JP2008213021A - Weld joint and welded structure having excellent brittle crack propagation stop characteristic and method of improving this characteristic - Google Patents

Weld joint and welded structure having excellent brittle crack propagation stop characteristic and method of improving this characteristic Download PDF

Info

Publication number
JP2008213021A
JP2008213021A JP2007057446A JP2007057446A JP2008213021A JP 2008213021 A JP2008213021 A JP 2008213021A JP 2007057446 A JP2007057446 A JP 2007057446A JP 2007057446 A JP2007057446 A JP 2007057446A JP 2008213021 A JP2008213021 A JP 2008213021A
Authority
JP
Japan
Prior art keywords
brittle crack
ultrasonic
welded
weld bead
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007057446A
Other languages
Japanese (ja)
Other versions
JP4767885B2 (en
Inventor
Tadashi Ishikawa
忠 石川
Takehiro Inoue
健裕 井上
Yuji Hashiba
裕治 橋場
Yuji Funatsu
裕二 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007057446A priority Critical patent/JP4767885B2/en
Publication of JP2008213021A publication Critical patent/JP2008213021A/en
Application granted granted Critical
Publication of JP4767885B2 publication Critical patent/JP4767885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a weld joint and a welded structure that, in the occurrence of brittle crack, can surely divert it to a base material side and guide it to a part having a high brittle crack propagation stop characteristic, by a simple means requiring no skill of an operator and having capability of high-speed processing. <P>SOLUTION: For a butt weld joint of steel plates, ultrasonic impact treatment is carried out in a manner crossing a weld bead and in a manner that an angle formed by a recess in an ultrasonic impact-treated region and the weld bead is not less than 30°. As a result, the weld joint having excellent brittle crack propagation stop characteristic can be obtained, as well as the welded structure having such weld joint. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、突合せ溶接継手に発生した脆性き裂の伝播を停止させる脆性き裂伝播停止特性に優れた溶接構継手、該溶接継手を有する溶接構造体、及び、溶接継手における脆性き裂伝播停止特性の向上方法に関する。
具体的には、溶接構造体の突合せ溶接継手に発生する可能性のある脆性き裂の伝播を妨げて、大型の船舶や建築物などの溶接構造体の安全性を向上させうる技術に関する。
The present invention relates to a welded joint having excellent brittle crack propagation stopping characteristics for stopping propagation of a brittle crack generated in a butt welded joint, a welded structure having the welded joint, and brittle crack propagation stop in the welded joint. The present invention relates to a method for improving characteristics.
Specifically, the present invention relates to a technique that can prevent the propagation of brittle cracks that may occur in a butt weld joint of a welded structure and improve the safety of welded structures such as large ships and buildings.

船舶、タンク、建築物など大型の鋼構造物は多数の鋼板を突合せ溶接して製作されている。このような構造物では、地震や事故などで万一脆性破壊が発生しても構造物全体が崩壊する前に脆性き裂を停止できる性能が求められており、そのため要所に脆性き裂伝播停止特性(アレスト性)の高い鋼板を採用するような工夫が取られている。
通常は、溶接部に脆性き裂が発生しても、き裂は溶接残留応力によって母材側へ逸れるのが一般的であり、母材側の脆性き裂伝播停止特性が十分に高い場合には、母材でのき裂の伝播停止が期待できる。
Large steel structures such as ships, tanks and buildings are manufactured by butt welding many steel plates. In such a structure, even if a brittle fracture occurs due to an earthquake or an accident, there is a demand for the ability to stop the brittle crack before the entire structure collapses. Ingenuity has been taken to employ steel plates with high stopping characteristics (arrestability).
Normally, even if a brittle crack occurs in the weld zone, the crack generally deviates to the base metal side due to the residual welding stress, and when the brittle crack propagation stop characteristic on the base metal side is sufficiently high. Can be expected to stop the propagation of cracks in the base metal.

しかし、工期の短縮や溶接効率の向上のために、大入熱溶接法が用いられる場合も多いが、大入熱溶接法で形成された溶接継手では、溶接部の破壊靭性が著しく低下する場合や溶接熱影響部が軟化する場合があるため、熱影響を受けていない母材部が十分な脆性破壊伝播停止特性を持っていたとしても、き裂が母材側に逸れず、溶接ビードに沿って溶接熱影響部付近を伝播する危険性が高くなっている。
また、構造上の制約から、主応力方向に対して直角に近い方向に沿って溶接部を形成さる場合もあり、この場合も同様にき裂が伝播する危険性が高い。
However, in order to shorten the work period and improve welding efficiency, the high heat input welding method is often used, but the weld toughness formed by the high heat input welding method significantly reduces the fracture toughness of the weld. If the base metal part not affected by the heat has sufficient brittle fracture stop properties, the crack will not escape to the base metal side and the weld bead may be softened. The danger of propagating along the weld heat affected zone is high.
Further, due to structural limitations, the weld may be formed along a direction close to a right angle with respect to the main stress direction. In this case as well, there is a high risk of crack propagation.

以上のような場合、従来は、ニッケル含有量の高い溶接材料を用い、溶接継手部そのものの靭性を向上させて、き裂の発生や伝播を抑制する手段がとられていたが、高価な高ニッケル含有溶接材料を多量に使用するためコストの点で問題があった。
このため、通常の溶接材料を用いて溶接された溶接継手部において、たとえ脆性き裂が発生したとしても、脆性き裂の伝播方向を、脆性き裂伝播停止特性の低い溶接ビードに沿う溶接熱影響部から速やかに母材側に逸らして、脆性き裂伝播停止特性の高い部位へ誘導することにより、溶接継手部での脆性き裂の伝播を阻止する手段の開発が望まれている。
In the above cases, conventionally, a welding material having a high nickel content was used to improve the toughness of the welded joint portion itself, and a means for suppressing the generation and propagation of cracks has been taken. There was a problem in terms of cost because a large amount of nickel-containing welding material was used.
For this reason, even if a brittle crack occurs in a welded joint welded using ordinary welding material, the propagation direction of the brittle crack is determined by the welding heat along the weld bead having a low brittle crack propagation stop characteristic. Development of a means for preventing the propagation of a brittle crack in a welded joint portion by quickly moving from the affected portion to the base metal side and guiding it to a portion having a high brittle crack propagation stopping property is desired.

そのような手段としては、本出願人によって特許文献1や特許文献2に示す手段が提案されている。
特許文献1は、突合せ溶接継手の一部をガウジングなどにより除去した後、除去した部分を補修溶接することにより、突合せ溶接部に比べて高い靭性を有する補修溶接部を形成するものであり、特許文献2は、き裂の初期伝播方向に沿った溶接ビード沿いに、圧縮予ひずみ部を溶接ビードの両側のほぼ線対称位置に一対以上配設して、溶接部近傍の内部応力の分布を調整するものである。
As such means, the means shown in Patent Document 1 and Patent Document 2 have been proposed by the present applicant.
Patent document 1 forms a repair weld part having higher toughness than a butt weld part by removing a part of the butt weld joint by gouging or the like and then repairing and welding the removed part. Reference 2 adjusts the distribution of internal stress in the vicinity of the weld by arranging one or more compression pre-strained parts along the weld bead along the initial propagation direction of the crack at approximately axisymmetric positions on both sides of the weld bead. To do.

これらの手段は、通常の溶接施工方法で溶接された溶接継手部に対し、後処理により脆性き裂の伝播を阻止する性能を向上させるものであり、上記問題を解決するものであるが、特許文献1の技術では、ガウジング及び補修溶接の2工程が必要であり、各工程も作業者の熟練を必要とし、かつ処理時間が長い問題がある。また、特許文献2の技術では、き裂が母材側に逸れる際の起点が溶接ビードに形成できないため、負荷の大きさによっては、母材側に逸れない場合が生じるなどの問題がある。   These means improve the performance of preventing the propagation of brittle cracks by post-processing for welded joints welded by a normal welding construction method, and solve the above problems. The technique of Document 1 requires two steps of gouging and repair welding, and each step requires the skill of the operator and has a problem of long processing time. Moreover, in the technique of patent document 2, since the starting point at the time of a crack deviating to a base material side cannot be formed in a weld bead, depending on the magnitude | size of load, there exists a problem that the case where it does not deviate to a base material side may arise.

特開2005−131708号公報JP 2005-131708 A 特開2005−329461号公報JP 2005-329461 A 特開2004−130315号公報JP 2004-130315 A 米国特許第6467321号明細書US Pat. No. 6,467,321

そこで、本発明は、作業者の熟練を必要としない簡単な手段で、かつ、高速に処理できる手段により、脆性き裂が発生しても、それを確実に母材側へ逸らして脆性き裂伝播停止特性の高い部位へ誘導することができるようにすることを課題とする。
そして、そのような課題を達成できる溶接継手や溶接構造体を提供すること、及び、そのような溶接継手を得るための脆性き裂伝播停止特性の向上方法を提供することを目的とする。
Therefore, the present invention is a simple means that does not require the skill of the operator, and even if a brittle crack is generated by means that can be processed at high speed, the brittle crack is surely deflected to the base metal side. It is an object to be able to guide to a site having a high propagation stop characteristic.
And it aims at providing the welded joint and welded structure which can achieve such a subject, and the improvement method of the brittle crack propagation stop characteristic for obtaining such a welded joint.

本発明者らは、より簡単で高速に処理することが可能であり、き裂をより確実に母材側へ逸らすことができる手段について検討した結果、特許文献3に示されているように、近年、新たな超音波利用技術として溶接部の疲労強度向上などに利用され始めている超音波振動端子による打撃処理(超音波打撃処理)に着目した。
そして、溶接継手部に超音波打撃処理を溶接ビードを横切って付加することにより、溶接ビード部及びビード止端部にき裂が母材側に逸れる際の起点を形成でき、かつ、溶接熱影響部にき裂を母材側に誘導する経路を形成できることを知見した。
以上の知見に基づく本発明の要旨は次のとおりである。
As a result of examining a means that can be processed more easily and at a high speed, and the crack can be more reliably deflected to the base material side, as shown in Patent Document 3, In recent years, attention has been paid to a hammering process (ultrasonic hammering process) using an ultrasonic vibration terminal, which has started to be used for improving the fatigue strength of a welded part as a new ultrasonic technology.
And, by applying ultrasonic striking treatment across the weld bead to the weld joint, it is possible to form the starting point when the crack is displaced to the base metal side at the weld bead and the bead toe, and the influence of welding heat It was found that a path for guiding a crack to the base metal side can be formed in the part.
The gist of the present invention based on the above knowledge is as follows.

(1)鋼板の突合せ溶接継手において、超音波打撃処理による凹部が溶接ビードを横切って形成されており、該凹部と溶接ビードのなす角が30度以上であることを特徴とする脆性き裂伝播停止特性に優れた溶接継手。
(2)前記超音波打撃処理による凹部を、溶接ビードに沿って600mm以下の間隔で複数設けたことを特徴とする上記(1)に記載の溶接継手。
(3)前記凹部の先端と溶接ビードの間の距離が板厚の2倍以上であることを特徴とする上記(1)または(2)に記載の溶接継手。
(4)鋼板を突合せ溶接した溶接継手部を有する溶接構造体であって、前記溶接継手部の少なくとも脆性き裂が伝播する可能性のある溶接継手部を、上記(1)〜(3)のいずれかに記載の溶接継手としたことを特徴とする脆性き裂伝播停止特性に優れた溶接構造体。
(5)前記鋼板の脆性き裂伝播停止性能がKca値で4000N/mm1.5以上であり、板厚が50mm以下であることを特徴とする上記(4)に記載の溶接構造体。
(6)前記鋼板の脆性き裂伝播停止性能がKca値で5000N/mm1.5以上であり、板厚が50mm超であることを特徴とする上記(4)に記載の溶接構造体。
(7)脆性き裂が伝播する可能性のある突合せ溶接継手に対し、超音波打撃処理を施すことによって脆性き裂伝播停止特性を向上させる方法であって、前記超音波打撃処理を、溶接ビードを横切るように、かつ、超音波打撃処理を施した領域に形成される凹部と溶接ビードのなす角が30度以上となるように施すことを特徴とする溶接継手における脆性き裂伝播停止特性の向上方法。
(8)前記超音波打撃処理を、溶接ビードに沿って600mm以下の間隔で複数施したことを特徴とする上記(7)に記載の溶接継手における脆性き裂伝播停止特性の向上方法。
(9)前記超音波打撃処理を、前記凹部の先端と溶接ビードの間の距離が板厚の2倍以上となるように施すことを特徴とする上記(7)または(8)に記載の溶接継手における脆性き裂伝播停止特性の向上方法。
(1) In a butt weld joint of steel plates, a concave portion formed by ultrasonic striking treatment is formed across the weld bead, and an angle formed by the concave portion and the weld bead is 30 degrees or more, and a brittle crack propagation is characterized. A welded joint with excellent stopping characteristics.
(2) The weld joint according to (1) above, wherein a plurality of recesses formed by the ultrasonic hitting process are provided at intervals of 600 mm or less along the weld bead.
(3) The weld joint according to (1) or (2) above, wherein the distance between the tip of the recess and the weld bead is at least twice the plate thickness.
(4) A welded structure having a welded joint obtained by butt-welding steel plates, wherein at least a brittle crack of the welded joint is likely to propagate, the welded joint of the above (1) to (3) A welded structure excellent in brittle crack propagation stopping characteristics, characterized by being a welded joint according to any one of the above.
(5) The welded structure according to (4) above, wherein the steel sheet has a brittle crack propagation stopping performance in terms of a Kca value of 4000 N / mm 1.5 or more and a plate thickness of 50 mm or less.
(6) The welded structure according to (4) above, wherein the steel sheet has a brittle crack propagation stopping performance in terms of a Kca value of 5000 N / mm 1.5 or more and a plate thickness of more than 50 mm.
(7) A method for improving the brittle crack propagation stop property by applying an ultrasonic hitting treatment to a butt welded joint in which a brittle crack may propagate, wherein the ultrasonic hitting treatment is performed on a weld bead. Of the brittle crack propagation stop property in a welded joint, characterized in that the angle formed by the recess formed in the region subjected to the ultrasonic impact treatment and the weld bead is 30 degrees or more. How to improve.
(8) The method for improving brittle crack propagation stopping characteristics in a welded joint according to (7) above, wherein a plurality of the ultrasonic hitting processes are performed along the weld bead at an interval of 600 mm or less.
(9) The welding according to (7) or (8), wherein the ultrasonic hitting process is performed so that a distance between a tip of the concave portion and a weld bead is twice or more a plate thickness. A method for improving brittle crack propagation stopping characteristics in joints.

本発明によれば、万一、溶接継手部に脆性き裂が発生した場合であっても、より確実に母材側へ逸らし脆性き裂伝播停止特性の高い部位へ誘導することがきる性能を有する溶接継手、そのような溶接継手を有する溶接構造体、及び、溶接継手にそのような性能を付与する方法を提供することができる。   According to the present invention, even if a brittle crack occurs in the welded joint part, the performance that can be more reliably deflected to the base metal side and guided to a site having a high brittle crack propagation stop property can be achieved. It is possible to provide a welded joint having, a welded structure having such a welded joint, and a method for imparting such performance to the welded joint.

以下、本発明の実施の形態を、図を用いて詳細に説明する。
本発明では、脆性き裂が伝播する可能性のある突合せ溶接継手において、脆性き裂を停止させる領域近傍の溶接継手部に対し、その両面あるいは片面に超音波打撃処理を施す。
図1(a)〜(b)に溶接ビード3を横切るように施す超音波打撃処理の付与の一例を示し、図2に超音波打撃処理の概要を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the present invention, in a butt weld joint in which a brittle crack may propagate, an ultrasonic hitting process is performed on both or one side of the weld joint near the area where the brittle crack is stopped.
FIGS. 1A to 1B show an example of application of ultrasonic hitting processing performed across the weld bead 3, and FIG. 2 shows an outline of the ultrasonic hitting processing.

突合せ溶接された鋼板2の溶接継手部1表面を超音波振動端子5で連続的に打撃する。超音波振動端子5によって打撃された領域には打撃痕による溝状の凹部(超音波打撃処理部)4が形成される。超音波打撃処理部4は溶接ビード3を横切るように所定の長さ形成し、所定の間隔を置いて必要な箇所に形成する。図1(a)は、超音波打撃処理部4を同じ向きに間隔Lをおいて形成する場合、同(b)は、交互に向きを変えて形成する場合をそれぞれ示す。   The surface of the welded joint portion 1 of the steel plate 2 butt welded is continuously hit with an ultrasonic vibration terminal 5. In the region hit by the ultrasonic vibration terminal 5, a groove-like recess (ultrasonic hitting processing portion) 4 is formed by hitting marks. The ultrasonic striking processing unit 4 is formed to have a predetermined length so as to cross the weld bead 3 and is formed at a necessary place with a predetermined interval. FIG. 1A shows a case where the ultrasonic striking processing parts 4 are formed in the same direction with an interval L, and FIG. 1B shows a case where they are formed by alternately changing the direction.

この超音波打撃処理により鋼板の板厚方向に塑性変形が加えられ、そのとき塑性流動した部分が周囲の金属によって拘束されることによって、鋼板に圧縮残留応力が導入される。また、鋼板の表層は、打撃により微細化した加工組織となり、その靭性が向上する。   By this ultrasonic striking treatment, plastic deformation is applied in the thickness direction of the steel sheet, and the portion that plastically flows at that time is restrained by the surrounding metal, thereby introducing compressive residual stress into the steel sheet. Moreover, the surface layer of a steel plate becomes a processed structure refined | miniaturized by impact, and the toughness improves.

突合せ溶接継手1に発生した脆性き裂は、溶接ビード部3、あるいは引張残留応力が発生している鋼板2の熱影響部を伝播するが、脆性き裂を停止させる領域に超音波打撃処理を施して、圧縮残留応力を導入するとともに周囲よりも靭性の高い組織を導入することにより、溶接ビード部3または鋼板2の熱影響部に沿って伝播する脆性き裂を、超音波打撃処理部4で逸らせて、該処理部に沿って鋼板2母材部に導き出し、母材部においてき裂の伝播を停止させる。   The brittle crack generated in the butt weld joint 1 propagates through the weld bead portion 3 or the heat-affected zone of the steel plate 2 where the tensile residual stress is generated, but an ultrasonic impact treatment is applied to the region where the brittle crack is stopped. By applying a compressive residual stress and introducing a structure having higher toughness than the surroundings, a brittle crack propagating along the heat-affected zone of the weld bead portion 3 or the steel plate 2 is introduced into the ultrasonic impact treatment portion 4. Then, the steel plate 2 is led to the base material portion along the processing portion, and crack propagation is stopped in the base material portion.

上記のような超音波打撃処理部4に沿って脆性き裂が逸れるメカニズムについて、図3を用いてさらに説明する。
表裏の鋼板あるいは溶接部の表面に超音波打撃処理を実施することにより、図3(a)に示すように、該処理による塑性変形を受けて超音波打撃処理部4及びその近傍に隣接する表層に、板厚方向での深さが数ミリにおよぶ圧縮残留応力が付与され、同時に、この表層部に付与された圧縮残留応力とバランスをとる形で、板厚内部では引張り残留応力が作用する状態となる。
The mechanism by which the brittle crack is displaced along the ultrasonic hitting processing unit 4 as described above will be further described with reference to FIG.
By performing ultrasonic striking treatment on the front and back steel plates or the surface of the welded portion, as shown in FIG. 3A, the ultrasonic striking treatment portion 4 and the surface layer adjacent to the ultrasonic striking treatment portion 4 are subjected to plastic deformation by the treatment. In addition, a compressive residual stress with a depth of several millimeters in the thickness direction is applied, and at the same time, a tensile residual stress acts inside the thickness in a manner that balances with the compressive residual stress applied to the surface layer. It becomes a state.

脆性き裂の伝播は、残留応力状態の影響を受け、引張り残留応力が作用している領域に伝播しやすい特性を有しており、また、板厚内部でき裂が先行して伝播することが多い。 したがって、溶接ビード部または鋼板の熱影響部に沿って伝播してきたき裂が超音波打撃処理部4に達すると、引張り残留応力が作用している板厚内部では該処理部4に沿う方向にき裂の伝播方向が変わり、該処理部4に沿うようにき裂が伸展する。超音波打撃処理部4における板厚表層部では超音波打撃処理によって圧縮残留応力状態にあり、かつ、該処理により組織が微細化して破壊抵抗が高いため、脆性き裂は伸展せず、図3(b)に示すように、引張り残留応力状態の板厚内部に埋没した形でき裂は進展する。
この結果、き裂の伝播の際、き裂先端の応力拡大係数は低下し、き裂を伝播させるドライビングフォースが小さくなるため、き裂が停止しやすくなる。
The propagation of brittle cracks is affected by the residual stress state, and has the property of easily propagating to the area where tensile residual stress is applied. Many. Therefore, when a crack propagating along the weld bead portion or the heat-affected zone of the steel sheet reaches the ultrasonic impact treatment section 4, it cracks in the direction along the treatment section 4 inside the plate thickness where the tensile residual stress is acting. The propagation direction of the crack changes, and the crack extends along the processing unit 4. In the ultrasonic striking treatment section 4, the plate thickness surface layer portion is in a compressive residual stress state by the ultrasonic striking treatment, and since the structure is refined and the fracture resistance is high, the brittle crack does not extend. As shown in (b), the crack that is buried inside the plate thickness in the tensile residual stress state develops.
As a result, when the crack propagates, the stress intensity factor at the crack tip decreases, and the driving force for propagating the crack decreases, so that the crack is likely to stop.

このとき、溶接ビード3のどちら側の熱影響部をき裂が伝播しても伝播している側の鋼板母材に逸らせるようにするには、図1(b)のように超音波打撃処理を施すのがよい。溶接構造や鋼板母材の特性上、片側の鋼板に逸らせる必要がある場合は、図1(a)のように施すのがよい。もちろん(a)と(b)を混在させてもよい。
また、き裂の伝播を母材側に確実に逸らせるためには、超音波打撃処理を溶接継手部の両面にそれぞれ施す必要がある。その際、両面で同じ位置で同じ向きで施すのが好ましい。
At this time, in order to shift the heat-affected zone on either side of the weld bead 3 to the steel plate base material on which the crack propagates, ultrasonic hitting as shown in FIG. It is better to process. When it is necessary to shift to the steel plate on one side due to the characteristics of the welded structure or the steel plate base material, it is preferable to apply as shown in FIG. Of course, (a) and (b) may be mixed.
Further, in order to surely deflect the propagation of cracks toward the base metal, it is necessary to perform ultrasonic striking treatment on both surfaces of the welded joint portion. In that case, it is preferable to apply in the same direction at the same position on both sides.

超音波打撃処理部4と溶接ビード3とのなす角度θは、き裂を母材側に逸らせるためには30度以上必要である。それ未満の場合には母材側に逸れずにそのまま溶接ビード部あるいは熱影響部を伝播する恐れがある。
また、この角度θは、図1(c)に示す例のように90度あるいはその近傍の角度であっても効果が得られるが、より効果の高い角度は80度以下である。
The angle θ formed by the ultrasonic hitting processing unit 4 and the weld bead 3 needs to be 30 degrees or more in order to deflect the crack toward the base material side. If it is less than that, there is a possibility that the weld bead part or the heat-affected part may propagate as it is without deviating to the base metal side.
In addition, although the effect can be obtained even when the angle θ is 90 degrees or an angle in the vicinity thereof as in the example shown in FIG. 1C, the more effective angle is 80 degrees or less.

超音波打撃処理部4の凹部の先端と溶接ビード3の間の距離hは、き裂を母材側に確実に逸らせるために、鋼板板厚の2倍以上の距離が必要である。距離hが長い(前記処理部4の長さが長い)方が望ましいが、板厚の4倍以上あれば、該処理により溶接継手部から脆性き裂を母材側へ逸らせるには十分である。
超音波打撃処理部4の凹部の深さは、必要な圧縮残留応力を付与するために0.2mm以上必要である。深さの上限は打撃圧力の点から1mm以下が好ましい。
また、凹部の幅は、凹部によって残留応力の分布を変化させるためには1mm以上必要である。幅は広いほうが望ましいが、幅が広くなると同様に打撃圧力が上昇するから10mmあれば十分である。
The distance h between the tip of the concave portion of the ultrasonic hitting processing portion 4 and the weld bead 3 needs to be a distance of twice or more the steel plate thickness in order to surely deflect the crack to the base metal side. Although it is desirable that the distance h is long (the length of the processing portion 4 is long), if the thickness is 4 times or more than the plate thickness, it is sufficient to displace a brittle crack from the welded joint portion to the base metal side by the processing. is there.
The depth of the concave portion of the ultrasonic hitting processing unit 4 is required to be 0.2 mm or more in order to give a necessary compressive residual stress. The upper limit of the depth is preferably 1 mm or less from the point of impact pressure.
Further, the width of the concave portion needs to be 1 mm or more in order to change the distribution of residual stress by the concave portion. A wider width is desirable, but the impact pressure increases as the width increases, so 10 mm is sufficient.

以上の超音波打撃処理は、特許文献4に記載されている装置によって行われる。すなわち、発振機から発振された超音波を、トランスデューサによってその周波数を例えば5〜60kHzに変換し、さらに、ウェーブガイドでその振幅を増幅させて、装置の先端に取り付けられる超音波振動端子5を、例えば、振動数5〜60kHz、出力100w〜5kWで機械的に振動させる。それにより超音波振動端子5前面の打撃部の表面において、平滑性を維持しつつ打撃前の表面に対して打撃痕となる凹部を形成することができる。   The ultrasonic hitting process described above is performed by an apparatus described in Patent Document 4. That is, the ultrasonic wave oscillated from the oscillator is converted into a frequency of, for example, 5 to 60 kHz by a transducer, the amplitude is amplified by a waveguide, and an ultrasonic vibration terminal 5 attached to the tip of the device is attached. For example, mechanical vibration is performed at a frequency of 5 to 60 kHz and an output of 100 w to 5 kW. Thereby, in the surface of the hit | damage part of the ultrasonic vibration terminal 5 front surface, the recessed part used as a hit | damage trace can be formed with respect to the surface before hit | damaging, maintaining smoothness.

その際、上記超音波振動は、その振動数が5kHz以上であるため、ショットピーニング法などの従来技術に比べて表面平滑性を損なわずに十分な圧縮残留応力を付与することができる。また、打撃圧力が周波数に依存するため、5kHz以上で周波数の増加とともにこれらの効果は向上するが、超音波の振動数が60kHzを越えると、非常に高い超音波出力装置を必要とするほか、装置コストの面からも実用的でなく好ましくない。
超音波打撃端子5としては、先端が滑らかな曲線状のピンが用いられ、先端部の幅は、凹部の幅に対応する1〜10mm程度のものが使用される。
At that time, since the ultrasonic vibration has a frequency of 5 kHz or more, sufficient compressive residual stress can be applied without impairing the surface smoothness as compared with conventional techniques such as a shot peening method. In addition, since the impact pressure depends on the frequency, these effects are improved as the frequency is increased at 5 kHz or more. However, when the ultrasonic frequency exceeds 60 kHz, a very high ultrasonic output device is required. From the viewpoint of apparatus cost, it is not practical and not preferable.
As the ultrasonic hitting terminal 5, a curved pin having a smooth tip is used, and the tip has a width of about 1 to 10 mm corresponding to the width of the recess.

以上のような超音波衝撃処理は、一回一回の打撃のエネルギーは小さいが、1秒間に非常に多数の打撃を与えることができ、それによって大きなエネルギーを一度に与えた場合と同じような効果を得ることができる。さらに、一回一回の打撃力が小さいために、機器に生じる反動や作業者に伝わる反動が著しく小さく、かつ、作業が簡単で高速に実施できるため、施工性の面で非常に有利である。   The ultrasonic impact treatment as described above has a small impact energy at one time, but can give a very large number of impacts per second, which is the same as when large energy is applied at once. An effect can be obtained. Furthermore, since the impact force at a time is small, the reaction that occurs in the equipment and the reaction that is transmitted to the operator is extremely small, and the work can be performed easily and at high speed, which is very advantageous in terms of workability. .

特に、超音波衝撃処理は、溶接継手の形成後の後処理として実施し、脆性き裂伝播停止特性についての性能向上を図れるため、溶接には通常の施工方法をそのまま適用でき、また、大入熱溶接などの適用範囲を拡大することもできる。さらに、既存の溶接構造物に対しても、脆性き裂伝播停止特性についての性能向上を効果的に図ることができる。
なお、溶接後すぐに超音波打撃処理を施す場合は、突合せ溶接継手の温度が300℃以下の状態で行うことが好ましい。溶接継手の温度が300℃以上では、超音波振動端子による打撃時に、溶接金属および鋼板の降伏応力が低くなっているため好ましくない。
In particular, ultrasonic impact treatment is performed as a post-treatment after the formation of welded joints, and can improve the performance of brittle crack propagation stopping characteristics. The application range such as thermal welding can be expanded. Furthermore, it is possible to effectively improve the performance of brittle crack propagation stopping characteristics even for existing welded structures.
In addition, when performing an ultrasonic impact process immediately after welding, it is preferable to carry out in the state whose temperature of a butt-welded joint is 300 degrees C or less. When the temperature of the welded joint is 300 ° C. or higher, the yield stress of the weld metal and the steel sheet is low when hit by the ultrasonic vibration terminal, which is not preferable.

本発明では、溶接構造体に脆性破壊伝播停止特性(アレスト性能)の高い鋼板を使うことで、溶接構造物の脆性破壊をより小規模で食い止めることができる。
前述したように、溶接ビード部3または鋼板2の熱影響部に沿って伝播してきた脆性き裂が超音波打撃処理部4に沿う方向に逸れる際には、脆性き裂の伝播形態が板厚内部に埋没した形状となるため、き裂先端の応力拡大係数が低下し、き裂を伝播させるドライビングフォースが小さくなるため、き裂が停止しやすくなる。
In the present invention, by using a steel plate having a high brittle fracture propagation stopping property (arrest performance) for the welded structure, brittle fracture of the welded structure can be stopped on a smaller scale.
As described above, when the brittle crack that has propagated along the heat-affected zone of the weld bead portion 3 or the steel plate 2 deviates in the direction along the ultrasonic impact treatment portion 4, the form of propagation of the brittle crack is the plate thickness. Since the shape is buried inside, the stress intensity factor at the tip of the crack is reduced, and the driving force for propagating the crack is reduced, so that the crack is likely to stop.

したがって、超音波打撃処理部4が十分な長さを有していれば、超音波打撃処理部4に沿うき裂伝播の途中で脆性き裂が停止できることが期待できる。しかし、より確実に脆性き裂を停止させるためには、超音波打撃処理部4により鋼板母材側にき裂を逸らせた後、母材で停止させることが必要であり、そのため、母材のアレスト性能も重要となる。   Therefore, if the ultrasonic hitting processing unit 4 has a sufficient length, it can be expected that a brittle crack can be stopped in the course of crack propagation along the ultrasonic hitting processing unit 4. However, in order to stop the brittle crack with more certainty, it is necessary to stop the crack with the base material after deflecting the crack toward the steel plate base by the ultrasonic hitting processing unit 4. Arrest performance is also important.

突合せ溶接継手を形成する鋼板の板厚が50mm以下である場合には、アレスト性能がKca値で4000N/mm1.5以上であれば脆性き裂の伝播を停止できることが、造船研究協会・SR193委員会の報告書などで公表されている。
しかし、板厚が50mm超である場合には、Kca値で4000N/mm1.5程度の性能では脆性き裂の伝播を停止できないことを、8000トン超大型破壊試験機を用いた実験により本発明者らは確認している。本発明者らは、板厚60mm、70mmの鋼板を用いて脆性き裂伝播試験を実施し、鋼板を使用する温度で、600m/秒以上の高速で伝播中の脆性き裂を停止するためには、Kca値で5000N/mm1.5以上の性能が必要であることがわかった。
If the steel plate forming the butt welded joint has a thickness of 50 mm or less, it is possible to stop the propagation of a brittle crack if the arrest performance is 4000 N / mm 1.5 or more in Kca value. It has been published in the report of.
However, when the plate thickness is more than 50 mm, the present inventor has confirmed that the propagation of a brittle crack cannot be stopped with a Kca value of about 4000 N / mm 1.5 by an experiment using a 8000-ton super-large fracture tester. Have confirmed. In order to stop a brittle crack during propagation at a high speed of 600 m / sec or more at a temperature at which the steel sheet is used, the present inventors conducted a brittle crack propagation test using steel sheets having a thickness of 60 mm and 70 mm. It was found that a performance of 5000 N / mm 1.5 or more was required in terms of Kca value.

したがって、板厚が50mm以下の溶接構造体では、Kca値で4000N/mm1.5以上の鋼板を母材として用い、上記で説明した超音波打撃処理を溶接継手部に施すことにより、また、板厚が50mm超の溶接構造体では、Kca値で5000N/mm1.5以上の鋼板を母材として用い、上記で説明した超音波打撃処理を溶接継手部に施すことにより、それぞれの溶接構造体において、脆性き裂が溶接継手部に発生し、溶接ビードに沿って溶接熱影響部を伝播してきても、それを母材側に逸らし、母材によって確実に停止することができる。 Accordingly, in a welded structure having a plate thickness of 50 mm or less, a steel plate having a Kca value of 4000 N / mm 1.5 or more is used as a base material, and the ultrasonic impact treatment described above is applied to the welded joint portion. In a welded structure having a Kca value of more than 50 mm, a steel plate having a Kca value of 5000 N / mm 1.5 or more is used as a base material, and the welded joint portion is subjected to the ultrasonic hitting treatment described above. Even if a crack occurs in the weld joint and propagates along the weld bead along the weld heat affected zone, it can be deflected to the base metal side and reliably stopped by the base metal.

本発明の鋼板の突合せ溶接継手においては、以下の理由から、溶接ビードを横切って形成される超音波打撃処理部4(凹部)を、溶接ビードに沿って600mm以下の間隔で設けることが好ましい。
本発明によれば、溶接ビード部3または鋼板2の熱影響部に沿って伝播してきたき裂は超音波打撃処理部4で鋼板母材部に逸れて母材部で確実に停止することができる。しかし、溶接ビードを横切って形成される超音波打撃処理部4間の間隔Lが600mmを超えると、上記のように伝播するき裂の長さが600mm以上となり、損傷が生じる可能性が高くなるため好ましくない。また、上記間隔Lが600mmを超えると、き裂が長大となってき裂を停止しにくくなる可能性も高くなる。
これらの理由から、本発明では、溶接ビードを横切って形成される超音波打撃処理部4(凹部)を、溶接ビードに沿って600mm以下の間隔で設けることが好ましい。
In the butt-welded joint for steel plates according to the present invention, it is preferable to provide ultrasonic hitting processing portions 4 (concave portions) formed across the weld bead at intervals of 600 mm or less for the following reasons.
According to the present invention, the crack propagating along the heat-affected zone of the weld bead portion 3 or the steel plate 2 is deviated to the steel plate base material portion by the ultrasonic hitting processing portion 4 and can be reliably stopped at the base material portion. . However, if the distance L between the ultrasonic striking treatment parts 4 formed across the weld bead exceeds 600 mm, the length of the crack propagating as described above becomes 600 mm or more, and the possibility of damage is increased. Therefore, it is not preferable. In addition, when the distance L exceeds 600 mm, the crack becomes long and it is difficult to stop the crack.
For these reasons, in the present invention, it is preferable to provide ultrasonic striking treatment portions 4 (concave portions) formed across the weld bead at intervals of 600 mm or less along the weld bead.

本発明で対象とする突合せ溶接継手は、特にその種類を限定するものではない。溶接継手を形成するに当たり採用された、溶接姿勢、入熱量、パス数、溶接方法など特に限定されるものではない。
以下、本発明の実施例を説明するが、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一条件例であり、本発明は、この例に限定されるものではない。
The type of the butt weld joint targeted in the present invention is not particularly limited. There are no particular limitations on the welding posture, heat input, number of passes, welding method, etc. employed in forming the welded joint.
Examples of the present invention will be described below, but the conditions adopted in the examples are one example of conditions for confirming the feasibility and effects of the present invention, and the present invention is limited to this example. is not.

図4に示す2500mmの長さの溶接継手における表面側2箇所、裏面側で2箇所の合計4箇所に超音波打撃処理部4を設けた試験片を作成し、8000トン大型破壊試験機を用いて、脆性破壊試験を行った。
試験片の端部近傍に、溶接継手の溶融線FLと切り欠き先端部が一致するように窓枠状に楔を入れる空間を設け、溶接ビード部に沿う切り欠き先端部から超音波打撃処理部までの距離Lと超音波打撃処理部間の距離Lを同じ距離とした。
The test piece which provided the ultrasonic hit | damage process part 4 in the total four places of two places on the surface side in the welded joint of 2500 mm length shown in FIG. Then, a brittle fracture test was conducted.
In the vicinity of the end of the test piece, a space for inserting a wedge in a window frame shape is provided so that the melt line FL of the weld joint and the notch tip coincide with each other. The distance L up to and the distance L between the ultrasonic striking processing parts were the same distance.

試験片の切り欠き先端部は、脆性き裂が発生しやすいようにー50℃以下の低温に冷却し、切り欠き先端から超音波打撃処理部、及び該処理部の下側では、−10℃一定となるよう温度制御した。
脆性破壊試験では、試験片の公称応力を鋼板降伏点の1/2になるよう設定し、楔に衝撃荷重をあたえ、切り欠き先端部から脆性き裂を強制的に発生させ、その伝播挙動を観察した。なお、図4は、図1の(b)に示した超音波打撃処理を施した試験片を示すが、この他に、図1に示す(a)、(c)の処理パターンに対応する超音波打撃処理を施した試験片を用いて脆性破壊試験を行った。
The notch tip of the test piece is cooled to a low temperature of −50 ° C. or lower so that a brittle crack is likely to occur, and −10 ° C. from the notch tip to the ultrasonic impact treatment unit and below the treatment unit. The temperature was controlled to be constant.
In the brittle fracture test, the nominal stress of the specimen is set to be 1/2 the yield point of the steel sheet, an impact load is applied to the wedge, a brittle crack is forcibly generated from the notch tip, and the propagation behavior is determined. Observed. FIG. 4 shows the test piece subjected to the ultrasonic hitting process shown in FIG. 1B, but in addition to the test pieces shown in FIG. A brittle fracture test was performed using a test piece that had been subjected to sonic impact treatment.

表1に超音波打撃処理条件及び脆性破壊試験結果を示す。
表1において、溶接方法は、EG(エレクトロガス溶接)、CO2(炭酸ガスアーク溶接)、VEGA−II(2電極揺動式エレクトロガス溶接)、SAW(サブマージアーク溶接)、FAB(フラックスアスベスト裏当片面サブマージアーク溶接)、FCB(フラックス銅裏当片面サブマージアーク溶接)、VEGA(1電極揺動式エレクトロガス溶接)、及びSEG(簡易式エレクトロガス溶接)であり、また、超音波打撃処理において、図1に示されるように、Lは超音波打撃処理部の間隔であり、hは溶接ビードから超音波打撃処理部の端部までの距離であり、θは超音波打撃処理部と溶接ビードとのなす角度であり、Zは超音波打撃処理部の凹部の深さである。
また、表1に示された鋼板(鋼種)の化学成分を表2に示し、突合せ溶接に用いた溶接材料の化学成分を表3に示す。
Table 1 shows the ultrasonic treatment conditions and brittle fracture test results.
In Table 1, the welding methods are EG (electrogas welding), CO2 (carbon dioxide arc welding), VEGA-II (two-electrode swing type electrogas welding), SAW (submerged arc welding), FAB (flux asbestos backing single side) Submerged arc welding), FCB (flux copper backing single-sided submerged arc welding), VEGA (single electrode swinging electrogas welding), and SEG (simple electrogas welding). As shown in FIG. 1, L is the interval between the ultrasonic hitting processing parts, h is the distance from the weld bead to the end of the ultrasonic hitting processing part, and θ is the distance between the ultrasonic hitting processing part and the weld bead. And Z is the depth of the concave portion of the ultrasonic hitting processing unit.
Moreover, the chemical composition of the steel plate (steel type) shown in Table 1 is shown in Table 2, and the chemical composition of the welding material used for the butt welding is shown in Table 3.

本発明の超音波打撃処理条件を満足した発明例1〜19では、切り欠き先端で発生した脆性き裂が、溶接ビード部または鋼板の熱影響部に沿ってL(mm)だけ伝播したのち、超音波打撃処理部で脆性き裂は該処理部に沿って伝播する向きを変え、母材にて停止した。試験結果である伝播距離は、切り欠き先端から測定した脆性き裂の停止位置である。実施例17〜19では、母材のアレスト値が低めであったので、停止するまでの伝播距離が長くなっていた。   In Invention Examples 1 to 19 that satisfy the ultrasonic hammering treatment conditions of the present invention, after the brittle crack generated at the notch tip propagates along the weld bead part or the heat-affected part of the steel plate by L (mm), In the ultrasonic hitting treatment part, the brittle crack changed its direction of propagation along the treatment part and stopped at the base material. The propagation distance, which is the test result, is the brittle crack stop position measured from the notch tip. In Examples 17-19, since the arrest value of the base material was low, the propagation distance until stopping was long.

これに対して、比較例22〜24は、超音波打撃処理を施していない例であり、溶接継手に沿って、脆性き裂は伝播し試験体は真っ二つになった。比較例20、21は、超音波打撃処理を実施しているが、本発明の条件を満足していないため、脆性き裂を該処理部で溶接継手から母材側へ十分に逸らすことができず、溶接継手部をそのまま伝播して破断した。   On the other hand, Comparative Examples 22 to 24 are examples in which the ultrasonic impact treatment was not performed, and the brittle crack propagated along the welded joint, and the number of specimens became two. In Comparative Examples 20 and 21, an ultrasonic impact treatment was performed, but the conditions of the present invention were not satisfied. Therefore, a brittle crack could be sufficiently diverted from the welded joint to the base metal side at the treated portion. Instead, it propagated through the welded joint as it was and fractured.

Figure 2008213021
Figure 2008213021

Figure 2008213021
Figure 2008213021

Figure 2008213021
Figure 2008213021

前述したように、本発明によれば、溶接継手の形成後の後処理で脆性き裂伝播停止特性についての性能向上を図れるため、通常の溶接施工方法をそのまま適用できる。また、既に建造された構造物に対して、作業者の熟練を必要としない簡単な手段で、かつ、高速に処理できる手段により溶接継手の前記の性能向上を実現できるので、従来よりも容易な作業負荷で処理することができる。したがって、溶接構造物の建造分野において本発明の利用可能性は大きいものである。   As described above, according to the present invention, the performance of the brittle crack propagation stop characteristic can be improved by post-processing after the formation of the welded joint, so that a normal welding method can be applied as it is. In addition, since the above-mentioned performance improvement of the welded joint can be realized by a simple means that does not require the skill of the operator and a means capable of processing at high speed for an already constructed structure, it is easier than before. Can be handled by workload. Therefore, the applicability of the present invention is great in the field of construction of welded structures.

溶接継手部に対する超音波打撃処理を施す態様を説明するための図である。It is a figure for demonstrating the aspect which performs the ultrasonic hit | damage process with respect to a welded joint part. 溶接継手部に施す超音波打撃処理を説明するための図である。It is a figure for demonstrating the ultrasonic hammering process performed to a welded joint part. 超音波打撃処理によって付与された板厚内部の残留応力の状態(a)と、脆性き裂の伝播挙動(b)を示す模式図である。It is a schematic diagram which shows the state (a) of the residual stress inside the plate | board thickness provided by the ultrasonic hit | damage process, and the propagation behavior (b) of a brittle crack. 脆性き裂伝播挙動を調査するための大型破壊試験片である。A large fracture specimen for investigating brittle crack propagation behavior.

符号の説明Explanation of symbols

1 突合せ溶接継手部
2 鋼板(母材)
3 溶接ビード
4 超音波振動端子によって打撃された領域に形成された凹部(超音波打撃処理部)
5 超音波振動端子
L 超音波打撃処理部の間隔
h 溶接ビードから超音波打撃処理部の端部までの距離
θ 超音波打撃処理部と溶接ビードとのなす角度
Z 超音波打撃処理部の凹部の深さ
1 Butt weld joint 2 Steel plate (base material)
3 Welded beads 4 Recesses formed in the area hit by the ultrasonic vibration terminal (ultrasonic hit processing part)
5 Ultrasonic vibration terminal
L Spacing between ultrasonic hitting parts h Distance from the weld bead to the end of the ultrasonic hitting part θ The angle between the ultrasonic hitting part and the weld bead
Z Depth of the recess in the ultrasonic hitting section

Claims (9)

鋼板の突合せ溶接継手において、超音波打撃処理による凹部が溶接ビードを横切って形成されており、該凹部と溶接ビードのなす角が30度以上であることを特徴とする脆性き裂伝播停止特性に優れた溶接継手。   In a butt welded joint of steel plates, a concave portion formed by ultrasonic striking treatment is formed across the weld bead, and an angle formed by the concave portion and the weld bead is 30 degrees or more. Excellent weld joint. 前記超音波打撃処理による凹部を、溶接ビードに沿って600mm以下の間隔で複数設けたことを特徴とする請求項1に記載の溶接継手。   The weld joint according to claim 1, wherein a plurality of recesses formed by the ultrasonic hitting process are provided along the weld bead at intervals of 600 mm or less. 前記凹部の先端と溶接ビードの間の距離が板厚の2倍以上であることを特徴とする請求項1または2に記載の溶接継手。   The weld joint according to claim 1 or 2, wherein a distance between the tip of the recess and the weld bead is at least twice the plate thickness. 鋼板を突合せ溶接した溶接継手部を有する溶接構造体であって、前記溶接継手部の少なくとも脆性き裂が伝播する可能性のある溶接継手部を、請求項1〜3のいずれか1項に記載の溶接継手としたことを特徴とする脆性き裂伝播停止特性に優れた溶接構造体。   It is a welded structure which has a welded joint part which butt-welded the steel plate, Comprising: The welded joint part in which at least a brittle crack of the said welded joint part may propagate is given in any 1 paragraph of Claims 1-3. A welded structure excellent in brittle crack propagation stopping characteristics, characterized by being a welded joint. 前記鋼板の脆性き裂伝播停止性能がKca値で4000N/mm1.5以上であり、板厚が50mm以下であることを特徴とする請求項4に記載の溶接構造体。 5. The welded structure according to claim 4, wherein the steel sheet has a brittle crack propagation stopping performance in terms of a Kca value of 4000 N / mm 1.5 or more and a plate thickness of 50 mm or less. 前記鋼板の脆性き裂伝播停止性能がKca値で5000N/mm1.5以上であり、板厚が50mm超であることを特徴とする請求項4に記載の溶接構造体。 5. The welded structure according to claim 4, wherein the steel sheet has a brittle crack propagation stopping performance in terms of a Kca value of 5000 N / mm 1.5 or more and a plate thickness of more than 50 mm. 脆性き裂が伝播する可能性のある突合せ溶接継手に対し、超音波打撃処理を施すことによって脆性き裂伝播停止特性を向上させる方法であって、前記超音波打撃処理を、溶接ビードを横切るように、かつ、超音波打撃処理を施した領域に形成される凹部と溶接ビードのなす角が30度以上となるように施すことを特徴とする溶接継手における脆性き裂伝播停止特性の向上方法。   A method of improving brittle crack propagation stop characteristics by applying an ultrasonic hitting treatment to a butt weld joint in which a brittle crack may propagate, wherein the ultrasonic hitting treatment is performed across a weld bead. And a method for improving brittle crack propagation stopping characteristics in a welded joint, characterized in that the angle formed by the recess formed in the region subjected to the ultrasonic impact treatment and the weld bead is 30 degrees or more. 前記超音波打撃処理を、溶接ビードに沿って600mm以下の間隔で複数施したことを特徴とする請求項7に記載の溶接継手における脆性き裂伝播停止特性の向上方法。   8. The method for improving brittle crack propagation stop characteristics in a welded joint according to claim 7, wherein a plurality of the ultrasonic hitting processes are performed along the weld bead at intervals of 600 mm or less. 前記超音波打撃処理を、前記凹部の先端と溶接ビードの間の距離が板厚の2倍以上となるように施すことを特徴とする請求項7または8に記載の溶接継手における脆性き裂伝播停止特性の向上方法。   The brittle crack propagation in a welded joint according to claim 7 or 8, wherein the ultrasonic striking treatment is performed so that the distance between the tip of the recess and the weld bead is at least twice the plate thickness. How to improve stopping characteristics.
JP2007057446A 2007-03-07 2007-03-07 Welded joint, welded structure excellent in brittle crack propagation stopping characteristics, and method for improving brittle crack propagation stopping characteristics Expired - Fee Related JP4767885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057446A JP4767885B2 (en) 2007-03-07 2007-03-07 Welded joint, welded structure excellent in brittle crack propagation stopping characteristics, and method for improving brittle crack propagation stopping characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057446A JP4767885B2 (en) 2007-03-07 2007-03-07 Welded joint, welded structure excellent in brittle crack propagation stopping characteristics, and method for improving brittle crack propagation stopping characteristics

Publications (2)

Publication Number Publication Date
JP2008213021A true JP2008213021A (en) 2008-09-18
JP4767885B2 JP4767885B2 (en) 2011-09-07

Family

ID=39833687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057446A Expired - Fee Related JP4767885B2 (en) 2007-03-07 2007-03-07 Welded joint, welded structure excellent in brittle crack propagation stopping characteristics, and method for improving brittle crack propagation stopping characteristics

Country Status (1)

Country Link
JP (1) JP4767885B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131260A (en) * 2009-12-25 2011-07-07 Jfe Steel Corp Method for increasing fatigue strength of weld zone, and weld joint
CN111433585A (en) * 2017-11-22 2020-07-17 杰富意钢铁株式会社 Method for evaluating brittle crack propagation stopping performance of thick steel plate
CN113442443A (en) * 2020-03-24 2021-09-28 斯坦雷电气株式会社 Ultrasonic bonding method and ultrasonic bonding structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050145306A1 (en) * 1998-09-03 2005-07-07 Uit, L.L.C. Company Welded joints with new properties and provision of such properties by ultrasonic impact treatment
JP2005329461A (en) * 2004-04-21 2005-12-02 Nippon Steel Corp Welded steel structure having excellent brittle crack propagation stop characteristic, and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050145306A1 (en) * 1998-09-03 2005-07-07 Uit, L.L.C. Company Welded joints with new properties and provision of such properties by ultrasonic impact treatment
JP2005329461A (en) * 2004-04-21 2005-12-02 Nippon Steel Corp Welded steel structure having excellent brittle crack propagation stop characteristic, and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131260A (en) * 2009-12-25 2011-07-07 Jfe Steel Corp Method for increasing fatigue strength of weld zone, and weld joint
CN111433585A (en) * 2017-11-22 2020-07-17 杰富意钢铁株式会社 Method for evaluating brittle crack propagation stopping performance of thick steel plate
CN111433585B (en) * 2017-11-22 2022-10-28 杰富意钢铁株式会社 Method for evaluating brittle crack propagation stopping performance of thick steel plate
CN113442443A (en) * 2020-03-24 2021-09-28 斯坦雷电气株式会社 Ultrasonic bonding method and ultrasonic bonding structure
CN113442443B (en) * 2020-03-24 2023-09-22 斯坦雷电气株式会社 Ultrasonic bonding method and ultrasonic bonding structure

Also Published As

Publication number Publication date
JP4767885B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
KR100671037B1 (en) Method of increasing toughness of heat-affected part of steel product welded joint
TWI396600B (en) Out-of-plane gusset weld joints and manufacturing method therefor
KR101134158B1 (en) Welded joint with excellent fatigue-resistance characteristics, and method for producing same
JP5052918B2 (en) Welded joint, welded structure excellent in crack initiation propagation characteristics, and method for improving crack initiation propagation characteristics
KR100770423B1 (en) Weld structure having excellent brittle crack propagation resistance and method of welding the weld structure
JP4995066B2 (en) Butt multipass weld joint and welded structure with excellent brittle crack propagation characteristics
JP2009034721A (en) Manufacturing method of welded joint excellent in fatigue resistance and its manufacturing apparatus
JP4767885B2 (en) Welded joint, welded structure excellent in brittle crack propagation stopping characteristics, and method for improving brittle crack propagation stopping characteristics
JP5130478B2 (en) Butt weld joint with excellent fatigue characteristics and method for producing the same
JP4546995B2 (en) Butt multipass weld joint and welded structure with excellent brittle crack propagation characteristics
JP4757697B2 (en) Method for improving fatigue performance of fillet welds
JP2004149880A (en) Metal structure excellent in environmentally corrosive cracking resistance, and method for improving resistance to environmentally corrosive cracking of metal structure
JP4837428B2 (en) Ultrasonic impact treatment method for weld toe
JP5052976B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP4580220B2 (en) Fatigue performance improving structure of joint weld and fatigue performance improving method
JP6495569B2 (en) Tool for forming impact marks
JP2006055899A (en) Method for improving fatigue life of welded joint
JP5433928B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP6747416B2 (en) Tool for forming impact mark and method for producing welded joint
JP3900490B2 (en) Fatigue reinforcement method for girders with flange gussets
JP2005113204A (en) Weld metal for welded structure excellent in brittle fracture propagation resistance, construction method therefor, and the welded structure
JP5955752B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP2023162132A (en) Method for suppressing fatigue crack initiation of weld zone and method for manufacturing weld joint
JP2013136092A (en) Method for suppressing fatigue damage of welded structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R151 Written notification of patent or utility model registration

Ref document number: 4767885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees