JP2008210972A - Transformer for high-frequency induction heating - Google Patents

Transformer for high-frequency induction heating Download PDF

Info

Publication number
JP2008210972A
JP2008210972A JP2007045839A JP2007045839A JP2008210972A JP 2008210972 A JP2008210972 A JP 2008210972A JP 2007045839 A JP2007045839 A JP 2007045839A JP 2007045839 A JP2007045839 A JP 2007045839A JP 2008210972 A JP2008210972 A JP 2008210972A
Authority
JP
Japan
Prior art keywords
cooling water
winding
core
secondary winding
primary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007045839A
Other languages
Japanese (ja)
Inventor
Takahiko Kanai
隆彦 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2007045839A priority Critical patent/JP2008210972A/en
Publication of JP2008210972A publication Critical patent/JP2008210972A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance a cooling efficiency of a transformer for high-frequency induction heating by omnidirectionally absorbing a generated heat of a core with a primary winding wound, downsizing the transformer. <P>SOLUTION: The transformer 1 for the high-frequency induction heating is manufacturered by winding the multi-winding conductor (the primary winding 4) around a hollow core 2, encapsulating the primary winding 4 annularly formed by the winding of the multi-winding conductor (the primary winding 4) at the both end sides of the core 2 in a secondary winding 6 with a single-winding conductor formed in an annular hollow shape, providing inflow ports for a cooling water (a tube 3 for the cooling water, a hole 65a for the cooling water) to a secondary winding 6 in order to flow the cooling water for immersing the primary winding 4 and the core 2 into the secondary winding 6, and providing an outflow port for the cooling water in the secondary winding 6 (a tube 5 for the cooling water, a port 67a for the cooling water) to the secondary winding 6 so as to face to the inflow port for the cooling water (the tube 3 for the cooling water, the hole 65a for the cooling water). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、一次巻線への通電による一次巻線及びコアの発熱の冷却効率を高めることにより小型にする高周波誘導加熱用変成器に関する。   The present invention relates to a high frequency induction heating transformer that is reduced in size by increasing the cooling efficiency of heat generation of a primary winding and a core by energizing the primary winding.

従来の高周波変成器について図6を用いて説明する。図6に示すように、円筒状のリングコア123の外周に接してリング状の冷却水管124が同心状に配置されており、リングコア123と冷却水管124に絶縁テープ125が巻回されている。リングコア123及び冷却水管124には、絶縁テープ125を介して二次巻線122が巻回されている。二次巻線122は1列巻きされている。二次巻線122の外周には絶縁テープ125が巻回され、二次巻線122には、絶縁テープ125を介して一次巻線121が巻回されている。一次巻線121は1列巻きされている。   A conventional high frequency transformer will be described with reference to FIG. As shown in FIG. 6, a ring-shaped cooling water pipe 124 is disposed concentrically in contact with the outer periphery of a cylindrical ring core 123, and an insulating tape 125 is wound around the ring core 123 and the cooling water pipe 124. A secondary winding 122 is wound around the ring core 123 and the cooling water pipe 124 via an insulating tape 125. The secondary winding 122 is wound in one row. An insulating tape 125 is wound around the outer periphery of the secondary winding 122, and a primary winding 121 is wound around the secondary winding 122 via the insulating tape 125. The primary winding 121 is wound in one row.

一次巻線121には、図示しない一次端子ボルトを介して電源から電圧が印加され、二次巻線122に生じた電圧は、図示しない2次端子ボルトを介して負荷に供給される。また、冷却水ニップル127を介して冷却水が流される。リングコア123に冷却水管124を接して配置し、巻線121、122をリングコア123及び冷却水管124に巻回したため、冷却水管124によりリングコア123及び巻線121、122を直線的に冷却できる(特許文献1)。
特開平8−148346(段落0023から段落0025、段落0027、段落0030 図5)
A voltage is applied to the primary winding 121 from a power source via a primary terminal bolt (not shown), and the voltage generated in the secondary winding 122 is supplied to a load via a secondary terminal bolt (not shown). Further, the cooling water flows through the cooling water nipple 127. Since the cooling water pipe 124 is disposed in contact with the ring core 123 and the windings 121 and 122 are wound around the ring core 123 and the cooling water pipe 124, the ring core 123 and the windings 121 and 122 can be linearly cooled by the cooling water pipe 124 (Patent Document). 1).
JP-A-8-148346 (paragraph 0023 to paragraph 0025, paragraph 0027, paragraph 0030 FIG. 5)

しかしながら、図6に示すように、リングコア123に冷却水管124を隣接して配置し、冷却水管124に冷却水を流し、間接的にリングコア123から熱を吸収しているに過ぎない。そのため、冷却水管124が隣接するリングコア123の部位の熱のみが冷却され、リングコア123だけでも全体を冷却しようとすると冷却水管124が大きくなり、高周波変成器の大型化を招く。また、リングコア123と一次巻線121との間に冷却水管124が配置されるので一次巻線121とリングコア123の磁気結合が悪くなる。   However, as shown in FIG. 6, the cooling water pipe 124 is disposed adjacent to the ring core 123, the cooling water is passed through the cooling water pipe 124, and heat is indirectly absorbed from the ring core 123. Therefore, only the heat of the portion of the ring core 123 adjacent to the cooling water pipe 124 is cooled, and if the entire ring core 123 alone is to be cooled, the cooling water pipe 124 becomes large, leading to an increase in size of the high frequency transformer. Further, since the cooling water pipe 124 is disposed between the ring core 123 and the primary winding 121, the magnetic coupling between the primary winding 121 and the ring core 123 is deteriorated.

本発明は、上記の事情に鑑みなされたものであり、一次巻線が巻回されたコアの発熱を全方位から吸収し、コアの昇温を小さくし、電力の伝達を効率よく行うことが可能となる小型高周波誘導加熱用変成器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can absorb heat generated from the core wound with the primary winding from all directions, reduce the temperature rise of the core, and efficiently transmit power. An object of the present invention is to provide a small-sized high frequency induction heating transformer.

上記の目的を達成するために、請求項1に記載の発明は、多巻回導体を中空形状のコアに巻回することにより、前記コアの両端部側に前記多巻回導体の巻回による円環状を形成した一次巻線を、単巻回導体を中空環状に形成してなる二次巻線内に封入した高周波誘導加熱用変成器において、前記二次巻線には、前記一次巻線及び前記コアを浸漬するための冷却水を前記二次巻線内へ流入するために設けられた冷却水流入口と、前記冷却水流入口と対向するように、前記二次巻線内の前記冷却水を流出するために前記二次巻線に設けられた冷却水流出口と、を備えることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, by winding a multi-winding conductor around a hollow core, the multi-winding conductor is wound around both ends of the core. In a high frequency induction heating transformer in which a primary winding having an annular shape is enclosed in a secondary winding formed by forming a single winding conductor in a hollow annular shape, the secondary winding includes the primary winding. And a cooling water inlet provided to flow cooling water for immersing the core into the secondary winding, and the cooling water in the secondary winding so as to face the cooling water inlet. And a cooling water outlet provided in the secondary winding in order to flow out.

従って、請求項1に記載の発明によれば、二次巻線に冷却水流入口、冷却水流出口が設けられて、冷却水が二次巻線内に流入し、二次巻線内の一次巻線及びコアを浸漬することで、一次巻線、二次巻線及びコアの全方位からの冷却を可能にし、一次巻線、二次巻線及びコアの冷却に使用した冷却水は、冷却水流出口が冷却水流出口対向するように設けられているため容易に二次巻線から流出することが可能になる。   Therefore, according to the first aspect of the present invention, the cooling water inlet and the cooling water outlet are provided in the secondary winding so that the cooling water flows into the secondary winding and the primary winding in the secondary winding. By immersing the wire and the core, it is possible to cool the primary winding, the secondary winding and the core from all directions, and the cooling water used for cooling the primary winding, the secondary winding and the core is the cooling water flow. Since the outlet is provided so as to face the cooling water outlet, it can easily flow out of the secondary winding.

また、請求項2に記載の発明は、請求項1に記載の構成に加え、前記二次巻線の端部側に設けられた、少なくとも一対の、前記冷却水流入口と前記冷却水流出口とが、前記二次巻線の長手方向の対角線に沿う位置にあることを特徴とする。   In addition to the configuration described in claim 1, the invention described in claim 2 includes at least a pair of the cooling water inlet and the cooling water outlet provided on the end side of the secondary winding. The secondary winding is located along a diagonal line in the longitudinal direction of the secondary winding.

従って、請求項2に記載の発明によれば、二次巻線の端部側である環状蓋体に設けられた、冷却水流入口と冷却水流出口とが、二次巻線の長手方向の対角線上の位置に設けられているので、冷却水流入口から冷却水流出口へ向かう冷却水が乱流を起こし易くし、二次巻線内に冷却水を行き渡らせ易くすることを可能にする。   Therefore, according to the second aspect of the present invention, the cooling water inlet and the cooling water outlet provided on the annular lid on the end side of the secondary winding are diagonal in the longitudinal direction of the secondary winding. Since it is provided in the upper position, the cooling water from the cooling water inlet to the cooling water outlet is likely to cause turbulence, and the cooling water can be easily distributed in the secondary winding.

さらに、請求項3に記載の発明は、請求項2に記載の構成に加え、前記二次巻線の端部側で、前記二次巻線の長手方向の前記対角線に沿う位置に設けられた、前記冷却水流入口からの前記冷却水は前記一次巻線及び前記コアに対し斜め方向から流入し、前記一次巻線及び前記コアに対し前記斜め方向より、前記二次巻線の端部側で、前記二次巻線の長手方向の前記対角線に沿う位置に設けられた、前記冷却水流出口から流出することを特徴とする。   Furthermore, the invention according to claim 3 is provided at the position along the diagonal line in the longitudinal direction of the secondary winding on the end side of the secondary winding in addition to the configuration according to claim 2. The cooling water from the cooling water inlet flows in an oblique direction with respect to the primary winding and the core, and is closer to the end of the secondary winding than the oblique direction with respect to the primary winding and the core. And flowing out from the cooling water outlet provided at a position along the diagonal in the longitudinal direction of the secondary winding.

従って、請求項3に記載の発明によれば、冷却水流入口からの冷却水が、一次巻線及び前記コアに対し斜め方向から流入し、冷却水の乱流を起こすため、冷却水の流れ方向以外の一次巻線及びコアの部分にも冷却水が及び、冷却水の流れ方向が一方向であっても一次巻線及びコア全体の浸漬を容易にすることで、二次巻線内全体の冷却を可能にする。   Therefore, according to the third aspect of the present invention, the cooling water from the cooling water inlet flows into the primary winding and the core from an oblique direction to cause a turbulent flow of the cooling water. Other than the primary winding and the core part, the cooling water is also applied, and even if the flow direction of the cooling water is one direction, the primary winding and the entire core can be easily immersed, so that Allow cooling.

また、請求項4に記載の発明は、請求項1乃至3のいずれかに記載の構成に加え、前記コアは、複数のリング状のコアが連結され、連結された各々のリング状のコアには絶縁及び防水のためのコーティングが施されるとともに、各々のリング状のコアは、外径に比べ軸方向の厚さが短いことを特徴とする。   According to a fourth aspect of the present invention, in addition to the configuration according to any one of the first to third aspects, the core includes a plurality of ring-shaped cores coupled to each of the coupled ring-shaped cores. Is provided with a coating for insulation and waterproofing, and each ring-shaped core is characterized in that its axial thickness is shorter than its outer diameter.

従って、請求項4に記載の発明によれば、コアは二次巻線内で冷却水に浸漬されるので防水のためのコーティングが施されることで防水可能になり、また、一次巻線も絶縁物で覆われているので防水可能である。さらに、各リング状のコアの、外径と軸方向の厚さとを均等にすることで、リング状のコアの表面だけの冷却になるのを防ぎ、リング状のコア全体の均等な冷却が可能になる。また、各リング状のコアは、外径に比べ軸方向の厚さを短くすることでリング状のコア内部の熱の均等を図ることが可能になる。   Therefore, according to the invention described in claim 4, since the core is immersed in the cooling water in the secondary winding, the core can be waterproofed by applying a waterproof coating, and the primary winding is also Since it is covered with an insulator, it can be waterproofed. Furthermore, by equalizing the outer diameter and axial thickness of each ring-shaped core, it is possible to prevent cooling of only the surface of the ring-shaped core and to evenly cool the entire ring-shaped core. become. In addition, each ring-shaped core can be made uniform in heat inside the ring-shaped core by reducing the axial thickness compared to the outer diameter.

本発明によれば、コア(リング状のコア)からの熱を全方位から吸収するため、コア(リング状のコア)からの熱の放出が向上し、コア(リング状のコア)の温度上昇が抑えられ、伝達する電力量の増加を図ることができる。また、コア(リング状のコア)を冷却するための冷却水管が不必要となり、多巻回巻線(一次巻線)も冷却されるので多巻回巻線(一次巻線)を冷却するための冷却水管等も不必要となり、変成器全体の小型化を実現することができる。さらに、コア(リング状のコア)を冷却するための冷却水管等が不必要となるため、コアと多巻回巻線(一次巻線)の磁気結合がよくなる。そして、コア(リング状のコア)と多巻回巻線(一次巻線)とを直接的に連結することが可能となり、コア(リング状のコア)と多巻回巻線(一次巻線)との配置が崩れることなく連結することができる。また、コアはコーティングされることから、コアの材料としては、フェライト、硅素鋼板、或いはアモルファスを用いても錆の発生を抑止することができる。   According to the present invention, since the heat from the core (ring-shaped core) is absorbed from all directions, the heat release from the core (ring-shaped core) is improved, and the temperature of the core (ring-shaped core) is increased. Can be suppressed, and the amount of electric power to be transmitted can be increased. In addition, a cooling water pipe for cooling the core (ring-shaped core) becomes unnecessary, and the multi-turn winding (primary winding) is also cooled, so that the multi-turn winding (primary winding) is cooled. The cooling water pipe is not necessary, and the entire transformer can be downsized. Furthermore, since a cooling water pipe or the like for cooling the core (ring-shaped core) is unnecessary, the magnetic coupling between the core and the multi-turn winding (primary winding) is improved. And it becomes possible to directly connect the core (ring-shaped core) and the multi-turn winding (primary winding), and the core (ring-shaped core) and the multi-turn winding (primary winding). And can be connected without breaking. Moreover, since the core is coated, the generation of rust can be suppressed even when ferrite, a silicon steel plate, or amorphous is used as the core material.

以下、本発明を実施するための最良の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1に本発明である高周波誘導加熱用変成器1が示されている。本発明である高周波誘導加熱用変成器1は、図1及び図2に示すように、基本的に円筒状の形状をなしている。高周波誘導加熱用変成器1の二次巻線6は単巻回導体を中空環状に形成し、環状容器体61と環状蓋体62、66とにより構成されている。環状容器体61は一次巻線4を収納し得る長さを有し、さらに、環状容器体61の環状蓋体66には、図1及び図2に示すように、環状容器体61に通じる冷却水用管部3、5が設けられており、環状蓋体62側には、図1及び図2に示すように、環状容器体61に通じる冷却水用孔部65a、67aが設けられている。   FIG. 1 shows a high-frequency induction heating transformer 1 according to the present invention. The high frequency induction heating transformer 1 according to the present invention basically has a cylindrical shape as shown in FIGS. The secondary winding 6 of the high-frequency induction heating transformer 1 is formed of a circular container body 61 and annular lid bodies 62 and 66 in which a single winding conductor is formed in a hollow ring shape. The annular container body 61 has a length that can accommodate the primary winding 4, and the annular lid body 66 of the annular container body 61 has cooling that leads to the annular container body 61 as shown in FIGS. 1 and 2. As shown in FIGS. 1 and 2, cooling water holes 65a and 67a communicating with the annular container body 61 are provided on the annular lid body 62 side. .

環状蓋体66に対向する環状蓋体62には、環状蓋体62の中央部に貫通孔64が設けられている。そして、環状蓋体66の中央より伸びる二次巻線6の導管部63が環状蓋体62の貫通孔64を貫いて伸びている。伸びた導管部63の端部には、図1及び図2に示すように、二次巻線6の出力端子電極65が形成されている。出力端子電極65には、図4に示すように、この導管部63へ冷却水の流通可能となるように、冷却水用孔部65a(冷却水流入口)が設けられている。冷却水用孔部65aから流入し導管部63を流入する冷却水は、冷却水用孔部65a(冷却水流入口)に対向する、環状蓋体66に設けられた冷却水用管部5(冷却水流出口)から流出するようになっている。   A through hole 64 is provided in the central portion of the annular lid 62 in the annular lid 62 that faces the annular lid 66. A conduit portion 63 of the secondary winding 6 extending from the center of the annular lid 66 extends through the through hole 64 of the annular lid 62. As shown in FIGS. 1 and 2, an output terminal electrode 65 of the secondary winding 6 is formed at the end of the extended conduit portion 63. As shown in FIG. 4, the output terminal electrode 65 is provided with a cooling water hole 65 a (cooling water inlet) so that the cooling water can flow through the conduit 63. The cooling water flowing in from the cooling water hole 65a and flowing into the conduit 63 is cooled by the cooling water pipe 5 (cooling water) provided in the annular lid 66 facing the cooling water hole 65a (cooling water inlet). The water flows out from the water outlet.

また、導管部63と貫通孔64との間の隙間を埋めて水密性を確保するために、導管部63と貫通孔64との間には、図1及び図2に示すように、環状のパッキン68が組み込まれている。そして、この導管部63と隣接するように、図1及び図4に示すように、出力端子電極67が設けられている。出力端子電極67は、図1に示すように、出力端子65と並ぶように環状蓋体62から突出して形成されている。そして、出力端子電極65と出力端子電極67との間には絶縁性を確保するために絶縁材69が組み込まれている(図4参照)。また、出力端子電極67にも、出力端子電極65と同様に、図1及び図4に示すように、冷却水用孔部67a(冷却水流出口)が設けられ、冷却水用孔部67a(冷却水流出口)は環状容器体61内に通じている。   Further, in order to fill the gap between the conduit portion 63 and the through hole 64 and ensure water tightness, an annular ring is formed between the conduit portion 63 and the through hole 64 as shown in FIGS. A packing 68 is incorporated. And as shown in FIG.1 and FIG.4, the output terminal electrode 67 is provided so that this conduit | pipe part 63 may be adjoined. As shown in FIG. 1, the output terminal electrode 67 is formed so as to protrude from the annular lid 62 so as to be aligned with the output terminal 65. An insulating material 69 is incorporated between the output terminal electrode 65 and the output terminal electrode 67 to ensure insulation (see FIG. 4). Similarly to the output terminal electrode 65, the output terminal electrode 67 is also provided with a cooling water hole 67a (cooling water outlet) as shown in FIGS. 1 and 4, and the cooling water hole 67a (cooling). The water outlet) communicates with the annular container body 61.

この冷却水用孔部67a(冷却水流出口)は、冷却水用孔部67a(冷却水流入口)に対向する、環状蓋体66に設けられた冷却水用管部3(冷却水流入口)から流入する冷却水を流出することになる。この冷却水用管部3(冷却水流入口)と冷却水用孔部67a(冷却水流出口)とが、図1に示すように、二次巻線6の端部側(である環状蓋体62、66)で、二次巻線6の長手方向の対角線に沿う位置に設けられているため、冷却水用管部3(冷却水流入口)から流入された冷却水を二次巻線6内に行き渡らせ易くなり、二次巻線6内の一次巻線4及びコア2の浸漬を容易にすることを可能にしている。   This cooling water hole 67a (cooling water outlet) flows in from the cooling water pipe part 3 (cooling water inlet) provided in the annular lid 66 opposite to the cooling water hole 67a (cooling water inlet). The cooling water will flow out. As shown in FIG. 1, the cooling water pipe 3 (cooling water inlet) and the cooling water hole 67a (cooling water outlet) are on the end side of the secondary winding 6 (the annular lid 62). 66), the cooling water flowing in from the cooling water pipe section 3 (cooling water inlet) is introduced into the secondary winding 6 because the cooling water is provided at a position along the longitudinal diagonal of the secondary winding 6. This makes it easier to spread the primary winding 4 and the core 2 in the secondary winding 6.

二次巻線6に封入された一次巻線4は、図1に示すように、多巻回導体である一次巻線4をコア2に巻き付けて構成されている。具体的には、コア2に一次巻線4が、図1に示すように、巻回して一次巻線4の端相互が近接する円環状に形成されて二次巻線6に封入されている。この一次巻線4の一次巻線4の一方の端部42及び他方の端部43は、図2に示すように、環状容器体61の開口端63と反対側にある環状蓋体66の引出部66a、66aに組み込まれ、その引出部66a、66aに取り付けられた入力端子7、8と連結されている。   As shown in FIG. 1, the primary winding 4 enclosed in the secondary winding 6 is configured by winding the primary winding 4, which is a multi-winding conductor, around the core 2. Specifically, as shown in FIG. 1, the primary winding 4 is wound around the core 2 and formed in an annular shape in which the ends of the primary winding 4 are close to each other and enclosed in the secondary winding 6. . As shown in FIG. 2, one end 42 and the other end 43 of the primary winding 4 of the primary winding 4 are drawn out of the annular lid 66 on the side opposite to the opening end 63 of the annular container 61. It is incorporated in the parts 66a and 66a and is connected to the input terminals 7 and 8 attached to the lead parts 66a and 66a.

コア2は、複数のリング状のコア21を連結し、連結された各々のリング状のコア21には絶縁及び防水のためのコーティングを施されている。そして、連結された各々のリング状のコア21の、外径より軸方向の厚さを小さくし、具体的には、連結された各々のリング状のコア21の、軸方向の厚さを薄く表面積を多くすることでリング状のコア21の内部の熱の均等を図ることも可能である。また、本例では、コア2の表面にコーティングを施しているので、コア2の材料として、フェライト、硅素鋼板、或いはアモルファスのいずれをも用いることが可能である。   The core 2 connects a plurality of ring-shaped cores 21, and each of the connected ring-shaped cores 21 is coated for insulation and waterproofing. Then, the axial thickness of each of the connected ring-shaped cores 21 is made smaller than the outer diameter. Specifically, the thickness of each of the connected ring-shaped cores 21 is made thinner. It is also possible to equalize the heat inside the ring-shaped core 21 by increasing the surface area. In this example, since the surface of the core 2 is coated, any material of ferrite, silicon steel plate, or amorphous can be used as the material of the core 2.

なお、一次巻線(一次導体)4と二次巻線(二次導体)6との絶縁は一次巻線4の被覆であるフッ素樹脂と冷却水とで絶縁されている。また、入力端子7、8は環状蓋体66と図示しない絶縁材より絶縁されている。   The primary winding (primary conductor) 4 and the secondary winding (secondary conductor) 6 are insulated from each other by a fluororesin that is a covering of the primary winding 4 and cooling water. The input terminals 7 and 8 are insulated from the annular lid 66 by an insulating material (not shown).

つぎに、本発明である高周波誘導加熱用変成器1の作動について説明する。   Next, the operation of the high frequency induction heating transformer 1 according to the present invention will be described.

まず、環状容器体61の底板部66の冷却水流入口(冷却水用管路3)から、図5に示すように、矢印A方向より冷却水を二次巻線6内へ流入するとともに、環状蓋体62の出力端子板部65の冷却水流入口(冷却水用孔部65a)から、図5に示すように、矢印B方向より冷却水を二次巻線6内へ流入する。その後、高周波誘導加熱用変成器1の入力端子7、8を交流電源に接続して一次巻線4に一次電流を通じる。その一次電流による磁束Φは、閉ループを形成して環流する。他方、二次巻線6は、その閉ループを包む中空円環状をなしているから、磁束Φが閉ループ全長で二次巻線6と鎖交し、その結果、鎖交数に応じた二次電圧が二次巻線6に生起し、出力端子電極65、67間に巻数比で変圧された電圧が現れる。   First, as shown in FIG. 5, the cooling water flows into the secondary winding 6 from the cooling water inlet (cooling water conduit 3) of the bottom plate portion 66 of the annular container body 61 in the direction of the arrow A, and As shown in FIG. 5, cooling water flows into the secondary winding 6 from the direction of arrow B from the cooling water inlet (cooling water hole 65 a) of the output terminal plate 65 of the lid 62. Thereafter, the input terminals 7 and 8 of the high frequency induction heating transformer 1 are connected to an AC power source, and the primary current is passed through the primary winding 4. The magnetic flux Φ due to the primary current circulates in a closed loop. On the other hand, since the secondary winding 6 has a hollow annular shape surrounding the closed loop, the magnetic flux Φ is linked to the secondary winding 6 over the entire length of the closed loop, and as a result, the secondary voltage corresponding to the number of linkages is obtained. Occurs in the secondary winding 6, and a voltage transformed between the output terminal electrodes 65 and 67 at a turn ratio appears.

このとき、高周波誘導加熱用変成器1の入力端子7、8へを交流電源から一次電流を通じ続けると一次巻線4及びコア2に熱が発生する。冷却水流入口(冷却水用管路3)からの冷却水は、二次巻線6内に流入していき、冷却水流出口(冷却水用孔部67a、)へ向かい、一次巻線4及びコア2を浸漬するように二次巻線6内に満たされていき、冷却水流入口(冷却水用孔部65a)からの冷却水は、導管部63を流入し、冷却水流出口(冷却水用管路5)に向かう。   At this time, if the primary current is continuously supplied from the AC power source to the input terminals 7 and 8 of the high frequency induction heating transformer 1, heat is generated in the primary winding 4 and the core 2. Cooling water from the cooling water inlet (cooling water conduit 3) flows into the secondary winding 6 and heads toward the cooling water outlet (cooling water hole 67a), and the primary winding 4 and the core. 2 is filled in the secondary winding 6 so that the cooling water from the cooling water inlet (cooling water hole 65a) flows into the conduit 63 and the cooling water outlet (cooling water pipe). Head to Road 5).

具体的には、冷却水用管路3から矢印A方向に沿って流入された冷却水は、図3及び図5に示すように、環状に流れ、二次巻線6内で、環状蓋体66側から冷却水を満たし始める。冷却水用管部3から矢印A方向に沿って冷却水が流入され続けると、環状蓋体66側から満たされた冷却水が環状蓋部62に向かって満たされていく。そして、冷却水が環状蓋部62に到達すると、冷却水は、図4及び図5に示すように、冷却水用孔部67bから流出する。このように、冷却水の流れは、矢印E方向である二次巻線6内の対角線に沿っているため、矢印E方向に流れる冷却水は冷却水用孔部67bに向かう際に、結果として乱流を生じたことと同じになる。   Specifically, as shown in FIGS. 3 and 5, the cooling water flowing in from the cooling water pipe 3 along the direction of the arrow A flows in an annular shape, and in the secondary winding 6, the annular lid Start to fill cooling water from 66 side. When the cooling water continues to flow in the direction of arrow A from the cooling water pipe portion 3, the cooling water filled from the annular lid body 66 side is filled toward the annular lid portion 62. When the cooling water reaches the annular lid 62, the cooling water flows out from the cooling water hole 67b as shown in FIGS. Thus, since the flow of the cooling water is along the diagonal line in the secondary winding 6 that is the direction of the arrow E, the cooling water flowing in the direction of the arrow E results in the flow toward the cooling water hole 67b. It becomes the same as having produced a turbulent flow.

つまり、冷却水用管部3からの冷却水は、乱流を生じながら一次巻線4及びコア2に対して斜め方向(矢印E方向)から流入する。そして、流入した冷却水は一次巻線4及びコア2に対し斜め方向(矢印E方向)より冷却水用孔部67aに向かう。また、冷却水用孔部65aからの冷却水は、二次巻線6の導管部63に沿って流れ、二次巻線6の中央から二次巻線6を冷却しつつ、冷却水用管部5に向かう。   That is, the cooling water from the cooling water pipe portion 3 flows in an oblique direction (arrow E direction) to the primary winding 4 and the core 2 while generating a turbulent flow. And the inflowing cooling water goes to the hole 67a for cooling water from the diagonal direction (arrow E direction) with respect to the primary winding 4 and the core 2. FIG. Further, the cooling water from the cooling water hole 65a flows along the conduit portion 63 of the secondary winding 6 and cools the secondary winding 6 from the center of the secondary winding 6, while the cooling water pipe Head to part 5.

このようにして、二次巻線6内の隅々まで冷却水が行き渡る。その結果、二次巻線6が冷却されるとともに、冷却水に浸漬した一次巻線4及びコア2は、冷却水により全方位から熱が吸収される。このように、冷却水に一次巻線4及びコア2を浸漬すると、一次巻線4及びコア2の表面だけの冷却ではなく、一次巻線4及びコア2全体を均等に冷却する。そのため、特に、コア2からの熱が放出し易くなり、一次巻線4及びコア2の温度上昇が抑えられる。その結果、一次巻線4に大電流を流せることが出来、大容量で小型の高周波誘導加熱用変成器1が可能となる。   In this way, the cooling water reaches every corner in the secondary winding 6. As a result, the secondary winding 6 is cooled and the primary winding 4 and the core 2 immersed in the cooling water absorb heat from all directions by the cooling water. Thus, when the primary winding 4 and the core 2 are immersed in the cooling water, not only the surface of the primary winding 4 and the core 2 but also the primary winding 4 and the entire core 2 are uniformly cooled. Therefore, in particular, heat from the core 2 is easily released, and temperature rises of the primary winding 4 and the core 2 are suppressed. As a result, a large current can be passed through the primary winding 4, and a large capacity and small high frequency induction heating transformer 1 can be realized.

そして、冷却水用管路3から矢印A方向より流入し、二次巻線6内を矢印E方向へ流れた冷却水は、冷却水用孔部67bから矢印C方向に沿って流出する。また、冷却水用孔部65bから矢印B方向より流入した冷却水は、導管部63に沿って流れ、冷却水用管部5から矢印D方向に沿って流出する。   And the cooling water which flowed in from the cooling water pipe line 3 from the direction of arrow A and flowed in the secondary winding 6 in the direction of arrow E flows out from the cooling water hole 67b along the direction of arrow C. Further, the cooling water that has flowed in from the cooling water hole 65b from the direction of arrow B flows along the conduit portion 63 and flows out of the cooling water pipe portion 5 along the direction of arrow D.

本発明である高周波誘導加熱用変成器の側面方向の内部を示す説明図である。It is explanatory drawing which shows the inside of the side surface direction of the high frequency induction heating transformer which is this invention. 本発明である高周波誘導加熱用変成器の正面方向の内部を示す説明図である。It is explanatory drawing which shows the inside of the front direction of the high frequency induction heating transformer which is this invention. 本発明である高周波誘導加熱用変成器の環状蓋体側を示す説明図である。It is explanatory drawing which shows the cyclic | annular cover body side of the high frequency induction heating transformer which is this invention. 本発明である高周波誘導加熱用変成器の環状蓋体側を示す説明図である。It is explanatory drawing which shows the cyclic | annular cover body side of the high frequency induction heating transformer which is this invention. 冷却水の流れを示す説明図である。It is explanatory drawing which shows the flow of a cooling water. 従来の変成器本体の断面を示す断面図である。It is sectional drawing which shows the cross section of the conventional transformer main body.

符号の説明Explanation of symbols

1…高周波誘導加熱用変成器、2…コア、21…リング状のコア、3、5…冷却水用管部4…一次巻線(多巻回導体)、42…一方の端部、43…他方の端部、6…二次巻線(二次導体)、61…環状容器体、62、66…環状蓋体、63…導管部、64…貫通孔、65、67…出力端子電極、65a、67a…冷却水用孔部、66a…引出部、68…パッキン、69…絶縁材
7、8…入力端子

DESCRIPTION OF SYMBOLS 1 ... High frequency induction heating transformer, 2 ... Core, 21 ... Ring-shaped core 3, 5 ... Cooling water pipe part 4 ... Primary winding (multi-winding conductor), 42 ... One end part, 43 ... The other end, 6 ... secondary winding (secondary conductor), 61 ... annular container, 62, 66 ... annular lid, 63 ... conduit part, 64 ... through hole, 65, 67 ... output terminal electrode, 65a , 67a ... Cooling water hole portion, 66a ... Lead-out portion, 68 ... Packing, 69 ... Insulating material 7, 8 ... Input terminal

Claims (4)

多巻回導体を中空形状のコアに巻回することにより、前記コアの両端部側に前記多巻回導体の巻回による円環状を形成した一次巻線を、単巻回導体を中空環状に形成してなる二次巻線内に封入した高周波誘導加熱用変成器において、
前記二次巻線には、前記一次巻線及び前記コアを浸漬するための冷却水を前記二次巻線内へ流入するために設けられた冷却水流入口と、
前記冷却水流入口と対向するように、前記二次巻線内の前記冷却水を流出するために前記二次巻線に設けられた冷却水流出口と、を備えることを特徴とする高周波誘導加熱用変成器。
By winding a multi-winding conductor around a hollow core, a primary winding having an annular shape formed by winding the multi-winding conductor is formed on both ends of the core. In the high frequency induction heating transformer enclosed in the formed secondary winding,
In the secondary winding, a cooling water inlet provided to flow cooling water for immersing the primary winding and the core into the secondary winding;
A cooling water outlet provided in the secondary winding for allowing the cooling water in the secondary winding to flow out so as to face the cooling water inlet; Transformer.
前記二次巻線の端部側に設けられた、少なくとも一対の、前記冷却水流入口と前記冷却水流出口とが、前記二次巻線の長手方向の対角線に沿う位置にあることを特徴とする請求項1に記載の高周波誘導加熱用変成器。   The at least one pair of the cooling water inlet and the cooling water outlet provided on the end side of the secondary winding are located along a diagonal line in the longitudinal direction of the secondary winding. The high frequency induction heating transformer according to claim 1. 前記二次巻線の端部側で、前記二次巻線の長手方向の前記対角線に沿う位置に設けられた、前記冷却水流入口からの前記冷却水は前記一次巻線及び前記コアに対し斜め方向から流入し、前記一次巻線及び前記コアに対し前記斜め方向より、前記二次巻線の端部側で、前記二次巻線の長手方向の前記対角線に沿う位置に設けられた、前記冷却水流出口から流出することを特徴とする請求項2に記載の高周波誘導加熱用変成器。   The cooling water from the cooling water inflow port provided at a position along the diagonal line in the longitudinal direction of the secondary winding on the end side of the secondary winding is oblique to the primary winding and the core. Flowing from the direction, provided at a position along the diagonal line in the longitudinal direction of the secondary winding on the end side of the secondary winding from the oblique direction with respect to the primary winding and the core, The transformer for high frequency induction heating according to claim 2, wherein the transformer flows out from a cooling water outlet. 前記コアは、複数のリング状のコアが連結され、連結された各々のリング状のコアには絶縁及び防水のためのコーティングが施されるとともに、各々のリング状のコアは、外径に比べ軸方向の厚さが短いことを特徴とする請求項1乃至3のいずれかに記載の高周波誘導加熱用変成器。

A plurality of ring-shaped cores are connected to each other, and each of the connected ring-shaped cores is provided with a coating for insulation and waterproofing, and each ring-shaped core is compared with the outer diameter. The high-frequency induction heating transformer according to any one of claims 1 to 3, wherein the axial thickness is short.

JP2007045839A 2007-02-26 2007-02-26 Transformer for high-frequency induction heating Pending JP2008210972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045839A JP2008210972A (en) 2007-02-26 2007-02-26 Transformer for high-frequency induction heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045839A JP2008210972A (en) 2007-02-26 2007-02-26 Transformer for high-frequency induction heating

Publications (1)

Publication Number Publication Date
JP2008210972A true JP2008210972A (en) 2008-09-11

Family

ID=39787029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045839A Pending JP2008210972A (en) 2007-02-26 2007-02-26 Transformer for high-frequency induction heating

Country Status (1)

Country Link
JP (1) JP2008210972A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777417A (en) * 2010-03-10 2010-07-14 成都多林电器有限责任公司 Small-volume large-power density integral packaging middle frequency induction hardening transformer
JP2012216694A (en) * 2011-03-31 2012-11-08 Iq Four:Kk High frequency transformer
CN106384645A (en) * 2016-11-07 2017-02-08 上海尚频机电设备有限公司 Cylindrical quenching transformer with adjustable turn ratio
CN108281251A (en) * 2018-01-24 2018-07-13 江苏东晔电气设备有限公司 A kind of transformer cooling system for capableing of resource reutilization
CN108591084A (en) * 2018-04-12 2018-09-28 石家庄金士顿轴承科技有限公司 A kind of direct-connected centrifugal blower of fuel cell high speed
CN110062546A (en) * 2019-04-26 2019-07-26 深圳前海达闼云端智能科技有限公司 A kind of ventilation waterproof structure and electronic equipment
JP2019129192A (en) * 2018-01-23 2019-08-01 株式会社ミヤデン Output transformer for induction heating
CN112863822A (en) * 2021-01-08 2021-05-28 天能电池集团(安徽)有限公司 Air cooling and oil cooling combined transformer heat dissipation device
CN115482991A (en) * 2021-05-31 2022-12-16 襄阳中车电机技术有限公司 Integrated medium-high frequency transformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141319A (en) * 1977-05-17 1978-12-09 Tokyu Concrete Kogyo Kk Process and apparatus for making precast concrete plate with corrugated surface
JPS53141318A (en) * 1977-05-17 1978-12-09 Nippon Sheet Glass Co Ltd Heat radiation reflecive glass
JPH08148346A (en) * 1994-11-17 1996-06-07 Mitsubishi Heavy Ind Ltd High frequency transformer
JPH1174135A (en) * 1997-08-27 1999-03-16 Hitachi Ferrite Electronics Ltd High-voltage transformer
JP2003347018A (en) * 2002-05-24 2003-12-05 High Frequency Heattreat Co Ltd High frequency induction heating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141319A (en) * 1977-05-17 1978-12-09 Tokyu Concrete Kogyo Kk Process and apparatus for making precast concrete plate with corrugated surface
JPS53141318A (en) * 1977-05-17 1978-12-09 Nippon Sheet Glass Co Ltd Heat radiation reflecive glass
JPH08148346A (en) * 1994-11-17 1996-06-07 Mitsubishi Heavy Ind Ltd High frequency transformer
JPH1174135A (en) * 1997-08-27 1999-03-16 Hitachi Ferrite Electronics Ltd High-voltage transformer
JP2003347018A (en) * 2002-05-24 2003-12-05 High Frequency Heattreat Co Ltd High frequency induction heating apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777417A (en) * 2010-03-10 2010-07-14 成都多林电器有限责任公司 Small-volume large-power density integral packaging middle frequency induction hardening transformer
JP2012216694A (en) * 2011-03-31 2012-11-08 Iq Four:Kk High frequency transformer
CN106384645A (en) * 2016-11-07 2017-02-08 上海尚频机电设备有限公司 Cylindrical quenching transformer with adjustable turn ratio
JP7074290B2 (en) 2018-01-23 2022-05-24 株式会社ミヤデン Output transformer for induction heating
JP2019129192A (en) * 2018-01-23 2019-08-01 株式会社ミヤデン Output transformer for induction heating
CN108281251A (en) * 2018-01-24 2018-07-13 江苏东晔电气设备有限公司 A kind of transformer cooling system for capableing of resource reutilization
CN108281251B (en) * 2018-01-24 2019-07-26 江苏东晔电气设备有限公司 A kind of transformer cooling system for capableing of resource reutilization
CN108591084A (en) * 2018-04-12 2018-09-28 石家庄金士顿轴承科技有限公司 A kind of direct-connected centrifugal blower of fuel cell high speed
CN108591084B (en) * 2018-04-12 2019-07-26 石家庄金士顿轴承科技有限公司 A kind of direct-connected centrifugal blower of fuel cell high speed
CN110062546A (en) * 2019-04-26 2019-07-26 深圳前海达闼云端智能科技有限公司 A kind of ventilation waterproof structure and electronic equipment
CN112863822A (en) * 2021-01-08 2021-05-28 天能电池集团(安徽)有限公司 Air cooling and oil cooling combined transformer heat dissipation device
CN115482991A (en) * 2021-05-31 2022-12-16 襄阳中车电机技术有限公司 Integrated medium-high frequency transformer
CN115482991B (en) * 2021-05-31 2023-06-27 襄阳中车电机技术有限公司 Integrated medium-high frequency transformer

Similar Documents

Publication Publication Date Title
JP2008210972A (en) Transformer for high-frequency induction heating
US8928441B2 (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
CN104995699B (en) Transformer device
JP4942605B2 (en) Three-phase induction machine
JP5522658B2 (en) Static induction equipment
JP2010071624A (en) Fluid heating device
JP2007128751A (en) Fluid heating apparatus and heat medium conduction roller device using same
JP2008227526A (en) Toroidal inductive device and method for making the same
JP2009218417A (en) Reactor cooling device
JP2009002616A (en) Induction heating water heater
KR20150028369A (en) Electromagnetic coil, electromagnetic coil production method and electromagnetic actuator
US20090066453A1 (en) Choke of electric device
KR101066144B1 (en) Transformers
JP2009033898A (en) Cooling structure of rotating electrical machine
WO2003045113A1 (en) Device and method of liquid heating by electromagnetic induction and short-circuit using three-phase industrial frequency power
JP2016213074A (en) Fluid heating apparatus
JP4615425B2 (en) Matching transformer
JP2007027216A (en) Small high electric power current transformer
JP7256539B2 (en) Superheated steam generator
WO2015158200A1 (en) Fixing device of magnetic element, annular transformer and annular reactor
CN102938294A (en) High-frequency power transformer
JP2010258244A (en) Induction device
JP2007294536A (en) Water-cooled transformer and water-cooled coil thereof
KR100996606B1 (en) A high frequency cable for a high frequency induction heating device
JP4913607B2 (en) Water-cooled transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108