する際に高温ガスが発生する原料処理装置の有価金属回収方法であって、
ハロゲン化合物を添加して原料と反応させ、該原料中に含まれる有価金属の高沸点化合物を沸点の低いハロゲン化塩に変換して高温ガス側への移行率を増やした後、該高温ガス中から前記ハロゲン化塩をダスト分離手段で分離回収することを特徴とする原料処理装置の有価金属回収方法にかかるものである。
The present invention is a valuable metal recovery method of a raw material processing apparatus that generates a high-temperature gas when heat-treating a raw material,
After adding a halogen compound and reacting with the raw material, converting a high-boiling point compound of valuable metals contained in the raw material into a halogenated salt having a low boiling point to increase the rate of transfer to the high-temperature gas side, To the valuable metal recovery method of the raw material processing apparatus, wherein the halide salt is separated and recovered by a dust separation means.

又、本発明は、原料を加熱処理する際に高温ガスが発生する原料処理装置の有価金属回収装置であって、
ハロゲン化合物を添加して原料と反応させ、該原料中に含まれる有価金属の高沸点化合物を沸点の低いハロゲン化塩に変換して高温ガス側への移行率を増やすハロゲン化合物添加手段と、
前記高温ガス中から前記ハロゲン化塩を分離回収するダスト分離手段と
を備えたことを特徴とする原料処理装置の有価金属回収装置にかかるものである。
Further, the present invention is a valuable metal recovery device of a raw material processing apparatus that generates a high temperature gas when the raw material is heat-treated,
Halogen compound addition means for adding a halogen compound to react with the raw material, converting the high-boiling point compound of the valuable metal contained in the raw material into a halogenated salt having a low boiling point, and increasing the transfer rate to the high-temperature gas side;
And a dust separation means for separating and recovering the halide salt from the high-temperature gas.

前記原料処理装置の有価金属回収装置においては、前記原料処理装置を、
流動用反応ガスにより流動層を形成して投入される原料としての燃料のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉と、
該ガス化炉で生成された可燃性固形分が流動媒体と共に導入され且つ流動用反応ガスにより流動層を形成して前記可燃性固形分の燃焼を行い、高温ガスとしての燃焼排ガスが発生する燃焼炉と、
該燃焼炉から導入される燃焼排ガスより流動媒体を分離し該分離した流動媒体を前記ガス化炉に供給する媒体分離装置と
を備えた二塔式の低温ガス化装置とし、
前記媒体分離装置で流動媒体が分離された燃焼排ガスを前記ダスト分離手段へ導入することができる。
In the valuable metal recovery device of the raw material processing device, the raw material processing device,
A gasification furnace for gasifying a fuel as a raw material to be input by forming a fluidized bed with a flowable reaction gas and generating a gasified gas and a combustible solid content;
Combustion in which combustible solids generated in the gasification furnace are introduced together with a fluidized medium, and a fluidized bed is formed by a reaction gas for fluidization to burn the combustible solids to generate combustion exhaust gas as a high-temperature gas. A furnace,
A two-column low-temperature gasifier comprising: a medium separator for separating a fluid medium from combustion exhaust gas introduced from the combustion furnace and supplying the separated fluid medium to the gasifier;
The combustion exhaust gas from which the fluid medium has been separated by the medium separation device can be introduced into the dust separation means.

又、前記原料処理装置の有価金属回収装置においては、前記媒体分離装置で分離した流動媒体にハロゲン化合物を添加してガス化炉へ投入することが有効となる。   Further, in the valuable metal recovery apparatus of the raw material processing apparatus, it is effective to add a halogen compound to the fluidized medium separated by the medium separation apparatus and put it into the gasifier.

前記原料処理装置の有価金属回収装置においては、前記燃料にハロゲン化合物を添加してガス化炉へ投入することもできる。   In the valuable metal recovery apparatus of the raw material processing apparatus, a halogen compound can be added to the fuel and put into a gasification furnace.

前記原料処理装置の有価金属回収装置においては、前記ガス化炉で生成された可燃性固形分及び流動媒体にハロゲン化合物を添加して燃焼炉へ導入するようにしても良い。   In the valuable metal recovery apparatus of the raw material processing apparatus, a halogen compound may be added to the combustible solid content and the fluidized medium generated in the gasification furnace and introduced into the combustion furnace.

一方、前記原料処理装置の有価金属回収装置においては、前記ダスト分離手段を、前記ハロゲン化塩の沸点より低い温度に調節可能なサイクロン、フィルタ、バグフィルタ、電気集塵器の少なくとも一つとすることができる。   On the other hand, in the valuable metal recovery apparatus of the raw material processing apparatus, the dust separation means is at least one of a cyclone, a filter, a bag filter, and an electrostatic precipitator that can be adjusted to a temperature lower than the boiling point of the halide salt. Can do.

本発明の原料処理装置の有価金属回収方法及び装置によれば、原料中に含まれる有価金属を回収し得、限られた資源の有効利用を図り得るという優れた効果を奏し得る。   According to the valuable metal recovery method and apparatus of the raw material processing apparatus of the present invention, it is possible to recover the valuable metal contained in the raw material and achieve an excellent effect that the limited resources can be effectively used.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の第一例として二塔式の低温ガス化装置を示すものであって、該二塔式の低温ガス化装置は、
蒸気、及び空気又は酸素等の流動用反応ガスにより流動媒体(硅砂、石灰石等)の流動層1を形成して投入される原料としての燃料(重質油やペトロコークス等)のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉2と、
該ガス化炉2で生成された可燃性固形分が流動媒体と共に導入管3から導入され且つ流動用反応ガスにより流動層4を形成して前記可燃性固形分の燃焼を行い、高温ガスとしての燃焼排ガスが発生する燃焼炉5と、
該燃焼炉5から燃焼排ガス管6を介して導入される燃焼排ガス(高温ガス)より流動媒体を分離し該分離した流動媒体をダウンカマー7を介して前記ガス化炉2に供給するホットサイクロン等の媒体分離装置8と、
前記ガス化炉2で生成されたガス化ガスより流動媒体を分離して前記ガス化炉2へ戻すホットサイクロン等の媒体分離装置9と
を備えてなる構成を有している。
FIG. 1 shows a two-column low-temperature gasifier as a first example of an embodiment of the present invention.
Gasification of fuel (heavy oil, petro coke, etc.) as a raw material to be introduced after forming a fluidized bed 1 of a fluid medium (eg, sand, limestone, etc.) with steam and a reactive gas such as air or oxygen A gasification furnace 2 for generating gasification gas and combustible solids;
The combustible solid content generated in the gasification furnace 2 is introduced from the introduction pipe 3 together with the fluidized medium, and the fluidized bed 4 is formed by the reaction gas for flow to burn the combustible solid content. A combustion furnace 5 for generating combustion exhaust gas;
A hot cyclone or the like that separates the fluidized medium from the combustion exhaust gas (hot gas) introduced from the combustion furnace 5 through the combustion exhaust gas pipe 6 and supplies the separated fluidized medium to the gasification furnace 2 through the downcomer 7 A medium separation device 8 of
And a medium separator 9 such as a hot cyclone that separates the fluidized medium from the gasification gas generated in the gasification furnace 2 and returns it to the gasification furnace 2.

尚、図1中、11は前記ガス化炉2の底部へ導入される蒸気及び流動用反応ガスを流動層1内へ均一に吹き込むための分散板、12は前記ガス化炉2内部における導入管3が接続される部分を下方のみが開放されるように覆うことにより流動層1内の流動媒体が導入管3へ直接流出することを防止するための仕切壁、13は前記燃焼炉5の底部へ導入される流動用反応ガスを流動層4内へ均一に吹き込むための分散板、14はガス化炉2へ原料としての燃料を供給するための燃料供給管である。   In FIG. 1, reference numeral 11 denotes a dispersion plate for uniformly blowing steam introduced into the bottom of the gasification furnace 2 and flowing reaction gas into the fluidized bed 1, and 12 denotes an introduction pipe inside the gasification furnace 2. 3 is a partition wall for preventing the fluid medium in the fluidized bed 1 from flowing out directly to the introduction pipe 3 by covering the part to which only the lower part is opened, and 13 is the bottom of the combustion furnace 5 A dispersion plate 14 for uniformly blowing the flowing reaction gas introduced into the fluidized bed 4 is a fuel supply pipe for supplying fuel as a raw material to the gasification furnace 2.

そして、本図示例の場合、前記媒体分離装置8で分離した流動媒体をガス化炉2へ導くダウンカマー7途中にハロゲン化合物を添加し前記ガス化炉2で燃料(原料)と反応させ、該燃料(原料)中に含まれる有価金属の高沸点化合物を前記燃焼炉5で沸点の低いハロゲン化塩に変換して前記燃焼排ガス(高温ガス)側への移行率を増やすハロゲン化合物添加手段15と、
前記媒体分離装置8で流動媒体が分離された燃焼排ガス(高温ガス)中から前記ハロゲン化塩を分離回収するダスト分離手段16と
を備えるようにしてある。
In the case of the illustrated example, a halogen compound is added in the middle of the downcomer 7 that guides the fluidized medium separated by the medium separation device 8 to the gasification furnace 2, and is reacted with fuel (raw material) in the gasification furnace 2. A halogen compound addition means 15 for converting a high-boiling point compound of valuable metal contained in fuel (raw material) into a halogenated salt having a low boiling point in the combustion furnace 5 to increase the rate of transfer to the combustion exhaust gas (high-temperature gas) side; ,
And dust separation means 16 for separating and recovering the halogenated salt from the combustion exhaust gas (hot gas) from which the fluid medium has been separated by the medium separation device 8.

前記ハロゲン化合物としては、例えば、塩素(Cl2)、臭素(Br2)、ヨウ素(I2)、フッ素(F2)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、塩化カルシウム(CaCl2)、塩化アンモニウム(NH4Cl)、フッ化水素(HF)、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化カルシウム(CaF2)、フッ化アンモニウム(NH4F)、臭化水素(HBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化カルシウム(CaBr2)、臭化アンモニウム(NH4Br)、ヨウ化水素(HI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化カルシウム(CaI2)、ヨウ化アンモニウム(NH4I)等を用いることができる。 Examples of the halogen compound include chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ), fluorine (F 2 ), sodium chloride (NaCl), potassium chloride (KCl), and calcium chloride (CaCl 2 ). , Ammonium chloride (NH 4 Cl), hydrogen fluoride (HF), sodium fluoride (NaF), potassium fluoride (KF), calcium fluoride (CaF 2 ), ammonium fluoride (NH 4 F), hydrogen bromide (HBr), sodium bromide (NaBr), potassium bromide (KBr), calcium bromide (CaBr 2 ), ammonium bromide (NH 4 Br), hydrogen iodide (HI), sodium iodide (NaI), iodine Potassium iodide (KI), calcium iodide (CaI 2 ), ammonium iodide (NH 4 I), or the like can be used.

ここで、前記燃焼炉5での可燃性固形分の燃焼(およそ900〜1000[℃])により重質油やペトロコークス等の燃料中に含まれていたニッケル(Ni)、バナジウム(V)、ナトリウム(Na)、カリウム(K)等の金属類はそれぞれ主に、酸化ニッケル(NiO)(融点は1984[℃])、五酸化バナジウム(V25)(融点は690[℃])、炭酸ナトリウム(Na2CO3)(融点は851[℃])、炭酸カリウム(K2CO3)(融点は891[℃])等の状態で存在していると考えられ、前記ハロゲン化合物として塩化水素(HCl)を用いた場合、高沸点化合物としての前記酸化ニッケル(NiO)は、下記の反応式
2HCl+NiO→NiCl2+H2
で示される如く、塩化ニッケル(NiCl2)(973[℃]で昇華する)のような沸点の低いハロゲン化塩に変換される。
Here, nickel (Ni), vanadium (V), which are contained in fuel such as heavy oil and petro coke by combustion of combustible solids in the combustion furnace 5 (approximately 900 to 1000 [° C.]), Metals such as sodium (Na) and potassium (K) are mainly nickel oxide (NiO) (melting point is 1984 [° C.]), vanadium pentoxide (V 2 O 5 ) (melting point is 690 [° C.]), It is considered that sodium carbonate (Na 2 CO 3 ) (melting point is 851 [° C.]), potassium carbonate (K 2 CO 3 ) (melting point is 891 [° C.]), etc. When hydrogen (HCl) is used, the nickel oxide (NiO) as a high boiling point compound is represented by the following reaction formula 2HCl + NiO → NiCl 2 + H 2 O
As shown in the above, it is converted into a halogenated salt having a low boiling point such as nickel chloride (NiCl 2 ) (sublimates at 973 [° C.]).

一方、前記ダスト分離手段16は、前記ハロゲン化塩の沸点より低い温度に調節可能なサイクロン、フィルタ、バグフィルタ、電気集塵器の少なくとも一つとすることができるが、本図示例の場合、900〜1000[℃]程度の燃焼排ガスを800[℃]程度に冷却する熱交換器17と、前記塩化ニッケル(NiCl2)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)等を捕集可能なフィルタ18と、前記800[℃]程度に冷却された燃焼排ガスを更に600[℃]以下に冷却する熱交換器19と、前記五酸化バナジウム(V25)を捕集可能なバグフィルタ20(電気集塵器でも可)とから構成してある。 On the other hand, the dust separation means 16 can be at least one of a cyclone, a filter, a bag filter, and an electrostatic precipitator that can be adjusted to a temperature lower than the boiling point of the halide salt. Heat exchanger 17 that cools combustion exhaust gas of about 1000 [° C.] to about 800 [° C.], nickel chloride (NiCl 2 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), etc. , A heat exchanger 19 that further cools the combustion exhaust gas cooled to about 800 [° C.] to 600 [° C.] or less, and the vanadium pentoxide (V 2 O 5 ) It is composed of a possible bag filter 20 (which may be an electric dust collector).

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

前述の如き二塔式の低温ガス化装置では、ガス化炉2において、蒸気、及び空気又は酸素等の流動用反応ガスにより流動層1が形成されており、ここに重質油やペトロコークス等の燃料を燃料供給管14から投入すると、該燃料は部分酸化してガス化され、ガス化ガスと可燃性固形分とが生成され、前記ガス化炉2で生成された可燃性固形分は流動媒体と共に導入管3から、流動用反応ガスにより流動層4が形成されている燃焼炉5へ導入され、該可燃性固形分の燃焼が行われ、該燃焼炉5からの燃焼排ガスは、燃焼排ガス管6を介してホットサイクロン等の媒体分離装置8へ導入され、該媒体分離装置8において、前記燃焼排ガスより流動媒体が分離され、該分離された流動媒体はダウンカマー7を介して前記ガス化炉2に戻され、循環される。   In the two-column low-temperature gasification apparatus as described above, the fluidized bed 1 is formed in the gasification furnace 2 by the flow reaction gas such as steam and air or oxygen, and heavy oil, petro coke, etc. When the fuel is introduced from the fuel supply pipe 14, the fuel is partially oxidized and gasified to generate gasified gas and combustible solids, and the combustible solids generated in the gasification furnace 2 flow. It is introduced into the combustion furnace 5 in which the fluidized bed 4 is formed by the reaction gas for flow from the introduction pipe 3 together with the medium, and the combustible solid content is combusted. The combustion exhaust gas from the combustion furnace 5 is the combustion exhaust gas. It is introduced into a medium separator 8 such as a hot cyclone through a pipe 6, and the fluid medium is separated from the combustion exhaust gas in the medium separator 8, and the separated fluid medium is gasified through a downcomer 7. Returned to furnace 2 and circulated That.

そして、本図示例の場合、前記ダウンカマー7途中にハロゲン化合物添加手段15により塩化水素(HCl)等のハロゲン化合物が添加され前記ガス化炉2で燃料(原料)と反応し、該燃料(原料)中に含まれる酸化ニッケル(NiO)等の有価金属の高沸点化合物が、前記燃焼炉5での可燃性固形分の燃焼(およそ900〜1000[℃])により塩化ニッケル(NiCl2)のような沸点の低いハロゲン化塩に変換されて前記燃焼排ガス(高温ガス)側へ移行する形となる。 In the case of this illustrated example, a halogen compound such as hydrogen chloride (HCl) is added by the halogen compound addition means 15 in the middle of the downcomer 7 and reacts with the fuel (raw material) in the gasifier 2, and the fuel (raw material) ), High-boiling compounds of valuable metals such as nickel oxide (NiO) are converted into nickel chloride (NiCl 2 ) by combustion of combustible solids (approximately 900 to 1000 [° C.]) in the combustion furnace 5. It is converted into a halogenated salt having a low boiling point and moves to the combustion exhaust gas (hot gas) side.

仮に、前記ハロゲン化合物添加手段15により塩化水素(HCl)等のハロゲン化合物が添加されない場合には、高沸点化合物としての酸化ニッケル(NiO)は、その融点が1984[℃]であることから、内部の温度がおよそ800〜900[℃]程度となっているガス化炉2では勿論のこと、内部の温度がおよそ900〜1000[℃]程度となっている燃焼炉5でもガスやミストになることはなく、媒体分離装置8において燃焼排ガスより分離され、流動媒体と一緒に系内を循環し続けることになるが、前記塩化水素(HCl)等のハロゲン化合物の添加によって前記酸化ニッケル(NiO)は、塩化ニッケル(NiCl2)(973[℃]で昇華する)のような沸点の低いハロゲン化塩に変換されることにより、前記燃焼炉5において気化し、気化したハロゲン化塩が媒体分離装置8において流動媒体より分離され、燃焼排ガスと共にダスト分離手段16へ導かれる。 If no halogen compound such as hydrogen chloride (HCl) is added by the halogen compound addition means 15, nickel oxide (NiO) as a high boiling point compound has a melting point of 1984 [° C.]. Of course, in the gasification furnace 2 whose temperature is about 800 to 900 [° C.], the combustion furnace 5 whose internal temperature is about 900 to 1000 [° C.] also becomes gas and mist. However, it is separated from the combustion exhaust gas in the medium separator 8 and continues to circulate in the system together with the fluid medium, but the nickel oxide (NiO) is added by the addition of the halogen compound such as hydrogen chloride (HCl). by being converted to the boiling point lower halogenated salts such as nickel chloride (sublimes at 973 [℃]) (NiCl 2 ), contact to the combustion furnace 5 Vaporized Te, vaporized halide salts are separated from the fluid medium in the medium separation device 8, it is guided to the dust separating unit 16 with flue gas.

前記ダスト分離手段16においては、900〜1000[℃]程度の燃焼排ガスが熱交換器17で800[℃]程度まで冷却されることにより、燃焼排ガスに同伴され且つ気化していた塩化ニッケル(NiCl2)等のハロゲン化塩が固化して粉体となり、フィルタ18において分離回収される。尚、融点が851[℃]の炭酸ナトリウム(Na2CO3)や、融点が891[℃]の炭酸カリウム(K2CO3)等も、前記ハロゲン化塩と同様、前記燃焼炉5において気化し媒体分離装置8において流動媒体より分離され、燃焼排ガスと一緒にダスト分離手段16へ導かれ、該ダスト分離手段16の熱交換器17を通過後、固化して粉体となり、フィルタ18において分離回収される。 In the dust separation means 16, the combustion exhaust gas of about 900 to 1000 [° C.] is cooled to about 800 [° C.] by the heat exchanger 17, so that nickel chloride (NiCl) entrained and vaporized by the combustion exhaust gas is obtained. 2 ) The halide salt such as 2 ) is solidified into powder and separated and recovered by the filter 18. It should be noted that sodium carbonate (Na 2 CO 3 ) having a melting point of 851 [° C.], potassium carbonate (K 2 CO 3 ) having a melting point of 891 [° C.], etc. are also generated in the combustion furnace 5 in the same manner as the halide salt. And separated from the fluidized medium in the medium separation device 8, guided to the dust separation means 16 together with the combustion exhaust gas, and solidified into powder after passing through the heat exchanger 17 of the dust separation means 16, and separated in the filter 18. To be recovered.

前記塩化ニッケル(NiCl2)等のハロゲン化塩、並びに炭酸ナトリウム(Na2CO3)や炭酸カリウム(K2CO3)等が分離回収された燃焼排ガスは、熱交換器19で更に600[℃]以下まで冷却されることにより、燃焼排ガスに同伴され且つ気化していた融点が690[℃]の五酸化バナジウム(V25)が固化して粉体となり、バグフィルタ20において分離回収される。 The combustion exhaust gas from which the halogenated salt such as nickel chloride (NiCl 2 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ) and the like is separated and recovered is further heated by a heat exchanger 19 at 600 [° C. By cooling to the following, vanadium pentoxide (V 2 O 5 ) having a melting point of 690 [° C.] entrained in the combustion exhaust gas is solidified to form a powder, which is separated and recovered by the bag filter 20. The

因みに、前記ガス化炉2の内部では、ガス化炉2の底部へ供給される蒸気や燃料(原料)自体から蒸発する水分の存在下で低温(およそ800〜900[℃])が保持されると共に、燃料の熱分解によって生成したガスや、その残渣燃料が蒸気と反応することによって、水性ガス化反応[C+H2O=H2+CO]や水素転換反応[CO+H2O=H2+CO2]が起こり、H2やCO等の可燃性のガス化ガスが生成される。尚、前記ガス化炉2の内部では、三酸化バナジウム(V23)等も生成されるが、この融点は1970[℃]と非常に高いため、ガスやミストになることはなく、三酸化バナジウム(V23)等がガス化ガス側へ移行する心配はない。 Incidentally, inside the gasification furnace 2, a low temperature (approximately 800 to 900 [° C.]) is maintained in the presence of steam supplied to the bottom of the gasification furnace 2 or moisture evaporated from the fuel (raw material) itself. At the same time, the gas generated by the thermal decomposition of the fuel and the residual fuel react with the vapor, thereby causing a water gasification reaction [C + H 2 O = H 2 + CO] or a hydrogen conversion reaction [CO + H 2 O = H 2 + CO 2 ]. And flammable gasification gas such as H 2 and CO is generated. Incidentally, vanadium trioxide (V 2 O 3 ) and the like are also generated inside the gasification furnace 2, but since this melting point is as high as 1970 [° C.], it does not become a gas or mist. There is no concern that vanadium oxide (V 2 O 3 ) or the like moves to the gasification gas side.

又、前記ガス化炉2で生成されたガス化ガスは、ホットサイクロン等の媒体分離装置9で流動媒体が分離され、該媒体分離装置9で分離された流動媒体は、前記ガス化炉2に戻される。   The gasified gas generated in the gasification furnace 2 is separated from the fluidized medium by a medium separator 9 such as a hot cyclone, and the fluidized medium separated by the medium separator 9 is transferred to the gasifier 2. Returned.

こうして、図1に示す例のように、前記ダウンカマー7途中にハロゲン化合物を添加し前記ガス化炉2で燃料(原料)と反応させ、該燃料(原料)中に含まれる有価金属の高沸点化合物を前記燃焼炉5で沸点の低いハロゲン化塩に変換して前記燃焼排ガス(高温ガス)側への移行率を増やすハロゲン化合物添加手段15と、前記媒体分離装置8で流動媒体が分離された燃焼排ガス(高温ガス)中から前記ハロゲン化塩を分離回収するダスト分離手段16とを備えることにより、燃料(原料)中に含まれるニッケル(Ni)やバナジウム(V)等の有価金属を回収し得、限られた資源の有効利用を図り得る。   Thus, as in the example shown in FIG. 1, a halogen compound is added in the middle of the downcomer 7 and reacted with the fuel (raw material) in the gasification furnace 2, and the high boiling point of the valuable metal contained in the fuel (raw material). The fluid medium was separated by the halogen compound addition means 15 that converts the compound into a halogenated salt having a low boiling point in the combustion furnace 5 to increase the rate of transfer to the combustion exhaust gas (hot gas) side, and the medium separation device 8. By providing the dust separation means 16 for separating and recovering the halide salt from the combustion exhaust gas (hot gas), valuable metals such as nickel (Ni) and vanadium (V) contained in the fuel (raw material) are recovered. And effective use of limited resources.

図2は本発明を実施する形態の第二例であって、図中、図1と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1に示すものと同様であるが、本図示例の特徴とするところは、図2に示す如く、前記燃料供給管14途中にハロゲン化合物を添加して前記ガス化炉2へ投入するようハロゲン化合物添加手段15を構成した点にある。   FIG. 2 is a second example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components, and the basic configuration is the same as that shown in FIG. However, as shown in FIG. 2, the present embodiment is characterized in that the halogen compound addition means 15 is configured to add a halogen compound in the middle of the fuel supply pipe 14 and put it into the gasification furnace 2. In the point.

本図示例の場合、前記燃料供給管14途中にハロゲン化合物添加手段15により塩化水素(HCl)等のハロゲン化合物が添加され前記ガス化炉2で燃料(原料)と反応し、該燃料(原料)中に含まれる酸化ニッケル(NiO)等の有価金属の高沸点化合物が、前記燃焼炉5での可燃性固形分の燃焼(およそ900〜1000[℃])により塩化ニッケル(NiCl2)のような沸点の低いハロゲン化塩に変換されて前記燃焼排ガス(高温ガス)側へ移行する、即ち前記ハロゲン化塩が前記燃焼炉5において気化し、気化したハロゲン化塩が媒体分離装置8において流動媒体より分離され、燃焼排ガスと一緒にダスト分離手段16へ導かれ、該ダスト分離手段16においては、900〜1000[℃]程度の燃焼排ガスが熱交換器17で800[℃]程度まで冷却されることにより、燃焼排ガスに同伴され且つ気化していた塩化ニッケル(NiCl2)等のハロゲン化塩、並びに炭酸ナトリウム(Na2CO3)や炭酸カリウム(K2CO3)等固化して粉体となり、フィルタ18において分離回収され、前記塩化ニッケル(NiCl2)等のハロゲン化塩、並びに炭酸ナトリウム(Na2CO3)や炭酸カリウム(K2CO3)等が分離回収された燃焼排ガスは、熱交換器19で更に600[℃]以下まで冷却されることにより、燃焼排ガスに同伴され且つ気化していた五酸化バナジウム(V25)が固化して粉体となり、バグフィルタ20において分離回収される。 In the case of this illustrated example, a halogen compound such as hydrogen chloride (HCl) is added to the fuel supply pipe 14 in the middle of the fuel supply pipe 14, and reacts with the fuel (raw material) in the gasification furnace 2. High-boiling point compounds of valuable metals such as nickel oxide (NiO) contained therein become like nickel chloride (NiCl 2 ) due to combustion of combustible solids (approximately 900 to 1000 [° C.]) in the combustion furnace 5. It is converted into a halogenated salt having a low boiling point and moves to the combustion exhaust gas (hot gas) side, that is, the halogenated salt is vaporized in the combustion furnace 5, and the vaporized halogenated salt is separated from the fluid medium in the medium separator 8. It is separated and guided to the dust separation means 16 together with the combustion exhaust gas. In the dust separation means 16, the combustion exhaust gas of about 900 to 1000 [° C.] is 80 in the heat exchanger 17. By being cooled to the extent [° C.], halide salts, and sodium carbonate (Na 2 CO 3) or potassium carbonate or the like entrained and vaporized have nickel chloride in the combustion exhaust gas (NiCl 2) (K 2 CO 3 ) Solidified into powder and separated and collected by the filter 18 to separate the halide salt such as nickel chloride (NiCl 2 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), etc. The recovered combustion exhaust gas is further cooled to 600 [° C.] or less by the heat exchanger 19, whereby vanadium pentoxide (V 2 O 5 ) entrained and vaporized in the combustion exhaust gas is solidified and powdered. Thus, the bag filter 20 separates and collects them.

こうして、図2に示す例のように、燃料供給管14途中にハロゲン化合物を添加し前記ガス化炉2で燃料(原料)と反応させ、該燃料(原料)中に含まれる有価金属の高沸点化合物を沸点の低いハロゲン化塩に変換して前記燃焼排ガス(高温ガス)側への移行率を増やすハロゲン化合物添加手段15と、前記媒体分離装置8で流動媒体が分離された燃焼排ガス(高温ガス)中から前記ハロゲン化塩を分離回収するダスト分離手段16とを備えるようにしても、図1に示す例の場合と同様、燃料(原料)中に含まれるニッケル(Ni)やバナジウム(V)等の有価金属を回収し得、限られた資源の有効利用を図り得る。   Thus, as in the example shown in FIG. 2, a halogen compound is added in the middle of the fuel supply pipe 14 and reacted with the fuel (raw material) in the gasification furnace 2, and the high boiling point of the valuable metal contained in the fuel (raw material) Halogen compound addition means 15 for converting the compound into a halogenated salt having a low boiling point to increase the rate of transfer to the combustion exhaust gas (hot gas) side, and combustion exhaust gas (hot gas) from which the fluidized medium is separated by the medium separator 8 1) Even with the dust separation means 16 for separating and recovering the halide salt from inside, as in the example shown in FIG. 1, nickel (Ni) and vanadium (V) contained in the fuel (raw material) Valuable metals such as those can be recovered, and limited resources can be used effectively.

図3は本発明を実施する形態の第三例であって、図中、図1及び図2と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1及び図2に示すものと同様であるが、本図示例の特徴とするところは、図3に示す如く、前記ガス化炉2で生成された可燃性固形分及び流動媒体を燃焼炉5へ導く導入管3途中にハロゲン化合物を添加するようハロゲン化合物添加手段15を構成した点にある。   FIG. 3 shows a third example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 1 and 2 denote the same components, and the basic configuration is shown in FIGS. 2 is the same as that shown in FIG. 2, but the feature of this example is that, as shown in FIG. 3, as shown in FIG. 3, an introductory pipe for introducing the combustible solid content and the fluid medium generated in the gasification furnace 2 to the combustion furnace 5. 3 is that the halogen compound addition means 15 is configured to add a halogen compound in the middle.

本図示例の場合、前記導入管3途中にハロゲン化合物添加手段15により塩化水素(HCl)等のハロゲン化合物が添加されて燃焼炉5へ導入され、前記燃料(原料)中に含まれる酸化ニッケル(NiO)等の有価金属の高沸点化合物が、前記燃焼炉5での可燃性固形分の燃焼(およそ900〜1000[℃])により塩化ニッケル(NiCl2)のような沸点の低いハロゲン化塩に変換されて前記燃焼排ガス(高温ガス)側へ移行する、即ち前記ハロゲン化塩が前記燃焼炉5において気化し、気化したハロゲン化塩が媒体分離装置8において流動媒体より分離され、燃焼排ガスと一緒にダスト分離手段16へ導かれ、該ダスト分離手段16においては、900〜1000[℃]程度の燃焼排ガスが熱交換器17で800[℃]程度まで冷却されることにより、燃焼排ガスに同伴され且つ気化していた塩化ニッケル(NiCl2)等のハロゲン化塩、並びに炭酸ナトリウム(Na2CO3)や炭酸カリウム(K2CO3)等固化して粉体となり、フィルタ18において分離回収され、前記塩化ニッケル(NiCl2)等のハロゲン化塩、並びに炭酸ナトリウム(Na2CO3)や炭酸カリウム(K2CO3)等が分離回収された燃焼排ガスは、熱交換器19で更に600[℃]以下まで冷却されることにより、燃焼排ガスに同伴され且つ気化していた五酸化バナジウム(V25)が固化して粉体となり、バグフィルタ20において分離回収される。 In the case of this illustrated example, a halogen compound such as hydrogen chloride (HCl) is added to the introduction pipe 3 in the middle of the introduction pipe 3 and introduced into the combustion furnace 5, and nickel oxide ( High boiling point compounds of valuable metals such as NiO) are converted into halogenated salts having a low boiling point such as nickel chloride (NiCl 2 ) by burning combustible solids (approximately 900 to 1000 ° C.) in the combustion furnace 5. It is converted and moves to the combustion exhaust gas (hot gas) side, that is, the halide salt is vaporized in the combustion furnace 5, and the vaporized halide salt is separated from the fluidized medium in the medium separation device 8, together with the combustion exhaust gas. To the dust separation means 16, in which the combustion exhaust gas of about 900 to 1000 [° C.] is cooled to about 800 [° C.] by the heat exchanger 17. By being, halide salts such as a combustion exhaust gas entrained and vaporized have nickel chloride (NiCl 2), and sodium carbonate (Na 2 CO 3) or potassium carbonate (K 2 CO 3) or the like and solidified to powder The combustion exhaust gas separated and recovered by the filter 18 and separated and recovered from the halide salt such as nickel chloride (NiCl 2 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), etc. By further cooling to 600 [° C.] or less by the heat exchanger 19, vanadium pentoxide (V 2 O 5 ) entrained and vaporized in the combustion exhaust gas is solidified into powder and separated in the bag filter 20. To be recovered.

こうして、図3に示す例のように、導入管3途中にハロゲン化合物を添加して前記燃焼炉5へ導き、前記燃料(原料)中に含まれる有価金属の高沸点化合物を沸点の低いハロゲン化塩に変換して前記燃焼排ガス(高温ガス)側への移行率を増やすハロゲン化合物添加手段15と、前記媒体分離装置8で流動媒体が分離された燃焼排ガス(高温ガス)中から前記ハロゲン化塩を分離回収するダスト分離手段16とを備えるようにしても、図1及び図2に示す例の場合と同様、燃料(原料)中に含まれるニッケル(Ni)やバナジウム(V)等の有価金属を回収し得、限られた資源の有効利用を図り得る。   Thus, as in the example shown in FIG. 3, a halogen compound is added in the middle of the introduction pipe 3 and led to the combustion furnace 5. Halogen compound addition means 15 for increasing the rate of transfer to the combustion exhaust gas (high temperature gas) side by converting to salt, and the halogenated salt from the combustion exhaust gas (high temperature gas) from which the fluid medium is separated by the medium separator 8 1 and FIG. 2 as in the case of the example shown in FIG. 1 and FIG. 2, valuable metals such as nickel (Ni) and vanadium (V) contained in the fuel (raw material). Can be recovered and the limited resources can be used effectively.

尚、本発明の原料処理装置の有価金属回収方法及び装置は、上述の図示例にのみ限定されるものではなく、ガス化ガスが生成されるガス化炉と、高温ガスとしての燃焼排ガスが発生する燃焼炉とを備えた二塔式の低温ガス化装置に限らず、単なる流動層燃焼炉或いはコークス炉(熱分解炉)等のように、原料を加熱処理する際に高温ガスが発生する原料処理装置であれば、どのような装置にも適用可能なこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The valuable metal recovery method and apparatus of the raw material processing apparatus of the present invention is not limited to the above illustrated example, and a gasification furnace for generating gasification gas and combustion exhaust gas as high temperature gas are generated. A raw material that generates high-temperature gas when heat-treating the raw material, such as a simple fluidized bed combustion furnace or a coke oven (pyrolysis furnace) Needless to say, the present invention can be applied to any apparatus as long as it is a processing apparatus, and various other modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の第一例を示す全体概要構成図である。1 is an overall schematic configuration diagram showing a first example of an embodiment for carrying out the present invention. 本発明を実施する形態の第二例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 2nd example of embodiment which implements this invention. 本発明を実施する形態の第三例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 3rd example of embodiment which implements this invention.

符号の説明Explanation of symbols

1 流動層
2 ガス化炉
3 導入管
4 流動層
5 燃焼炉
6 燃焼排ガス管
7 ダウンカマー
8 媒体分離装置
9 媒体分離装置
14 燃料供給管
15 ハロゲン化合物添加手段
16 ダスト分離手段
17 熱交換器
18 フィルタ
19 熱交換器
20 バグフィルタ(又は電器集塵器)
DESCRIPTION OF SYMBOLS 1 Fluidized bed 2 Gasifier 3 Introducing pipe 4 Fluidized bed 5 Combustion furnace 6 Combustion exhaust gas pipe 7 Downcomer 8 Medium separator 9 Medium separator 14 Fuel supply pipe 15 Halogen compound addition means 16 Dust separator 17 Heat exchanger 18 Filter 19 Heat exchanger 20 Bag filter (or electric dust collector)

Claims (7)

原料を加熱処理する際に高温ガスが発生する原料処理装置の有価金属回収方法であって、
ハロゲン化合物を添加して原料と反応させ、該原料中に含まれる有価金属の高沸点化合物を沸点の低いハロゲン化塩に変換して高温ガス側への移行率を増やした後、該高温ガス中から前記ハロゲン化塩をダスト分離手段で分離回収することを特徴とする原料処理装置の有価金属回収方法。
A valuable metal recovery method for a raw material processing apparatus that generates a high-temperature gas when heat-treating a raw material,
After adding a halogen compound and reacting with the raw material, converting a high-boiling point compound of valuable metals contained in the raw material into a halogenated salt having a low boiling point to increase the rate of transfer to the high-temperature gas side, A valuable metal recovery method for a raw material processing apparatus, wherein the halogenated salt is separated and recovered by dust separation means.
原料を加熱処理する際に高温ガスが発生する原料処理装置の有価金属回収装置であって、
ハロゲン化合物を添加して原料と反応させ、該原料中に含まれる有価金属の高沸点化合物を沸点の低いハロゲン化塩に変換して高温ガス側への移行率を増やすハロゲン化合物添加手段と、
前記高温ガス中から前記ハロゲン化塩を分離回収するダスト分離手段と
を備えたことを特徴とする原料処理装置の有価金属回収装置。
A valuable metal recovery device for a raw material processing apparatus that generates high-temperature gas when heat-treating a raw material,
Halogen compound addition means for adding a halogen compound to react with the raw material, converting the high-boiling point compound of the valuable metal contained in the raw material into a halogenated salt having a low boiling point, and increasing the transfer rate to the high-temperature gas side;
A valuable metal recovery apparatus for a raw material processing apparatus, comprising: a dust separation means for separating and recovering the halide salt from the high-temperature gas.
前記原料処理装置を、
流動用反応ガスにより流動層を形成して投入される原料としての燃料のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉と、
該ガス化炉で生成された可燃性固形分が流動媒体と共に導入され且つ流動用反応ガスにより流動層を形成して前記可燃性固形分の燃焼を行い、高温ガスとしての燃焼排ガスが発生する燃焼炉と、
該燃焼炉から導入される燃焼排ガスより流動媒体を分離し該分離した流動媒体を前記ガス化炉に供給する媒体分離装置と
を備えた二塔式の低温ガス化装置とし、
前記媒体分離装置で流動媒体が分離された燃焼排ガスを前記ダスト分離手段へ導入するようにした請求項2記載の原料処理装置の有価金属回収装置。
The raw material processing apparatus,
A gasification furnace for gasifying a fuel as a raw material to be input by forming a fluidized bed with a flowable reaction gas and generating a gasified gas and a combustible solid content;
Combustion in which combustible solids generated in the gasification furnace are introduced together with a fluidized medium, and a fluidized bed is formed by a reaction gas for fluidization to burn the combustible solids to generate combustion exhaust gas as a high-temperature gas. A furnace,
A two-column low-temperature gasifier comprising: a medium separator for separating a fluid medium from combustion exhaust gas introduced from the combustion furnace and supplying the separated fluid medium to the gasifier;
The valuable metal recovery apparatus for a raw material processing apparatus according to claim 2, wherein the combustion exhaust gas from which the fluid medium has been separated by the medium separation apparatus is introduced into the dust separation means.
前記媒体分離装置で分離した流動媒体にハロゲン化合物を添加してガス化炉へ投入するようにした請求項3記載の原料処理装置の有価金属回収装置。   4. The valuable metal recovery apparatus for a raw material processing apparatus according to claim 3, wherein a halogen compound is added to the fluidized medium separated by the medium separation apparatus and is introduced into a gasification furnace. 前記燃料にハロゲン化合物を添加してガス化炉へ投入するようにした請求項3記載の原料処理装置の有価金属回収装置。   4. The valuable metal recovery apparatus for a raw material processing apparatus according to claim 3, wherein a halogen compound is added to the fuel and the mixture is introduced into a gasifier. 前記ガス化炉で生成された可燃性固形分及び流動媒体にハロゲン化合物を添加して燃焼炉へ導入するようにした請求項3記載の原料処理装置の有価金属回収装置。   The valuable metal recovery apparatus of the raw material processing apparatus according to claim 3, wherein a halogen compound is added to the combustible solid content and the fluidized medium generated in the gasification furnace and introduced into the combustion furnace. 前記ダスト分離手段を、前記ハロゲン化塩の沸点より低い温度に調節可能なサイクロン、フィルタ、バグフィルタ、電気集塵器の少なくとも一つとした請求項2〜6のいずれか一つに記載の原料処理装置の有価金属回収装置。   The raw material treatment according to any one of claims 2 to 6, wherein the dust separation means is at least one of a cyclone, a filter, a bag filter, and an electrostatic precipitator that can be adjusted to a temperature lower than the boiling point of the halide salt. Equipment for recovering valuable metals.
JP2007061728A 2007-03-12 2007-03-12 Valuable metal recovery method and apparatus for raw material treatment apparatus Pending JP2008223070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061728A JP2008223070A (en) 2007-03-12 2007-03-12 Valuable metal recovery method and apparatus for raw material treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061728A JP2008223070A (en) 2007-03-12 2007-03-12 Valuable metal recovery method and apparatus for raw material treatment apparatus

Publications (1)

Publication Number Publication Date
JP2008223070A true JP2008223070A (en) 2008-09-25

Family

ID=39842026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061728A Pending JP2008223070A (en) 2007-03-12 2007-03-12 Valuable metal recovery method and apparatus for raw material treatment apparatus

Country Status (1)

Country Link
JP (1) JP2008223070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287052A (en) * 2008-05-27 2009-12-10 Sumitomo Heavy Ind Ltd Vanadium recovery device
EP2875162A4 (en) * 2012-07-04 2015-07-08 Jernkontoret A method for the extraction of vanadiumpentoxide v2o5, from a source containing vanadium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107801A (en) * 1978-02-14 1979-08-24 Chiyoda Chem Eng & Constr Co Ltd Separating and recovering mehtod for metal from waste catalyst
JPH06136458A (en) * 1992-10-28 1994-05-17 Mitsubishi Heavy Ind Ltd Method for recovering resources from waste
JPH07150148A (en) * 1993-11-26 1995-06-13 Mitsubishi Heavy Ind Ltd Gasifier for superheavy oil
JPH07258764A (en) * 1994-03-18 1995-10-09 Kansai Electric Power Co Inc:The Method for recovering metal form combustion residue of carbonous fuel
JPH0924240A (en) * 1995-07-13 1997-01-28 Kobe Steel Ltd Method for recovering heavy metals from exhaust gas generated when bottom ash and fly ash are melted
JP2001208318A (en) * 1996-09-20 2001-08-03 Sumitomo Metal Ind Ltd Gasification melting furnace for waste and therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107801A (en) * 1978-02-14 1979-08-24 Chiyoda Chem Eng & Constr Co Ltd Separating and recovering mehtod for metal from waste catalyst
JPH06136458A (en) * 1992-10-28 1994-05-17 Mitsubishi Heavy Ind Ltd Method for recovering resources from waste
JPH07150148A (en) * 1993-11-26 1995-06-13 Mitsubishi Heavy Ind Ltd Gasifier for superheavy oil
JPH07258764A (en) * 1994-03-18 1995-10-09 Kansai Electric Power Co Inc:The Method for recovering metal form combustion residue of carbonous fuel
JPH0924240A (en) * 1995-07-13 1997-01-28 Kobe Steel Ltd Method for recovering heavy metals from exhaust gas generated when bottom ash and fly ash are melted
JP2001208318A (en) * 1996-09-20 2001-08-03 Sumitomo Metal Ind Ltd Gasification melting furnace for waste and therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287052A (en) * 2008-05-27 2009-12-10 Sumitomo Heavy Ind Ltd Vanadium recovery device
EP2875162A4 (en) * 2012-07-04 2015-07-08 Jernkontoret A method for the extraction of vanadiumpentoxide v2o5, from a source containing vanadium
JP2015528055A (en) * 2012-07-04 2015-09-24 イェルンコントレットJernkontoret Method for extracting vanadium pentoxide V2O5 from a raw material containing vanadium

Similar Documents

Publication Publication Date Title
EP0767343B1 (en) Heat recovery system and power generation system
JPH0423566B2 (en)
US8529856B2 (en) Method and apparatus to sequester CO2 gas
JP6567510B2 (en) Direct combustion heating method and equipment for its implementation
JP7424861B2 (en) Raw material processing equipment
JP5157204B2 (en) Metal recovery method and apparatus for combustion equipment
KR20110018427A (en) Method and equipment for producing synthesis gas
JP2008223070A (en) Valuable metal recovery method and apparatus for raw material treatment apparatus
JP5743547B2 (en) Method and apparatus for suspension flow sulfation of flue gas
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
CA1038165A (en) Fuel gas manufacture
JP5935119B2 (en) Condensate detection device
RU2200601C2 (en) Method of reusing halogenated and non-halogenated wastes
JP4691997B2 (en) Waste fuel conversion system in cement manufacturing facility and cement manufacturing method using waste fuel conversion system
JP2004155872A (en) Method and apparatus for producing useful gas from halogen-containing combustibles and alkali-containing substance
JP2011241339A (en) Desalter and desalting method for chlorine-containing waste material
JP2007277479A (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from inflammable waste
JP2007021451A (en) Thermal decomposition method for combustible waste
ES2221117T3 (en) METHOD FOR COOLING CONTAMINATED GAS.
JPS6340128B2 (en)
JP2024016748A (en) Electric power generation method and electric power generation facility
JP2006189199A (en) Premixed combustion method of fuel of high sulfur content and fuel of high chlorine content
JP2024016750A (en) Power generation method and power generation equipment
Singh et al. COAL GASIFICATION TO GENERATE POWER WITH GREEN HOUSE GAS EMISSIONS
JP2001041415A (en) Combustion method and apparatus for chloride containing fuel in circulated fluidized bed boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127