JP2008222499A - Method for separating and refining rare metal by chlorination volatilization method - Google Patents

Method for separating and refining rare metal by chlorination volatilization method Download PDF

Info

Publication number
JP2008222499A
JP2008222499A JP2007063963A JP2007063963A JP2008222499A JP 2008222499 A JP2008222499 A JP 2008222499A JP 2007063963 A JP2007063963 A JP 2007063963A JP 2007063963 A JP2007063963 A JP 2007063963A JP 2008222499 A JP2008222499 A JP 2008222499A
Authority
JP
Japan
Prior art keywords
tantalum
separating
chromium
titanium
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007063963A
Other languages
Japanese (ja)
Other versions
JP5223085B2 (en
Inventor
Katsuyasu Sugawara
勝康 菅原
Takuo Sugawara
拓男 菅原
Risehiro Nonaka
利瀬弘 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2007063963A priority Critical patent/JP5223085B2/en
Publication of JP2008222499A publication Critical patent/JP2008222499A/en
Application granted granted Critical
Publication of JP5223085B2 publication Critical patent/JP5223085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for separating and refining rare metals by a chlorination volatilization method which provides a process in which a separation efficiency higher than a conventional process can be attained by combining addition of a calcium compound and solid carbon and a heat treatment. <P>SOLUTION: The method for separating and refining rare metals includes: a first process being a heat treatment process comprising adding a calcium compound to a raw material and heat treating the resulting mixture in an inert atmosphere; a second process being a chlorination volatilization treatment process for producing high-concentration solid compounds of tantalum, chromium, and titanium by heating the calcium-treated sample in a chlorine gas stream to volatilize and separate tungsten, niobium, nickel, and cobalt; a third process being a chlorination volatilization treatment process for volatilizing and separating tantalum, chromium, titanium or the like, being contained rare metals, by mixing the high-concentration solid compounds with solid carbon and heating the resulting mixture in a chlorine atmosphere; and a fourth process being a separation and concentration process for performing simple body separation of each element by depositing the metal chlorides separated from a raw material powder or the high-concentration solid compounds by adjusting the temperature of a cooling zone. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レアメタル化合物を含む原料、すなわち鉱石などに含まれる有用元素を金属塩化物に転換して分離する方法であって、カルシウム化合物や固体炭素の添加処理を併用した塩化揮発法によるレアメタルの分離精製方法に関するものである。   The present invention is a method for separating a useful element contained in a raw material containing a rare metal compound, that is, an ore, into a metal chloride, and separating the rare metal by a chloride volatilization method combined with a calcium compound or solid carbon addition treatment. The present invention relates to a separation and purification method.

従来、タンタルやニオブを含む鉱石の製錬は、湿式法が主たる技術として使用されている。一般的な液処理方法としては、フッ化水素酸による溶解と溶媒抽出を組み合わせた手法がある。
具体的には、原料をふっ化水素酸で溶解した後に硫酸を加えて濃度調製し、その後MIBK(メチルイソブチルケトン)によりタンタル及びニオブのみを抽出するが、原料溶液中には不純物が残留する。次に、希硫酸でニオブを逆抽出し、MIBK中に残留したタンタルを精製した後に水で逆抽出して回収する。
この方法ではタンタルとニオブの分離効率が低く、工程を多く繰り返す必要があるためにMIBKの損失や排水処理コストの増大が問題である。
特許公開公報によれば、抽出溶媒としてホスホリル基を有する有機溶媒を用いて、タンタルを優先的に抽出し、ニオブとの分離率向上に関する方法が開示されている(特許文献2を参照)。
しかしながら、いずれの方法も数種の抽出工程を必要とするものであり、また原料の多様化に伴うプロセスの多段階化や廃液処理コストの増大は不可避の課題である。
一方、塩素化剤及び還元剤を併用した塩化揮発反応を利用したレアメタルの乾式分離について、いくつか研究報告がなされているが、その殆どが酸化物を対象としたモデル実験であり、また鉱石に関する実験も単純な揮発挙動の追跡に留まっている。
そのため、乾式プロセスによるレアメタルの効率的な分離精製方法は未だ実用化に至っていないのが現状である。
Conventionally, the smelting of ores containing tantalum and niobium has been used as the main technique of the wet method. As a general liquid processing method, there is a method in which dissolution with hydrofluoric acid and solvent extraction are combined.
Specifically, the raw material is dissolved in hydrofluoric acid, and sulfuric acid is added to adjust the concentration. Thereafter, only tantalum and niobium are extracted with MIBK (methyl isobutyl ketone), but impurities remain in the raw material solution. Next, niobium is back-extracted with dilute sulfuric acid, and tantalum remaining in MIBK is purified and then back-extracted with water and recovered.
In this method, the separation efficiency of tantalum and niobium is low, and it is necessary to repeat the process many times. Therefore, the loss of MIBK and the increase in wastewater treatment cost are problems.
According to the patent publication, a method for preferential extraction of tantalum using an organic solvent having a phosphoryl group as an extraction solvent and improving the separation rate from niobium is disclosed (see Patent Document 2).
However, each method requires several kinds of extraction steps, and multistage process and increase of waste liquid treatment costs accompanying diversification of raw materials are inevitable issues.
On the other hand, some research reports have been made on dry separation of rare metals using chlorination volatilization reaction in combination with chlorinating agent and reducing agent, but most of them are model experiments for oxides and related to ores. Experiments have also simply tracked volatilization behavior.
Therefore, at present, an efficient method for separating and purifying rare metals by a dry process has not yet been put into practical use.

特開2000−266893号公報JP 2000-266893 A 特開2002−193622号公報JP 2002-193622 A 特開2005−15250号公報JP 2005-15250 A F.Yung, V.Hlavacek: Powder Technology 102(1999)177-183F. Yung, V. Hlavacek: Powder Technology 102 (1999) 177-183 N.V.Manukyan, V.H.Martirosyan: Journal of Materials Processing Technology 142(2003)145-151N.V.Manukyan, V.H.Martirosyan: Journal of Materials Processing Technology 142 (2003) 145-151

本発明は、塩化揮発法によるレアメタルの抽出効率と収率を高めるために、カルシウム化合物や固体炭素の添加及び熱処理を組み合わせることで、かつて無い分離効率を出すことが可能なプロセスを提供する塩化揮発法によるレアメタルの分離精製方法である。   The present invention provides a process capable of producing an unprecedented separation efficiency by combining calcium compound and solid carbon addition and heat treatment in order to increase the extraction efficiency and yield of rare metal by the chloride volatilization method. This is a method for separating and purifying rare metals by the method.

請求項1記載の発明は、添加剤との反応によるレアメタル化合物からのカルシウム化合物への転換方法であり、塩素源との反応性を変え、高濃度固体化合物を作製してレアメタルの分離性を向上する方法である。
また請求項2記載の発明は、塩化揮発法によって得られる固体中のレアメタル濃度を高めるものである。
請求項3記載の発明は、請求項1と2で得られるレアメタル塩化物を、凝固点の違いを利用して分離濃縮する方法である。
The invention according to claim 1 is a method for converting a rare metal compound into a calcium compound by reaction with an additive, and changes the reactivity with a chlorine source to produce a high-concentration solid compound to improve the separation performance of the rare metal. It is a method to do.
The invention according to claim 2 increases the rare metal concentration in the solid obtained by the chlorination volatilization method.
The invention described in claim 3 is a method for separating and concentrating the rare metal chloride obtained in claims 1 and 2 by utilizing the difference in freezing point.

以上のように、本発明によれば、種々のレアメタル化合物を含む鉱石などに対して、塩素を含むガスを反応させる際に、カルシウム化合物を用いた前処理や固体炭素粉末を併用することで、種々のレアメタルを選択的に分離精製することができる。これによりプロセス数が少なくなり、種々の原料からレアメタルを製造する際の設備コストの削減や、多様な未利用資源を活用することが可能となる。   As described above, according to the present invention, when ore containing various rare metal compounds is reacted with a gas containing chlorine, by using a pretreatment using a calcium compound or solid carbon powder in combination, Various rare metals can be selectively separated and purified. As a result, the number of processes is reduced, and it becomes possible to reduce equipment costs when manufacturing rare metals from various raw materials and to utilize various unused resources.

本発明者は、前述の課題を解決することを目的として、種々の方法について検討を行った。
その結果、(1)カルシウム化合物と共に不活性雰囲気下で熱処理することでレアメタルをそれぞれのカルシウム化合物に転換させることで、塩素化剤に対する反応性を変化させ得ること、
(2)前記原料粉末を塩素気流中で加熱した場合、各元素は熱力学的にはその揮発形態がオキシ塩化物であり、その反応が高温領域で進行すること、揮発速度がレアメタルの種類により異なり、加熱条件によっては分離できること、
(3)原料粉末へ固体炭素を添加して塩素雰囲気下で加熱することにより、種々のレアメタル塩化物の生成および揮発反応の開始温度を低下できること、
(4)揮発した金属塩化物が冷却区間の温度分布調整により単離できるとの知見を得て、本発明に到達したものである。
The present inventor has studied various methods for the purpose of solving the above-described problems.
As a result, (1) the reactivity to the chlorinating agent can be changed by converting the rare metal to each calcium compound by heat treatment in an inert atmosphere together with the calcium compound,
(2) When the raw material powder is heated in a chlorine stream, each element is thermodynamically its volatile form is oxychloride, the reaction proceeds in a high temperature region, and the volatilization rate depends on the type of rare metal. It can be separated depending on the heating conditions,
(3) By adding solid carbon to the raw material powder and heating in a chlorine atmosphere, the production temperature of various rare metal chlorides and the start temperature of the volatile reaction can be lowered,
(4) Obtained the knowledge that the volatilized metal chloride can be isolated by adjusting the temperature distribution in the cooling section, and reached the present invention.

レアメタル化合物からレアメタルを効率良く抽出することを特徴とする本発明において必要な条件を以下に記載する。
(1)鉱石や試薬を含む、種々の化合物形態で存在するほぼ全てのレアメタルを対象とし、とくにタンタル、ニオブ、チタン、タングステン、ニッケル、コバルト、クロムの分離精製に利用できる。
(2)塩素化剤として用いる塩素ガスの純度は高いことが望ましいが、窒素ガスとの混合ガスも使用できる。
(3)固体炭素として、グラファイトや石炭・石油コークスなど、種々の炭素源を用いることが出来る。ただし、炭素種により塩素化の促進効果は異なり、安定な炭素では反応性が低下することがある。
The conditions necessary in the present invention, which is characterized by efficiently extracting a rare metal from a rare metal compound, are described below.
(1) Almost all rare metals existing in various compound forms including ores and reagents are targeted, and can be used for separation and purification of tantalum, niobium, titanium, tungsten, nickel, cobalt and chromium.
(2) Although it is desirable that the purity of chlorine gas used as a chlorinating agent is high, a mixed gas with nitrogen gas can also be used.
(3) Various carbon sources such as graphite, coal, and petroleum coke can be used as the solid carbon. However, the effect of promoting chlorination varies depending on the carbon species, and the reactivity may decrease with stable carbon.

以下に記載の実施例により、本発明をより具体的に説明する。ここでは、レアメタルを鉱石などから選択的に抽出するときに、効率が良く抽出率が高い実施例として、成分がわかりやすいものを例とした。なお、本発明はこれらに限定されるものではない。
本発明全体のフローの一例を図1に示す。第一工程は原料へカルシウム化合物を添加し、不活性雰囲気下で加熱処理することで、試料中の化合物形態を変化させ、各種レアメタルの塩素源に対する反応性を変える熱処理工程、第二工程は前記カルシウム処理試料を塩素気流中で加熱し、タングステン、ニオブ、ニッケル、コバルトの揮発分離を行い、タンタル、クロム、チタンの高濃度固体化合物を作製する塩化揮発処理工程、第三工程は前記高濃度固体化合物に対して固体炭素を混合し、塩化揮発反応が生じる温度領域を低下させ得る状態とした後に、塩素雰囲気下で加熱して含有レアメタルであるタンタル、クロム及びチタンなどを揮発分離する塩化揮発処理工程、第四工程は沸点の変化を利用して塩化物として放出されたレアメタル元素を単離するものであって、原料粉体もしくは高濃度固体化合物から分離した金属塩化物を冷却区間の温度調整により沈積させ、各元素の単体分離を行う分離濃縮工程である。
The present invention will be described more specifically with reference to the following examples. Here, when the rare metal is selectively extracted from the ore or the like, an example in which the component is easy to understand is taken as an example as an example of high efficiency and high extraction rate. The present invention is not limited to these.
An example of the overall flow of the present invention is shown in FIG. In the first step, a calcium compound is added to the raw material, and heat treatment is performed in an inert atmosphere, thereby changing the compound form in the sample and changing the reactivity of various rare metals to the chlorine source. The calcium treatment sample is heated in a chlorine stream, and volatile separation of tungsten, niobium, nickel and cobalt is performed to produce a high concentration solid compound of tantalum, chromium and titanium. The third step is the high concentration solid. Chloride volatilization treatment in which solid carbon is mixed with the compound and the temperature range in which the chloride volatilization reaction occurs can be reduced, followed by heating in a chlorine atmosphere to volatilize and separate the rare metals tantalum, chromium, titanium, etc. The process and the fourth process use the change in boiling point to isolate rare metal elements released as chlorides. Causes the depositing metal chloride separated from the high density solid compound by the temperature adjustment of the cooling section, a separation and concentration step for liberation of each element.

ステップ1、2では、原料のカルシウム化合物添加処理及び熱処理を行う。
原料として、超硬工具のスクラップ中に含まれるタングステン及びコバルトのリサイクル工程から排出される浸出滓を用いた。原料中にはレアメタルとしてW、Ti、Ta、Nbのほか、CrやCo、Niが含まれている。
これにカルシウム化合物の炭酸カルシウムを同重量比で混合し、不活性雰囲気下、1000℃で3h加熱保持した。これにより、種々の複合化合物として存在していた各種レアメタルを一様なカルシウム化合物へと転換した。原料に含まれるレアメタルをカルシウム化合物へ転換した結果の一例を図2に示す。図2の下段グラフが原料の化合物で、上段のグラフが転換したカルシウム化合物である。
ステップ3、4では、転換した化合物の塩素化処理及び高濃度固体化合物生成を行う。
これら前記試料を塩素ガス気流中、800〜1000℃で加熱保持することで、例えばW、Ni、Coの大部分を気相中へ揮発分離できた。
熱力学的には、気相中へ放出される各元素の揮発形態はオキシ塩化物であり、その揮発は高温で緩やかに進行する。また、事前処理を経て生成したタンタルやニオブのカルシウム化合物の塩素に対する反応性は極めて小さいため、前処理による選択率の向上、すなわちいくつかのレアメタルの固相への濃縮を促進することができた。ここで、カルシウム化合物添加処理工程を経た試料を塩素気流中で加熱したときのW、Nb及びTaの揮発挙動の一例を図3に示す。
なお、ステップ1のカルシウム化合物の添加処理工程を経ずに塩素化処理を行った場合には、例えばタンタルの74%は固相中へ濃縮するが、残りの24%はニオブなどのレアメタル元素と共に気相中へ放出されるため、最終的に分離精製するタンタル量は最大でも原料の74%に留まる。
これに対して、ステップ1の炭酸カルシウム添加処理を経てレアメタルをカルシウム化合物へと転換した場合には、高濃度固体化合物中へのタンタルの移行割合は、加熱条件により5 〜 15%近く向上する。
これにより、最終的に分離精製可能なタンタルの最大値も増大する。加えて、タングステンと揮発温度域が近いニオブも固相に濃縮されることから、本実施例の第二工程において得られるレアメタル元素、すなわちニッケル、コバルト、そしてタングステンの分離精製効率も向上できる。
In steps 1 and 2, a raw material calcium compound addition treatment and a heat treatment are performed.
As the raw material, leachate discharged from the recycling process of tungsten and cobalt contained in the scrap of the cemented carbide tool was used. In addition to W, Ti, Ta, and Nb, the raw material contains Cr, Co, and Ni as rare metals.
This was mixed with calcium carbonate as a calcium compound at the same weight ratio, and heated and held at 1000 ° C. for 3 hours under an inert atmosphere. Thereby, various rare metals which existed as various composite compounds were converted into uniform calcium compounds. An example of the result of converting the rare metal contained in the raw material into a calcium compound is shown in FIG. The lower graph of FIG. 2 is a raw material compound, and the upper graph is a converted calcium compound.
In steps 3 and 4, the converted compound is chlorinated and a high-concentration solid compound is produced.
By heating and holding these samples at 800 to 1000 ° C. in a chlorine gas stream, for example, most of W, Ni, and Co could be volatilized and separated into the gas phase.
Thermodynamically, the volatile form of each element released into the gas phase is oxychloride, and the volatilization proceeds slowly at high temperatures. In addition, since the reactivity of tantalum and niobium calcium compounds generated through pretreatment to chlorine is very small, it was possible to promote the improvement of selectivity by pretreatment, that is, the concentration of some rare metals to the solid phase. . Here, FIG. 3 shows an example of volatilization behavior of W, Nb, and Ta when the sample that has undergone the calcium compound addition treatment step is heated in a chlorine stream.
In addition, when the chlorination treatment is performed without the calcium compound addition treatment step in Step 1, for example, 74% of tantalum is concentrated in the solid phase, but the remaining 24% is together with rare metal elements such as niobium. Since it is released into the gas phase, the amount of tantalum finally separated and purified remains at 74% of the raw material at the maximum.
On the other hand, when the rare metal is converted into a calcium compound through the calcium carbonate addition treatment in step 1, the migration rate of tantalum into the high-concentration solid compound is improved by nearly 5 to 15% depending on the heating conditions.
This also increases the maximum value of tantalum that can be finally separated and purified. In addition, since niobium having a volatile temperature range close to that of tungsten is also concentrated in the solid phase, the separation and purification efficiency of the rare metal elements obtained in the second step of this example, that is, nickel, cobalt, and tungsten can be improved.

ステップ5では、固体炭素を添加することで反応を促進した塩素化処理を行う。
ステップ3の操作によりレアメタルが濃縮された固体化合物に対して、炭素粉末を反応に十分足る量を加えて混合した後に、再び塩素気流中で加熱する。固体炭素の添加により、試料中に含まれるタンタル、クロムおよびチタンの揮発分離は比較的低い温度領域、すなわち300 ℃から600 ℃までに完了でき、炭素を添加することで揮発温度が低下した。
In step 5, the chlorination process which promoted reaction by adding solid carbon is performed.
Carbon powder is added in an amount sufficient for the reaction to the solid compound enriched with rare metal by the operation in Step 3 and mixed, and then heated again in a chlorine stream. By adding solid carbon, the volatile separation of tantalum, chromium and titanium contained in the sample can be completed in a relatively low temperature range, that is, from 300 ° C. to 600 ° C., and the volatilization temperature was lowered by adding carbon.

ステップ6では、レアメタル塩化物の分離濃縮を行う。
ステップ3及びステップ5の塩素化処理で気相中へ放出された各レアメタルの塩化物は、ガスの冷却過程において粒子を析出して沈積する。各塩化物の沈積温度は元素により異なるため、冷却温度を調整することでCr塩化物、Ta塩化物そしてTi塩化物を単離できる。
すなわち冷却区間において、例えばクロムはCrClとして単体で沈積し、またチタン塩化物は沸点が低いことから、タンタル塩化物と分離可能である。以上の操作を経ることにより、原料粉体に含まれるタンタルの少なくとも70%以上を塩化物として選択的に分離することができる。
In step 6, the rare metal chloride is separated and concentrated.
The rare metal chlorides released into the gas phase by the chlorination treatment in Step 3 and Step 5 are deposited by depositing particles during the gas cooling process. Since the deposition temperature of each chloride varies depending on the element, Cr chloride, Ta chloride and Ti chloride can be isolated by adjusting the cooling temperature.
That is, in the cooling section, for example, chromium is deposited alone as CrCl 3 , and titanium chloride is separable from tantalum chloride because of its low boiling point. Through the above operation, at least 70% or more of tantalum contained in the raw material powder can be selectively separated as chloride.

以上のように、本発明によれば、種々のレアメタル化合物を含む鉱石などに対して、塩素を含むガスを反応させる際に、カルシウム化合物を用いた前処理や固体炭素粉末を併用することで、種々のレアメタルを選択的に分離精製することができる。本発明は、塩化揮発法によるレアメタルの分離精製方法に適用するものである。詳しく述べると、本発明はカルシウム化合物や固体炭素粉末を併用した塩素化処理工程を含む方法であり、鉱石などに含まれるレアメタル化合物を金属塩化物に転換して分離精製するための方法である。 As described above, according to the present invention, when ore containing various rare metal compounds is reacted with a gas containing chlorine, by using a pretreatment using a calcium compound or solid carbon powder in combination, Various rare metals can be selectively separated and purified. The present invention is applied to a method for separating and purifying rare metals by the chlorination volatilization method. More specifically, the present invention is a method including a chlorination treatment step in which a calcium compound and solid carbon powder are used in combination, and is a method for separating and purifying a rare metal compound contained in ore or the like by converting it into a metal chloride.

本発明に係る原料からのレアメタルの塩化揮発による分離精製方法の代表的な実施形態を示すフロー図である。It is a flowchart which shows typical embodiment of the separation / purification method by the chlorination volatilization of the rare metal from the raw material which concerns on this invention. 本発明の実施例1において、原料に含まれるレアメタルをカルシウム化合物へ転換した結果の一例を示す図である。In Example 1 of this invention, it is a figure which shows an example of the result of having converted the rare metal contained in a raw material into a calcium compound. 本発明の実施例1において、カルシウム化合物添加処理工程を経た試料を塩素気流中で加熱したときのW、Nb及びTaの揮発挙動の一例を示す図である。In Example 1 of this invention, it is a figure which shows an example of the volatilization behavior of W, Nb, and Ta when the sample which passed the calcium compound addition process process is heated in a chlorine airflow.

符号の説明Explanation of symbols

1 種々のレアメタル化合物を含む鉱石などの原料
2 カルシウム化合物を用いた前処理工程
3 塩素化処理工程
4 任意のレアメタルが濃縮された固体化合物
5 固体炭素粉末を併用した塩化揮発工程
6 冷却温度場を利用した金属塩化物の分離濃縮工程
7 第四工程によりそれぞれ単離されたレアメタル塩化物
8 カルシウム源
9 種々の固体炭素
1 Raw materials such as ores containing various rare metal compounds 2 Pretreatment process using calcium compounds 3 Chlorination process 4 Solid compounds enriched with any rare metal 5 Chlorination volatilization process using solid carbon powder 6 Cooling temperature field Separation and concentration process of metal chlorides used 7 Rare metal chlorides isolated by the fourth process 8 Calcium source 9 Various solid carbons

Claims (2)

複数のレアメタル化合物が混在する鉱石などに含まれるタンタル、ニオブ、クロム、コバルト、ニッケル、チタン及びタングステンなどを選択的に分離する方法であって、原料へカルシウム化合物を添加し、不活性雰囲気下で加熱処理することで、試料中の化合物形態を変化させ、各種レアメタルの塩素源に対する反応性を変える熱処理工程と、前記カルシウム処理試料を塩素気流中で加熱し、タングステン、ニオブ、ニッケル、コバルトの揮発分離を行い、タンタル、クロム、チタンの高濃度固体化合物を作製する塩化揮発処理工程と、前記高濃度固体化合物に対して固体炭素を混合し、塩化揮発反応が生じる温度領域を低下させ得る状態とした後に、塩素雰囲気下で加熱して含有レアメタルであるタンタル、クロム及びチタンなどを揮発分離する塩化揮発処理工程と、沸点の変化を利用して塩化物として放出されたレアメタル元素を単離するものであって、原料粉体もしくは高濃度固体化合物から分離した金属塩化物を冷却区間の温度調整により沈積させ、各元素の単体分離を行う分離濃縮工程とを組み合わせてなることを特徴とする塩化揮発法によるレアメタルの分離精製方法。   A method of selectively separating tantalum, niobium, chromium, cobalt, nickel, titanium, tungsten, etc. contained in ores containing a plurality of rare metal compounds, and adding a calcium compound to the raw material, under an inert atmosphere The heat treatment process changes the compound form in the sample and changes the reactivity of various rare metals to the chlorine source by heating, and the calcium-treated sample is heated in a chlorine stream to volatilize tungsten, niobium, nickel, and cobalt. A chlorinated volatilization process for separating and producing a high-concentration solid compound of tantalum, chromium, and titanium, and a state in which solid carbon is mixed with the high-concentration solid compound to reduce the temperature range in which the chlorinated volatilization reaction occurs. After that, it is heated in a chlorine atmosphere to volatilize the rare metals tantalum, chromium, titanium, etc. The chlorination treatment process is separated, and the rare metal element released as chloride is isolated using the change in boiling point, and the metal chloride separated from the raw powder or the high-concentration solid compound is separated in the cooling section. A method for separating and purifying rare metals by a chlorination volatilization method, which is combined with a separation and concentration step of depositing by temperature adjustment and separating each element alone. 複数のレアメタル化合物が混在する鉱石などに含まれるタンタル、ニオブ、クロム、コバルト、ニッケル、チタン及びタングステンなどを選択的に分離する方法であって、
(a)カルシウム化合物を原料へ添加し、不活性雰囲気下で加熱処理することで、試料中の化合物形態を変化させ、各種レアメタルの塩素源に対する反応性を変える第一の工程と、(b)前記カルシウム処理試料を塩素気流中で加熱し、タングステン、ニオブ、ニッケル、コバルトの揮発分離を行い、タンタル、クロム、チタンの高濃度固体化合物を作製する第二の工程と、(c)前記高濃度固体化合物に対して固体炭素を混合し、塩化揮発反応が生じる温度領域を低下させ得る状態とした後に、塩素雰囲気下で加熱して含有レアメタルであるタンタル、クロム及びチタンなどを揮発分離する第三の工程と、(d)塩化物として放出されたレアメタル元素を単離する方法であって、沸点の変化を利用して原料粉体もしくは高濃度固体化合物から分離した金属塩化物を、冷却区間の温度調整により沈積させ、各元素の単体分離を行う第四の工程を経てレアメタルの分離を行うことを特徴とする塩化揮発法によるレアメタルの分離精製方法。
A method for selectively separating tantalum, niobium, chromium, cobalt, nickel, titanium, tungsten, and the like contained in ores containing a plurality of rare metal compounds,
(A) a first step of adding a calcium compound to the raw material and heat-treating it under an inert atmosphere to change the compound form in the sample and change the reactivity of various rare metals to the chlorine source; (b) A second step in which the calcium-treated sample is heated in a chlorine stream to volatilize and separate tungsten, niobium, nickel, and cobalt to produce a high-concentration solid compound of tantalum, chromium, and titanium; and (c) the high-concentration Solid carbon is mixed with the solid compound to make it in a state where the temperature range where the chlorination volatilization reaction occurs can be lowered, and then heated in a chlorine atmosphere to volatilize and separate the rare metals tantalum, chromium, titanium, etc. And (d) a method of isolating the rare metal element released as chloride, which is a raw material powder or a high-concentration solid compound using a change in boiling point. The separated metal chlorides, are deposited by the temperature adjustment of the cooling section, separation and purification method of rare metal by chloride volatilization method characterized by the separation of rare metals through the fourth step for liberation of each element.
JP2007063963A 2007-03-13 2007-03-13 Separation and purification of rare metals by chloride volatilization method Active JP5223085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063963A JP5223085B2 (en) 2007-03-13 2007-03-13 Separation and purification of rare metals by chloride volatilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063963A JP5223085B2 (en) 2007-03-13 2007-03-13 Separation and purification of rare metals by chloride volatilization method

Publications (2)

Publication Number Publication Date
JP2008222499A true JP2008222499A (en) 2008-09-25
JP5223085B2 JP5223085B2 (en) 2013-06-26

Family

ID=39841542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063963A Active JP5223085B2 (en) 2007-03-13 2007-03-13 Separation and purification of rare metals by chloride volatilization method

Country Status (1)

Country Link
JP (1) JP5223085B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074408A (en) * 2009-09-29 2011-04-14 Akita Univ Method for separating metal element, and separating device
JP2011225979A (en) * 2010-03-31 2011-11-10 National Institute Of Advanced Industrial Science & Technology Metal component collection agent and method for collecting metal component
JP2013231217A (en) * 2012-04-27 2013-11-14 Mitsubishi Heavy Ind Ltd Method of separating and recovering metal element
US9114391B2 (en) 2011-03-29 2015-08-25 Mitsubishi Hitachi Power Systems, Ltd. Method for removing arsenic compound, method for regenerating NOx removal catalyst, and NOx removal catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256930A (en) * 1986-04-28 1987-11-09 Tanaka Kikinzoku Kogyo Kk Method for recovering ruthenium
JP2000144276A (en) * 1998-11-10 2000-05-26 Agency Of Ind Science & Technol Recovering method for rare earth element and cobalt
JP2005240170A (en) * 2004-01-30 2005-09-08 Nippon Mining & Metals Co Ltd CHLORIDIZING TREATMENT METHOD FOR Se-CONTAINING MATERIAL

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256930A (en) * 1986-04-28 1987-11-09 Tanaka Kikinzoku Kogyo Kk Method for recovering ruthenium
JP2000144276A (en) * 1998-11-10 2000-05-26 Agency Of Ind Science & Technol Recovering method for rare earth element and cobalt
JP2005240170A (en) * 2004-01-30 2005-09-08 Nippon Mining & Metals Co Ltd CHLORIDIZING TREATMENT METHOD FOR Se-CONTAINING MATERIAL

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074408A (en) * 2009-09-29 2011-04-14 Akita Univ Method for separating metal element, and separating device
JP2011225979A (en) * 2010-03-31 2011-11-10 National Institute Of Advanced Industrial Science & Technology Metal component collection agent and method for collecting metal component
US9114391B2 (en) 2011-03-29 2015-08-25 Mitsubishi Hitachi Power Systems, Ltd. Method for removing arsenic compound, method for regenerating NOx removal catalyst, and NOx removal catalyst
US9399213B2 (en) 2011-03-29 2016-07-26 Mitsubishi Hitachi Power Systems, Ltd. Apparatus for removing arsenic compound
JP2013231217A (en) * 2012-04-27 2013-11-14 Mitsubishi Heavy Ind Ltd Method of separating and recovering metal element
US8920535B2 (en) 2012-04-27 2014-12-30 Mitsubishi Heavy Industries, Ltd. Method of separating and recovering metal elements

Also Published As

Publication number Publication date
JP5223085B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
Xu et al. Production of nuclear grade zirconium: A review
Shibayama et al. Treatment of smelting residue for arsenic removal and recovery of copper using pyro–hydrometallurgical process
KR101370007B1 (en) Thermal and electrochemical process for metal production
EP2450312A1 (en) Recovery of tungsten from waste material by ammonium leaching
JP2019536892A (en) Method for producing improved solder and high purity lead
WO2008139266A4 (en) Purified molybdenum technical oxide from molybdenite
JP5223085B2 (en) Separation and purification of rare metals by chloride volatilization method
CN113308606B (en) Method for leaching and separating valuable metals from silver-gold-rich selenium steaming slag
EP3042970A1 (en) Zinc production method using electric furnace dust as raw material
JP2020532425A (en) Methods for refining waste materials or industrial by-products containing chlorine
TW200936508A (en) Method of reclaiming ruthenium from waste containing ruthenium
JP2018145479A (en) Recovery method of platinum group metals
JP5935098B2 (en) Zinc production method
CN111621646A (en) Zinc dross recycling method
JP2009132960A (en) Separation and refining process by chloride volatilization
Wang et al. Phase change and kinetics of vacuum decomposition of molybdenite concentrate
Pee et al. Extraction factor of tungsten sources from tungsten scraps by zinc decomposition process
CN112359227A (en) Method for extracting cobalt from pyrometallurgical nickel smelting process
JP2007521393A (en) Mechanical separation of volatile metals at high temperatures.
JPWO2016158878A1 (en) Method for producing tungsten carbide
AU2011234028B2 (en) Treatment of tantalum- and/or niobium-containing compounds
Mohanty et al. Use of pre-treated TiO 2 as cathode material to produce Ti metal through molten salt electrolysis
KR101736547B1 (en) Method and apparatus for manufacturing of metallurgical grade silicon
JP2002316822A (en) Method for recovering tantalum/niobium from carbide- base raw material containing tantalum/niobium
CN114959277A (en) Method for separating and purifying tin and copper from tin refining sulfur slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150