JP2008218641A - Tunnel magnetoresistive element - Google Patents

Tunnel magnetoresistive element Download PDF

Info

Publication number
JP2008218641A
JP2008218641A JP2007052767A JP2007052767A JP2008218641A JP 2008218641 A JP2008218641 A JP 2008218641A JP 2007052767 A JP2007052767 A JP 2007052767A JP 2007052767 A JP2007052767 A JP 2007052767A JP 2008218641 A JP2008218641 A JP 2008218641A
Authority
JP
Japan
Prior art keywords
tunnel magnetoresistive
heusler alloy
full heusler
magnetoresistive element
magnetoresistive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007052767A
Other languages
Japanese (ja)
Inventor
Mikihiko Okane
幹彦 大兼
Terunobu Miyazaki
照宣 宮崎
Yuuya Sakuraba
裕弥 桜庭
Masashi Hattori
正志 服部
Yasuo Ando
康夫 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007052767A priority Critical patent/JP2008218641A/en
Publication of JP2008218641A publication Critical patent/JP2008218641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tunnel magnetoresistive element in which at least one ferromagnetic body comprises a full Heusler alloy having spin polarizability of 100%. <P>SOLUTION: The tunnel magnetoresistive element comprises a first ferromagnetic body, a second ferromagnetic body, and an insulator sandwiched between these ferromagnetic bodies wherein at least one ferromagnetic body has a single crystal of full Heusler alloy grown epitaxially on the (100) face of a base material and a thin Mg layer is provided between the full Heusler alloy and the insulator. Preferably, the full Heusler alloy is an intermetallic compound represented by a composition formula X<SB>2</SB>YZ. In particular, the full Heusler alloy is preferably composed of Co<SB>2</SB>MnSi. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気センサや磁気メモリ、磁気ヘッドとして使用されるトンネル磁気抵抗効果素子に関するものである。   The present invention relates to a tunnel magnetoresistive element used as a magnetic sensor, a magnetic memory, or a magnetic head.

スピンエレクトロニクス分野においては、巨大なトンネル磁気抵抗(TMR)効果を発現する素子の開発が切望されている。従来のトンネル磁気抵抗効果素子の基本構成は、薄い絶縁体を二つの強磁性体で挟んだものであり,両強磁性体の磁化の相対角度によって流れるトンネル電流の大きさが変化する。トンネル磁気抵抗効果の大きさの度合いを表すTMR比は(Rap-Rp)/Rp×100で定義される。ここで、Rp,Rapは、それぞれ強磁性体の磁化が平行状態、及び反平行状態にある場合のトンネル抵抗である。   In the spin electronics field, development of a device that exhibits a huge tunnel magnetoresistance (TMR) effect is eagerly desired. The basic configuration of a conventional tunnel magnetoresistive element is a thin insulator sandwiched between two ferromagnets, and the magnitude of the tunneling current flowing changes depending on the relative angle of magnetization of both ferromagnets. The TMR ratio representing the magnitude of the tunnel magnetoresistive effect is defined as (Rap−Rp) / Rp × 100. Here, Rp and Rap are tunnel resistances when the magnetization of the ferromagnetic material is in a parallel state and an antiparallel state, respectively.

最近、上記のトンネル磁気抵抗効果素子の強磁性体材料として、ハーフメタル強磁性体が非常に大きな注目を集めている。ハーフメタルとは、フェルミエネルギー近傍において片方のスピンバンドにのみエネルギーギャップを有する特殊な強磁性材料のことであり、完全にスピン偏極した伝導電子を具える。   Recently, a half-metal ferromagnet attracts much attention as a ferromagnetic material of the above-described tunnel magnetoresistive element. Half metal is a special ferromagnetic material having an energy gap only in one spin band in the vicinity of Fermi energy, and includes completely spin-polarized conduction electrons.

ハーフメタル強磁性体をトンネル磁気抵抗効果素子の電極として用いた場合、TMR比を飛躍的に向上させることが期待され、磁気ランダムアクセスメモリ(MRAM)や磁気ヘッドといった応用面における可能性は極めて大きい。   When a half-metal ferromagnet is used as an electrode of a tunnel magnetoresistive element, it is expected that the TMR ratio will be dramatically improved, and there is a great possibility in applications such as a magnetic random access memory (MRAM) and a magnetic head. .

ペロブスカイト型のMn酸化物であるLa1−x(Sr,Ca,etc.)xMnO(LSMO)は、ハーフメタル強磁性体であり、この材料を具えるトンネル磁気抵抗効果素子において、低温で1800%のTMRが報告されている。しかしながら、このようなLSMOを供するトンネル磁気抵抗効果素子においては、LSMOのキュリー温度が低い為に、室温ではTMR効果が観測されていない。 La 1-x (Sr, Ca, etc.) x MnO 3 (LSMO), which is a perovskite-type Mn oxide, is a half-metal ferromagnet, and is a tunnel magnetoresistive effect element including this material at a low temperature of 1800. % TMR is reported. However, in such a magnetoresistive element that provides LSMO, the TMR effect is not observed at room temperature because the Curie temperature of LSMO is low.

室温で、実用に供するのに十分高いTMR比を示し、トンネル磁気抵抗効果素子に用いることが可能なハーフメタル強磁性体として、フルホイスラー合金が有望である。   A full-Heusler alloy is promising as a half-metal ferromagnet that exhibits a TMR ratio sufficiently high for practical use at room temperature and can be used for a tunnel magnetoresistive element.

フルホイスラー合金の一種であるCoMnSi合金を(100)面方位にエピタキシャル成長させた材料を用いたトンネル磁気抵抗効果素子は、低温で160%のTMRを示すが、この結果から見積もられるスピン分極率は約90%であり、理想的な100%の状態を実現する為には改良の余地がある(非特許文献1参照)。 A tunnel magnetoresistive element using a material obtained by epitaxially growing a Co 2 MnSi alloy, which is a kind of full Heusler alloy, in the (100) plane orientation shows a TMR of 160% at a low temperature. The spin polarizability estimated from this result Is about 90%, and there is room for improvement in order to realize the ideal state of 100% (see Non-Patent Document 1).

スピン分極率は、強磁性体材料と絶縁体との界面状態に非常に敏感な物理量である。したがって、その界面を清浄にするための工夫が、フルホイスラー合金のスピン分極率を増大させる為に重要である。   The spin polarizability is a physical quantity that is very sensitive to the interface state between the ferromagnetic material and the insulator. Therefore, a device for cleaning the interface is important for increasing the spin polarizability of the full Heusler alloy.

特に、フルホイスラー合金と絶縁体との界面に存在しうる不純物は、MnやSiの酸化物である(非特許文献2参照)。したがって、これらの不純物量を可能な限り少なくする手段が求められている。   In particular, impurities that may be present at the interface between the full Heusler alloy and the insulator are oxides of Mn and Si (see Non-Patent Document 2). Therefore, a means for reducing the amount of these impurities as much as possible is required.

Y. Sakuraba, J. Nakata, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, T. Miyazaki,“Huge Spin Polarization of L21-Ordered Co2MnSi Epitaxial Heusler Alloy Film”, Jpn. J. Appl. Phys.,2005,44,p.L1100Y. Sakuraba, J. Nakata, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, T. Miyazaki, “Huge Spin Polarization of L21-Ordered Co2MnSi Epitaxial Heusler Alloy Film”, Jpn. J. Appl. Phys ., 2005, 44, p.L1100 S. Kammerer, A. Thomas, A. Hutten, and G. Reiss,“Co2MnSi Heusler alloy as magnetic electrodes in magnetic tunnel junctions”, Appl. Phys. Lett.,2004,85,P.79S. Kammerer, A. Thomas, A. Hutten, and G. Reiss, “Co2MnSi Heusler alloy as magnetic electrodes in magnetic tunnel junctions”, Appl. Phys. Lett., 2004, 85, P.79.

本発明は、少なくとも一方の強磁性体にスピン分極率がほぼ100%のフルホイスラー合金を具えるトンネル磁気抵抗効果素子を提供することを目的とする。   An object of the present invention is to provide a tunnel magnetoresistive element including a full Heusler alloy having a spin polarizability of approximately 100% in at least one ferromagnetic material.

本発明によれば、第1の強磁性体と、第2の強磁性体と、これら強磁性体間に挟まれて存在する絶縁体とを具え、前記強磁性体の少なくとも一方は、基材上に(100)面にエピタキシャル成長したフルホイスラー合金の単結晶を有し、前記フルホイスラー合金と前記絶縁体との間に薄いMg層を具えた構造を特徴とする、トンネル磁気抵抗効果素子が得られる。   According to the present invention, the first ferromagnet, the second ferromagnet, and the insulator sandwiched between the ferromagnets, at least one of the ferromagnets being a base material A tunnel magnetoresistive element having a structure comprising a single crystal of a full Heusler alloy epitaxially grown on the (100) plane and having a thin Mg layer between the full Heusler alloy and the insulator is obtained. It is done.

本発明者らは、上記目的を達成すべく鋭意検討を実施した。その結果、所定の下地層上に、(100)面にエピタキシャル成長したフルホイスラー合金の単結晶薄膜の作製に成功し、さらに、フルホイスラー合金と絶縁体との間にMg層を挟むような従来と類似の構造で、フルホイスラー合金のスピン分極率が100%のトンネル磁気抵抗効果素子を得ることに成功したものである。   The inventors of the present invention have intensively studied to achieve the above object. As a result, it has succeeded in producing a single crystal thin film of a full Heusler alloy epitaxially grown on a (100) plane on a predetermined underlayer, and further, a conventional method in which an Mg layer is sandwiched between a full Heusler alloy and an insulator. It has succeeded in obtaining a tunnel magnetoresistive element having a similar structure and a full Heusler alloy having a spin polarizability of 100%.

したがって、本発明のトンネル磁気抵抗効果素子によれば、非常に高いTMR比を呈し、スピンエレクトロニクス分野において、例えば磁気センサや磁気メモリなどとして使用することができる。   Therefore, according to the tunnel magnetoresistive effect element of the present invention, it exhibits a very high TMR ratio and can be used as, for example, a magnetic sensor or a magnetic memory in the spin electronics field.

本発明の好ましい態様においては、前記フルホイスラー合金はXYZの組成式で表わされる金属間化合物から構成される。このようなホイスラー合金は、高いキュリー温度を呈し、室温においても約100%の高いスピン分極率を呈する。したがって、目的とするトンネル磁気抵抗効果素子は、より高いTMR効果を呈するようになる。 In a preferred embodiment of the present invention, the full Heusler alloy is composed of an intermetallic compound represented by a composition formula of X 2 YZ. Such Heusler alloys exhibit a high Curie temperature and a high spin polarizability of about 100% even at room temperature. Therefore, the target tunnel magnetoresistive element exhibits a higher TMR effect.

なお、上述したホイスラー合金においても、特にCoMnSiが高いキュリー温度と高いスピン分極率とを呈し、目的とするトンネル磁気抵抗効果素子のTMR比及びTMR効果をより向上させることができる。 In the Heusler alloy described above, Co 2 MnSi in particular exhibits a high Curie temperature and a high spin polarizability, and the TMR ratio and TMR effect of the target tunnel magnetoresistive element can be further improved.

さらに、本発明の他の好ましい態様においては、前記絶縁体は、AlOxから構成される。この場合も、上記同様に目的とするトンネル磁気抵抗効果素子は、より高いTMR比を呈し、より高いTMR効果を呈するようになる。   Furthermore, in another preferred aspect of the present invention, the insulator is made of AlOx. In this case as well, the target tunnel magnetoresistive effect element similarly exhibits a higher TMR ratio and a higher TMR effect.

また、本発明のその他の好ましい態様においては、前記フルホイスラー合金を所定の基材上において所定の下地層を介して形成する。この場合、フルホイスラー合金はエピタキシャル成長し、さらに、単結晶成長するので、より高いTMR比を呈し、より高いTMR効果を呈するようになる。   In another preferred embodiment of the present invention, the full Heusler alloy is formed on a predetermined base material via a predetermined underlayer. In this case, since the full-Heusler alloy is epitaxially grown and further single-crystal grown, it exhibits a higher TMR ratio and a higher TMR effect.

なお、下地層を構成する材料は、上記フルホイスラー合金の材料種類に応じて適宜決定するが、特に上述したCoMnSiから構成する場合は、例えばCr層からなる構造とすることが好ましい。 Incidentally, the material constituting the underlying layer is suitably determined according to the material type of the full-Heusler alloy, particularly when composed of Co 2 MnSi described above, for example, it is preferable that the structure consisting of Cr layer.

また、本発明の他の好ましい態様においては、前記下地層に、アニーリング処理を行う。これによって、下地層の(100)配向性が向上し、下地層表面が平滑になることで、その上に成長するフルホイスラー合金の性能をより向上させることができるようになる。   In another preferred embodiment of the present invention, the underlayer is annealed. As a result, the (100) orientation of the underlayer is improved and the surface of the underlayer becomes smooth, so that the performance of the full Heusler alloy grown thereon can be further improved.

また、本発明の他の好ましい態様においては、前記フルホイスラー合金に、アニーリング処理を行う。これによって、フルホイスラー合金のディスオーダーが減少して規則性が増大し、ハーフメタル固有の高いスピン分極率(約100%)を効果的かつ効率的に達成することができ、得られるトンネル磁気抵抗効果素子のTMR比及びTMR効果をより向上させることができるようになる。   In another preferred embodiment of the present invention, the full Heusler alloy is annealed. This reduces the disorder of the full Heusler alloy, increases the regularity, and can effectively and efficiently achieve the high spin polarizability (about 100%) inherent to half metals, and the resulting tunnel magnetoresistance The TMR ratio and the TMR effect of the effect element can be further improved.

また、本発明の他の好ましい態様においては、フルホイスラー合金と絶縁体との間のMg層の膜厚は、約1ナノメートルである。   In another preferred embodiment of the present invention, the thickness of the Mg layer between the full Heusler alloy and the insulator is about 1 nanometer.

以上説明したように、本発明によれば、少なくとも一方の強磁性体にスピン分極率がほぼ100%のフルホイスラー合金を具えるトンネル磁気抵抗効果素子を提供することができる。   As described above, according to the present invention, it is possible to provide a tunnel magnetoresistive element including a full Heusler alloy having a spin polarizability of approximately 100% in at least one ferromagnetic material.

以下、本発明の詳細、並びにその他の特徴及び利点について、発明を実施するための最良の形態に基づいて説明する。   Hereinafter, details of the present invention and other features and advantages will be described based on the best mode for carrying out the invention.

以下においては、フルホイスラー合金として、CoMnSiホイスラー合金を用い、これとCo−Feとで絶縁体のAlOxを挟み、さらに、CoMnSiとAlOxとでMg層を挟んだトンネル磁気抵抗効果素子を作製した場合について説明する。なお、トンネル磁気抵抗効果素子を構成する各層は、超高真空スパッタ装置を用いて作製するので、必然的に支持基板が必要となる。本例では、支持基板としてMgO基板を用いた。 In the following, a tunnel magnetoresistive effect element in which a Co 2 MnSi Heusler alloy is used as a full Heusler alloy, AlOx as an insulator is sandwiched between this and Co—Fe, and an Mg layer is sandwiched between Co 2 MnSi and AlOx. The case where is manufactured will be described. In addition, since each layer which comprises a tunnel magnetoresistive effect element is produced using an ultrahigh vacuum sputtering apparatus, a support substrate is inevitably required. In this example, an MgO substrate was used as the support substrate.

また、トンネル磁気抵抗効果素子は、MgO基板上に、Cr下地層を介して形成するとともに、その外側に「磁化固定層」として機能するIrMn層、及び「酸化防止層」として機能するTa層を形成した。したがって、本例におけるトンネル磁気抵抗効果素子を含む層構成は、以下のようにして表すことができる。
MgO基板/Cr(40)/Co2MnSi(30)/Mg(1)/AlOx(1.3)/CoFe(10)/IrMn(10)/Ta(5)
(カッコ内数字は膜厚で,単位はnmである)
In addition, the tunnel magnetoresistive element is formed on the MgO substrate through the Cr underlayer, and an IrMn layer functioning as a “magnetization pinned layer” and a Ta layer functioning as an “antioxidation layer” are formed outside the tunnel magnetoresistive element. Formed. Therefore, the layer configuration including the tunnel magnetoresistive effect element in this example can be expressed as follows.
MgO substrate / Cr (40) / Co 2 MnSi (30) / Mg (1) / AlOx (1.3) / CoFe (10) / IrMn (10) / Ta (5)
(The number in parentheses is the film thickness, the unit is nm)

また、Cr下地層は、CoMnSi層の成膜前に、700℃でアニーリング処理を行なった。CoMnSi層は、AlOx層成膜以前に300〜600℃でアニーリング処理を行った。 The Cr underlayer was annealed at 700 ° C. before forming the Co 2 MnSi layer. The Co 2 MnSi layer was annealed at 300 to 600 ° C. before forming the AlOx layer.

なお、得られた上記トンネル磁気抵抗効果素子のTMRの測定は、直流4端子法で行なった。   The TMR measurement of the obtained tunneling magnetoresistive effect element was performed by the direct current four-terminal method.

図1は、上記のようにして得たCo2MnSi(30)/Mg(1.0)/AlOx(1.3)/CoFe(10)なる構成のトンネル磁気抵抗効果素子の断面TEM(透過型電子顕微鏡)像である。この断面TEM像から明らかなように、得られた上記構成のトンネル磁気抵抗効果素子は、非常に平滑な界面を有していることが確認された。また、Cr下地層および下部CoMnSi層は、(100)エピタキシャル成長していることが判明した。 FIG. 1 shows a cross-sectional TEM (transmission electron microscope) image of the tunnel magnetoresistive element having the structure Co 2 MnSi (30) / Mg (1.0) / AlOx (1.3) / CoFe (10) obtained as described above. It is. As is clear from this cross-sectional TEM image, it was confirmed that the obtained tunnel magnetoresistive effect element having the above configuration had a very smooth interface. It was also found that the Cr underlayer and the lower Co 2 MnSi layer were (100) epitaxially grown.

図2は、上記のようにして得たCo2MnSi(30)/Mg(x)/AlOx(1.3)/CoFe(10)なる構成のトンネル磁気抵抗効果素子のTMR比の測定温度依存性である。Mg=1nmのトンネル磁気抵抗効果素子のTMR曲線は、挿入図に示す。図2から、上記Mg=1nmのトンネル磁気抵抗効果素子のTMR比は、室温で約93%である。このTMR比は、AlOx絶縁層を具えたトンネル磁気抵抗効果素子のなかで、現在のところ世界最大のTMR比である。温度を減少させるとTMR比は増大し、2Kにおいては200%のTMR比を示すことが判明した。このことから、作製したCoMnSiは、ほぼ100%のスピン分極率を有していることが判明した。 FIG. 2 shows the measured temperature dependence of the TMR ratio of the tunnel magnetoresistive element having the structure Co 2 MnSi (30) / Mg (x) / AlOx (1.3) / CoFe (10) obtained as described above. . The TMR curve of the tunnel magnetoresistive element with Mg = 1 nm is shown in the inset. From FIG. 2, the TMR ratio of the tunnel magnetoresistive element with Mg = 1 nm is about 93% at room temperature. This TMR ratio is the largest TMR ratio in the world at present among tunnel magnetoresistive elements having an AlOx insulating layer. It was found that the TMR ratio increased with decreasing temperature and showed a TMR ratio of 200% at 2K. From this, it was found that the produced Co 2 MnSi has a spin polarizability of almost 100%.

図3は、上記のようにして得たCo2MnSi(30)/ Mg(1.0)/AlOx(1.3)/CoFe(10)なる構成のトンネル磁気抵抗効果素子の、Co2MnSi(30)とMg(1.0)との界面をX線吸収スペクトルで調べた結果である。図3に示すように、Mgを挿入しないトンネル磁気抵抗素子(図3中のA,B,C)では、MnL2,3吸収端のピーク近傍にマルチプレット構造(図3(b)中の矢印)が明瞭に現れており、界面にMnの酸化物が存在していることが示唆される。これに対し、Mgを1ナノメートル挿入したトンネル磁気抵抗素子(図3中のD)では、マルチプレット構造は全く観測されていない。これにより、Mgを1ナノメートル挿入したトンネル磁気抵抗素子では、挿入しない素子と異なり、界面にMnの酸化物が非常に少ないことが判明した。 FIG. 3 shows the Co 2 MnSi (30) and Mg of the tunnel magnetoresistive element having the structure Co 2 MnSi (30) / Mg (1.0) / AlOx (1.3) / CoFe (10) obtained as described above. It is the result of investigating the interface with (1.0) by X-ray absorption spectrum. As shown in FIG. 3, in the tunnel magnetoresistive element (A, B, C in FIG. 3) into which Mg is not inserted, a multiplet structure (an arrow in FIG. 3B) is located near the peak of the MnL 2,3 absorption edge. ) Clearly appear, suggesting that an oxide of Mn exists at the interface. On the other hand, the multiplet structure is not observed at all in the tunnel magnetoresistive element (D in FIG. 3) in which 1 nm of Mg is inserted. As a result, it was found that the tunnel magnetoresistive element inserted with 1 nm of Mg has very little Mn oxide at the interface, unlike the element not inserted.

上記のトンネル磁気抵抗効果素子は、100%のスピン分極率を有するフルホイスラー合金を具えた世界で初めての素子であり、スピンエレクトロニクス分野の基礎的研究が推進されるだけでなく、実用研究にも大きな進展と発展とをもたらす可能性がある。   The above-mentioned tunnel magnetoresistive element is the first element in the world with a full Heusler alloy having a spin polarizability of 100%, and not only the basic research in the spin electronics field is promoted but also in practical research. It can bring about great progress and development.

以上、発明の実施の形態に則して本発明を説明してきたが、本発明の内容は上記に限定されるものではなく、本発明の範疇を逸脱しない限りにおいて、あらゆる変形や変更が可能である。   As described above, the present invention has been described according to the embodiment of the invention. However, the content of the present invention is not limited to the above, and various modifications and changes can be made without departing from the scope of the present invention. is there.

本発明の実施の形態のトンネル磁気抵抗効果素子を示す透過型電子顕微鏡写真による断面TEM像である。It is a cross-sectional TEM image by the transmission electron micrograph which shows the tunnel magnetoresistive effect element of embodiment of this invention. 図1に示すトンネル磁気抵抗効果素子のTMR比の測定温度依存性を示すグラフである。It is a graph which shows the measurement temperature dependence of TMR ratio of the tunnel magnetoresistive effect element shown in FIG. 図1に示すトンネル磁気抵抗効果素子の、(a)試験試料の構造等を示すテーブル、(b)Co2MnSiとMgとの界面のX線吸収スペクトルを示すグラフである。2A is a graph showing an X-ray absorption spectrum of an interface between Co 2 MnSi and Mg, (a) a table showing the structure of a test sample, etc., of the tunnel magnetoresistive element shown in FIG.

Claims (9)

第1の強磁性体と、第2の強磁性体と、これら強磁性体間に挟まれて存在する絶縁体とを具え、前記強磁性体の少なくとも一方は、基材上に(100)面にエピタキシャル成長したフルホイスラー合金の単結晶を有し、前記フルホイスラー合金と前記絶縁体との間に薄いMg層を具えることを特徴とする、トンネル磁気抵抗効果素子。   A first ferromagnet, a second ferromagnet, and an insulator sandwiched between the ferromagnets, wherein at least one of the ferromagnets has a (100) plane on the substrate A tunnel magnetoresistive effect element comprising a single crystal of a full Heusler alloy epitaxially grown on a thin Mg layer between the full Heusler alloy and the insulator. 前記フルホイスラー合金は、XYZの組成式で表わされる金属間化合物であることを特徴とする、請求項1記載のトンネル磁気抵抗効果素子。 The tunnel magnetoresistive element according to claim 1, wherein the full Heusler alloy is an intermetallic compound represented by a composition formula of X 2 YZ. 前記フルホイスラー合金は、アニーリング処理を経ていることを特徴とする、請求項1または2記載のトンネル磁気抵抗効果素子。   The tunnel magnetoresistive effect element according to claim 1, wherein the full Heusler alloy has undergone an annealing process. 前記フルホイスラー合金は、CoMnSiからなることを特徴とする、請求項1、2または3記載のトンネル磁気抵抗効果素子。 The tunnel magnetoresistive effect element according to claim 1, wherein the full Heusler alloy is made of Co 2 MnSi. 前記絶縁体は、AlOxからなることを特徴とする、請求項1、2、3または4記載のトンネル磁気抵抗効果素子。   The tunnel magnetoresistive effect element according to claim 1, wherein the insulator is made of AlOx. 前記フルホイスラー合金は、前記基材上において所定の下地層を介して形成されていることを特徴とする、請求項1、2、3、4または5記載のトンネル磁気抵抗効果素子。   6. The tunnel magnetoresistive effect element according to claim 1, wherein the full Heusler alloy is formed on the base material via a predetermined underlayer. 前記下地層はCr層からなることを特徴とする、請求項6記載のトンネル磁気抵抗効果素子。   The tunnel magnetoresistive effect element according to claim 6, wherein the underlayer is made of a Cr layer. 前記下地層は、アニーリング処理を経ていることを特徴とする、請求項6または7記載のトンネル磁気抵抗効果素子。   The tunnel magnetoresistive effect element according to claim 6, wherein the underlayer has undergone an annealing process. 室温で有限のトンネル磁気抵抗効果(TMR)比を呈することを特徴とする、請求項1、2、3、4、5、6、7または8記載のトンネル磁気抵抗効果素子。
9. The tunnel magnetoresistive element according to claim 1, wherein the tunnel magnetoresistive element exhibits a finite tunnel magnetoresistive effect (TMR) ratio at room temperature.
JP2007052767A 2007-03-02 2007-03-02 Tunnel magnetoresistive element Pending JP2008218641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052767A JP2008218641A (en) 2007-03-02 2007-03-02 Tunnel magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052767A JP2008218641A (en) 2007-03-02 2007-03-02 Tunnel magnetoresistive element

Publications (1)

Publication Number Publication Date
JP2008218641A true JP2008218641A (en) 2008-09-18

Family

ID=39838342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052767A Pending JP2008218641A (en) 2007-03-02 2007-03-02 Tunnel magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2008218641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054724A (en) * 2007-08-24 2009-03-12 Toshiba Corp Laminate having heusler alloy, spin mos field-effect transistor using the laminate, and tunnel magnetoresistance effect element
US8648589B2 (en) 2009-10-16 2014-02-11 HGST Netherlands B.V. Magnetoresistive sensor employing nitrogenated Cu/Ag under-layers with (100) textured growth as templates for CoFe, CoFeX, and Co2(MnFe)X alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175571A (en) * 1991-12-24 1993-07-13 Res Inst For Prod Dev Magnetoresistance effect element
JPH07202292A (en) * 1993-12-28 1995-08-04 Nec Corp Magnetoresistive film and its manufacture
JPH1154814A (en) * 1997-08-04 1999-02-26 Nec Corp Manufacture of ferromagnetic tunnel junction element
JP2001332781A (en) * 2000-05-23 2001-11-30 Matsushita Electric Ind Co Ltd Magnetoresistive element, magnetic head using it, and memory device
JP2007005664A (en) * 2005-06-27 2007-01-11 Fuji Electric Holdings Co Ltd Spin implantation magnetization reversal element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175571A (en) * 1991-12-24 1993-07-13 Res Inst For Prod Dev Magnetoresistance effect element
JPH07202292A (en) * 1993-12-28 1995-08-04 Nec Corp Magnetoresistive film and its manufacture
JPH1154814A (en) * 1997-08-04 1999-02-26 Nec Corp Manufacture of ferromagnetic tunnel junction element
JP2001332781A (en) * 2000-05-23 2001-11-30 Matsushita Electric Ind Co Ltd Magnetoresistive element, magnetic head using it, and memory device
JP2007005664A (en) * 2005-06-27 2007-01-11 Fuji Electric Holdings Co Ltd Spin implantation magnetization reversal element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054724A (en) * 2007-08-24 2009-03-12 Toshiba Corp Laminate having heusler alloy, spin mos field-effect transistor using the laminate, and tunnel magnetoresistance effect element
JP4580966B2 (en) * 2007-08-24 2010-11-17 株式会社東芝 Laminated body having Heusler alloy, spin MOS field effect transistor and tunnel magnetoresistive element using the laminated body
US8648589B2 (en) 2009-10-16 2014-02-11 HGST Netherlands B.V. Magnetoresistive sensor employing nitrogenated Cu/Ag under-layers with (100) textured growth as templates for CoFe, CoFeX, and Co2(MnFe)X alloys

Similar Documents

Publication Publication Date Title
Yakushiji et al. Very strong antiferromagnetic interlayer exchange coupling with iridium spacer layer for perpendicular magnetic tunnel junctions
JP5586028B2 (en) Ferromagnetic tunnel junction, magnetoresistive effect element and spintronic device using the same
Tezuka et al. 175% tunnel magnetoresistance at room temperature and high thermal stability using Co2FeAl0. 5Si0. 5 full-Heusler alloy electrodes
JP5988019B2 (en) Ferromagnetic tunnel junction, magnetoresistive effect element and spintronic device using the same
Takahashi et al. High spin-filter efficiency in a Co ferrite fabricated by a thermal oxidation
Tezuka et al. Giant tunnel magnetoresistance at room temperature for junctions using full-Heusler Co2FeAl0. 5Si0. 5 electrodes
JP5527669B2 (en) Ferromagnetic tunnel junction and magnetoresistive effect element using the same
Felser et al. Tetragonal Heusler compounds for spintronics
JP6866694B2 (en) Magneto Resistive Sensor
JP6690838B2 (en) Ferromagnetic tunnel junction, magnetoresistive effect element and spintronics device using the same, and method for manufacturing ferromagnetic tunnel junction
JP6647590B2 (en) Perpendicular magnetic film, perpendicular magnetic film structure, magnetoresistive element and perpendicular magnetic recording medium
JP6857421B2 (en) Ferromagnetic tunnel junction, spintronics device using it, and method for manufacturing ferromagnetic tunnel junction
CN110970551A (en) Apparatus and method for spin transfer torque switching of magnetic layers with volumetric uniaxial magnetocrystalline anisotropy
JP5413646B2 (en) Heusler alloy material, magnetoresistive element and magnetic device
Feng et al. Spin-polarized quantum transport in Fe4N based current-perpendicular-to-plane spin valve
Xu et al. Effects of sputtering parameters and annealing temperatures on magnetic properties of CoFeB films
US9666215B2 (en) Termination layer-compensated tunneling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy
JP2016134520A (en) Heusler alloy thin film, manufacturing method of the same, magnetoresistance effect element, and magnetic memory
KR20230118765A (en) Magnetic tunneling junctions based on spin-orbit torque and method manufacturing thereof
JP6583814B2 (en) Perpendicular magnetization film structure and manufacturing method thereof, magnetoresistive element using the same, manufacturing method thereof, and spintronic device using the same
JP2008218641A (en) Tunnel magnetoresistive element
Gan et al. Tunnel magnetoresistance properties of double MgO-barrier magnetic tunnel junctions with different free-layer alloy compositions and structures
Sakuraba et al. Half-metallic band structure observed in Co2MnSi-based magnetic tunnel junctions
Ozawa et al. The effect of inserting thin Co2MnAl layer into the Co2MnSi/MgO interface on tunnel magnetoresistance effect
JP4953064B2 (en) Heusler alloy and TMR element or GMR element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131