JP2008210906A - 放射線画像検出器 - Google Patents

放射線画像検出器 Download PDF

Info

Publication number
JP2008210906A
JP2008210906A JP2007044864A JP2007044864A JP2008210906A JP 2008210906 A JP2008210906 A JP 2008210906A JP 2007044864 A JP2007044864 A JP 2007044864A JP 2007044864 A JP2007044864 A JP 2007044864A JP 2008210906 A JP2008210906 A JP 2008210906A
Authority
JP
Japan
Prior art keywords
layer
electrode
electrode layer
image detector
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007044864A
Other languages
English (en)
Inventor
Satoru Irisawa
覚 入澤
Katsutoshi Yamane
勝敏 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007044864A priority Critical patent/JP2008210906A/ja
Priority to US12/037,237 priority patent/US20080203336A1/en
Publication of JP2008210906A publication Critical patent/JP2008210906A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Landscapes

  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】放射線画像検出器において、画像濃度ムラを抑制して画質の向上を図る。
【解決手段】放射線画像検出器10は、負電圧が印加されるとともに、放射線画像を担持した記録用の電磁波を透過する第1の電極層1と、第1の電極層1を透過した記録用の電磁波の照射を受けて電荷を発生する記録用光導電層2と、記録用光導電層2において発生した電荷に応じた信号を検出するための複数の電極を有する第2の電極層6とがこの順に積層されている。記録用光導電層2と第2の電極層6との間に、絶縁体に電子輸送性分子をドープしてなる電子輸送層を第2の電極層6の全面を覆うように設ける。
【選択図】図2

Description

本発明は、放射線の照射を受けて電荷を発生し、その電荷を蓄積することにより放射線画像を記録する放射線画像検出器に関するものである。
従来、医療分野などにおいて、被写体を透過した放射線の照射を受けて電荷を発生し、その電荷を蓄積することにより被写体に関する放射線画像を記録する放射線画像検出器が各種提案、実用化されている。
放射線画像検出器の方式としては、放射線を直接電荷に変換し電荷を蓄積する直接変換方式と、放射線を一度CsI:Tl、GOS(GdS:Tb)などのシンチレータで光に変換し、その光を光導電層で電荷に変換し蓄積する間接変換方式がある。また、読取り方式としては、光の照射により電荷を発生する半導体材料を利用した光読取方式と、放射線の照射により発生した電荷を収集電極に蓄積し、その蓄積した電荷を薄膜トランジスタ(Thin Film Transistor:TFT)などの電気的スイッチを1画素ずつON・OFFすることにより読み取る電気読取方式に大別される。
特許文献1には、電気読取方式の放射線画像検出器において、平坦化と膜特性改善のために、電極と電荷変換膜との間に有機膜を介在させることが開示されており、さらにこの有機膜に炭素粒子や金属粒子等を混合させて電極として使用する技術が開示されている。特許文献2には、電気読取方式の放射線画像検出器において、感度および残像特性を向上させるために収集電極を半導体膜で覆うことが開示されている。
特開2006−156555号公報 特開平6−209097号公報
放射線画像検出器には、毎回の撮影で大線量の放射線が照射され、大量の電荷が発生する。例えばマンモグラフィの測定では、1回の撮影で1R(レントゲン)程度の大線量の放射線が照射される。大量に電荷が発生すると、本来電荷が蓄積されるべきではない電極間の隙間等の非電極部等に大量の電荷がトラップされてしまい、このトラップされた電荷が電圧印加時の注入電流を変化させて、画像濃度ムラ(ストラクチャノイズ)の悪化の原因となる。電荷のトラップが解消されるには長い緩和時間が必要であり、その間にトラップされた電荷の量は刻一刻と変化するため、画像濃度ムラも時間とともに変化する。仮に、1ヶ月ごとに補正データを取って画像濃度ムラを補正しようとしても、その予測は困難であり、完全に画像濃度ムラを除去することはできず、DQE(Detective Quantum Efficiency)等の画質特性が劣化する。
そこで、上記のような電荷のトラップを抑制するためには、導電性を付与した膜を設けて、電荷輸送性を制御することが考えられる。例えば、特許文献1に記載された、有機膜に炭素粒子や金属粒子等を混合する方法を用いれば、導電率を上げることができる。しかしながら、この方法では混合する粒子の径が大きく、膜全体で均一な導電率を得ることは難しい。局所的に導電率が異なると、画像濃度ムラは強調されて画質は悪化してしまう。
また、特許文献1の検出器では、平坦化を目的にしているため膜厚が厚くなる傾向にあり、特に炭素粒子を混入させた場合には凹凸が大きくなるためさらにオーバーコートすることが提案されており、膜厚が数μmの厚い構成となってしまう。膜厚が厚いと、導電性が極度に悪くなり、画像濃度ムラが大きくなるため好ましくない。
特許文献2では、信号電荷の極性を規定し、特定の極性に対して半導体膜にドープすること、例えば正孔に対して輸送性が高くなるようa−SeにClをドープすることが提案されている。しかしながら、もともと抵抗率が絶縁体より大幅に低い半導体にドープをすると導電率が高くなりすぎ、暗電流の増加を引き起こし、これによりむしろ画像濃度ムラは強調されて、画質は低下する。特に開口率(定義は後述)が小さい場合には、電極への電界集中が大きくなり、画像濃度ムラはさらに悪化することになる。
本発明は、上記事情に鑑み、画像濃度ムラを抑制して画質の向上を図ることが可能な放射線画像検出器を提供することを目的とするものである。
本発明の放射線画像検出器は、負電圧が印加されるとともに、放射線画像を担持した記録用の電磁波を透過する第1の電極層と、該第1の電極層を透過した前記記録用の電磁波の照射を受けて電荷を発生する光導電層と、該光導電層において発生した電荷に応じた信号を検出するための複数の電極を有する第2の電極層とがこの順に積層された放射線画像検出器において、前記光導電層と前記第2の電極層との間に、絶縁体に電子輸送性分子をドープしてなる電子輸送層を前記第2の電極層の全面を覆うように設けたことを特徴とするものである。
ここで、「光導電層と前記第2の電極層との間に、絶縁体に電子輸送性分子をドープしてなる電子輸送層を前記第2の電極層の全面を覆うように」とは、第2の電極層が光導電層に対向している面全てを覆うという意味であり、第2の電極層が光導電層に対向していない面については必ずしも含まれないものとする。
上記本発明の放射線画像検出器において、上記電子輸送性分子として、ナノカーボンを使用することができる。
本明細書において、「ナノカーボン」とは、炭素原子が球状または筒状に繋がり、直径がナノメートルサイズのものの総称として定義することにする。「ナノカーボン」の代表的なものとしては、C60、C70等のフラーレンや、カーボンナノチューブが挙げられる。また、その他の「ナノカーボン」としては、C76、C78、C84、カーボンナノフォーム、カーボンナノシート等が挙げられる。また、「ナノカーボン」は、上記の球状または筒状の炭素原子の内部に、例えば金属原子等の炭素原子以外の物質を内包したものも含むものとする。
なお、本発明の放射線画像検出器は、前記光導電層と前記第2の電極層との間に、読取光の照射を受けて電荷を発生する読取用光導電層を備えるよう構成してもよく、または、前記電極が、前記光導電層において発生した電荷を収集するものであり、前記第2の電極層が、前記電極によって収集された電荷を蓄積する蓄積容量と、該蓄積容量に蓄積された電荷を読み出すためのスイッチ素子とを有するよう構成してもよい。
ここで、「読取光」は、静電記録体における電荷の移動を可能として、電気的に静電潜像を読み取ることを可能とするものであればよく、具体的には光や放射線等である。
本発明の放射線画像検出器では、粒子サイズの小さな電子輸送性分子を絶縁体にドープしてなる電子輸送層を、複数の電極を有する第2の電極層の全面を覆うように設けている。かかる構成によれば、この電子輸送層において均一性の高い導電率を得ることができるとともに、膜厚を薄く形成して好適な導電率を得ることができるため、非電極部における電荷のトラップを軽減して、画像濃度ムラを抑制し、画質の向上を図ることができる。
以下、図面を参照して本発明の放射線画像検出器の実施形態について説明する。図1は本発明の第1の実施形態にかかる放射線画像検出器の斜視図、図2は図1に示す放射線画像検出器のA−A線断面図である。
本放射線画像検出器10は、負電圧が印加されるとともに、放射線画像を担持した記録用の電磁波を透過する第1の電極層1と、第1の電極層1を透過した前記記録用の電磁波の照射を受けて電荷を発生する記録用光導電層2と、記録用光導電層2において発生した電荷のうち潜像電荷(電子)に対しては絶縁体として作用し、且つ該潜像電荷と逆極性の輸送極性電荷(正孔)に対しては導電体として作用する正孔輸送層3と、読取光の照射を受けて電荷を発生する読取用光導電層4と、絶縁体に電子輸送性分子をドープしてなる電子輸送層5と、読取光を透過するとともに記録用光導電層2において発生した電荷に応じた信号を検出するための複数の電極を有する第2の電極層6とをこの順に積層してなるものである。さらに、記録用光導電層2と正孔輸送層3との間には、記録用光導電層2内で発生した電荷を蓄積する蓄電部8が形成されている。なお、上記各層は、支持体7上に第2の電極層6から順に形成されるものであるが、図1では支持体7の図示を省略している。
第1の電極層1は、放射線を透過するものであればよく、たとえば、ネサ皮膜(SnO)、ITO(Indium Tin Oxide)、アモルファス状光透過性酸化膜であるIDIXO(Idemitsu Indium X−metal Oxide ;出光興産(株))などを50〜200nm厚にして用いることができ、また、100nm厚のAlやAuなども用いることもできる。
記録用光導電層2は、放射線の照射を受けることにより電荷を発生するものであればよく、放射線に対して比較的量子効率が高く、また暗抵抗が高いなどの点で優れているa−Se(アモルファスセレン)を主成分とするものを使用できる。厚さは100〜1000μmが適切である。
正孔輸送層3としては、たとえば、放射線画像の記録の際に第1の電極層1に帯電する電荷の移動度と、その逆極性となる電荷の移動度の差が大きい程良く(例えば10以上、望ましくは10以上)ポリN−ビニルカルバゾール(PVK)、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−〔1,1’−ビフェニル〕−4,4’−ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物、Clを10〜200ppmドープしたa−Se等の半導体物質が適当である。
読取用光導電層4としては、読取光の照射を受けることにより導電性を呈するものであればよく、例えば、a−Se、Se−Te、Se−As−Te、無金属フタロシアニン、金属フタロシアニン、MgPc(Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine)、CuPc(Cupper phtalocyanine)などのうち少なくとも1つを主成分とする光導電性物質が好適である。厚さは0.1〜10μm程度が適切である。
電子輸送層5は、第2の電極層6の電極以外における電荷のトラップを軽減するために設けられたものであり、絶縁体に電子輸送性分子をドープされてなる。絶縁体としては、たとえばPC(ポリカーボネート)、アクリル系有機樹脂、ポリイミド、BCB(ベンゾシクロブテン)、PVA(ポリビニルアルコール)、アクリル、ポリエチレン、ポリイミド、ポリエーテルイミド等を使用できる。電子輸送性分子としては、例えばナノカーボンを用いることができる。ナノカーボンとしては、例えばC60、C70、C76、C78、C84等のフラーレンや、カーボンナノチューブ、カーボンナノフォーム、カーボンナノシート等が挙げられる。ドープ量は5〜35wt.%程度にすることができ、電子輸送層5の厚さは0.05〜0.5μm程度が適切である。電子輸送層5の導電率は、1011〜1013Ω・cm程度が好ましい。
第2の電極層6は、記録用光導電層2において発生した電荷に応じた信号を検出するための複数の電極からなり、より詳しくは、光電荷対発生用の複数の第1の線状電極6aと、光電荷対非発生用の複数の第2の線状電極6bとからなる。第1の線状電極6aと第2の線状電極6bとは、所定の間隔を空けて交互に略平行に周期的に配列されている。
第1の線状電極6aは、読取光に対して透過性を有するとともに、導電性を有する材料であれば如何なるものでもよい。第1の線状電極6aとしては、たとえば、ITOやIDIXOなどを0.1〜1μm厚にして用いることができる。また、Al、Crなどの金属を用いて読取光を透過する程度の厚さ(たとえば、10nm程度)で形成するようにしてもよい。
第2の線状電極6bは、読取光に対して遮光性を有するとともに、導電性を有する材料であれば如何なるものでもよい。第2の線状電極6bとしては、たとえば、Al、Crなどの金属を用いて読取光を遮光する程度の厚さ(たとえば、100nm程度)で形成するようにしてもよい。
なおここで、光読取方式の放射線画像検出器においては、図2に示すように、第1の線状電極6aの幅、第2の線状電極6bの幅、1周期分の幅をそれぞれW、W、Wとしており、(W+W)/Wを開口率と呼んでいる。この開口率は、積層方向から見たとき、電極で覆われている部分の割合を示すものである。一般に、1周期分の幅Wが小さくなるにつれて、開口率は小さくなる傾向にある。
支持体7としては、読取光に対して透明であればよく、たとえばガラス基板や有機ポリマー材料を使用することができる。
上記構成を有する本実施形態の放射線画像検出器10によれば、第2の電極層6の全面を覆うように、電子輸送性分子を絶縁体にドープしてなる電子輸送層5を設けることにより、電荷輸送性を制御している。このように分子サイズの電子輸送性物質をドーパントとして用いているため、電子輸送層5において均一性の高い導電率を得ることができるとともに、膜厚を薄く形成して適度な導電率を得ることができ、非電極部における電荷のトラップを軽減して、画像濃度ムラを抑制し、画質の向上を図ることができる。
これに対して、特許文献1に記載された従来の方法では、絶縁膜に導電性を付与する導電粒子として金属・あるいは炭素粒子を用いているが、この手法では局所的な電流密度のムラを生じ、また膜厚も数μm程度と厚くなるため、さらにムラが大きくなり、好ましくない。
特に、読取用光導電層4としてa−Seを使用する場合、ごく僅かな領域、たとえば導電粒子の部分だけで電流が流れれば、そこから結晶化が生じ、画像濃度ムラが悪化する。また、読取用光導電層4としてa−Se以外でも電流により劣化するような光導電膜を使用する場合、ごく僅かな領域、たとえば導電粒子の部分だけでも電流が流れれば、そこから劣化が生じ、画像濃度ムラが悪化する。したがって、全膜面で均質に導電率すなわち電流を抑制する必要がある。本実施形態のように、分子サイズの電子輸送性物質を均一にドープし、全体として必要最低限の膜厚にすることにより、画像濃度ムラを抑制し、画質を向上させることができる。
次に、本放射線画像検出器10の動作例について説明する。まず、放射線画像検出器10の第1の電極層1に高圧電源により負のバイアス電圧が印加されて、第1の電極層1と第2の電極層6との間に電界が形成される。この状態において、X線源等の放射線源から被写体に向けて放射線が照射され、その被写体を透過して被写体の放射線画像情報を担持した放射線が第1の電極層1側から照射される。
照射された放射線は、第1の電極層1を透過し、記録用光導電層2に照射される。これにより記録用光導電層2内に正負の電荷からなる電荷対が発生する。電荷対のうち正の電荷(正孔)は、第1の電極層1に向かって移動し、上記高圧電源から注入された負の電荷と結合して消滅する。一方、電荷対のうち負の電荷(電子)は、上記電圧の印加により形成された電界分布に沿って第2の電極層6に向かって移動し、記録用光導電層2と正孔輸送層3との界面である蓄電部8に潜像電荷として蓄積される。潜像電荷の量は、照射放射線量に略比例し、この潜像電荷の量が放射線画像を示すことになる。
このとき、大線量の放射線が照射されると、蓄電部8から正孔輸送層3および読取用光導電層4を通過してしまう負の電荷が発生する。電子輸送層5をもたない放射線画像検出器や、上記構成の電子輸送層5の代わりに単なる絶縁層が形成されている放射線画像検出器では、第1の線状電極6aと第2の線状電極6bの間にこれら負の電荷がトラップされてしまい、画像濃度ムラを悪化させることになる。しかし、本実施形態の放射線画像検出器においては、上記構成の電子輸送層5を有するため、このような負の電荷のトラップを低減して、画像濃度ムラの悪化を抑制することができる。
上記のようにして放射線画像検出器10に記録された放射線画像を読み取る際には、第1の電極層1が接地された状態において、支持体7側から読取光が照射される。この照射では、第2の電極層6の長手方向に直交する方向に延びる線状の読取光を第2の電極層6の長手方向に移動させて、放射線画像検出器10の全面を走査する。これにより、読取光の走査位置に対応する読取用光導電層4内に正負の電荷対が発生する。電荷対のうち正の電荷は、蓄電部8の潜像電荷に向かって移動し、この潜像電荷と結合して消滅する。一方、電荷対のうち負の電荷は、第2の電極層6の第1の線状電極6aに帯電した正の電荷に向かって移動し、この正の電荷と結合して消滅する。
そして、上記のような負の電荷と正の電荷との結合によって、不図示の電流検出アンプに電流が流れ、この電流が積分されて画像信号として検出され、放射線画像に応じた画像信号の読取りが行われる。
次に、上記構成を有する放射線画像検出器10の実施例と、比較例について説明する。
<実施例1>
1周期分の幅Wが50μm、開口率が60%の構成において、電子輸送層5として、ポリカーボネートにC60を5wt.%ドープしたものをディップコートにより膜厚200nmで形成した。この放射線画像検出器の第1の電極層1に負電圧を印加し、繰り返し6000回測定したときのストラクチャ変化率は、15%であった。
ここで、ストラクチャ変化率とは、図3Aおよび図3Bにそれぞれ示すように、測定1回目と測定6000回(約1ヶ月分の撮影回数)目において、X線を照射せずに読み取られた画像の階調を500倍に立てた画像のヒストグラムを、横軸を濃度、縦軸を画素数として取り、測定1回目の分布のピークとなる画素数Pに対する測定6000回目の分布のピークとなる画素数Pの変化分を表したものである。すなわち、(P−P)/P×100(%)がストラクチャ変化率となる。理想的には全画素が一つの値をとることが望ましいが、実際には各画素においての濃度が異なる。そこで、この分布を記憶し画像補正を行い理想に近づけることが行われるため、繰返し撮影によりこの分布が変化しないことが精確な補正のために必要である。したがって、ストラクチャ変化率は0%に近い方がより好ましい。
<実施例2>
1周期分の幅Wが50μm、開口率が60%の構成において、電子輸送層5として、ポリカーボネートにC60を5wt.%ドープしたものをスピンコートにより膜厚200nmで形成した。実施例1と同様に繰り返し6000回測定したときのストラクチャ変化率は、5%であった。本実施例においては、スピンコートにより、実施例1に比べて膜厚のムラが軽減できたものと考えられる。
<比較例1>
1周期分の幅Wが50μm、開口率が60%の構成において、電子輸送層5を形成しないものを比較例1とした。実施例1と同様に繰り返し6000回測定したときのストラクチャ変化率は、35%であった。
<比較例2>
1周期分の幅Wが50μm、開口率が60%の構成において、電子輸送層5の代わりにポリカーボネートをディップコートにより、膜厚200nmで形成した。実施例1と同様に繰り返し6000回測定したときのストラクチャ変化率は、39%であった。
上記実施例1、実施例2、比較例1、比較例2からわかるように、絶縁体のポリカーボネートに電子輸送性分子のC60をドープしてなる電子輸送層5により、ストラクチャ変化率の改善が見られた。
次に、本発明の第2の実施形態にかかる放射線画像検出器について説明する。図4は本発明の第2の実施形態にかかる放射線画像検出器20の概略構成図である。
本実施形態の放射線画像検出器20は、電気読取方式のものであり、図4に示すように、負電圧が印加されるとともに、放射線画像を担持した記録用の電磁波を透過する第1の電極層21と、第1の電極層21を透過した記録用の電磁波の照射を受けて電荷を発生する光導電層22と、絶縁体に電子輸送性分子をドープしてなる電子輸送層23と、光導電層22において発生した電荷を収集する複数の収集電極25を有する第2の電極層24とが順次積層された構造を有する。
第1の電極層21は、Auなどの低抵抗の導電材料で構成されている。そして、第1の電極層21には、負のバイアス電圧を印加するための高圧電源が接続されている。
光導電層22は、電磁波導電性を有するものであり、放射線の照射により内部に電荷を発生するものである。光導電層22としては、たとえば、セレンを主成分とする膜厚100〜1000μmの非晶質a−Se膜を用いることができる。
電子輸送層23は、第2の電極層24の電極以外における電荷のトラップを軽減するために設けられたものであり、絶縁体に電子輸送性分子をドープされてなる。絶縁体としては、たとえばPC(ポリカーボネート)、アクリル系有機樹脂、ポリイミド、BCB(ベンゾシクロブテン)、PVA(ポリビニルアルコール)、アクリル、ポリエチレン、ポリイミド、ポリエーテルイミド等を使用できる。電子輸送性分子としては、例えば上述したようなナノカーボンを用いることができる。ドープ量は5〜35wt.%程度にすることができ、電子輸送層23の厚さは0.05〜0.5μm程度が適切である。電子輸送層23の導電率は、1011〜1013Ω・cm程度が好ましい。
第2の電極層24は、画素部27が2次元状に多数配列されたアクティブマトリクス基板からなる。収集電極25は光導電層22において発生した電荷に応じた信号を検出するためのものであり、画素部27は、収集電極25以外にも、収集電極25によって収集された電荷を蓄積する蓄積容量28と、該蓄積容量28に蓄積された電荷を読み出すためのスイッチ素子26と、スイッチ素子26をON/OFFするための多数の走査線29と、蓄積容量28に蓄積された電荷を読み出すための多数のデータ線30とを備えている。
収集電極25は、たとえばAl、Au、Cr、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の材料を用いて構成でき、その厚みは0.05μm〜1μmの範囲が好ましい。
スイッチ素子26としては、一般的には、アモルファスシリコンを活性層に用いたa−SiTFTが用いられる。スイッチ素子26のゲート電極には、スイッチ素子26をON/OFFするための走査線29が接続されており、ソース電極には、蓄積容量28に蓄積された電荷を読み出すためのデータ線30が接続され、ドレイン電極には、蓄積容量28を構成する一方の電極である蓄積容量電極31が接続されている。データ線30の終端には、アンプ32が接続されている。そして、蓄積容量28の他方の電極は蓄積容量配線33に接続されている。
次に、放射線画像検出器20の動作例について説明する。まず、放射線画像検出器20の第1の電極層21に高圧電源により負のバイアス電圧が印加されて、第1の電極層21と収集電極25との間に電界が形成される。この状態において、X線源等の放射線源から被写体に向けて放射線が照射され、その被写体を透過して被写体の放射線画像情報を担持した放射線が第1の電極層21側から照射される。
照射された放射線は、第1の電極層21を透過し、光導電層22に照射される。これにより光導電層22内に正負の電荷からなる電荷対が発生する。電荷対のうち正の電荷(正孔)は、第1の電極層21に向かって移動し、上記高圧電源から注入された負の電荷と結合して消滅する。
一方、電荷対のうち負の電荷(電子)は、上記電圧の印加により形成された電界分布に沿って収集電極25に向かって移動し、収集電極25に集められ、収集電極25に電気的に接続された蓄積容量28に蓄積される。光導電層22は照射された放射線量に応じた量の電荷を発生するため、放射線が担持した画像情報に応じた電荷が各画素部27の蓄積容量28に蓄積される。
このとき、大線量の放射線が照射されると、電子輸送層23をもたない放射線画像検出器や、上記構成の電子輸送層23の代わりに単なる絶縁層が形成されている放射線画像検出器では、収集電極25間に負の電荷がトラップされてしまい、画像濃度ムラを悪化させることになる。しかし、本実施形態の放射線画像検出器においては、上記構成の電子輸送層23を有するため、このような負の電荷のトラップを低減して、画像濃度ムラの悪化を抑制することができる。
上記のようにして放射線画像検出器20に記録された放射線画像を読み取る際には、走査線29を介してスイッチ素子26をON状態にする信号を順次加え、データ線30を介して各蓄積容量28に蓄積された電荷を取り出す。さらにアンプ32で各画素の電荷量を検出することにより画像情報を読取ることができる。
以上述べた本実施形態の放射線画像検出器20においても、電子輸送層23を設けているため、第1の実施形態の放射線画像検出器10と同様に、電荷のトラップを抑制して画像濃度ムラを軽減することができる。
「発明が解決しようとする課題」の項において述べた電荷のトラップは、非電極部で起こるため、開口率が小さい検出器ほど、トラップ量は多くなる。ここで、開口率とは、光読取方式においては前述したとおりであり、電気読取方式においては、1つの画素部の全面積に対する収集電極の面積の比である。一般的な電気読取方式の放射線画像検出器では、製造装置の制約上、最小線幅は一定であり、他のキャパシタ等が占める面積も必要なため、画素部のサイズが小さくなるに伴い、開口率は小さくなる。すなわち、画素部が小さくなるほど、電極(導体)で覆われないセンサー表面の面積は急激に増加するため、電荷のトラップ量は増加し、画像濃度ムラの悪化も顕著なものとなる。
また、光読取方式の放射線画像検出器10の場合も線状電極と電極間ギャップの最低幅が製造上制約されており10μm程度の幅が最低必要となる。上記実施例1、2においては画素が50μmピッチで第1の線状電極6a、第2の線状電極6bの幅比が10μm:20μmのため開口率は60%であるが、画素ピッチを40μmとする場合には上記制約により第1の線状電極6a、第2の線状電極6bの幅比が10μm:10μmとなり開口率は50%となる。したがって、光読取方式においても、画素部が小さくなるほど、電極(導体)で覆われないセンサー表面の面積は増加し、電荷のトラップ量は増加し、画像濃度ムラの悪化も顕著なものとなる。
近年では、画素部のサイズダウンが進行しているが、例えば画素部のサイズが50μm×50μm、開口率が0.6の放射線画像検出器のような画素サイズの小さい放射線画像検出器に本発明のような電子輸送層を設けた構成を適用すれば、電荷のトラップを軽減して画像濃度ムラを抑制できるので、有効である。
なお、本発明の放射線画像検出器における放射線画像検出器の層構成は上記実施形態のような層構成に限らずその他の層を加えたりしてもよい。
本発明の第1の実施形態にかかる放射線画像検出器の概略構成図 図1に示す放射線画像検出器のA−A線断面図 実施例1におけるストラクチャ変化率を説明するための図 実施例1におけるストラクチャ変化率を説明するための図 本発明の第2の実施形態にかかる放射線画像検出器の概略構成図
符号の説明
1、21 第1の電極層
2 記録用光導電層
3 正孔輸送層
4 読取用光導電層
5、23 電子輸送層
6、24 第2の電極層
6a 第1の線状電極
6b 第2の線状電極
7 支持体
8 蓄電部
10、20 放射線画像検出器
22 光導電層
25 収集電極
26 スイッチ素子
27 画素部
28 蓄積容量

Claims (4)

  1. 負電圧が印加されるとともに、放射線画像を担持した記録用の電磁波を透過する第1の電極層と、
    該第1の電極層を透過した前記記録用の電磁波の照射を受けて電荷を発生する光導電層と、
    該光導電層において発生した電荷に応じた信号を検出するための複数の電極を有する第2の電極層とがこの順に積層された放射線画像検出器において、
    前記光導電層と前記第2の電極層との間に、絶縁体に電子輸送性分子をドープしてなる電子輸送層を前記第2の電極層の全面を覆うように設けたことを特徴とする放射線画像検出器。
  2. 前記電子輸送性分子が、ナノカーボンからなることを特徴とする請求項1記載の放射線画像検出器。
  3. 前記光導電層と前記第2の電極層との間に、読取光の照射を受けて電荷を発生する読取用光導電層を備えることを特徴とする請求項1または2記載の放射線画像検出器。
  4. 前記電極が、前記光導電層において発生した電荷を収集するものであり、
    前記第2の電極層が、前記電極によって収集された電荷を蓄積する蓄積容量と、該蓄積容量に蓄積された電荷を読み出すためのスイッチ素子とを有することを特徴とする請求項1または2記載の放射線画像検出器。
JP2007044864A 2007-02-26 2007-02-26 放射線画像検出器 Abandoned JP2008210906A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007044864A JP2008210906A (ja) 2007-02-26 2007-02-26 放射線画像検出器
US12/037,237 US20080203336A1 (en) 2007-02-26 2008-02-26 Radiation image detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044864A JP2008210906A (ja) 2007-02-26 2007-02-26 放射線画像検出器

Publications (1)

Publication Number Publication Date
JP2008210906A true JP2008210906A (ja) 2008-09-11

Family

ID=39714835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044864A Abandoned JP2008210906A (ja) 2007-02-26 2007-02-26 放射線画像検出器

Country Status (2)

Country Link
US (1) US20080203336A1 (ja)
JP (1) JP2008210906A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001780A1 (ja) * 2011-06-30 2013-01-03 パナソニック株式会社 光電変換膜素子およびその製造方法
KR20160137858A (ko) * 2015-05-22 2016-12-01 한국원자력연구원 반도체 방사선 검출소자

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333584B1 (en) * 2008-09-10 2014-11-19 Shimadzu Corporation Radiation detector
US9267290B2 (en) 2011-03-10 2016-02-23 Henry Company Llc Metallic coating composition having improved solar reflectance and anti-settling properties
JP5964988B2 (ja) * 2012-12-10 2016-08-03 富士フイルム株式会社 放射線検出装置
KR101829992B1 (ko) * 2016-08-22 2018-03-29 경희대학교 산학협력단 페로브스카이트 화합물을 포함하는 포토컨덕터를 구비한 엑스선 검출기
KR101839692B1 (ko) * 2016-08-22 2018-04-26 경희대학교 산학협력단 페로브스카이트 화합물을 포함하는 포토컨덕터를 구비한 엑스선 검출기
KR101839691B1 (ko) * 2016-08-22 2018-04-26 경희대학교 산학협력단 페로브스카이트 화합물을 포함하는 포토컨덕터를 구비한 엑스선 검출기
KR101829993B1 (ko) * 2016-08-22 2018-03-29 경희대학교 산학협력단 페로브스카이트 화합물을 포함하는 포토컨덕터를 구비한 엑스선 검출기
KR101839690B1 (ko) * 2016-08-22 2018-04-26 경희대학교 산학협력단 페로브스카이트 화합물을 포함하는 포토컨덕터를 구비한 엑스선 검출기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337171A (ja) * 2000-03-22 2001-12-07 Fuji Photo Film Co Ltd 画像記録媒体およびその製造方法
JP2004235579A (ja) * 2003-01-31 2004-08-19 Konica Minolta Holdings Inc 放射線画像検出器
JP2006156555A (ja) * 2004-11-26 2006-06-15 Toshiba Corp X線平面検出器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4227096A1 (de) * 1992-08-17 1994-02-24 Philips Patentverwaltung Röntgenbilddetektor
EP1136888B1 (en) * 2000-03-22 2012-01-18 FUJIFILM Corporation Image recording medium and method of manufacturing an image recording medium
JP2001281345A (ja) * 2000-03-31 2001-10-10 Fuji Photo Film Co Ltd エネルギー線検出装置およびその温度調整方法
US6940084B2 (en) * 2001-07-04 2005-09-06 Fuji Photo Film Co., Ltd. Solid state radiation detector
JP4004842B2 (ja) * 2001-08-14 2007-11-07 富士フイルム株式会社 放射線固体検出器
WO2006045199A1 (en) * 2004-10-28 2006-05-04 Zheng-Hong Lu Organic light-emitting devices with multiple hole injection layers containing fullerene
US7960037B2 (en) * 2004-12-03 2011-06-14 The Regents Of The University Of California Carbon nanotube polymer composition and devices
JP5417598B2 (ja) * 2005-03-25 2014-02-19 国立大学法人富山大学 多機能有機ダイオードマトリクスパネル
US7795653B2 (en) * 2005-12-27 2010-09-14 E. I. Du Pont De Nemours And Company Electronic device including space-apart radiation regions and a process for forming the same
US7807324B2 (en) * 2006-09-15 2010-10-05 Xerox Corporation Photoconductors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337171A (ja) * 2000-03-22 2001-12-07 Fuji Photo Film Co Ltd 画像記録媒体およびその製造方法
JP2004235579A (ja) * 2003-01-31 2004-08-19 Konica Minolta Holdings Inc 放射線画像検出器
JP2006156555A (ja) * 2004-11-26 2006-06-15 Toshiba Corp X線平面検出器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001780A1 (ja) * 2011-06-30 2013-01-03 パナソニック株式会社 光電変換膜素子およびその製造方法
KR20160137858A (ko) * 2015-05-22 2016-12-01 한국원자력연구원 반도체 방사선 검출소자
KR101699380B1 (ko) 2015-05-22 2017-01-24 한국원자력연구원 반도체 방사선 검출소자

Also Published As

Publication number Publication date
US20080203336A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP2008210906A (ja) 放射線画像検出器
JP5566569B2 (ja) トモシンセシス及びスタチックイメージング用の非晶質セレンフラットパネルx線イメージャ
JP5566566B2 (ja) トモシンセシス及びスタチックイメージング用の非晶質セレンフラットパネルx線イメージャ
JP2009088154A (ja) 放射線検出器
US6878957B2 (en) Image detector and fabricating method of the same, image recording method and retrieving method, and image recording apparatus and retrieving apparatus
US20090057563A1 (en) Radiation image detector
TW200413744A (en) Active-matrix substrate and electromagnetic wave detector
JP2008177387A (ja) 放射線画像検出装置
US8581198B2 (en) Apparatus and method for detecting radiation
US6501089B1 (en) Image detector, fabrication method thereof, image recording method, image recorder, image reading method, and image reader
US7728300B2 (en) Radiation image detector
JP5235119B2 (ja) 放射線画像検出器
US7786458B2 (en) Image reading method and apparatus
JP2008198910A (ja) 放射線画像検出装置およびその製造方法
US20070057193A1 (en) Radiation image detector
JP2004186604A (ja) 画像記録媒体
JP5207451B2 (ja) 放射線画像検出器
JP2004342691A (ja) 放射線画像検出器
JP2013545965A (ja) 放射線検出器及び放射線検出方法
JP2009150825A (ja) 放射線画像検出装置
JP2007095721A (ja) 放射線画像検出器
JP2008128725A (ja) 放射線画像読方法および放射線画像検出器
Street et al. Matrix-addressed x-ray detector arrays
JP2012142954A (ja) 放射線画像記録読取装置
JP2008177394A (ja) 画像撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120611