JP2008216147A - Nanocomposite film composed of ionic organic reagent and colloid particulate or fiber, metallic ion detecting film, and its manufacturing method - Google Patents

Nanocomposite film composed of ionic organic reagent and colloid particulate or fiber, metallic ion detecting film, and its manufacturing method Download PDF

Info

Publication number
JP2008216147A
JP2008216147A JP2007056344A JP2007056344A JP2008216147A JP 2008216147 A JP2008216147 A JP 2008216147A JP 2007056344 A JP2007056344 A JP 2007056344A JP 2007056344 A JP2007056344 A JP 2007056344A JP 2008216147 A JP2008216147 A JP 2008216147A
Authority
JP
Japan
Prior art keywords
thin film
ionic organic
organic reagent
nanocomposite
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007056344A
Other languages
Japanese (ja)
Other versions
JP4958277B2 (en
Inventor
Toshishige Suzuki
敏重 鈴木
Yukiko Takahashi
由紀子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007056344A priority Critical patent/JP4958277B2/en
Publication of JP2008216147A publication Critical patent/JP2008216147A/en
Application granted granted Critical
Publication of JP4958277B2 publication Critical patent/JP4958277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic ion detecting material capable of easily detecting a metallic ion different in a type from a conventional colorimetric analysis material using an ion recognizing substrate joined to a polymer at an analysis site. <P>SOLUTION: This manufacturing method of a nanocomposite thin film of an ionic organic reagent and a particulate having electric charge of a nano-order, is constituted by filtering a generated nanocomposite dispersion liquid by a membrane filter by electrostatically attracting the bionic organic reagent by mixing an aqueous solution of the ionic organic reagent with a particulate dispersing liquid, or covering the filter with a nano-composite by being impregnated into the filter. This invention includes its nanocomposite thin film and the metallic ion detecting material. This invention can provide a stably held film type simple metallic ion detecting material by forming the ionic organic reagent as a thin film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、イオン性有機試薬をコロイド担体に静電吸着させたナノコンポジット膜に関するものであり、更に詳しくは、正電荷あるいは負電荷を有するイオン性有機試薬を、イオン交換能を有するコロイドに静電的に吸着させて成るナノコンポジット、これをフィルターに担持させたナノコンポジット薄膜、金属イオン検出能を示すイオン性有機試薬を用いた金属イオン検出膜、並びにその製造方法に関するものである。本発明は、例えば、鉱工業排水や河川水、飲料水等に含まれる有害な重金属イオン等の金属イオンを、特殊な装置を用いることなく分析現場で速やかに検出できる簡易計測に使用するのに有用な金属イオン検出膜を提供するものである。   The present invention relates to a nanocomposite membrane in which an ionic organic reagent is electrostatically adsorbed on a colloidal carrier. More specifically, the present invention relates to a ionic organic reagent having a positive charge or a negative charge in a colloid having an ion exchange capacity. The present invention relates to a nanocomposite that is electrically adsorbed, a nanocomposite thin film that supports the nanocomposite, a metal ion detection film that uses an ionic organic reagent exhibiting metal ion detection ability, and a method for producing the same. The present invention is useful for, for example, simple measurement capable of quickly detecting metal ions such as harmful heavy metal ions contained in industrial wastewater, river water, drinking water, etc. at an analysis site without using a special device. A metal ion detection film is provided.

重金属イオンの水質汚濁に係わる環境基準及び排水基準は、国内外を問わず多くの場合、ppb(=μg/L)オーダーという超微量の濃度レベルに設定されている。そのため、公定法としてJIS K0102(工場排水試験方法)にあるように、金属イオンの分析は、ほとんどが大型機器分析に依存しているのが現状である。   Environmental standards and drainage standards relating to water pollution of heavy metal ions are often set to a very small concentration level of the order of ppb (= μg / L) in both domestic and foreign countries. Therefore, as described in JIS K0102 (factory drainage test method) as an official method, most metal ion analysis currently depends on large-scale instrument analysis.

すなわち、被検試料中の金属イオンを分析するには、サンプルを採取して分析センターに依頼し、酸処理や溶媒抽出等の前処理や予備濃縮の後に、その濃度を、例えば、フレーム原子吸光法、電気加熱原子吸光法、ICP発光分析乃至ICP質量分析等で測定する。検出は、ppbからppt(=pg/L)の感度に及ぶが、煩雑な分析過程のため、専門のオペレーターを必要とし、分析料金も高く、分析結果を得るために長時間を要する。   That is, in order to analyze metal ions in a test sample, a sample is collected and requested to an analysis center, and after pretreatment such as acid treatment or solvent extraction or preconcentration, the concentration is measured by, for example, flame atomic absorption. , Electric heating atomic absorption method, ICP emission analysis or ICP mass spectrometry. Although detection ranges from ppb to ppt (= pg / L), a complicated analysis process requires a specialized operator, the analysis fee is high, and it takes a long time to obtain an analysis result.

しかしながら、実社会では、環境汚染調査、工場での排水管理やRoHS指令に対応する材料や製品のスクリーニング等、例えば、排水放出の可否の判断、RoHS指令に対応するための材料や製品のスクリーニング対策等、「規制値基準を超えているか否かをその場で判定できる」ことの方が圧倒的に重要である。すなわち、現場で、迅速に適用できる簡便な現場(オンサイト)分析が切望されている。   However, in the real world, environmental pollution surveys, wastewater management in factories, screening of materials and products that comply with the RoHS directive, etc., for example, judgment of whether wastewater can be released, screening measures for materials and products that comply with the RoHS directive, etc. It is overwhelmingly important to be able to “determine whether or not the regulation value standard is exceeded”. That is, a simple on-site analysis that can be quickly applied at the site is desired.

一方、現存する簡易分析法では、実試料での環境基準や排水基準の測定には難がある。JIS K0102にも吸光分析法が記載され、検出感度の高いものも含まれるが、化学分析や試薬に対する知識と経験が必要であり、技術の習得が前提となる。また、イオン選択性電極は、様々な金属イオンに対応しており、分析時間が短く、検出感度も排水基準程度は確保できるが、妨害イオンの影響が大きく、複雑なマトリックス成分を含む実試料には不向きである。   On the other hand, existing simple analysis methods have difficulty in measuring environmental standards and wastewater standards in actual samples. JIS K0102 also describes absorption spectrometry and includes those with high detection sensitivity, but requires knowledge and experience with chemical analysis and reagents, and is premised on the acquisition of technology. In addition, the ion-selective electrode is compatible with various metal ions, has a short analysis time, and the detection sensitivity can be secured to the same level as the drainage standard. Is unsuitable.

従来、先行技術として、例えば、固体支持体に有機スペーサーを介して共有結合された金属イオン認識試薬を、ウェブ又は膜に組み込んだ金属イオンの比色定量方法が報告されている(特許文献1参照)。現在市販されている金属イオン検出試験紙は、リトマス試験紙のように溶液に浸すだけであるので、最も簡便で誰でも安価に数分以内に判定できる測定方法ではあるが、検出下限が数十ppm以上と感度不足であり、かつ妨害の影響を強く受け精度に欠ける。また、簡易検出法として定評のあるパックテスト法は、ある程度の妨害に強く、簡便・安価で、小型の吸光光度計を用いることで数値化も可能であり、現在実用されているが、感度が足りない項目があり、汎用性という意味で難がある。   Conventionally, as a prior art, for example, a colorimetric determination method of metal ions in which a metal ion recognition reagent covalently bonded to a solid support via an organic spacer is incorporated into a web or a membrane has been reported (see Patent Document 1). ). The metal ion detection test strips that are currently available on the market are simply immersed in a solution like the litmus test strip, so it is the simplest measurement method that anyone can judge within a few minutes at a low cost. It is not sensitive enough, and it is strongly affected by interference and lacks accuracy. The pack test method, which has a reputation as a simple detection method, is resistant to interference to some extent, is simple and inexpensive, and can be quantified by using a small absorptiometer. There are items that are missing, which is difficult in terms of versatility.

また、例えば、金属イオンの比色分析あるいは蛍光分析等の発光分析に用いられる疎水性分析試薬を微粒子でメンブランフィルターに担持させた、簡易分析に適した金属イオン検出フィルム、その製造方法及びそれを用いた金属イオン定量方法が報告されている(特許文献2参照)。しかしながら、この検出フィルムに用いられる金属検出試薬は、疎水性有機試薬に限定されており、多くの金属イオンに対応しきれないという問題があり、また、疎水性のため、金属イオンとの反応が遅いという欠点もあった。そこで、より多くの金属イオンに対応し、より反応が速やかな親水性有機試薬であるイオン性有機試薬の製膜化技術の確立が必要であると考えられる。   In addition, for example, a metal ion detection film suitable for simple analysis, in which a hydrophobic analysis reagent used for luminescence analysis such as colorimetric analysis or fluorescence analysis of metal ions is supported on a membrane filter with fine particles, a manufacturing method thereof, and the The metal ion quantification method used has been reported (see Patent Document 2). However, the metal detection reagents used in this detection film are limited to hydrophobic organic reagents, and there is a problem that they cannot handle many metal ions, and because of the hydrophobicity, the reaction with metal ions does not occur. There was also the disadvantage of being slow. Therefore, it is considered necessary to establish a technique for forming a film of an ionic organic reagent, which is a hydrophilic organic reagent that responds to more metal ions and has a quicker reaction.

一般に、親水性有機試薬は、紙等の支持体に含浸しただけでは、該親水性有機試薬は、使用中に直ちに水に溶解し、微量の金属イオンの定量の際には大きな誤差を生じてしまう。イオン交換体比色法は、水溶性有機試薬と金属イオンを予め水溶液中で反応させてから、その錯イオンをイオン交換体に静電吸着させることで濃縮し、比色定量する方法であり(非特許文献1参照)、はじめから水溶性試薬を固定化して、検出膜とし、金属イオンの定量に用いる本発明とは明らかに異なっている。   In general, when a hydrophilic organic reagent is simply impregnated on a support such as paper, the hydrophilic organic reagent is immediately dissolved in water during use, and a large error is caused in the determination of a trace amount of metal ions. End up. The ion exchanger colorimetric method is a method in which a water-soluble organic reagent and a metal ion are reacted in advance in an aqueous solution, and then the complex ions are concentrated by electrostatic adsorption on the ion exchanger to perform colorimetric determination ( This is clearly different from the present invention in which a water-soluble reagent is immobilized from the beginning to form a detection membrane and used for the determination of metal ions.

また、一般的に、ナノコンポジット膜としては、例えば、燃料電池用のnafion等の高分子ポリマーと金属ナノ粒子の複合膜、又は無機物と有機物が階層構造になっているナノコンポジットの不均一膜、LB膜等が挙げられる。しかしながら、その作製法が複雑で、専門知識が必要であり、センチメーターオーダーで、均一かつ剥がれない膜は得難く、かつイオン性有機試薬を効率よく膜化できるものはないという欠点があった。本発明のように、イオン性有機試薬をコロイド担体に静電吸着し、これを濾過することで製膜する方法は、他にはない。   In general, as the nanocomposite film, for example, a polymer film of a polymer polymer such as nafion for fuel cells and a metal nanoparticle, or a nanocomposite heterogeneous film in which an inorganic substance and an organic substance have a hierarchical structure, LB film etc. are mentioned. However, the manufacturing method is complicated, specialized knowledge is required, there is a drawback that it is difficult to obtain a uniform and non-peeling film on the centimeter order, and there is no film that can efficiently form an ionic organic reagent. As in the present invention, there is no other method for forming a film by electrostatically adsorbing an ionic organic reagent on a colloidal carrier and filtering it.

ところで、近年、有害化学物質による汚染と健康被害は、産業界のみならず、一般社会に重大な関心事として深く浸透している。環境保全のため、鉱工業排水や河川水、飲料水等に含まれる有害な重金属イオン等の金属イオンの簡易計測は、各種産業における工程管理上、また、自然環境のモニターのための重要課題とされており、このような金属イオンを、特殊な装置を用いることなく分析現場で速やかに検出できる、簡便で汎用性のある計測技術の開発が急務の課題となってきている。   By the way, in recent years, contamination by harmful chemical substances and health damage have deeply penetrated as a serious concern not only in industry but also in general society. For environmental conservation, simple measurement of metal ions such as harmful heavy metal ions contained in industrial wastewater, river water, drinking water, etc. is regarded as an important issue for process management in various industries and for monitoring the natural environment. Therefore, the development of a simple and versatile measurement technique that can quickly detect such metal ions at an analysis site without using a special apparatus has become an urgent issue.

特表2000−515968号公報JP 2000-515968 Gazette 特開2005−274146号公報JP 2005-274146 A K.Yoshimura,H.Wakiand,and S.Ohashi,Talanata,23,449(1976)K. Yoshimura, H .; Wakiand, and S.W. Ohashi, Talanata, 23, 449 (1976)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、疎水性の金属イオン検出試薬を微粒子でメンブレンフィルターに担持させた簡易分析に適した金属イオン検出フィルム(特許文献2参照)を開発したが、疎水性試薬の膜では、検出可能な金属イオンの種類に限界があるという問題がある。加えて、一般的に、疎水性試薬から成る膜では表面が疎水的になってしまうために、イオンが近づきにくく反応が遅くなってしまう傾向にある。一方、親水性試薬は、反応が早く、種類も豊富にあるが、水溶液試料中で検出している際に溶出せずに安定に保持することが難しいという問題があった。   Under such circumstances, in view of the above prior art, the present inventors have developed a metal ion detection film suitable for simple analysis in which a hydrophobic metal ion detection reagent is supported on a membrane filter with fine particles (Patent Document 2). However, there is a problem that the types of detectable metal ions are limited in hydrophobic reagent membranes. In addition, in general, a membrane made of a hydrophobic reagent has a hydrophobic surface, so that ions are difficult to approach and the reaction tends to be slow. On the other hand, hydrophilic reagents have a fast reaction and are abundant in types, but have a problem that it is difficult to stably retain them without elution during detection in an aqueous solution sample.

そこで、試薬の選択肢を増やし、反応を迅速にする目的で、親水性試薬であるイオン性有機試薬を微粒子化し膜化する方法を鋭意研究した結果、ナノオーダーの電荷をもつ微粒子担体に、イオン性有機試薬を静電吸着させ、このナノコンポジット分散液を、メンブレンフィルターで濾過したり、また、該フィルターに含浸させたりすることにより、該ナノコンポジットを該フィルターに被覆させて薄膜化し得ることを見出し、かつこの薄膜は水溶液中においても試薬が溶出しない程安定な膜であるとの知見を得て、これらに基づいて本発明に到達するに至った。   Therefore, as a result of diligent research on the method of forming a membrane of an ionic organic reagent, which is a hydrophilic reagent, for the purpose of increasing the number of reagent options and speeding up the reaction, the ionic property of the nanoparticle-charged fine particle carrier is improved. It is found that the nanocomposite dispersion can be formed into a thin film by coating the nanocomposite on the filter by electrostatically adsorbing an organic reagent and filtering the nanocomposite dispersion with a membrane filter or impregnating the filter. In addition, the inventors have obtained the knowledge that this thin film is so stable that the reagent does not elute even in an aqueous solution, and based on these findings, the present invention has been reached.

本発明は、イオン性有機試薬をコロイドに静電吸着させたナノコンポジット膜の製造方法を提供することを目的とするものであり、更に、イオン性有機試薬として吸光又は蛍光検出試薬を用い、これをコロイドに静電吸着させ濾過製膜することで、前記の疎水性分析試薬の微粒子をメンブランフィルターに担持させた金属イオン検出フィルム(特許文献2参照)とは異なる、簡便に分析現場等で検出することができる金属イオン検出用材を提供することを目的とするものである。   An object of the present invention is to provide a method for producing a nanocomposite film in which an ionic organic reagent is electrostatically adsorbed on a colloid. Further, the present invention uses an absorption or fluorescence detection reagent as the ionic organic reagent. Is easily adsorbed on a colloid and formed into a film by filtration, which is different from a metal ion detection film (see Patent Document 2) in which fine particles of the hydrophobic analysis reagent are supported on a membrane filter. An object of the present invention is to provide a metal ion detection material that can be used.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)イオン性有機試薬をイオン交換能のあるコロイド微粒子もしくは繊維に静電的に吸着させて成るナノコンポジットを、フィルター表面に膜状に被覆させて成るナノコンポジット薄膜。
(2)イオン性有機試薬が、水系の溶媒に溶解可能で、イオン交換能をもつコロイドに吸着するものである、前記(1)記載のナノコンポジット薄膜。
(3)コロイドが、イオン性有機試薬を溶解する溶媒に分散可能で、イオン性有機試薬を静電的に吸着する担体であり、無機物乃至有機物から成る大きくても直径1μmの粒子又は不定形粒子、もしくは幅が1nm−1μmの繊維である、前記(1)記載のナノコンポジット薄膜。
(4)フィルターが、網目状繊維からなる不織布、フィブリル化ポリマーシート、ファイバーシート、溶液キャスト多孔質ポリマーシート、延伸多孔性フィルム、放射線照射多孔性フィルム、多孔質セラミックスシート、多孔質ガラスシート及び多孔質金属シートの中から選ばれた少なくとも1種であって、孔径10〜1000nmの範囲の細孔を有するものである、前記(1)記載のナノコンポジット薄膜。
(5)イオン性有機試薬が、金属イオン検出試薬である、前記(1)、(2)又は(3)記載のナノコンポジット薄膜。
(6)金属イオン検出試薬が、金属イオンと錯体を形成して発色もしくは発光し、金属イオンの濃度に応じて色調及び/又はその強度を変化させる金属イオン検出膜から成る、前記(5)記載のナノコンポジット薄膜。
(7)イオン性有機試薬を、水系溶媒に溶解し、ここにコロイド分散溶液を混合、攪拌して、イオン性有機試薬をコロイドに吸着させた後、得られた分散液を、フィルターで濾過するか或いは該フィルターに含浸し、上記コロイドを該フィルターに膜状に被覆させることを特徴とするナノコンポジット薄膜の製造方法。
(8)イオン性有機試薬が、水又は水との混合溶媒に溶解可能で、分子量が大きくても5000の低分子で、解離により正電荷もしくは負電荷を帯び、イオン交換能をもつコロイドに静電的に吸着し得るイオン性有機分子である、前記(7)記載のナノコンポジット薄膜の製造方法。
(9)コロイドとして、イオン性有機試薬を溶解する溶媒に分散可能で、イオン性有機試薬を静電的に吸着する担体であり、無機物乃至有機物から成る大きさが大きくても1μmの粒子又は不定形粒子、もしくは幅が1nm−1μmの繊維を用いる、前記(7)記載のナノコンポジット薄膜の製造方法。
(10)フィルターが、網目状繊維からなる不織布、フィブリル化ポリマーシート、ファイバーシート、溶液キャスト多孔質ポリマーシート、延伸多孔性フィルム、放射線照射多孔性フィルム、多孔質セラミックスシート、多孔質ガラスシート及び多孔質金属シートの中から選ばれた少なくとも1種であって、孔径10〜1000nmの範囲の細孔を有するものである、前記(7)記載のナノコンポジット薄膜の製造方法。
(11)イオン性有機試薬が、金属イオン検出試薬である、前記(7)記載のナノコンポジット薄膜の製造方法。
(12)金属イオン検出試薬が、金属イオンと錯体を形成して発色もしくは発光し、金属イオンの濃度に応じて色調及び/又はその強度を変化させる金属イオン検出膜から成る、前記(11)記載のナノコンポジット薄膜の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A nanocomposite thin film obtained by coating a filter surface with a nanocomposite obtained by electrostatically adsorbing an ionic organic reagent on colloidal fine particles or fibers capable of ion exchange.
(2) The nanocomposite thin film according to (1) above, wherein the ionic organic reagent is soluble in an aqueous solvent and adsorbed on a colloid having ion exchange ability.
(3) A colloid that can be dispersed in a solvent that dissolves the ionic organic reagent, is a carrier that electrostatically adsorbs the ionic organic reagent, and is a particle or amorphous particle having a diameter of 1 μm or less and made of an inorganic or organic substance. Or the nanocomposite thin film according to (1), which is a fiber having a width of 1 nm to 1 μm.
(4) Non-woven fabric, fibrillated polymer sheet, fiber sheet, solution cast porous polymer sheet, stretched porous film, radiation irradiated porous film, porous ceramic sheet, porous glass sheet and porous The nanocomposite thin film according to the above (1), which is at least one selected from porous metal sheets and has pores having a pore diameter in the range of 10 to 1000 nm.
(5) The nanocomposite thin film according to (1), (2) or (3), wherein the ionic organic reagent is a metal ion detection reagent.
(6) The above-mentioned (5), wherein the metal ion detection reagent comprises a metal ion detection film that forms a complex with a metal ion and emits color or emits light, and changes the color tone and / or its intensity according to the concentration of the metal ion. Nanocomposite thin film.
(7) The ionic organic reagent is dissolved in an aqueous solvent, and the colloidal dispersion solution is mixed and stirred here to adsorb the ionic organic reagent to the colloid, and then the obtained dispersion is filtered with a filter. Alternatively, the method for producing a nanocomposite thin film, wherein the filter is impregnated and the colloid is coated on the filter in a film form.
(8) An ionic organic reagent can be dissolved in water or a mixed solvent with water, and is a low molecular weight molecule with a molecular weight of 5000 at most. The method for producing a nanocomposite thin film according to (7), which is an ionic organic molecule that can be adsorbed electrically.
(9) As a colloid, it is a carrier that can be dispersed in a solvent that dissolves the ionic organic reagent and electrostatically adsorbs the ionic organic reagent. The method for producing a nanocomposite thin film according to (7) above, wherein regular particles or fibers having a width of 1 nm to 1 μm are used.
(10) Non-woven fabric, fibrillated polymer sheet, fiber sheet, solution cast porous polymer sheet, stretched porous film, irradiated porous film, porous ceramic sheet, porous glass sheet and porous The method for producing a nanocomposite thin film according to (7), wherein the nanocomposite thin film has at least one selected from porous metal sheets and has pores in the pore diameter range of 10 to 1000 nm.
(11) The method for producing a nanocomposite thin film according to (7), wherein the ionic organic reagent is a metal ion detection reagent.
(12) The above-mentioned (11), wherein the metal ion detection reagent comprises a metal ion detection film that forms a complex with a metal ion and develops color or emits light, and changes the color tone and / or its intensity according to the concentration of the metal ion. Manufacturing method of nanocomposite thin film.

次に、本発明について更に詳細に説明する。
本発明に用いられるイオン性有機試薬としては、特定のpHの水又は水との混合溶媒の溶媒に溶解可能で、イオン交換能をもつコロイドに吸着するアニオン又はカチオン性有機試薬が挙げられる。アニオン性試薬としては、例えば、スルホン酸基、カルボキシル基、ヒドロキシル基、チオール基、リン酸基を一つ又はそれ以上有するもの、オニウムイオン等が例示される。また、カチオン性試薬として、アミノ基、トリアルキルアミノ基、ジアルキルアミノ基、N−メチルピリジル基等を一つ又はそれ以上有するものが例示される。これらのうち、分子量5000以下、中でも2000以下の低分子で、π電子共役系である芳香族炭化水素基を有するものが好ましい。
Next, the present invention will be described in more detail.
Examples of the ionic organic reagent used in the present invention include an anionic or cationic organic reagent that can be dissolved in water having a specific pH or a mixed solvent with water and adsorbed on a colloid having ion exchange ability. Examples of the anionic reagent include those having one or more sulfonic acid groups, carboxyl groups, hydroxyl groups, thiol groups, and phosphoric acid groups, onium ions, and the like. Examples of the cationic reagent include those having one or more amino groups, trialkylamino groups, dialkylamino groups, N-methylpyridyl groups and the like. Among these, those having a low molecular weight of 5000 or less, particularly 2000 or less, and having an aromatic hydrocarbon group which is a π-electron conjugated system are preferable.

特に、金属イオン検出試薬としては、上記試薬条件の他に、金属イオンと錯体を形成して発色し、金属イオンの濃度に応じて色調及び/又はその強度を変化させる発色性化合物や、金属イオンと錯体を形成して発光し、金属イオンの濃度に応じて発光の色調及び/又はその強度を変化させる発光性化合物が挙げられる。   In particular, as a metal ion detection reagent, in addition to the above reagent conditions, a color-forming compound that forms a complex with a metal ion and develops color, and changes the color tone and / or its intensity according to the concentration of the metal ion, And a luminescent compound that emits light by forming a complex with it and changes the color tone and / or intensity of light emission according to the concentration of metal ions.

このようなものとしては、例えば、フェニルフルオロン、ピロカテコールバイオレッド、ピロガロールレッド、ブロモピロガロールレッド、クロマゾール、タイロン、クプフェロン、クロモトロープ酸、ジニトロナフタレンジオール、モリン、アリザリンレッド、スチルバゾ、エリオクロームブラックT、カルコンカルボン酸、カルガマイト、ヒドロキシナフトールブルー、ガリオン、スパドンス、ベリリロンII、カルシクローム、マゴン、シパン、フェナゾ、アルセナゾ、クロポスフォナゾIII、スルフォナゾIII、ジニトロスルフォナゾIII、アルセナゾK、スルフォクロロフェノールS、スルファサゼン、ピリジルアゾナフトール、ピリジルアゾレソルシノール、チアゾリルアゾフェノール、チアゾリルアゾナフトール、5−ブロモ−PAPS、5−ブロモ−PAPAP、5−ブロモ−DMPAP、ニトロソ−PAPS、5−クロロ−PADAP、TAMB、BTMB、3,5−ジブロモ−PAMB、TAMSMB、5−クロロ−PADAB、5−ブロモ−PADAB、5−ブロモ−PSAA、3,5−ジブロモ−PAESA、フタレインコンプレキサン、チモールフタレインコンプレキサン、カルセイン、メチルカルセイン、カルセインブルー、クイン2、フラ2、インド1、ロッド2、フルオ3、キシレノールオレンジ、メチルチモールブルー、メチルキシレノールブルー、グリシンクレゾールレッド、グリシンチモールブルー、サルコシンクレゾールレッド、アリザリンコンプレクソン、8−キノリノール、オキシンー5−スルフォニックアシッド、アゾメチンH、GHA、SAPH、SABF、3−OH−PAA、ジンコン、ムレキシド、2−ニトロソ−1−ナフトールー4−スルホン酸、ニトロソR酸、ニトロソーDMAP、ニトロソ−ESAP、ニトロソ−PSAP、2,2’−ビピリジン、1,10−フェナントロリン、バソフェナントロリンジスルホン酸、トリピリジルオリアジン、ピリジルジフェニルトリアジン、バソクプロインジスルホン酸、BCA、ジメチルグリオキシム、ニオキシム、DAB、DAN、o−フェニレンジアミン、5−クロロー1,2−フェニレンジアミン、5−ニトロ1,2−フェニレンジアミン、TPPS、T(3−MPy)P、T(4−MPy)P、T(5−ST)P、TTMAPP、ジチゾン、チオキシン、DDTC、APDC、ビスムチオールII、インジゴカーミン、2,6−ジクロロインドフェノール、ニュートラルレッド、ガロシアニン、メチレンブルー、バリアミンブルーB、3,3’−ジメチルナフチジン等が挙げられる。   Examples of such compounds include phenylfluorone, pyrocatechol bio red, pyrogallol red, bromopyrogallol red, chromazole, tyrone, cupferon, chromotropic acid, dinitronaphthalenediol, morin, alizarin red, stilbazo, eriochrome black T , Chalcone carboxylic acid, calgamite, hydroxynaphthol blue, gallion, spadence, beryllon II, calcyclome, magon, sipan, phenazo, arsenazo, clophosphonazo III, sulfonazo III, dinitrosulfonazo III, arsenazo K, sulfochlorophenol S, Sulphasazen, pyridylazonaphthol, pyridylazoresorcinol, thiazolylazophenol, thiazolylazonaphthol, 5- Lomo-PAPS, 5-bromo-PAPAP, 5-bromo-DMPAP, nitroso-PAPS, 5-chloro-PADAP, TAMB, BTMB, 3,5-dibromo-PAMB, TAMSMB, 5-chloro-PADAB, 5-bromo- PADAB, 5-bromo-PSAA, 3,5-dibromo-PAESA, phthalein complexane, thymolphthalein complexane, calcein, methylcalcein, calcein blue, quine 2, fura 2, india 1, rod 2, fluo 3, Xylenol orange, methylthymol blue, methylxylenol blue, glycincresol red, glycine thymol blue, sarcosine resol red, alizarin complexone, 8-quinolinol, oxine-5-sulfonic acid, azomethi H, GHA, SAPH, SABF, 3-OH-PAA, Zincon, murexide, 2-nitroso-1-naphthol-4-sulfonic acid, nitroso R acid, nitroso DMAP, nitroso-ESAP, nitroso-PSAP, 2,2′- Bipyridine, 1,10-phenanthroline, bathophenanthroline disulfonic acid, tripyridyl oliazine, pyridyl diphenyl triazine, bathocuproine disulfonic acid, BCA, dimethylglyoxime, nioxime, DAB, DAN, o-phenylenediamine, 5-chloro-1 , 2-phenylenediamine, 5-nitro1,2-phenylenediamine, TPPS, T (3-MPy) P, T (4-MPy) P, T (5-ST) P, TTMAPP, dithizone, thioxin, DDTC, APDC, Bismuthiol II, In Digocarmine, 2,6-dichloroindophenol, neutral red, galocyanine, methylene blue, barrier amine blue B, 3,3'-dimethylnaphthidine and the like can be mentioned.

また、本発明に用いられるコロイドとしては、好適には、例えば、イオン性有機試薬を溶解する水又は水との混合溶媒に分散可能で、イオン性有機試薬を静電的に吸着する担体であり、無機物や有機物から成る直径1μm以下の粒子や不定形粒子、もしくは幅が1nm−1μmの繊維が挙げられるが、これらに限定されるものではない。   The colloid used in the present invention is preferably a carrier that can be dispersed in, for example, water in which an ionic organic reagent is dissolved or a mixed solvent with water and electrostatically adsorbs the ionic organic reagent. Examples thereof include particles of 1 μm or less in diameter or amorphous particles made of inorganic or organic materials, or fibers having a width of 1 nm to 1 μm, but are not limited thereto.

無機コロイドとしては、好適には、例えば、アルミナ、シリカ、酸化チタン、酸化ジルコニウム、酸化鉄、酸化銅、酸化マグネシウム、希土類酸化物等の金属酸化物コロイド、及び金、白金、パラジウム、銀、銅等の金属コロイドが挙げられる。有機コロイドとしては、ポリスチレン、ポリアクリル酸、ポリメタクリル酸、ポリ乳酸、スチレンーマレイン酸共重合体等が挙げられる。   As the inorganic colloid, for example, alumina, silica, titanium oxide, zirconium oxide, iron oxide, copper oxide, magnesium oxide, metal oxide colloid such as rare earth oxide, and gold, platinum, palladium, silver, copper And metal colloids. Examples of the organic colloid include polystyrene, polyacrylic acid, polymethacrylic acid, polylactic acid, and styrene-maleic acid copolymer.

本発明に用いるフィルターとしては、好適には、例えば、網目状繊維からなる不織布、フィブリル化ポリマーシート、ファイバーシート、溶液キャスト多孔質ポリマーシート、延伸多孔性フィルム、放射線照射多孔性フィルム、多孔質セラミックスシート、多孔質ガラスシート及び多孔質金属シートの中から選ばれた少なくとも1種であって、孔径10〜1000nmの範囲の細孔を有するものが挙げられるが、これらに限定されるものではない。   The filter used in the present invention is preferably, for example, a nonwoven fabric composed of network fibers, a fibrillated polymer sheet, a fiber sheet, a solution cast porous polymer sheet, a stretched porous film, a radiation irradiated porous film, a porous ceramic. Although it is at least 1 sort (s) chosen from a sheet | seat, a porous glass sheet | seat, and a porous metal sheet | seat, Comprising: What has a pore of the range of 10-1000 nm of pore diameters is mentioned, It is not limited to these.

メンブレンフィルターの材質としては、好適には、例えば、セルロースアセテート等のセルロースエステル、ニトロセルロースとセルロースアセテートの混合物等からなるセルロース混合エステル、これらのエステルの1種又は2種以上を、ポリエチレンテレフタレート等のポリエステルにコートしたもの、ポリエチレンテレフタレート等のポリエステル、ホリエチレンやポリプロピレンやポリスチレン等のポリオレフィン系樹脂、ポリカーボネート、テトラフルオロエチレン等のフッ素樹脂、ニトロセルロース、ポリエーテルスルホン等が挙げられる。   As a material for the membrane filter, for example, cellulose esters such as cellulose acetate, cellulose mixed esters composed of a mixture of nitrocellulose and cellulose acetate, and one or more of these esters may be used as polyethylene terephthalate or the like. Examples include polyesters coated with polyester, polyesters such as polyethylene terephthalate, polyolefin resins such as polyethylene, polypropylene and polystyrene, fluororesins such as polycarbonate and tetrafluoroethylene, nitrocellulose, and polyethersulfone.

本発明のナノコンポジット膜は、イオン性有機試薬をイオン交換能のあるコロイドに静電的に吸着させて成るナノコンポジット分散液を、メンブレンフィルターで濾過するか或いは該フィルターに含浸し、該ナノコンポジットを該フィルターに膜状に被覆させることにより作製される。   The nanocomposite membrane of the present invention is prepared by filtering a nanocomposite dispersion liquid obtained by electrostatically adsorbing an ionic organic reagent on a colloid having ion exchange ability with a membrane filter or impregnating the filter. Is produced by coating the filter with a film.

この際、まず、イオン性有機試薬をイオン交換能のあるコロイドに静電的に吸着させてナノコンポジット分散液を作製する。その調製には、イオン性有機試薬を水又は水との混合溶媒に完全に溶解し、この溶液を適量採り、コロイドを0.00001%−1%程度含むpHを調整された水又は水との混合溶媒に、好ましくは撹拌しながら滴下して混合する。吸着は、静電相互作用に基づいているため、コロイドは、イオン性有機試薬の電荷と反対のものを用いる。   At this time, first, an ionic organic reagent is electrostatically adsorbed on a colloid having ion exchange ability to prepare a nanocomposite dispersion. For the preparation, an ionic organic reagent is completely dissolved in water or a mixed solvent with water, an appropriate amount of this solution is taken, and the pH of the colloid containing about 0.00001% -1% is adjusted with water or water. The mixed solvent is preferably added dropwise with stirring. Since adsorption is based on electrostatic interactions, the colloid uses the opposite of the charge of the ionic organic reagent.

また、酸解離に基づく試薬の電荷、及びコロイドの表面電荷は、溶液pHに大きく影響されるため、ナノコンポジット分散液は、適したpH範囲に調整して使用することが肝要である。例えば、シリカ系コロイドを用い、カチオン性色素TMPyPとのナノコンポジット膜を作製する場合、中性から弱アルカリ領域で定量的な製膜ができるが、これは、シリカコロイドの表面電荷がゼロになるpH1.8−2.5と相関する。   In addition, since the charge of the reagent based on the acid dissociation and the surface charge of the colloid are greatly influenced by the solution pH, it is important to use the nanocomposite dispersion after adjusting it to a suitable pH range. For example, when producing a nanocomposite film with the cationic dye TMPyP using a silica-based colloid, it is possible to quantitatively form a film in a neutral to weakly alkaline region, which means that the surface charge of the silica colloid becomes zero. Correlates with pH 1.8-2.5.

この状態で、コロイド粒子は、イオン性有機試薬の静電吸着により表面電荷が現象するため凝集し、1μm以下のナノコンポジット凝集体を形成する。このように、イオン性有機試薬は、コロイド間のバインダーの役割を果たすため、コロイド量と試薬量の調整は重要である。   In this state, the colloidal particles aggregate due to the phenomenon of surface charge due to electrostatic adsorption of the ionic organic reagent, and form a nanocomposite aggregate of 1 μm or less. Thus, since an ionic organic reagent plays the role of a binder between colloids, adjustment of the amount of colloid and the amount of reagent is important.

これを、同じもしくは若干大きめの細孔径のメンブレンフィルターで濾過、好ましくは吸引濾過する。この操作により、イオン性有機試薬とコロイドとのナノコンポジットを均一な分布でかつ強固に被覆させたフィルターが得られる。イオン性有機試薬は、フィルター上でコロイドに静電相互作用で吸着しているため、容易には剥がれず、例えば、水に浸しても、通液しても流出しない。   This is filtered with a membrane filter having the same or slightly larger pore diameter, preferably suction filtration. By this operation, a filter in which a nanocomposite of an ionic organic reagent and a colloid is uniformly coated and firmly coated can be obtained. Since the ionic organic reagent is adsorbed to the colloid by electrostatic interaction on the filter, it does not easily peel off, and does not flow out even if it is immersed in water or passed through, for example.

本発明により、次のような効果が奏される。
(1)本発明によれば、従来、困難であったイオン性有機試薬を薄膜化し、安定に保持させることを実現できる。
(2)多くの種類の水溶性の金属イオン検出試薬を安定に保持させたフィルム型の簡易な金属イオン検出材を提供することができる。
(3)本発明の金属イオン検出試薬は、着色・汚濁した排水等の検液からの検出、定量操作にも十分対応することが可能である。
(4)本発明の金属イオン検出試薬は、標準色系列や標準蛍光系列と比較することで目視判定が可能となるので、現場で直ちに分析に供することができる。
The present invention has the following effects.
(1) According to the present invention, it is possible to realize a stable and stable holding of an ionic organic reagent, which has conventionally been difficult.
(2) It is possible to provide a film-type simple metal ion detection material in which many types of water-soluble metal ion detection reagents are stably held.
(3) The metal ion detection reagent of the present invention can sufficiently cope with detection and quantitative operation from a test solution such as colored or contaminated waste water.
(4) Since the metal ion detection reagent of the present invention can be visually determined by comparing with a standard color series or standard fluorescence series, it can be immediately subjected to analysis on site.

次に、実施例により本発明を具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。なお、各実施例の各操作や処理は室温で行った。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by these examples. In addition, each operation and process of each Example were performed at room temperature.

カチオン性試薬、5,10,15,20−テトラキス(N−メチルピリジニウムー4−イル)−21H,23H−ポルフィリンテトラキス(p−トルエンスルフォネイト)(以下、TMPyPと略す。分子構造を図1に示す。)27.3mgを、水10mLに溶解して濃度2mMのTMPyP水溶液を調製した。   Cationic reagent, 5,10,15,20-tetrakis (N-methylpyridinium-4-yl) -21H, 23H-porphyrintetrakis (p-toluenesulfonate) (hereinafter abbreviated as TMPyP. The molecular structure is shown in FIG. 27.3 mg was dissolved in 10 mL of water to prepare a 2 mM TMPyP aqueous solution.

粒子表面がマイナスに荷電したシリカゾル(球形、異方形)及びプラスに帯電したアルミナゾル(板状、繊維状)の溶液(濃度は、それぞれ7−20%程度。)20μLを10mLの水で希釈し、ここに2mMTMPyP100μLを混合、撹拌し、TMPyPが無機ナノ粒子表面に吸着したナノコンポジット分散液を調製した。   Dilute 20 μL of silica sol (spherical, anisotropic) with positively charged particle surfaces and positively charged alumina sol (plate-like, fibrous) (concentration is about 7-20%, respectively) with 10 mL of water, Here, 2 μM TMPyP (100 μL) was mixed and stirred to prepare a nanocomposite dispersion in which TMPyP was adsorbed on the surface of the inorganic nanoparticles.

この分散液をセルロース混合エステル製の円板状メンブレンフィルター(直径47mm、孔径0.1μm、厚さ110μm。)で375mmHgの減圧下に吸引濾過し、該フィルターの濾過面にTMPyPの吸着したアルミナゾルからなるは茶色状薄膜を被覆させ、この被覆フィルターを水洗後、風乾した。その結果、カチオン性試薬であるTMPyPは、マイナスに荷電したシリカ系粒子には静電吸着し、着色した膜を形成するが、プラスに荷電したアルミナ系には反発し、吸着せず膜とならなかった(ほぼ無色)。各種無機ナノ粒子での製膜写真を図2に示す。   The dispersion was subjected to suction filtration with a disk-like membrane filter made of cellulose mixed ester (diameter 47 mm, pore diameter 0.1 μm, thickness 110 μm) under a reduced pressure of 375 mmHg, and from the alumina sol adsorbed with TMPyP on the filter surface. In other words, a brown thin film was coated, and the coated filter was washed with water and then air-dried. As a result, the cationic reagent TMPyP electrostatically adsorbs to negatively charged silica-based particles to form a colored film, but repels positively charged alumina-based particles and does not adsorb to form a film. None (almost colorless). Film formation photographs with various inorganic nanoparticles are shown in FIG.

アニオン性試薬バソフェナントロリン2スルホン酸2ナトリウム(分子構造を図3に示す)26.8mgを水10mlに溶解して、濃度5mMのバソクプロイン2スルホン酸水溶液を調製した。繊維状アルミナゾルAS−3分散液50μLを10mLの水で希釈し、ここに5mMバソクプロイン2スルホン酸水溶液50μlを混合、撹拌し、バソフェナントロリン2スルホン酸が表面に吸着したナノコンポジット分散液を調製した。   26.8 mg of anionic reagent bathophenanthroline disulfonate 2 (molecular structure is shown in FIG. 3) was dissolved in 10 ml of water to prepare a 5 mM bathocuproine 2-sulfonate aqueous solution. 50 μL of fibrous alumina sol AS-3 dispersion was diluted with 10 mL of water, mixed with 50 μL of 5 mM bathocuproine 2-sulfonic acid aqueous solution, and stirred to prepare a nanocomposite dispersion in which bathophenanthroline 2-sulfonic acid was adsorbed on the surface.

この高分散液をポリカーボネイト製の円板状メンブレンフィルター(直径47mm、孔径0.1μm、厚さ6μm。)で300mmHgの減圧下に吸引濾過し、該フィルターの濾過面にバソクプロイン2スルホン酸の吸着したアルミナゾルからなるは白色薄膜を被覆させ、この被覆フィルターを水洗後、風乾した。このようにして得られた膜を電子顕微鏡(SEM)にて観察した。該膜におけるバソクプロイン2スルホン酸−アルミナ粒子複合体のSEM写真を図4に示す。   This highly dispersed liquid was subjected to suction filtration under a reduced pressure of 300 mmHg with a polycarbonate disk membrane filter (diameter 47 mm, pore diameter 0.1 μm, thickness 6 μm), and bathocuproin 2-sulfonic acid was adsorbed on the filtration surface of the filter. A white thin film made of alumina sol was coated, and this coated filter was washed with water and then air-dried. The film thus obtained was observed with an electron microscope (SEM). The SEM photograph of the bathocuproine 2-sulfonic acid-alumina particle composite in the membrane is shown in FIG.

実施例1で用いた2mMTMPyP水溶液100μLと異方形状コロイダルシリカF −120分散液20μLを各種pHに調整された水溶液中(10mL)で混合し、TMPyPがF−120ナノ粒子に吸着したナノコンポジットの分散液を調製した。この分散液をセルロース混合エステル製の円板状メンブレンフィルター(直径47mm、孔径0.1μm、厚さ110μm。)で480mmHgの減圧下に吸引濾過した。濾過前と後の溶液の吸収スペクトルを比較することにより、TMPyPの膜への捕集率と溶液pHとの関係を調べた。その結果を図5に示す。   100 μL of the 2 mM TMPyP aqueous solution used in Example 1 and 20 μL of the anisotropic colloidal silica F-120 dispersion were mixed in an aqueous solution adjusted to various pHs (10 mL), and TMPyP was adsorbed on the F-120 nanoparticles. A dispersion was prepared. This dispersion was subjected to suction filtration with a disk-shaped membrane filter made of cellulose mixed ester (diameter 47 mm, pore diameter 0.1 μm, thickness 110 μm) under a reduced pressure of 480 mmHg. By comparing the absorption spectra of the solution before and after filtration, the relationship between the trapping rate of TMPyP on the membrane and the solution pH was examined. The result is shown in FIG.

実施例1で用いた2mMTMPyP水溶液100μLと異方形状コロイダルシリカF −120分散液20μLをpH7.5(0.01Mトリエタノールアミン緩衝液)に調整した水溶液中(10mL)で混合し、TMPyPがF−120ナノ粒子の表面に吸着したナノコンポジット分散液を調製した。この分散液をセルロース混合エステル製の円板状メンブレンフィルター(直径47mm、孔径0.1μm、厚さ110μm。)で480mmHgの減圧下に吸引濾過し、該フィルターの濾過面にTMPyPの吸着したアルミナゾルからなるは茶色状薄膜を被覆させ、この被覆フィルターを水洗後、風乾した。   100 μL of the 2 mM TMPyP aqueous solution used in Example 1 and 20 μL of the anisotropic colloidal silica F-120 dispersion were mixed in an aqueous solution (10 mL) adjusted to pH 7.5 (0.01 M triethanolamine buffer), and TMPyP was F A nanocomposite dispersion adsorbed on the surface of -120 nanoparticles was prepared. This dispersion was subjected to suction filtration with a disk-like membrane filter made of cellulose mixed ester (diameter 47 mm, pore diameter 0.1 μm, thickness 110 μm) under reduced pressure of 480 mmHg, and from the alumina sol adsorbed with TMPyP on the filter surface of the filter. In other words, a brown thin film was coated, and the coated filter was washed with water and then air-dried.

このようにして得られた膜を、セパラブルフィルター(図6、直径16m、濾過面積2.1cm。)にはさみ、上からカドミウム(II)イオンを0、10、20、50、100及び200ppbの濃度で含む、pH9.76に調整された水溶液試料を注ぎ、減圧下で通液した。この時の膜の写真及びスペクトルをそれぞれ図7及び図8に示す。図8中、a〜fは、それぞれカドミウム(II)イオン濃度が0、10、20、50、100及び200ppbである場合を示す。 The membrane thus obtained was sandwiched between separable filters (FIG. 6, diameter 16 m, filtration area 2.1 cm 2 ), and cadmium (II) ions from 0, 10, 20, 50, 100 and 200 ppb from above. A sample of an aqueous solution adjusted to pH 9.76 was poured, and the solution was passed under reduced pressure. The photograph and spectrum of the film at this time are shown in FIGS. 7 and 8, respectively. In FIG. 8, a to f indicate cases where the cadmium (II) ion concentrations are 0, 10, 20, 50, 100, and 200 ppb, respectively.

以上詳述したように、本発明は、イオン性有機試薬とコロイド微粒子もしくは繊維からなるナノコンポジット膜、金属イオン検出膜並びにその製造方法に係るものであり、本発明によれば、従来困難であったイオン性有機試薬を薄膜化し、安定に保持させることが実現できる。本発明により、多くの水溶性の金属イオン検出試薬を安定に保持させたフィルム型の簡易な金属イオン検出材を作製することができ、着色・汚濁した排水等の検液からの検出、定量操作にも十分対応することができる。本発明は、標準色系列や標準蛍光系列と比較することで目視判定が可能となり、現場で直ちに分析に供することが可能な金属イオン検出材を提供するものとして有用である。   As described above in detail, the present invention relates to a nanocomposite film composed of an ionic organic reagent and colloidal fine particles or fibers, a metal ion detection film, and a method for producing the same. It is possible to reduce the thickness of the ionic organic reagent and keep it stable. According to the present invention, a simple film-type metal ion detection material in which a large number of water-soluble metal ion detection reagents are stably held can be produced, and detection and quantification operation from a test solution such as colored or contaminated drainage can be performed. Can also cope with. INDUSTRIAL APPLICABILITY The present invention is useful for providing a metal ion detection material that can be visually determined by comparing with a standard color series or a standard fluorescence series and can be immediately subjected to analysis in the field.

5,10,15,20−テトラキス(N−メチルピリジニウムー4−イル)−21H,23H−ポルフィリンテトラキス(p−トルエンスルフォネイト)の分子構造を示す。The molecular structure of 5,10,15,20-tetrakis (N-methylpyridinium-4-yl) -21H, 23H-porphyrintetrakis (p-toluene sulfonate) is shown. 実施例1の各種無機ナノ粒子での製膜写真を示す。The film-forming photograph in the various inorganic nanoparticles of Example 1 is shown. バソフェナントロリン2スルホン酸2ナトリウムの分子構造を示す。2 shows the molecular structure of bathophenanthroline disulfonate 2 sodium. 実施例2で得られた膜の走査型電子顕微鏡写真を示す。The scanning electron micrograph of the film | membrane obtained in Example 2 is shown. 実施例3のTMPyPの捕集率とpHとの関係を示すグラフを示す。The graph which shows the relationship between the collection rate of TMPyP of Example 3, and pH is shown. 実施例4の濾過用のセパラブルフィルターを示す。The separable filter for filtration of Example 4 is shown. 実施例4の種々の濃度のカドミウムイオンにより顕色した結果を示す写真を示す。The photograph which shows the result developed with the various density | concentrations of cadmium ion of Example 4 is shown. 実施例4の着色領域のカドミウムイオン濃度とスペクトルの関係を示す。The relationship between the cadmium ion density | concentration of the coloring area | region of Example 4 and a spectrum is shown.

Claims (12)

イオン性有機試薬をイオン交換能のあるコロイド微粒子もしくは繊維に静電的に吸着させて成るナノコンポジットを、フィルター表面に膜状に被覆させて成るナノコンポジット薄膜。   A nanocomposite thin film in which a filter is coated with a nanocomposite obtained by electrostatically adsorbing an ionic organic reagent on colloidal fine particles or fibers capable of ion exchange. イオン性有機試薬が、水系の溶媒に溶解可能で、イオン交換能をもつコロイドに吸着するものである、請求項1記載のナノコンポジット薄膜。   The nanocomposite thin film according to claim 1, wherein the ionic organic reagent is soluble in an aqueous solvent and adsorbed on a colloid having ion exchange ability. コロイドが、イオン性有機試薬を溶解する溶媒に分散可能で、イオン性有機試薬を静電的に吸着する担体であり、無機物乃至有機物から成る大きくても直径1μmの粒子又は不定形粒子、もしくは幅が1nm−1μmの繊維である、請求項1記載のナノコンポジット薄膜。   The colloid is a carrier that can disperse in an ionic organic reagent-dissolving solvent and electrostatically adsorbs the ionic organic reagent, and is a particle or amorphous particle having a diameter of at most 1 μm or an inorganic or organic substance, or a width. The nanocomposite thin film according to claim 1, wherein is a fiber of 1 nm to 1 μm. フィルターが、網目状繊維からなる不織布、フィブリル化ポリマーシート、ファイバーシート、溶液キャスト多孔質ポリマーシート、延伸多孔性フィルム、放射線照射多孔性フィルム、多孔質セラミックスシート、多孔質ガラスシート及び多孔質金属シートの中から選ばれた少なくとも1種であって、孔径10〜1000nmの範囲の細孔を有するものである、請求項1記載のナノコンポジット薄膜。   Non-woven fabric, fibrillated polymer sheet, fiber sheet, solution cast porous polymer sheet, stretched porous film, radiation-irradiated porous film, porous ceramic sheet, porous glass sheet and porous metal sheet whose filter is made of mesh fibers The nanocomposite thin film according to claim 1, wherein the thin film has at least one selected from the group consisting of pores having a pore diameter in the range of 10 to 1000 nm. イオン性有機試薬が、金属イオン検出試薬である、請求項1、2又は3記載のナノコンポジット薄膜。   The nanocomposite thin film according to claim 1, 2 or 3, wherein the ionic organic reagent is a metal ion detection reagent. 金属イオン検出試薬が、金属イオンと錯体を形成して発色もしくは発光し、金属イオンの濃度に応じて色調及び/又はその強度を変化させる金属イオン検出膜から成る、請求項5記載のナノコンポジット薄膜。   6. The nanocomposite thin film according to claim 5, wherein the metal ion detection reagent comprises a metal ion detection film that forms a complex with the metal ion to develop color or emit light, and changes the color tone and / or its intensity according to the concentration of the metal ion. . イオン性有機試薬を、水系溶媒に溶解し、ここにコロイド分散溶液を混合、攪拌して、イオン性有機試薬をコロイドに吸着させた後、得られた分散液を、フィルターで濾過するか或いは該フィルターに含浸し、上記コロイドを該フィルターに膜状に被覆させることを特徴とするナノコンポジット薄膜の製造方法。   The ionic organic reagent is dissolved in an aqueous solvent, and the colloidal dispersion solution is mixed and stirred here to adsorb the ionic organic reagent to the colloid, and then the resulting dispersion is filtered through a filter or the A method for producing a nanocomposite thin film, comprising impregnating a filter and coating the filter with the colloid in a film form. イオン性有機試薬が、水又は水との混合溶媒に溶解可能で、分子量が大きくても5000の低分子で、解離により正電荷もしくは負電荷を帯び、イオン交換能をもつコロイドに静電的に吸着し得るイオン性有機分子である、請求項7記載のナノコンポジット薄膜の製造方法。   An ionic organic reagent can be dissolved in water or a mixed solvent with water, and is a low molecular weight molecule with a molecular weight of at most 5000. The manufacturing method of the nanocomposite thin film of Claim 7 which is an ionic organic molecule which can adsorb | suck. コロイドとして、イオン性有機試薬を溶解する溶媒に分散可能で、イオン性有機試薬を静電的に吸着する担体であり、無機物乃至有機物から成る大きさが大きくても1μmの粒子又は不定形粒子、もしくは幅が1nm−1μmの繊維を用いる、請求項7記載のナノコンポジット薄膜の製造方法。   As a colloid, it is a carrier that can be dispersed in a solvent that dissolves the ionic organic reagent, and electrostatically adsorbs the ionic organic reagent. Or the manufacturing method of the nanocomposite thin film of Claim 7 using the fiber of width 1nm-1micrometer. フィルターが、網目状繊維からなる不織布、フィブリル化ポリマーシート、ファイバーシート、溶液キャスト多孔質ポリマーシート、延伸多孔性フィルム、放射線照射多孔性フィルム、多孔質セラミックスシート、多孔質ガラスシート及び多孔質金属シートの中から選ばれた少なくとも1種であって、孔径10〜1000nmの範囲の細孔を有するものである、請求項7記載のナノコンポジット薄膜の製造方法。   Non-woven fabric, fibrillated polymer sheet, fiber sheet, solution cast porous polymer sheet, stretched porous film, radiation-irradiated porous film, porous ceramic sheet, porous glass sheet and porous metal sheet whose filter is made of mesh fibers The method for producing a nanocomposite thin film according to claim 7, wherein the thin film has at least one selected from the group consisting of pores having a pore diameter in the range of 10 to 1000 nm. イオン性有機試薬が、金属イオン検出試薬である、請求項7記載のナノコンポジット薄膜の製造方法。   The method for producing a nanocomposite thin film according to claim 7, wherein the ionic organic reagent is a metal ion detection reagent. 金属イオン検出試薬が、金属イオンと錯体を形成して発色もしくは発光し、金属イオンの濃度に応じて色調及び/又はその強度を変化させる金属イオン検出膜から成る、請求項11記載のナノコンポジット薄膜の製造方法。   12. The nanocomposite thin film according to claim 11, wherein the metal ion detection reagent comprises a metal ion detection film that forms a complex with a metal ion to develop color or emit light, and changes a color tone and / or its intensity according to the concentration of the metal ion. Manufacturing method.
JP2007056344A 2007-03-06 2007-03-06 Nanocomposite film comprising ionic organic reagent and colloidal fine particles or fiber, metal ion detection film and method for producing the same Expired - Fee Related JP4958277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007056344A JP4958277B2 (en) 2007-03-06 2007-03-06 Nanocomposite film comprising ionic organic reagent and colloidal fine particles or fiber, metal ion detection film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007056344A JP4958277B2 (en) 2007-03-06 2007-03-06 Nanocomposite film comprising ionic organic reagent and colloidal fine particles or fiber, metal ion detection film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008216147A true JP2008216147A (en) 2008-09-18
JP4958277B2 JP4958277B2 (en) 2012-06-20

Family

ID=39836350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056344A Expired - Fee Related JP4958277B2 (en) 2007-03-06 2007-03-06 Nanocomposite film comprising ionic organic reagent and colloidal fine particles or fiber, metal ion detection film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4958277B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528073A (en) * 2011-11-02 2014-10-23 エンパイア テクノロジー ディベロップメント エルエルシー Imprint photonic polymers and methods for their preparation and use
JP2015515625A (en) * 2012-03-27 2015-05-28 スリーエム イノベイティブ プロパティズ カンパニー Bis (glyoxime) -transition metal colorimetric moisture indicator
KR101761057B1 (en) 2016-03-11 2017-07-25 한국과학기술원 Colorimetric sensors and member with one dimensioanl polymer nanofibers with fine dye particles obtained by high temperature stirring and quenching for decting hydrogen sulfide gas and manufacturing method thereof
KR101792363B1 (en) * 2015-12-17 2017-10-31 한국과학기술원 Textile colorimetric sensors and member with dye anchored one dimensional polymer nanofibers for decting hydrogen sulfide gas and manufacturing method thereof
US9921199B2 (en) 2011-03-31 2018-03-20 3M Innovative Properties Company Method for indicating moisture based on bis(glyoxime)-transition metal complexes
WO2021039708A1 (en) * 2019-08-23 2021-03-04 国立大学法人長岡技術科学大学 Chromogenic reaction composition, chromogenic reaction film, and method for suppressing color fading

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020167B (en) * 2014-06-19 2016-08-17 天津医科大学 A kind of use the method for iodine in polypyrrole nanofibers film detection sample

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184837A (en) * 1995-10-30 1997-07-15 Kdk Corp Testpiece
JPH09184836A (en) * 1995-10-30 1997-07-15 Kdk Corp Highly accurate method for measuring substance
JPH09184835A (en) * 1995-10-30 1997-07-15 Kdk Corp Method for measuring high sensitivity substance
JPH1090246A (en) * 1996-09-12 1998-04-10 Kdk Corp Method for measuring material containing reaction of generating insoluble material
WO2000016094A1 (en) * 1998-09-10 2000-03-23 Fuji Photo Film Co., Ltd. Method of detecting thiol-containing compound
JP2005274146A (en) * 2004-03-22 2005-10-06 National Institute Of Advanced Industrial & Technology Metal ion detection film, its manufacturing method, and metal ion quantification method using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184837A (en) * 1995-10-30 1997-07-15 Kdk Corp Testpiece
JPH09184836A (en) * 1995-10-30 1997-07-15 Kdk Corp Highly accurate method for measuring substance
JPH09184835A (en) * 1995-10-30 1997-07-15 Kdk Corp Method for measuring high sensitivity substance
JPH1090246A (en) * 1996-09-12 1998-04-10 Kdk Corp Method for measuring material containing reaction of generating insoluble material
WO2000016094A1 (en) * 1998-09-10 2000-03-23 Fuji Photo Film Co., Ltd. Method of detecting thiol-containing compound
JP2005274146A (en) * 2004-03-22 2005-10-06 National Institute Of Advanced Industrial & Technology Metal ion detection film, its manufacturing method, and metal ion quantification method using it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921199B2 (en) 2011-03-31 2018-03-20 3M Innovative Properties Company Method for indicating moisture based on bis(glyoxime)-transition metal complexes
JP2014528073A (en) * 2011-11-02 2014-10-23 エンパイア テクノロジー ディベロップメント エルエルシー Imprint photonic polymers and methods for their preparation and use
JP2015515625A (en) * 2012-03-27 2015-05-28 スリーエム イノベイティブ プロパティズ カンパニー Bis (glyoxime) -transition metal colorimetric moisture indicator
KR101792363B1 (en) * 2015-12-17 2017-10-31 한국과학기술원 Textile colorimetric sensors and member with dye anchored one dimensional polymer nanofibers for decting hydrogen sulfide gas and manufacturing method thereof
KR101761057B1 (en) 2016-03-11 2017-07-25 한국과학기술원 Colorimetric sensors and member with one dimensioanl polymer nanofibers with fine dye particles obtained by high temperature stirring and quenching for decting hydrogen sulfide gas and manufacturing method thereof
WO2017155189A1 (en) * 2016-03-11 2017-09-14 한국과학기술원 One-dimensional polymer nanofiber member, which has lead acetate microparticles bound thereto and obtained by high temperature stirring and quenching processes, for hydrogen sulfide gas-indicating colorimetric sensor, and manufacturing method therefor
US10613068B2 (en) 2016-03-11 2020-04-07 Korea Advanced Institute Of Science And Technology Colorimetric sensor material for detecting hydrogen sulfide gas, which includes one-dimensional polymer nanofiber coupled to lead acetate particles obtained by high temperature stirring and quenching, and method of the same
WO2021039708A1 (en) * 2019-08-23 2021-03-04 国立大学法人長岡技術科学大学 Chromogenic reaction composition, chromogenic reaction film, and method for suppressing color fading

Also Published As

Publication number Publication date
JP4958277B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4958277B2 (en) Nanocomposite film comprising ionic organic reagent and colloidal fine particles or fiber, metal ion detection film and method for producing the same
Zhang et al. Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2, 4-D
Bodelón et al. Recent progress in surface-enhanced Raman scattering for the detection of chemical contaminants in water
Shahat et al. A ligand-anchored optical composite material for efficient vanadium (II) adsorption and detection in wastewater
JP5970551B2 (en) Imprint photonic polymers and methods for their preparation and use
DE69412286T2 (en) USE OF LEAF-SHAPED MATERIALS FOR SOLID PHASE EXTRACTIONS AND SOLID PHASE REACTIONS
Li et al. A molecularly imprinted nanoprobe incorporating Cu 2 O@ Ag nanoparticles with different morphologies for selective SERS based detection of chlorophenols
US5470532A (en) Composite reactive articles for the determination of cyanide
Peng et al. Calcium carbonate–gold nanocluster hybrid spheres: synthesis and versatile application in immunoassays
Zhou et al. Polyvinylidene fluoride micropore membranes as solid-phase extraction disk for preconcentration of nanoparticulate silver in environmental waters
Zhai et al. Biomimetic nanopore for sensitive and selective detection of Hg (II) in conjunction with single-walled carbon nanotubes
Jung et al. Hydrophobic hBN-coated surface-enhanced Raman scattering sponge sensor for simultaneous separation and detection of organic pollutants
JP4883577B2 (en) Chemical sensor material
Sun et al. Continuous in situ portable SERS analysis of pollutants in water and air by a highly sensitive gold nanoparticle-decorated PVDF substrate
Zhang et al. Electrospun nanofibers-based online micro-solid phase extraction for the determination of monohydroxy polycyclic aromatic hydrocarbons in human urine
Choi et al. Quantification of arsenic (III) in aqueous media using a novel hybrid platform comprised of radially porous silica particles and a gold thin film
EP2116298A1 (en) Procedure for the functionalization of a substrate, functionalized substrate and device containing same
Tolan et al. Cubically cage-shaped mesoporous ordered silica for simultaneous visual detection and removal of uranium ions from contaminated seawater
He et al. Hydrophobic plasmonic silver membrane as SERS-active catcher for rapid and ultrasensitive Cu (II) detection
JP4185982B2 (en) Metal ion detection film, method for producing the same, and method for quantifying metal ions using the same
CN105424677B (en) Method based on SERS detection scene of fire residual organic matter
KR102028432B1 (en) Methods for surface-enhanced Raman scattering using three-dimensional porous nanoplasmonic network
KR101718358B1 (en) Highly sensitive and selective sensor for detecting anionic heavy metals
WO2017083926A1 (en) Print paper
CN113495066A (en) Method for carrying out sensitive SERS (surface enhanced Raman Scattering) detection on micro-plastic by gold-assembled sponge with bowl-shaped structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees