JP2008220020A - Movable magnet type linear motor - Google Patents

Movable magnet type linear motor Download PDF

Info

Publication number
JP2008220020A
JP2008220020A JP2007052455A JP2007052455A JP2008220020A JP 2008220020 A JP2008220020 A JP 2008220020A JP 2007052455 A JP2007052455 A JP 2007052455A JP 2007052455 A JP2007052455 A JP 2007052455A JP 2008220020 A JP2008220020 A JP 2008220020A
Authority
JP
Japan
Prior art keywords
magnet
core coil
air
yoke
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007052455A
Other languages
Japanese (ja)
Inventor
Naomasa Mukaide
尚正 向出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007052455A priority Critical patent/JP2008220020A/en
Publication of JP2008220020A publication Critical patent/JP2008220020A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a movable magnet type linear motor which has a light-weight movable body with proper responsiveness, can remove heat generated due to driving current to be given to a hollow core coil and can efficiently obtain a large thrust force by making the generation of eddy currents reduced. <P>SOLUTION: In the movable magnet type linear motor, a cooling pipe is thermally densely bonded to the hollow core coil via a high heat conducting member in a portion where the hollow core coil extends in a direction perpendicular to the center axis direction of a magnet yoke, and the high heat conducting member has a structure in which a plurality of non-magnetic metal pieces, each having one end following the external surface shape of the cooling pipe and the other end following the external surface shape of the hollow core coil are insulated from each other and are laminated in a direction perpendicular to the center axis direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば工作機械、電気部品実装装置或いは半導体関連装置などの各種産業機械に使われるリニアモータに関し、特に界磁を可動子とし、電機子を固定子として構成する可動磁石型リニアモータに関する。   The present invention relates to a linear motor used in various industrial machines such as machine tools, electrical component mounting apparatuses, and semiconductor related devices, and more particularly to a movable magnet type linear motor having a field as a mover and an armature as a stator. .

磁石の方を可動子とし電機子(空芯コイル)を固定子とする可動磁石型リニアモータとして、特許文献1に記載されるものが知られている。これは、穴あき柱状永久磁石に貫通軸体を貫通させて固定して磁石可動体を構成し、前記貫通軸体を軸受部材で摺動自在に支持して当該軸受部材に対し固定した位置関係にある空芯コイルの内側に前記磁石可動体を移動自在に設けたものである。この場合、磁石可動体に発生する推力は、基本的にはフレミングの左手の法則に準ずるものである。(ただし、フレミングの左手の法則は空芯コイルに対して適用されるが、ここでは空芯コイルが固定のため、磁石可動体に空芯コイルに作用する力の反力としての推力が発生する。)そして、推力に寄与するのは、磁石可動体が有する永久磁石の磁束の垂直成分(永久磁石の軸方向に直交する成分)である。   As a movable magnet type linear motor having a magnet as a mover and an armature (air core coil) as a stator, one described in Patent Document 1 is known. This is a positional relationship in which a penetrating shaft is passed through and fixed to a perforated columnar permanent magnet to constitute a magnet movable body, and the penetrating shaft is slidably supported by a bearing member and fixed to the bearing member. The movable magnet body is movably provided inside the air-core coil. In this case, the thrust generated in the magnet movable body basically conforms to Fleming's left-hand rule. (However, Fleming's left-hand rule is applied to the air-core coil, but here, since the air-core coil is fixed, a thrust as a reaction force of the force acting on the air-core coil is generated in the movable magnet body. .) And, it is the vertical component (the component perpendicular to the axial direction of the permanent magnet) of the magnetic flux of the permanent magnet that the magnet movable body has that contributes to the thrust.

また、可動磁石型のリニアモータとして、特許文献2に記載されるものが知られている。これは固定子側の複数の空芯コイルで可動子側の磁石に推力を与える多相タイプであるが、移動方向に配列される空芯コイルの両側を棒状の支持部材で固定し、空芯コイルの両側を固定する支持部材間に磁石を対向させて配置し、前記支持部材の内部には冷媒を流すための管路を移動方向に沿って設けることとしたものである。この管路に冷媒を循環させることにより、空芯コイルに生ずる駆動電流による発熱を除去することを可能とするものである。
実開平7−30585号公報 特開平1−270763号公報
Moreover, what is described in patent document 2 is known as a movable magnet type linear motor. This is a multi-phase type that gives thrust to the magnet on the mover side with a plurality of air core coils on the stator side, but both sides of the air core coils arranged in the moving direction are fixed with rod-shaped support members, and the air core Magnets are arranged opposite to each other between support members that fix both sides of the coil, and a conduit for flowing a coolant is provided inside the support member along the moving direction. By circulating the refrigerant through this pipe line, it is possible to remove heat generated by the drive current generated in the air-core coil.
Japanese Utility Model Publication No. 7-30585 Japanese Patent Laid-Open No. 1-270763

しかし、上記特許文献1の技術では、貫通軸体の外周をぐるりと廻る柱状の永久磁石で可動体を構成しているため、磁石可動体の質量が大きくなり応答性が悪いという不具合があった。また、特許文献2の技術では、冷媒を流す管路を固定する支持部材の断面積が大きく空芯コイルの熱が支持部材全体に拡散してしまい、空芯コイルと冷媒との間の熱の伝導効率が悪いという不具合があった。また、磁束を金属が横切ると、渦電流が発生して可動体の推力を減少させるという普遍的な問題も考慮する必要があった。   However, in the technique of Patent Document 1, since the movable body is composed of columnar permanent magnets that go around the outer periphery of the through shaft body, there is a problem that the mass of the magnet movable body becomes large and the responsiveness is poor. . Moreover, in the technique of Patent Document 2, the cross-sectional area of the support member that fixes the pipe through which the refrigerant flows is large, and the heat of the air-core coil is diffused throughout the support member. There was a problem of poor conduction efficiency. In addition, it is necessary to consider the universal problem that eddy currents are generated when the magnetic flux crosses the metal to reduce the thrust of the movable body.

本発明は係る従来の問題点に鑑みてなされたものであり、可動体が軽量で応答性が良く、かつ空芯コイルに与えられる駆動電流による発熱を除去するとともに、渦電流の発生を減少させて効率よく大きな推力を得ることができる可動磁石型リニアモータを提供することである。   The present invention has been made in view of the conventional problems, and the movable body is lightweight and has good responsiveness, while removing heat generated by the drive current applied to the air-core coil and reducing the generation of eddy currents. And a movable magnet type linear motor capable of obtaining a large thrust efficiently.

上述した課題を解決するために、請求項1に係る発明の構成上の特徴は、複数平面壁により偶数多角筒状を成し、該偶数多角筒状の中心軸方向に可動するマグネットヨークと、該マグネットヨークの各平面壁の外壁に取り付けられ複数の永久磁石から構成される複数のマグネット構成体と、前記マグネットヨークを取り囲むように設けられた固定子ベースと、該固定子ベースに取り付けられ前記複数のマグネット構成体に夫々磁気的空隙を介して対向するように配置された複数の空芯コイルと、該空芯コイルに沿うように前記固定子ベースに取り付けられ内部に冷媒が流通されて前記空芯コイルを冷却する冷却パイプと、を備えた可動磁石型リニアモータにおいて、前記冷却パイプは、前記空芯コイルが前記中心軸方向に直角な方向に延在する部分にて、該空芯コイルに対して高熱伝導部材を介して熱的に密に接合されるものであり、該高熱伝導部材は、一端部が前記冷却パイプの外側面形状に倣うとともに他端部が前記空芯コイルの外側面形状に倣う複数の非磁性金属片を、相互に絶縁して前記中心軸方向に直角な方向に積層する構造であることである。   In order to solve the above-described problem, the structural feature of the invention according to claim 1 is that a magnet yoke that forms an even polygonal cylinder by a plurality of planar walls and is movable in the central axis direction of the even polygonal cylinder, A plurality of magnet constituents composed of a plurality of permanent magnets attached to the outer wall of each planar wall of the magnet yoke, a stator base provided so as to surround the magnet yoke, and the stator base attached to the stator base; A plurality of air core coils arranged so as to face a plurality of magnet structures through magnetic gaps, respectively, and attached to the stator base along the air core coils so that a refrigerant is circulated inside the air core coil. And a cooling magnet for cooling the air-core coil, wherein the cooling pipe extends in a direction perpendicular to the central axis direction. In the portion, the air-core coil is thermally and closely joined to the air-core coil through a high heat conductive member, and the high heat conductive member has one end imitating the shape of the outer surface of the cooling pipe and the other end. The structure is such that a plurality of nonmagnetic metal pieces that follow the shape of the outer surface of the air-core coil are laminated in a direction perpendicular to the central axis direction and insulated from each other.

請求項2に係る発明の構成上の特徴は、請求項1において、前記マグネット構成体は、前記中心軸方向に直角な方向に着磁された第1の永久磁石と、該第1の永久磁石の着磁方向に平行な方向であって、第1の永久磁石とは反対の磁極で着磁され、前記第1の永久磁石に前記中心軸方向に対向する第2の永久磁石と、を有し、これらのマグネット構成体は、前記マグネットヨークの周方向に隣り合うマグネット構成体の前記永久磁石の磁極が互いに反対の極であることである。   The structural feature of the invention according to claim 2 is that, in claim 1, the magnet structure includes a first permanent magnet magnetized in a direction perpendicular to the central axis direction, and the first permanent magnet. A second permanent magnet magnetized with a magnetic pole opposite to the first permanent magnet and opposed to the first permanent magnet in the central axis direction. In these magnet components, the magnetic poles of the permanent magnets of the magnet components adjacent to each other in the circumferential direction of the magnet yoke are opposite to each other.

請求項1に係る発明によると、空芯コイルと冷媒間の熱の交換が高熱伝導部材によって拡散することなく、直接的におこなうことができるので、空芯コイルに与えられる駆動電流による発熱は、効率よく冷却パイプに流通する冷媒によって除去することができる。そして、高熱伝導部材は、互いに絶縁された積層構造とすることで、磁束を横切る一つ一つの非磁性金属片の厚みを小さく形成することができるので、大きな渦電流の発生を抑えて効率よく大きな推力を得ることができる。   According to the first aspect of the present invention, the heat exchange between the air core coil and the refrigerant can be performed directly without diffusing by the high heat conductive member. It can be efficiently removed by the refrigerant flowing through the cooling pipe. In addition, since the highly heat-conductive member has a laminated structure that is insulated from each other, the thickness of each non-magnetic metal piece that crosses the magnetic flux can be reduced, so that generation of large eddy currents can be suppressed efficiently. Large thrust can be obtained.

請求項2に係る発明によると、マグネット構成体のそれぞれの永久磁石の磁極から発生する磁束は隣り合う反対の磁極に向かって流れる。そのため、マグネットヨークの周面に沿った2方向及びそれに直角な方向に分流して、マグネットヨークを通る磁束を3つに分散することができ、これによって、飽和磁束を生じさせることなくマグネットヨークの肉厚を薄くでき、可動磁石型でありながら、リニアモータを小型化かつ軽量化することができる。そして、可動体の応答精度を高めることができる。また、一つの磁極から上記のように3つに分流された磁束は、夫々異なった3つの反対の磁極を通過する。そして、1つの反対の磁極では、異なった3つの磁極からの磁束が1つにまとまって通過することとなる。そのため、空芯コイルを横切る磁束は、上記分流によって減少することが無いので、マグネットヨークの軽量化を図りながら強い推力を発揮させることができる。   According to the invention which concerns on Claim 2, the magnetic flux which generate | occur | produces from the magnetic pole of each permanent magnet of a magnet structure flows toward the adjacent opposite magnetic pole. For this reason, the magnetic flux passing through the magnet yoke can be divided into two directions along the circumferential direction of the magnet yoke and the direction perpendicular thereto, so that the magnetic flux passing through the magnet yoke can be dispersed into three. The wall thickness can be reduced and the linear motor can be reduced in size and weight while being a movable magnet type. And the response accuracy of a movable body can be improved. Further, the magnetic flux divided into three as described above from one magnetic pole passes through three different opposite magnetic poles. In one opposite magnetic pole, magnetic fluxes from three different magnetic poles pass together as one. For this reason, the magnetic flux crossing the air-core coil is not reduced by the above-mentioned diversion, so that a strong thrust can be exerted while reducing the weight of the magnet yoke.

本発明に係る可動磁石型リニアモータを備えた工具移動装置の実施形態を図面に基づいて以下に説明する。図1は工具移動装置の構造を断面で示した正面からの概念図であり、図2は同断面で示す側面からの概念図である。前記リニアモータ2は、固定側の一次側要素と、一次側要素に対して相対移動可な可動側の二次側要素とから構成されている。   An embodiment of a tool moving device provided with a movable magnet type linear motor according to the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual view from the front showing the structure of the tool moving device in cross section, and FIG. 2 is a conceptual view from the side shown in the same cross section. The linear motor 2 includes a primary element on the fixed side and a secondary element on the movable side that can move relative to the primary element.

この工具移動装置4は、図1に示すように、例えば磁性体である鉄製からなる中空箱型形状のマグネットヨーク6と、マグネットヨーク6の外周面に取り付けられた永久磁石からなる複数のマグネット構成体8と、マグネットヨークの両端開口部に夫々取付けられた角型の支持部10,12とからなる可動体14を備え、この可動体14によりリニアモータ2の二次側要素を構成している。この可動体14の一方の支持部10の端部(先端側端部)には、工作物を高精度に切削加工するバイト等を保持する工具保持装置16が取り付けられている。他方の支持部12の端部(基端側端部)にはリニアスケール(位置検出装置)17が設けられ、可動体14の後述する支持台18に対する相対的な移動位置を検出するようになっている。   As shown in FIG. 1, the tool moving device 4 includes, for example, a hollow box-shaped magnet yoke 6 made of iron, which is a magnetic material, and a plurality of magnets composed of permanent magnets attached to the outer peripheral surface of the magnet yoke 6. A movable body 14 including a body 8 and square support portions 10 and 12 attached to both end openings of the magnet yoke is provided, and the movable body 14 constitutes a secondary element of the linear motor 2. . A tool holding device 16 for holding a cutting tool or the like for cutting a workpiece with high accuracy is attached to an end portion (tip end portion) of one support portion 10 of the movable body 14. A linear scale (position detection device) 17 is provided at the end portion (base end side end portion) of the other support portion 12 to detect a relative movement position of the movable body 14 with respect to a support base 18 described later. ing.

また、工具移動装置4は、可動体14に対して相対移動可能に固定設置された例えば非磁性体からなる支持台18を備えている。支持台18は可動体14の4面に対向する平壁部を図略のフレーム部材により連結させて、可動体14を囲むように設けられている。 支持台18には可動体14の各支持部10,12を油の静圧力によってX軸方向(可動体14の中空軸線方向)に摺動のみ可能に支持する流体軸受20,22と、マグネットヨーク6を取り囲むように配設された例えば磁性体である鉄製のコイルヨーク24とが設けられ、コイルヨーク24の内壁面には、各マグネット構成体8に夫々対向して取り付けられた空芯コイル26が設けられている。空芯コイル26は平角線を重ねて積層したもので、銅からなる導体部と絶縁層が密な状態で重なって構成されているため、熱抵抗が小さい。また、コイルの外側面(推力発生部)を略フラットに形成し、該フラット面と高熱伝導率接着剤を介して密に高熱伝導部材を設けている。空芯コイル26は、例えばガラスエポキシからなる被巻回部36に平角線により略矩形状に複数巻回されて形成される。空芯コイル26とコイルヨーク24との間には、例えばガラスエポキシ等による絶縁板28が挿入されて電気的絶縁が図られている。空芯コイル26を取り付けたコイルヨーク24によって、リニアモータ2の一次側要素を構成している。また、空芯コイル26には図略の直流電源に連結される電流制御回路50に接続され、図7に示すように、電流制御回路50は前記リニアスケール17からの信号が制御装置(CPU)52からの信号によって、直流電源からの電流値が制御されるようになっている。電流制御回路50として、例えばIGBT(Inerted Gate Bipolar Transistor)等のスイッチング素子等で構成されるアンプが考えられる。   In addition, the tool moving device 4 includes a support base 18 made of, for example, a non-magnetic material that is fixedly installed so as to be relatively movable with respect to the movable body 14. The support base 18 is provided so as to surround the movable body 14 by connecting flat wall portions facing the four surfaces of the movable body 14 by a frame member (not shown). The support base 18 includes fluid bearings 20 and 22 for supporting the support portions 10 and 12 of the movable body 14 so as to be slidable only in the X-axis direction (the hollow axis direction of the movable body 14) by the static pressure of oil, and a magnet yoke. For example, an iron coil yoke 24, which is a magnetic material, is provided so as to surround the coil 6, and an air core coil 26 attached to the inner wall surface of the coil yoke 24 so as to oppose each magnet component 8 respectively. Is provided. The air-core coil 26 is formed by stacking flat wires, and the conductor portion made of copper and the insulating layer overlap each other in a dense state, so that the thermal resistance is low. Moreover, the outer surface (thrust generating part) of the coil is formed in a substantially flat shape, and the high heat conductive member is densely provided via the flat surface and a high heat conductivity adhesive. The air-core coil 26 is formed by being wound in a substantially rectangular shape by a rectangular wire around a wound portion 36 made of, for example, glass epoxy. An insulating plate 28 made of, for example, glass epoxy is inserted between the air core coil 26 and the coil yoke 24 to achieve electrical insulation. A primary side element of the linear motor 2 is constituted by a coil yoke 24 to which an air core coil 26 is attached. The air-core coil 26 is connected to a current control circuit 50 connected to a DC power supply (not shown). As shown in FIG. 7, the current control circuit 50 receives a signal from the linear scale 17 as a control device (CPU). The current value from the DC power source is controlled by the signal from 52. As the current control circuit 50, for example, an amplifier configured with a switching element such as an IGBT (Insert Gate Bipolar Transistor) is conceivable.

また、各空芯コイル26には、図3に示すように、冷却パイプ30が略矩形状の空芯コイル26の三方の辺(前記X軸方向に平行な一辺とそれに直角な二辺)に沿うように並べて配置されている。冷却パイプ30は、空芯コイル26が前記X軸方向に直角な方向に延在する2箇所(二辺)の部分において、高熱伝導接着剤により接着された高熱伝導部材32を介して空芯コイル26に接合されている。高熱伝導部材32は、図3及び図4に示すように、長手側の一端部が冷却パイプ30の外側面に倣う湾曲面状に形成され、長手側の他端部が空芯コイル26(平角線)の外側面に倣う平面状に形成された、例えば銅製の複数の金属片34からなっている。そして、これらの金属片34は、図8に示すように、前記X軸方向に直角な方向に積層され、それらの表面は例えばエポキシ系、珪素系等の皮膜でコーティングされて、重ねられたときに相互に電気的絶縁が図られている。   Further, as shown in FIG. 3, each air core coil 26 has a cooling pipe 30 on three sides of the substantially rectangular air core coil 26 (one side parallel to the X-axis direction and two sides perpendicular thereto). They are arranged side by side. The cooling pipe 30 includes an air-core coil via a high heat conductive member 32 bonded with a high heat conductive adhesive at two portions (two sides) where the air core coil 26 extends in a direction perpendicular to the X-axis direction. 26 is joined. As shown in FIGS. 3 and 4, the high heat conducting member 32 is formed in a curved surface shape with one end portion on the long side following the outer surface of the cooling pipe 30, and the other end portion on the long side is the air-core coil 26 (flat angle). It is composed of a plurality of metal pieces 34 made of, for example, copper and formed in a planar shape following the outer surface of the line. Then, as shown in FIG. 8, these metal pieces 34 are laminated in a direction perpendicular to the X-axis direction, and their surfaces are coated with, for example, an epoxy-based or silicon-based film and stacked. Are electrically insulated from each other.

空芯コイル26と高熱伝導部材32との間は、高熱伝導性の接着剤34により接着されている。冷却パイプ30には図略のポンプにより冷媒としての冷水が流通されるようになっている。この冷却パイプ30は、例えば銅製で、対向するマグネット構成体8から前記X軸方向に外れる位置に配されるとともに、管の断面が薄肉に形成されることにより、マグネット構成体8の磁力線による渦電流の発生を和らげるようになっている。   The air-core coil 26 and the high heat conductive member 32 are bonded by a high heat conductive adhesive 34. Cold water as a refrigerant is circulated through the cooling pipe 30 by a pump (not shown). The cooling pipe 30 is made of, for example, copper, and is disposed at a position deviating from the opposing magnet structure 8 in the X-axis direction. The generation of current is reduced.

多角筒状のマグネットヨーク6は、実施形態においては4つの平面壁38により4角筒状に構成され、図2及び図6に示すように、平面壁38の外周面には第1乃至第4のマグネット構成体8a〜8dが、夫々取り付けられている。マグネット構成体8a〜8dは、第1及び第2の永久磁石40,42と補助磁石44とから構成される。第1及び第2の永久磁石40,42は、例えば希土類より直方体形状に形成され、これらの永久磁石は着磁方向(単体の磁石において対応する反対の極の中心を結ぶ線の方向)が、前記X軸方向に直角な方向となるよう配置されている。そして、図1及び図5に示すように、マグネットヨーク6上部の先端部側(図1及び図5において右側)には、第1の永久磁石40の外側(図1において上側)がS極、内側がN極に、同基端部側(図1及び図5において左側)には、第2の永久磁石42の外側がN極、内側がS極になるよう配設されている。また、第1の永久磁石40と第2の永久磁石42との間には直方体形状の補助磁石44が、着磁方向を前記X軸方向に平行にして配設されている。各補助磁石44は、例えば、先端部側(図5において右側)がS極、基端部側(図5において左側)がN極という具合に、前記第1及び第2の永久磁石40,42の内側の磁極と反対の磁極が接近するように並べられて固定されている。このように補助磁石44配置することにより、図5に示すように、磁束の漏洩を防止すると共に、空芯コイル26を横切る磁束数を増加させて、大きな推力を発揮させることができる。また、マグネット構成体8の永久磁石40,42は、図2及び図6に示すように、マグネットヨーク6の周方向に隣り合うマグネット構成体8の永久磁石40,42の磁極が互いに反対の極となるよう配設されている。   In the embodiment, the polygonal cylindrical magnet yoke 6 is formed into a quadrangular cylindrical shape by four flat walls 38, and the first to fourth are disposed on the outer peripheral surface of the flat wall 38 as shown in FIGS. 2 and 6. The magnet constituent bodies 8a to 8d are respectively attached. The magnet structural bodies 8 a to 8 d are composed of first and second permanent magnets 40 and 42 and an auxiliary magnet 44. The first and second permanent magnets 40 and 42 are formed in, for example, a rectangular parallelepiped shape from rare earths, and these permanent magnets have a magnetization direction (a direction of a line connecting the centers of the opposite poles corresponding to a single magnet), They are arranged in a direction perpendicular to the X-axis direction. As shown in FIGS. 1 and 5, the outer side (upper side in FIG. 1) of the first permanent magnet 40 is the S pole on the tip end side (right side in FIGS. 1 and 5) of the upper part of the magnet yoke 6. The inner side is the N pole, and on the base end side (left side in FIGS. 1 and 5), the second permanent magnet 42 is arranged so that the outer side is the N pole and the inner side is the S pole. Further, a rectangular parallelepiped auxiliary magnet 44 is disposed between the first permanent magnet 40 and the second permanent magnet 42 with the magnetization direction parallel to the X-axis direction. Each auxiliary magnet 44 has, for example, the first and second permanent magnets 40, 42 such that the distal end side (right side in FIG. 5) is the S pole and the proximal end side (left side in FIG. 5) is the N pole. The magnetic poles opposite to the magnetic poles inside are aligned and fixed so as to approach each other. By arranging the auxiliary magnet 44 in this way, as shown in FIG. 5, leakage of magnetic flux can be prevented, and the number of magnetic fluxes traversing the air-core coil 26 can be increased to exert a large thrust. 2 and 6, the permanent magnets 40 and 42 of the magnet structure 8 are poles whose magnetic poles of the permanent magnets 40 and 42 of the magnet structure 8 adjacent in the circumferential direction of the magnet yoke 6 are opposite to each other. It is arranged to become.

次に、上記のように構成された可動磁石型リニアモータの作動について、以下に説明する。図5において、空芯コイル26にマグネットヨーク6から見て時計回りに電流を流すと、フレミングの左手の法則に従い空芯コイル26には先端部側(図5において右側)への力が生じ、マグネット構成体8aにはその反作用として基端部側(図5において左側)への力が加わる。他のマグネット構成体8b,8c,8dにも同様にして、基端部側への力が加わるように対向する空芯コイル26に夫々通電することにより、マグネットヨーク6には基端部側へ移動させる推力が働き、マグネットヨーク6は電流量に応じた距離だけ基端部側(図1及び図5において左側)へ移動する。また、前記IGBT等により逆向き回りの通電をすると、マグネットヨーク6は図1及び図5において右側へ移動する。この移動位置はリニアスケール17により検出され、検出位置の信号がCPU52に送られて、前記IGBT等により通電方向及び通電量が定められてマグネットヨーク6の移動量が制御される。   Next, the operation of the movable magnet type linear motor configured as described above will be described below. In FIG. 5, when a current is passed clockwise through the air core coil 26 as viewed from the magnet yoke 6, a force toward the distal end side (right side in FIG. 5) is generated in the air core coil 26 according to Fleming's left-hand rule. As a reaction to the magnet structure 8a, a force to the base end side (left side in FIG. 5) is applied. Similarly, the other magnet components 8b, 8c, and 8d are energized to the opposite air core coils 26 so as to apply a force toward the base end side, whereby the magnet yoke 6 is moved to the base end side. The moving thrust acts, and the magnet yoke 6 moves to the base end side (left side in FIGS. 1 and 5) by a distance corresponding to the amount of current. Further, when energization in the reverse direction is performed by the IGBT or the like, the magnet yoke 6 moves to the right side in FIGS. This movement position is detected by the linear scale 17, a signal of the detection position is sent to the CPU 52, the energization direction and energization amount are determined by the IGBT or the like, and the movement amount of the magnet yoke 6 is controlled.

本実施形態では、空芯コイル26と冷却パイプ30の冷媒間との熱の交換が高熱伝導接着剤を経由して高熱伝導部材32によって拡散することなく、直接的におこなうことができるので、空芯コイル26に与えられる駆動電流による発熱は、効率よく冷却パイプ30に流通する冷媒によって除去することができる。そして、高熱伝導部材32は、互いに絶縁された積層構造とすることで、磁束を横切る一つ一つの非磁性金属片34の厚みを小さく形成することができるので、大きな渦電流の発生を抑えることができる。   In the present embodiment, heat exchange between the air-core coil 26 and the refrigerant of the cooling pipe 30 can be performed directly without being diffused by the high heat conductive member 32 via the high heat conductive adhesive. Heat generated by the drive current applied to the core coil 26 can be efficiently removed by the refrigerant flowing through the cooling pipe 30. In addition, since the high heat conducting member 32 has a laminated structure that is insulated from each other, the thickness of each nonmagnetic metal piece 34 that crosses the magnetic flux can be reduced, so that the generation of large eddy currents is suppressed. Can do.

また、本実施形態では、マグネット構成体8のそれぞれの永久磁石40,42から発生する磁束を、図7に示すように、マグネットヨーク6の周面に沿った2方向B,C及びそれに直角な方向Aに分流して、マグネットヨーク6を通る磁束を3つに分散することができ、これによって、飽和磁束密度を生じさせることなくマグネットヨーク6の肉厚を3分の1程度に薄くでき、可動磁石型でありながら、リニアモータ2を小型化かつ軽量化することができる。そして、可動体14の応答精度を高めることができる。そして、1つのN極から3つに分流された磁束は、夫々別の3つのS極を通過する。一方、1つのS極においては、別の3つのN極からの磁束a,b,cが1つにまとまって通過することとなる。そのため、空芯コイル26を横切る磁束は、上記分流によって減少することが無いので、マグネットヨーク24を軽量としながら強い推力を発揮させることができる。   In the present embodiment, the magnetic flux generated from the respective permanent magnets 40 and 42 of the magnet structure 8 is, as shown in FIG. 7, two directions B and C along the circumferential surface of the magnet yoke 6 and perpendicular thereto. The magnetic flux passing through the magnet yoke 6 can be divided into three in the direction A, thereby reducing the thickness of the magnet yoke 6 to about one third without causing saturation magnetic flux density. Although it is a movable magnet type, the linear motor 2 can be reduced in size and weight. And the response accuracy of the movable body 14 can be improved. And the magnetic flux shunted from one N pole to three passes each other three S poles. On the other hand, in one S pole, magnetic fluxes a, b, and c from the other three N poles pass together. Therefore, the magnetic flux that crosses the air-core coil 26 does not decrease due to the above-mentioned diversion, so that a strong thrust can be exhibited while making the magnet yoke 24 lightweight.

なお、空芯コイルは、実施形態において平角線としたが、これに限定されず、例えば丸線でもよい。この場合は、高熱伝導部材はかかる丸線の外側面に倣う形状に形成される。   The air-core coil is a flat wire in the embodiment, but is not limited thereto, and may be a round wire, for example. In this case, the high thermal conductivity member is formed in a shape that follows the outer surface of the round wire.

冷却パイプや高熱伝導部材は、銅製に限定されず、例えばアルミニウム合金のような熱伝導率が高く非磁性材料であればよい。   The cooling pipe and the high thermal conductive member are not limited to copper, and may be any nonmagnetic material having a high thermal conductivity such as an aluminum alloy.

マグネットヨークは、4角筒状に限定されず、例えば6角、8角等の偶数多角筒状であればよい。また、偶数多角筒状のマグネットヨークの強度向上のため、中空部に梁部材を設ける構造としてもよい。   The magnet yoke is not limited to a quadrangular cylindrical shape, and may be an even polygonal cylindrical shape such as a hexagon or an octagon. Moreover, it is good also as a structure which provides a beam member in a hollow part in order to improve the intensity | strength of the magnet yoke of even polygonal cylinder shape.

また、本実施形態においては、第1及び第2の永久磁石の間に補助磁石を配置する構成としたが、これに限定されず、補助磁石はなくてもよい。   In the present embodiment, the auxiliary magnet is arranged between the first and second permanent magnets. However, the present invention is not limited to this, and there may be no auxiliary magnet.

コイルヨークは、支持台に個別に取り付けるものとしたが、これに限定されず、例えばマグネットヨークの形状に対応する偶数多角筒状のものでもよい。   Although the coil yoke is individually attached to the support base, the coil yoke is not limited to this, and may be an even polygonal tube shape corresponding to the shape of the magnet yoke, for example.

また、冷却パイプは、コイルヨークに取り付けられた4箇所の空芯コイルにおいて、熱的に密に接合されるものとするが、これに限定されず、例えば、1箇所、2箇所の空芯コイルに対して、熱的に密に接合されるものでもよい。また、空芯コイルの一方の外側面に高熱伝導部材が当接するものとしたが、これに限定されず、例えば空芯コイルの両方の外側面に高熱伝導部材が当接するものでもよい。   In addition, the cooling pipe is assumed to be thermally and closely joined in the four air core coils attached to the coil yoke. However, the present invention is not limited to this. For example, one air core coil is provided at two locations. On the other hand, it may be thermally bonded closely. In addition, the high heat conductive member is in contact with one outer surface of the air core coil, but the present invention is not limited to this. For example, the high heat conductive member may be in contact with both outer surfaces of the air core coil.

本発明に係る可動磁石型リニアモータの正面からの断面図。Sectional drawing from the front of the movable magnet type linear motor which concerns on this invention. 同側面からの断面図。Sectional drawing from the same side. 空芯コイルと冷却パイプとへの高熱伝導部材の取付け状態を示す図。The figure which shows the attachment state of the high heat conductive member to an air-core coil and a cooling pipe. 同断面図。FIG. マグネット構成体と空芯コイルとの構成を示す図。The figure which shows the structure of a magnet structure and an air-core coil. マグネットヨークにおける磁束の流れを示す概念図。The conceptual diagram which shows the flow of the magnetic flux in a magnet yoke. 移動位置制御を示すブロック図。The block diagram which shows movement position control. 高熱伝導部材の積層構造を示す断面図。Sectional drawing which shows the laminated structure of a high heat conductive member.

符号の説明Explanation of symbols

2…リニアモータ、6…マグネットヨーク、8…マグネット構成体、18…固定ベース(支持台)、24…固定ベース(コイルヨーク)、26…空芯コイル、30…冷却パイプ、32…高熱伝導部材、38…平面壁、40…第1の永久磁石、42…第2の永久磁石。
DESCRIPTION OF SYMBOLS 2 ... Linear motor, 6 ... Magnet yoke, 8 ... Magnet structure, 18 ... Fixed base (support stand), 24 ... Fixed base (coil yoke), 26 ... Air-core coil, 30 ... Cooling pipe, 32 ... High heat conduction member , 38 ... plane wall, 40 ... first permanent magnet, 42 ... second permanent magnet.

Claims (2)

複数平面壁により偶数多角筒状を成し、該偶数多角筒状の中心軸方向に可動するマグネットヨークと、該マグネットヨークの各平面壁の外壁に取り付けられ複数の永久磁石から構成される複数のマグネット構成体と、前記マグネットヨークを取り囲むように設けられた固定子ベースと、該固定子ベースに取り付けられ前記複数のマグネット構成体に夫々磁気的空隙を介して対向するように配置された複数の空芯コイルと、該空芯コイルに沿うように前記固定子ベースに取り付けられ内部に冷媒が流通されて前記空芯コイルを冷却する冷却パイプと、
を備えた可動磁石型リニアモータにおいて、
前記冷却パイプは、前記空芯コイルが前記中心軸方向に直角な方向に延在する部分にて、該空芯コイルに対して高熱伝導部材を介して熱的に密に接合されるものであり、
該高熱伝導部材は、一端部が前記冷却パイプの外側面形状に倣うとともに他端部が前記空芯コイルの外側面形状に倣う複数の非磁性金属片を、相互に絶縁して前記中心軸方向に直角な方向に積層した構造であることを特徴とする可動磁石型リニアモータ。
An even polygonal cylinder is formed by a plurality of planar walls, a magnet yoke movable in the central axis direction of the even polygonal cylinder, and a plurality of permanent magnets attached to the outer wall of each planar wall of the magnet yoke A magnet base, a stator base provided so as to surround the magnet yoke, and a plurality of magnets attached to the stator base and arranged to face the plurality of magnet constituents through magnetic gaps, respectively. An air-core coil, and a cooling pipe that is attached to the stator base along the air-core coil and in which a coolant is circulated to cool the air-core coil,
In a movable magnet type linear motor equipped with
The cooling pipe is a portion in which the air-core coil extends in a direction perpendicular to the central axis direction, and is thermally and closely joined to the air-core coil via a high thermal conductive member. ,
The high thermal conductivity member is configured to insulate a plurality of nonmagnetic metal pieces whose one end follows the outer surface shape of the cooling pipe and whose other end conforms to the outer surface shape of the air-core coil from each other. A movable magnet type linear motor characterized by having a structure laminated in a direction perpendicular to the axis.
請求項1において、前記マグネット構成体は、前記中心軸方向に直角な方向に着磁された第1の永久磁石と、
該第1の永久磁石の着磁方向に平行な方向であって、第1の永久磁石とは反対の磁極で着磁され、前記第1の永久磁石に前記中心軸方向に対向する第2の永久磁石と、を有し、
これらのマグネット構成体は、前記マグネットヨークの周方向に隣り合うマグネット構成体の前記永久磁石の磁極が互いに反対の極であることを特徴とする可動磁石型リニアモータ。
The magnet structure according to claim 1, wherein the magnet structure includes a first permanent magnet magnetized in a direction perpendicular to the central axis direction.
The second permanent magnet is magnetized by a magnetic pole opposite to the first permanent magnet and parallel to the magnetization direction of the first permanent magnet, and is opposed to the first permanent magnet in the central axis direction. A permanent magnet,
These magnet components are movable magnet type linear motors, wherein the magnetic poles of the permanent magnets of magnet components adjacent to each other in the circumferential direction of the magnet yoke are opposite to each other.
JP2007052455A 2007-03-02 2007-03-02 Movable magnet type linear motor Pending JP2008220020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052455A JP2008220020A (en) 2007-03-02 2007-03-02 Movable magnet type linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052455A JP2008220020A (en) 2007-03-02 2007-03-02 Movable magnet type linear motor

Publications (1)

Publication Number Publication Date
JP2008220020A true JP2008220020A (en) 2008-09-18

Family

ID=39839383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052455A Pending JP2008220020A (en) 2007-03-02 2007-03-02 Movable magnet type linear motor

Country Status (1)

Country Link
JP (1) JP2008220020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246188A (en) * 2009-04-01 2010-10-28 Canon Inc Linear motor and stage apparatus using the same, exposure apparatus, and method for manufacturing the same
US8723376B2 (en) 2009-01-23 2014-05-13 Hitachi Metals, Ltd. Mover and linear motor
US11411480B2 (en) * 2019-04-30 2022-08-09 Topray Mems Inc. Linear vibration actuator motor
US11469656B2 (en) * 2016-02-05 2022-10-11 Goertek Inc. Linear vibrating motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8723376B2 (en) 2009-01-23 2014-05-13 Hitachi Metals, Ltd. Mover and linear motor
US9071124B2 (en) 2009-01-23 2015-06-30 Hitachi Metals, Ltd. Mover and linear motor
JP2010246188A (en) * 2009-04-01 2010-10-28 Canon Inc Linear motor and stage apparatus using the same, exposure apparatus, and method for manufacturing the same
US8605251B2 (en) 2009-04-01 2013-12-10 Canon Kabushiki Kaisha Linear motor, and stage apparatus, exposure apparatus, and method for manufacturing device using the same
US11469656B2 (en) * 2016-02-05 2022-10-11 Goertek Inc. Linear vibrating motor
US11411480B2 (en) * 2019-04-30 2022-08-09 Topray Mems Inc. Linear vibration actuator motor

Similar Documents

Publication Publication Date Title
JP5292707B2 (en) Moving magnet type linear motor
JP4672315B2 (en) Linear motor and linear moving stage device
KR100844759B1 (en) Coreless linear motor
JP5072064B2 (en) Cylindrical linear motor
JP2008228545A (en) Moving magnet type linear motor
JP2008220020A (en) Movable magnet type linear motor
JP2005176464A (en) Linear motor
JPWO2011001668A1 (en) Actuator and actuator unit
JP2011155757A (en) Linear motor
JP6788664B2 (en) Linear motor, voice coil motor, stage device
JP2010148233A (en) Linear motor driving and feeding device
JP5347596B2 (en) Canned linear motor armature and canned linear motor
JP5369265B2 (en) Linear motor and linear moving stage device
JPH11243677A (en) Coaxial linear motor
JP5447308B2 (en) Linear motor
JP5126652B2 (en) Moving coil linear motor
JP2008206356A (en) Moving magnet linear actuator
JP2505857B2 (en) Movable magnet type multi-phase linear motor
JP3661978B2 (en) Moving coil linear motor
JP2007068326A (en) Linear motor unit and method of combining same
JP4721211B2 (en) Coreless linear motor
JP3835946B2 (en) Moving coil linear motor
JP2002247831A (en) Linear motor
JP2004312869A (en) Linear motor
JP2005094902A (en) Shifter